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Abstract

We study the rate of decay of correlations for equilibrium states associated to a robust class of non-uniformly expanding maps
where no Markov assumption is required. We show that the Ruelle–Perron–Frobenius operator acting on the space of Hölder
continuous observables has a spectral gap and deduce the exponential decay of correlations and the central limit theorem. In
particular, we obtain an alternative proof for the existence and uniqueness of the equilibrium states and we prove that the topological
pressure varies continuously. Finally, we use the spectral properties of the transfer operators in space of differentiable observables
to obtain strong stability results under deterministic and random perturbations.

1. Introduction

The thermodynamical formalism was brought from statistical mechanics to dynamical systems by the pioneer-
ing works of Sinai, Ruelle and Bowen [39,11,12] in the mid seventies. Indeed, the correspondence between one-
dimensional lattices and uniformly hyperbolic maps, via Markov partitions, allowed to translate and introduce several
notions of Gibbs measures and equilibrium states in the realm of dynamical systems. Nevertheless, although uniformly
hyperbolic dynamics arise in physical systems (see e.g. [25]) they do not include some relevant classes of systems
including the Manneville–Pomeau transformation (phenomena of intermittency), Hénon maps and billiards with con-
vex scatterers. We note that all the previous systems present some non-uniformly hyperbolic behavior and its relevant
measure satisfies some weak Gibbs property. Moreover, an extension of the thermodynamical formalism beyond the
scope of uniform hyperbolicity reveals fundamental difficulties. Even in the non-uniformly hyperbolic context, where
there are no zero Lyapunov exponents and there exists a non-uniform geometric theory of invariant manifolds, the
absence of finite generating Markov partitions constitutes an obstruction to use the same strategy pushed forward
before. Nevertheless, more recently there have been established many evidences that non-uniformly hyperbolic dy-
namical systems admit countable and generating Markov partitions. This is now parallel to the development of a
thermodynamical formalism of gases with infinitely many states, a hard subject not yet completely understood. We
refer the reader to [16,31,32] for recent progress in this direction.
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So, despite the effort of many authors, a general picture is still far from complete. Some of the recent contributions
concerning the existence and uniqueness of equilibrium states in a context of non-uniform hyperbolicity include [21,
13,38,15,16,43,26,14,33,29,30,40,37,17,37,41,34]. Many of these papers deal with dynamical systems with neutral
periodic points, unimodal maps, perturbations of hyperbolic transformations and shifts with countable many symbols,
some of the relevant sources of examples of non-hyperbolic systems. However, a deep study on the statistical proper-
ties of the equilibrium states, as the mixing properties, limit theorems, strong stability under deterministic and random
perturbations or regularity of the topological pressure is usually obtained as a consequence of the spectral properties
of the Ruelle–Perron–Frobenius operator. This functional analytic approach has gained special interest in the last few
years and produced new and interesting results even in the uniformly hyperbolic setting (see e.g. [9,23,8]). Just for
completeness let us mention that, since the (semi)conjugacy between uniformly hyperbolic dynamical systems and
the symbolic dynamics is only Hölder continuous, the strategy developed in the seventies did not allowed to under-
stand the statistical properties in the space of smooth observables. Important and recent extensions of this functional
analytic approach to the setting of non-uniform hyperbolicity include e.g. the works [44,28,18–20,4,5,36].

In this article we study the strong statistical properties of some equilibrium states built in [41] for a large class
of non-uniformly expanding local homeomorphisms that may not admit a Markov partition. Using a characterization
of equilibrium states as weak Gibbs measures absolutely continuous with respect to conformal reference measures,
the authors proved roughly that every local homeomorphism with coexistence of expanding and contraction exhibit a
form of average expansion. This enables to use Birkhoff’s method of projective cones applied to the Ruelle–Perron–
Frobenius operator acting on suitable Banach spaces to obtain the existence of a unique equilibrium state for any
Hölder continuous potential with low variation and that it satisfies strong statistical properties. Natural examples are
obtained by bifurcation of expanding homeomorphisms and subshifts of finite type and allows intermittency phenom-
ena. Even in the absense of Markov partition we establish that the Ruelle–Perron–Frobenius transfer operator has a
spectral gap in the Banach spaces of both Hölder continuous and smooth observables. This was inspired and extends
the work of Matheus and Arbieto [1] that considered local diffeomorphisms under some slightly different assumptions
but where the existence of a finite Markov partition played an important role. In consequence, we get an alternative
proof for the existence and uniqueness of equilibrium states in [41], obtain exponential decay of correlations and
prove a central limit theorem. Moreover, we prove that in this non-uniformly expanding setting the topological pres-
sure varies continuously with respect to the dynamics and the potential.

At this point one could think the stability of the equilibrium states under deterministic and random perturbations
could follow directly from the spectral gap property. We refer the reader to [24] for perturbation theory of smooth
families of quasi-compact operators. However this is not the case since the transfer operators acting on the space
of Hölder continuous potentials may not vary continuously on the dynamical system as illustrated in Example 4.14.
Nevertheless we prove that the densities of the equilibrium states with respect to the conformal measures are Hölder
continuous and vary uniformly with the dynamics. Strong statistical and stochastic stability results hold in the space
of differentiable observables and are proved after careful analysis of the action of the transfer operators in those
functional spaces. We obtain a spectral stability under random perturbations. Namely, the spectral components of the
Ruelle–Perron–Frobenius operator associated to general random perturbations of the transformation and the poten-
tial varies continuously and converges to the spectral components of Ruelle–Perron–Frobenius of the unperturbed
dynamical system outside of a disk containing zero in the spectrum.

Finally, let us also mention that the program to understand to statistical and stochastic properties of the equilibrium
states for this class of multidimensional non-uniformly expanding transformations is under way. Some of the very
interesting remaining questions are to understand if one can obtain further regularity of the topological pressure and
the density of the equilibrium states with respect to conformal measures along parametrized families of potentials (e.g.
real analytic) and the study of zeta functions. Such program has been carried out with success for uniformly hyperbolic
and some partially hyperbolic and one-dimensional non-uniformly expanding dynamical systems. See e.g. [2,35,22,
6,7] and the references therein. Just to mention some recent developments, in a joint work with T. Bomfim [10],
we prove the differentiability of thermodynamical quantities as topological pressure, invariant densities, conformal
measures and measures of maximal entropy despite the lack of continuity of the Ruelle–Perron–Frobenius operator
with respect to the dynamics.

This paper is organized as follows. In Section 2, we recall some definitions and make the precise statements of
our main results and some preliminary results are given in Section 3. The proof of the spectral gap for the Ruelle–
Perron–Frobenius operator in the space of Hölder continuous observables, continuity of the topological pressure,
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uniform continuity of the densities of equilibrium states with respect to conformal measures and exponential decay
of correlations are given in Section 4. In Section 5 we show that Ruelle–Perron–Frobenius operator acting on the
space of smooth observables also admits a spectral gap and obtain the strong stability of the equilibrium states under
deterministic and random perturbations. Finally, some examples are given in Section 6.

2. Statement of the main results

2.1. Setting

Let M be compact and connected Riemannian manifold of dimension m with distance d . Let f : M → M be a
local homeomorphism and assume that there exists a continuous function x �→ L(x) such that, for every x ∈ M there
is a neighborhood Ux of x so that fx : Ux → f (Ux) is invertible and

d
(
f −1

x (y), f −1
x (z)

)
� L(x)d(y, z), ∀y, z ∈ f (Ux).

In particular every point has the same finite number of preimages deg(f ) which coincides with the degree of f . For all
our results we assume that f and φ satisfy conditions (H1), (H2), and (P) stated below. Assume there exist constants
σ > 1 and L� 1, and an open region A⊂ M such that

(H1) L(x) � L for every x ∈ A and L(x) < σ−1 for all x /∈ A, and L is close to 1: the precise condition is given in
(3.1) and (3.2).

(H2) There exists a finite covering U of M by open domains of injectivity for f such that A can be covered by
q < deg(f ).

The first condition means that we allow expanding and contracting behavior to coexist in M : f is uniformly expanding
outside A and not too contracting inside A. In the case that A is empty then f is uniformly expanding. The second
one requires that every point has at least one preimage in the expanding region. An observable g : M →R is α-Hölder
continuous if the Hölder constant

|g|α = sup
x �=y

|g(x) − g(y)|
d(x, y)α

is finite. As usual, we endow the space Cα(M,R) of Hölder continuous observables with the norm ‖·‖α = ‖·‖0 +|·|α .
We assume that the potential φ : M → R is Hölder continuous and that

(P) supφ − infφ < εφ and |eφ |α < εφeinfφ

for some εφ > 0 satisfying Eq. (4.1), depending on the constants L, σ , q and deg(f ). The previous is an open condition
on the potential, relative to the Hölder norm, and it is satisfied e.g. by constant functions. In particular we consider
measures of maximal entropy. The second condition above means that exp(φ) is contained in a small cone of Hölder
continuous as discussed after Theorem 4.1.

2.2. Existence and uniqueness of equilibrium states

Let us first recall some necessary definitions. Given a continuous map f : M → M and a potential φ : M → R, the
variational principle for the pressure asserts that

Ptop(f,φ) = sup

{
hμ(f ) +

∫
φ dμ: μ is f -invariant

}
where Ptop(f,φ) denotes the topological pressure of f with respect to φ and hμ(f ) denotes the metric entropy. An
equilibrium state for f with respect to φ is an invariant measure that attains the supremum in the right-hand side
above.

The equilibrium states constructed in [41] are absolutely continuous with respect to an expanding, conformal and
non-lacunary Gibbs measure ν. Let us recall these definitions and the notions involved. A probability measure ν, not
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necessarily invariant, is conformal if there exists a function ψ : M → R such that ν(f (A)) = ∫
A

e−ψ dν for every

measurable set A such that f | A is injective. Let Snφ = ∑n−1
j=0 φ ◦ f j denote the nth Birkhoff sum of a function φ.

The basin of attraction of an f -invariant, ergodic probability measure μ is the set B(μ) of points x ∈ M such that the
probability measures 1

n

∑n−1
j=0 δf j (x) converge weakly to μ when n → ∞. We build over the following theorem which

is a direct consequence of the results in [41].

Theorem 2.1. Let f : M → M be a local homeomorphism with Lipschitz continuous inverse satisfying (H1), (H2)
and φ : M → R a Hölder continuous potential such that supφ − infφ < log deg(f ) − logq . Then, there exists a
finite number of ergodic equilibrium states μ1,μ2, . . . ,μk for f with respect to φ, and they are absolutely continuous
with respect to some conformal expanding measure ν. Moreover, the union of the basins of attraction B(μi) contains
ν-almost every point.

Observe that despite the characterization that equilibrium states are absolutely continuous invariant measures no
information was known e.g. on the continuity of the topological pressure and density functions. Here we shall address
these questions, the uniqueness of the equilibrium states and also the strong stability of the equilibrium states. Since
our assumption (P) implies that the potential φ has small variation then it fits in the assumption of the previous
theorem. We will build over the aforementioned result with a completely different functional analytic approach.

2.3. Statement of the main results

In this section we recall some necessary definitions and state our main results. The Ruelle–Perron–Frobenius
transfer operator Lφ associated to f : M → M and φ : M → R is the linear operator defined on a Banach space
X ⊂ C0(M,R) of continuous functions ϕ : M →R by

Lφϕ(x) =
∑

f (y)=x

eφ(y)ϕ(y).

Since f is a local homeomorphism it is clear that Lφϕ is continuous for every continuous ϕ and, furthermore, Lφ is
indeed a bounded operator relative to the norm of uniform convergence in C0(M,R) because ‖Lφ‖ � deg(f )esup |φ|.
Analogously, Lφ preserves the Banach space Cα(M,R), 0 < α < 1 of Hölder continuous observables. Moreover, it is
not hard to check that Lφ is a bounded linear operator in the Banach space Cr(M,R) ⊂ C0(M,R) (r � 1) endowed
with the norm ‖ · ‖r whenever f is a Cr -local diffeomorphism and φ ∈ Cr(M,R). We say that the Ruelle–Perron–
Frobenius operator Lφ acting on a Banach space X has the spectral gap property if there exists a decomposition of its
spectrum σ(Lφ) ⊂ C as follows: σ(Lφ) = {λ1} ∪ Σ1 where λ1 is a leading eigenvalue for Lφ with one-dimensional
associated eigenspace and Σ1 � {z ∈C: |z| < λ1}.

The first result is a spectral gap for the Ruelle–Perron–Frobenius operator in the space of Hölder continuous
observables, which is enough to derive the uniqueness and further regularity of the density of the equilibrium state
with respect to the conformal measure.

Theorem A. Let f : M → M be a local homeomorphism with Lipschitz continuous inverse and φ : M → R be a
Hölder continuous potential satisfying (H1), (H2) and (P). Then the Ruelle–Perron–Frobenius has a spectral gap
property in the space of Hölder continuous observables, there exists a unique equilibrium state μ for f with respect
to φ and the density dμ/dν is Hölder continuous.

Let us mention that the previous result holds for more general compact invariant subsets K ⊂ M (with the induced
topology) also under the assumption that every point has constant number of preimages in K and at least one preimage
in the expanding region, as considered in [41]. Since we will be interested in further extensions to differentiable
dynamics as discussed below we will not prove or use this fact here. Let us give two important consequences of the
previous result.
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Corollary 1. The equilibrium state μ has exponential decay of correlations for Hölder continuous observables: there
exists some constant 0 < τ < 1 such that for all ϕ ∈ L1(ν),ψ ∈ Cα(M) there exists K(ϕ,ψ) > 0 satisfying∣∣∣∣

∫
M

(
ϕ ◦ f n

)
ψ dμ −

∫
M

ϕ dμ

∫
M

ψ dμ

∣∣∣∣� K(ϕ,ψ) · τn, for every n� 1.

As a byproduct of the previous theorem we also obtain a Central Limit Theorem.

Corollary 2. Let ϕ be a Hölder continuous function and set

σ 2
ϕ :=

∫
v2 dμ + 2

∞∑
j=1

v · (v ◦ f j
)
dμ, where v = ϕ −

∫
ϕ dμ.

Then σϕ < ∞ and σϕ = 0 iff ϕ = u◦f −u for some u ∈ L1(μ). Furthermore, if σϕ > 0 then the following convergence
on distribution

μ

(
x ∈ M:

1√
n

n−1∑
j=0

(
ϕ
(
f j (x)

) −
∫

ϕ dμ

)
∈ A

)
→ 1

σϕ

√
2π

∫
A

e
− t2

2σ2
ϕ dt,

holds as n → ∞ for every interval A ⊂R.

The stability of the equilibrium state under deterministic perturbations is more subtle. In fact, the Ruelle–Perron–
Frobenius operator Lf,φ acting on the space of Hölder continuous observables is continuous on the potential φ but in
general it may not vary continuously with the underlying dynamics f , as shown in Example 4.14. Nevertheless we
could obtain further that the Hölder continuous densities of the equilibrium states with respect to the conformal mea-
sures vary continuously with the dynamics in the C0-topology and that the topological pressure varies continuously,
which gives a nontrivial extension of the weak∗ stability results in [41].

Theorem B. Let F be a family of local homeomorphisms with Lipschitz inverse and let W be some family of Hölder
continuous potentials satisfying (H1), (H2) and (P) with uniform constants. Then the topological pressure function
F ×W � (f,φ) → Ptop(f,φ) is continuous. Moreover, the invariant density function

F ×W → Cα(M,R),

(f,φ) �→ dμf,φ

dνf,φ

is continuous whenever Cα(M,R) is endowed with the C0-topology.

2.3.1. Stronger stability results
Now we pay attention to the stability of the equilibrium states under both deterministic and an arbitrary random

perturbations. To obtain stronger statistical stability results we will admit that the dynamics is Cr -differentiable (r � 1)
and give a detailed study of the spectral properties for the Ruelle–Perron–Frobenius operator acting on the space
Cr(M,R). Associated to φ ∈ Cr(M,R) consider the condition:

(P′) supφ − infφ < εφ and maxs�r ‖Dsφ‖0 < ε′
φ

for some ε′
φ > 0 expressed precisely in Eq. (4.2) and depending on L, σ , q , deg(f ), εφ and r . This is an open

condition on the set of potentials, satisfied by constant potentials, and a natural generalization of condition (P) to the
differentiable setting.

Theorem C. Given an integer r � 1, let F r be a family of Cr -local diffeomorphisms and let Wr be a family of
Cr -potentials satisfying (H1), (H2) and (P′) with uniform constants. Then the topological pressure F r × Wr �
(f,φ) → Ptop(f,φ) and the invariant density
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F r ×Wr → Cr(M,R),

(f,φ) �→ dμf,φ

dνf,φ

vary continuously in the Cr -topology. Moreover, the conformal measure function

F r ×Wr → M(M),

(f,φ) �→ νf,φ

is continuous in the weak∗ topology. In consequence, the equilibrium measure μf,φ varies continuously in the weak∗
topology.

Finally we will describe our results on the stability of the spectra of the Ruelle–Perron–Frobenius operator under
random perturbations. Given r ∈ N, and families F r of local diffeomorphisms and Wr of Cr -observables satisfying
(H1), (H2) and (P′) with uniform constants, a random perturbation of f ∈ F is a family θε , 0 < ε � 1 of probability
measures in F r × Wr such that there exists a family Vε(f,φ), 0 < ε � 1 of neighborhoods of (f,φ), depending
monotonically on ε and satisfying

supp θε ⊂ Vε(f,φ) and
⋂

0<ε�1

Vε(f,φ) = {
(f,φ)

}
.

This dynamics can be codified by considering the skew product map

F : FN × M →FN × M,

(f , x) �→ (
σ(f ), f1(x)

)
where f = (f1, f2, . . .) and σ : FN → FN is the shift to the left. Associated to this random dynamical system consider
the integrated Ruelle–Perron–Frobenius operator Lε given by

Lεϕ(x) =
∫

(Lf,φϕ)(x) dθε(f ). (2.1)

We say that (f,φ) has Cr -spectral stability under the random perturbation if the operator Lε in the Banach space
Cr(M,R) has the spectral gap property and the leading eigenvalue λε and associated eigenfunction hε vary continu-
ously with ε and accumulate, as ε → 0, respectively on the leading eigenvalue and eigenfunction of the unperturbed
operator. We prove the following spectral stability under random perturbations.

Theorem D. Let (θε)ε be any random perturbation of (f,φ) ∈ F r ×Wr . Then (f,φ) has Cr -spectral stability under
the random perturbation (θε)ε .

Some comments are in order. Weaker stochastic stability results were previously obtained in [41] under a non-
degeneracy assumption. Namely, assuming that all f ∈F are non-singular with respect to a fixed conformal measure
it follows that there are stationary measures με absolutely continuous with respect to the conformal measure ν and
that converge to the equilibrium state μ in the weak∗ topology as the noise level ε tends to zero. Here we obtain
spectral stability under arbitrary random perturbations.

3. Preliminaries

In this section we provide some preparatory results needed for the proof of the main results. Namely, we study the
combinatorics of the orbits, hyperbolic times and some pressure estimates.

3.1. Combinatorial estimates for orbits

Here we give a description of the orbits of points according to the visit to the possibly not expanding region A
using an auxiliary partition P built using (H2).
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Lemma 3.1. There exists a partition P of M of domains of injectivity for f with cardinality at most �U and such
that

⋃{U ∈ U : U ∩A �= ∅} = ⋃{P ∈ P : P ∩A �= ∅}. In particular there are at most q < deg(f ) elements of P that
cover A.

Proof. Pick an enumeration {Ui} of the open covering U given by (H2) in such a way that the region A is covered
by the first q elements of U . Consider the partition P given by P1 = U1 and, recursively, Pi+1 = Uj+1 \ (

⋃i
j=1 Pj )

for i = 1 . . .#U − 1. It is clear that �P � �U . Moreover, f |Pi
is injective for every nonempty Pi since by construction

Pi ⊂ Ui and

⋃
{U ∈ U : U ∩A �= ∅} =

q⋃
j=1

Uj =
q⋃

j=1

Pj =
⋃

{P ∈P : P ∩A �= ∅}.

Since the last statement in the lemma is immediate from the construction this finishes the proof of the lemma. �
Since the region A is contained in q elements of the partition P we can assume without any loss of generality that

A is contained in the first q elements of P . For all x we can associate an itinerary i(x) ∈ (i0, . . . , in−1) ∈ {1, . . . ,#P }n
by ij = � if and only if f j (x) ∈ P�. Given γ ∈ (0,1) and n � 1, let us consider also the set I (γ,n) of all itineraries
(i0, . . . , in−1) so that #{0 � j � n − 1: ij � q} > γn.

Lemma 3.2. Given ε > 0 there exists γ0 ∈ (0,1) such that

cγ := lim sup
n→∞

1

n
log #I (γ,n) < logq + ε

for every γ ∈ (γ0,1).

Proof. See [41, Lemma 3.1]. �
We are in a position to state our precise condition on the constant L in assumption (H1) and the constant c in the

definition of hyperbolic times. First note that if supφ − infφ < log deg(f ) − logq as in Theorem 2.1 then it follows
from Lemma 3.2 that one may find γ < 1 such that cγ < log deg(f )− supφ + infφ. We assume that L is close enough
to 1, and c > 0 and 0 < εφ < log deg(f ) − logq are so that

σ−(1−γ )Lγ < e−2c < 1 (3.1)

and

eεφ ·
(

(deg(f ) − q)σ−α + qLα[1 + (L − 1)α]
deg(f )

)
< 1. (3.2)

The first condition is to guarantee the existence of infinitely many hyperbolic times with respect to the reference
measure in the proposition below. The second technical condition roughly means that f has some average back-
ward contraction and will be used to obtain the invariance of a cone of functions under the Ruelle–Perron–Frobenius
operator in Proposition 4.1.

3.2. Ruelle–Perron–Frobenius operators and conformal measures

Recall that the Ruelle–Perron–Frobenius transfer operator Lφ : C0(M,R) → C0(M,R) associated to f : M → M

and φ : M → R is the linear operator defined on the space C0(M,R) of continuous functions ϕ : M → R by

Lφϕ(x) =
∑

f (y)=x

eφ(y)ϕ(y).

In fact, Lφϕ is continuous since f is a local homeomorphism and ϕ is continuous. Moreover, it is not hard to check
that Lφ is a bounded operator, relative to the norm of uniform convergence in C0(M,R) and ‖Lφ‖ � deg(f )esup |φ|.
Consider also the dual operator L∗

φ : M(M) → M(M) acting on the space M(M) of Borel measures in M by
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∫
ϕ d(L∗

φη) = ∫
(Lφϕ)dη for every ϕ ∈ C0(M,R). Let r(Lφ) be the spectral radius of Lφ . In our context conformal

measures associated to the spectral radius always exist as stated in the next proposition, whose proof can be found in
the proofs of Theorem B and Theorem 4.1 in [41].

Proposition 3.3. If f is topologically exact and satisfies (H1), (H2) and φ satisfies supφ − infφ < log deg(f ) −
logq then there exists an expanding conformal measure such that L∗

φν = λν and supp(ν) = H , where λ = r(Lφ) �
deg(f )einfφ . Moreover, ν is a non-lacunary Gibbs measure and has a Jacobian with respect to f given by Jνf =
λe−φ .

Just for completeness let us mention that one key ingredient is that our assumptions guarantee we obtain volume
expansion with respect to the conformal measure, that is, Jνf (x) � deg(f )einfφ−supφ > ecγ for all x ∈ M . This is
enough to guarantee that ν-almost every point spends at most a fraction γ of time inside the domain A where f may
fail to be expanding. Notice also that λ = ∫

Lφ1dν.
Finally, we collect the main estimates concerning the pressure of the invariant sets H and Hc, which play a key

role in the construction of equilibrium states.

Proposition 3.4. Ptop(f,φ) = PH (f,φ) = logλ > PHc(f,φ), where λ denotes the spectral radius of the Ruelle–
Perron–Frobenius Lφ acting on the space of continuous observables. In consequently, any equilibrium state is an
expanding measure.

Proof. See Proposition 6.1, Lemma 6.4 and Lemma 6.5 in [41]. �
3.3. Regularity of the observables

Here we study a relation between Hölder and locally Hölder continuous functions. We say that ϕ : M → R is
(C,α)-Hölder continuous in balls of radius δ if∣∣ϕ(x) − ϕ(y)

∣∣ � Cd(x, y)α

for every y ∈ B(x, δ) and x ∈ M . Our first auxiliary lemma for the regularity of observables is as follows.

Lemma 3.5. Given 1 � ζ � 2 and δ > 0, if ϕ : M → R is (C,α)-Hölder continuous in balls of radius δ then it is
(C(1 + rα),α)-Hölder continuous in balls of radius (1 + r)δ � ζ δ, with 0 < r � 1.

Proof. Since M is connected then given y, z ∈ M so that d(y, z) < (1 + r)δ by considering a geodesic arc connecting
y and z in M there exists w so that d(z,w) = δ and d(w,y) < rd(z,w) < δ. Therefore∣∣ϕ(z) − ϕ(y)

∣∣ � ∣∣ϕ(z) − ϕ(w)
∣∣ + ∣∣ϕ(w) − ϕ(y)

∣∣ � Cd(z,w)α + Cd(w,y)α

� C
(
1 + rα

)
d(z,w)α � C

(
1 + rα

)
d(z, y)α,

which proves the lemma. �
The next lemma asserts that every locally Hölder continuous observable is indeed Hölder continuous. Moreover,

we give an estimate for the Hölder constant.

Lemma 3.6. Let N be a compact and connected metric space. Given δ > 0 there exists m � 1 (depending only on δ)
such that the following holds: if ϕ : N → R is (C,α)-Hölder continuous in balls of radius δ then it is (Cm,α)-Hölder
continuous.

Proof. Fix δ > 0 and let B = {B(xi, δ/3)}i=1...s be a finite covering of N . We can assume, without loss of generality,
that xj ∈ B(xj+1, δ) for every j = 1, . . . , s − 1. Our hypothesis guarantee that if x,w ∈ N with d(x,w) < δ we have
|ϕ(x) − ϕ(w)| � Cd(x,w)α . Hence, if d(x,w)� δ then it is not hard to use the triangular inequality to get∣∣ϕ(x) − ϕ(w)

∣∣ � (s + 2)Cδα � C(s + 2) d(x,w)α.

Thus it is enough to take m� s + 2 in the lemma. �
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3.4. Positive operators and cones

In this subsection we shall recall some results concerning the theory of projective metrics on cones and positive
operators due to G. Birkhoff. Despite the great generality of this theory we shall concentrate on cones and positive
operators on Banach spaces. We refer the reader to [27,3] for detailed presentations.

Let B be a Banach space. A subset Λ ⊂ B − {0} is a cone if r · v ∈ Λ for all v ∈ Λ and r ∈ R+. The cone Λ is
closed if Λ = Λ∪{0}, and Λ is convex if v +w ∈ Λ for all v,w ∈ Λ. Notice that a convex cone Λ with Λ∩ (−Λ) = ∅
determines a partial ordering � on B given by:

w � v iff v − w ∈ Λ ∪ {0}.
In the sequel, our cones Λ are assumed to be closed, convex and Λ ∩ (−Λ) = ∅. Given a cone Λ and two vectors
v,w ∈ Λ, we define Θ(v,w) = ΘΛ(v,w) by

Θ(v,w) = log
BΛ(v,w)

AΛ(v,w)
,

where AΛ(v,w) = sup{r ∈ R+: r · v � w} and BΛ(v,w) = inf{r ∈ R+: w � r · v}. The (pseudo-)metric Θ is called
the projective metric of Λ (or Λ-metric for brevity). Defining the equivalence relation v ∼ w iff w = r · v for some
r ∈ R+, then Θ induces a metric on the quotient Λ/ ∼. The following key result is due to Birkhoff, which can be
found e.g. in [42, Proposition 2.3].

Theorem 3.7. Let Λi be a closed convex cone (with Λi ∩ (−Λi) = ∅) in a Banach space Bi , for i = 1,2. If L : B1 →
B2 is a linear operator such that L(Λ1) ⊂ Λ2 and � = diamΘΛ2

(LΛ1) < ∞ then

ΘΛ2(Lv,Lw)�
(
1 − e−�

) · ΘΛ1(v,w),

for any v,w ∈ Λ1.

In consequence of the previous theorem, if the diameter of the cone L(Λ1) is finite in Λ2 then L is a contraction
in the projective metric which enables us to prove that it admits a unique fixed point.

3.5. Combinatorial lemma on preimages matching

Here we establish an auxiliary lemma to bound for the distance of preimages associated to different functions in F
which will play a key role in the proof of the stability results. Let Vε(f ) ⊂F be an open neighborhood of f ∈F .

Lemma 3.8. Given n � 1, f ,g ∈ FN and x, y ∈ M there exists bijection between the sets of preimages {z ∈ M:
f n(z) = x} and {z ∈ M: gn(z) = y}. Moreover, for every n ∈N there exists ε(n) > 0 such that for every 0 < ε � ε(n)

the distance between paired n-preimages is such that if d(x, y) < ε and g ∈ Vε(f ) then

d
(
x

(n)
i , y

(n)
i

)
� Lnd(x, y) +

n∑
j=1

Ln−j+1‖fj − gj‖α,

for every i = 1 . . .deg(f )n.

Proof. Let Û be a finite open cover by balls obtained using domains of invertibility for f and let 2δ̂ be the Lebesgue
number of the covering Û . If ε > 0 is small enough the constant 2δ̂ can be taken uniform for every f̃ ∈ Vε(f ).
Let x, y ∈ M satisfy d(x, y) < ε and take f = (fi)i∈N and g = (gi)i∈N with g ∈ Vε(f ). We will prove the result
recursively.

First notice that the sets {z ∈ M: f1(z) = x} and {z ∈ M: g1(z) = y} have the same cardinality deg(f ) and thus
there exists a one-to-one correspondence. Moreover, reducing ε > 0 if necessary, we obtain that the paired enumera-
tions {xi} and {yi} of such elements verify
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d
(
g1(yi), g1(xi)

) = d
(
y,g1(xi)

)
� d(y, x) + d

(
x,g1(xi)

)
= d(y, x) + d

(
f1(xi), g1(xi)

)
� d(y, x) + ‖f1 − g1‖α < δ̂.

Since g1 ∈ F then it satisfies (H1), (H2) and so d(xi, yi)� L[d(y, x)+‖f1 −g1‖α] for every i. The same argument as
above applied to the pairs xi = f2(x

(2)
j ) and yi = g2(y

(2)
j ) proves that d(g2(y

(2)
j ), g2(x

(2)
j )) � d(xi, yi) + ‖f2 − g2‖α

and, consequently,

d
(
y

(2)
j , x

(2)
j

)
� L

[
d(xi, yi) + ‖f2 − g2‖α

]
� L2[d(x, y) + ‖f1 − g1‖α

] + L‖f2 − g2‖α

= L2d(x, y) + L2‖f1 − g1‖α + L‖f2 − g2‖α,

which can be taken also smaller than δ̂ provided that we reduce ε. Using the same reasoning recursively, if d(x, y) <

ε(n) small so that the corresponding paired enumerations of preimages (x
(k)
i ) and (y

(k)
i ), i = 1 . . .deg(f )k in the sets

{z ∈ M: f k(z) = x} and {z ∈ M: gk(z) = y} are δ̂-close for every 1 � k � n − 1. Moreover, applying the previous
reasoning it follows that

d
(
x

(n)
i , y

(n)
i

)
� Lnd(x, y) +

n∑
j=1

Ln−j+1‖fj − gj‖α

as claimed. This finishes the proof of the lemma. �
We also get a simple expression for the distance of n-preimages associated to the same close functions in F and

the same base point in M .

Corollary 3.9. Given n ∈ N there exists ε(n) > 0 such that for any f1, f2 ∈ F with ‖f1 − f2‖α < ε(n) the following
property holds: given x ∈ M and paired preimages (x

(n)
1i ) and (x

(n)
2i ) by f n

1 and f n
2 , respectively, then

d
(
x

(n)
1i , x

(n)
2i

)
� nLn‖f1 − f2‖α for all i.

Proof. This is a direct consequence of the previous lemma, by considering x = y and the sequences of functions
f = (f1, f1, f1, . . .) and g = (f2, f2, f2, . . .) in Vε(f )N with ε small. �

We finish this section by proving that paired preimages associated to any close points have similar behavior with
respect to the region A. More precisely,

Lemma 3.10. Let f satisfy assumptions (H1) and (H2). Then there exists δ > 0 so that for every ball B of radius δ

has at most q < deg(f ) connected components in f −1(B) that intersect A. In particular, if d(x, y) < δ then there are
at most q pairs of paired preimages by f associated to x and y that belong to A.

Proof. Assume that δ0 > 0 is small so that every inverse branch is well defined in a ball of radius δ0. Since
�({f −1(x)} ∩ A) � q then for every x ∈ M there exists 0 < δx < δ0 so that f −1(B(x, δx)) has at most q connected
components that intersect A. By compactness of M pick a finite subcover B = {B(xi, δi)}i∈I , set 2δ to be Lebesgue
number of B and assume, without loss of generality, that δ < δ0. Therefore, by construction, given any ball B of radius
δ it follows that B ⊂ B(xi, δi) for some i ∈ I . In consequence, the number of connected components satisfy

�c.c.
(
f −1(B) ∩A

)
� �c.c.

(
f −1(B(xi, δi)

) ∩A
)
� q.

This finishes the proof of the lemma. �
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4. Ruelle–Perron–Frobenius operator in Cα(M,RRR): Spectral gap and statistical consequences

In this section we prove that the action of the transfer operator in the space of Hölder continuous observables
has the spectral gap property. In consequence, we provide an alternative proof for the existence and uniqueness of
equilibrium states as well as further statistical properties: exponential decay of correlations and central limit theorem.
We also get that the densities of the unique equilibrium state with respect to the conformal measures are Hölder
and vary continuously in a uniform way with the dynamical system. Finally, the topological pressure also varies
continuously in this non-uniformly expanding setting.

4.1. Invariant cones for the transfer operator in Cα(M,R)

To prove that the Ruelle–Perron–Frobenius operator has a spectral gap in the space of Hölder continuous observ-
ables one first introduce some notations. Recall that the Hölder constant of ϕ ∈ Cα(M,R) is

|ϕ|α = sup
x �=y

|ϕ(x) − ϕ(y)|
d(x, y)α

and set |ϕ|α,δ as the least constant C > 0 such that |ϕ(x)−ϕ(y)| � Cd(x, y)α for all points x, y such that d(x, y) < δ.
Now, consider the cone of locally Hölder continuous observables

Λκ,δ =
{
ϕ ∈ C0(M,R): ϕ > 0 and

|ϕ|α,δ

infϕ
� κ

}
.

Throughout, let δ > 0 be fixed and given by Lemma 3.10. Fix also m given by Lemma 3.5 associated to balls of
radius δ. We are now in a position to state the precise condition on the constants εφ and ε′

φ on (P) and (P′) respectively.
Then taking into account (3.2) we assume:

eεφ ·
(

(deg(f ) − q)σ−α + qLα[1 + (L − 1)α]
deg(f )

)
+ εφ2mLα diam(M)α < 1 (4.1)

and

[
1 + ε′

φ

] · eεφ ·
(

(deg(f ) − q)σ−α + qLα[1 + (L − 1)α]
deg(f )

)
< 1. (4.2)

Notice that having (3.2) it is possible to consider ε′
φ satisfying the later condition. Our main result in this section is as

follows.

Theorem 4.1. Assume that f satisfies (H1), (H2) and that φ satisfies (P). Then there exist δ > 0 and 0 < λ̂ < 1 such
that Lφ(Λκ,δ) ⊂ Λ

λ̂κ,δ
for every large positive constant κ .

Proof. Take κ > 0 and let ϕ ∈ Λκ,δ be given. Moreover, given x ∈ M we consider the set (xj )j=1...deg(f ) of the
preimages by f of the point x, that is f (xj ) = x, and let K = |ϕ|α,δ be the α-Hölder constant of ϕ on balls of
radius δ. We will prove that there exists 0 < λ̂ < 1 such that Lφϕ ∈ Λ

λ̂κ,δ
provided that κ is large enough. Indeed, if

d(x,w) < δ then

|Lφϕ(x) −Lφϕ(w)|
infz∈M{Lφϕ(z)}d(x,w)α

�
∑deg(f )

j=1 |ϕ(xj )e
φ(xj ) − ϕ(wj )e

φ(wj )|
deg(f ) · einfφ infϕ · d(x,w)α

�
∑deg(f )

j=1 |eφ(xj )(ϕ(xj ) − ϕ(wj ))|
deg(f ) · einfφ infϕ · d(x,w)α

(4.3)

+
∑deg(f )

j=1 |ϕ(wj )(e
φ(xj ) − eφ(wj ))|

infφ α
. (4.4)
deg(f ) · e infϕ · d(x,w)
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We subdivide the sum in (4.3) according to the possible backward contraction of the inverse branches of f . Using
Lemma 3.5 we obtain that ϕ is K̃-Hölder on balls of radius Lδ with K̃ = K(1 + (L − 1)α). Since K � κ infg and
supφ − infφ < εφ we get that (4.3) is bounded from above by

eεφ
(deg(f ) − q)σ−α + qLα[1 + (L − 1)α]

deg(f )
κ.

For estimating (4.4) we first note that since ϕ is Hölder continuous then supϕ � infϕ +m|ϕ|α,δ diam(M)α . Therefore,
using ϕ ∈ Λκ,δ we get

(4.4) � supϕ · |eφ |α · Lα

infϕ · einfφ
� infϕ + m‖ϕ‖α,δ diam(M)α

infϕ

|eφ |α
einfφ

Lα

� |eφ |α
einfφ

Lα
[
1 + mκ diam(M)α

]
� |eφ |α

einfφ
2mLακ diam(M)α.

Using (P) we have |eφ |α < εφeinfφ and our previous choice of εφ yields that ‖Lφϕ‖α,δ � λ̂κ inf(Lφϕ). This completes
the proof of the theorem. �

Observe that assumption (P) can be rewritten as sup(φ) − inf(φ) < εφ and eφ ∈ Λεφ . To prove that the cone has
finite diameter in Λκ,δ we compute an explicit expression for the projective metric.

Lemma 4.2. The Λκ,δ-cone metric Θκ is given by Θκ(ϕ,ψ) = log Bκ(ϕ,ψ)
Aκ(ϕ,ψ)

, where

Aκ(ϕ,ψ) = inf
0<d(x,y)<δ, z∈M

κ|x − y|αψ(z) − (ψ(x) − ψ(y))

κ|x − y|αϕ(z) − (ϕ(x) − ϕ(y))
,

and

Bκ(ϕ,ψ) = sup
0<d(x,y)<δ, z∈M

κ|x − y|αψ(z) − (ψ(x) − ψ(y))

κ|x − y|αϕ(z) − (ϕ(x) − ϕ(y))
.

Proof. By definition, Aϕ � ψ if and only if ψ(x) − Aϕ(x)� 0 for every x ∈ M and ‖ψ − Aϕ‖α,δ � κ inf(ψ − Aϕ).
In particular one gets

A� min

{
inf
x

ψ(x)

ϕ(x)
, inf

0<d(x,y)<δ, z∈M

κ|x − y|αψ(z) − (ψ(x) − ψ(y))

κ|x − y|αϕ(z) − (ϕ(x) − ϕ(y))

}
.

We will prove that minimum in the right-hand side is always attained by the second term. Pick x0 ∈ M such that
infx

ψ(x)
ϕ(x)

= ψ(x0)
ϕ(x0)

. Then it is immediate that

lim
x→x0

κ|x − x0|αψ(x0) − (ψ(x) − ψ(x0))

κ|x − x0|αϕ(x0) − (ϕ(x) − ϕ(x0))
� ψ(x0)

ϕ(x0)
,

which guarantees that

Aκ(ϕ,ψ) = inf
0<d(x,y)<δ, z∈M

κ|x − y|αψ(z) − (ψ(x) − ψ(y))

κ|x − y|αϕ(z) − (ϕ(x) − ϕ(y))
.

Similar computations lead to the expression for Bκ(ϕ,ψ). �
Proposition 4.3. Given 0 < λ̂ < 1, the cone Λ

λ̂κ,δ
has finite Λκ,δ-diameter.

Proof. For all ϕ ∈Λ
λ̂κ,δ

by definition we have |ϕ|α,δ � λ̂κ infϕ and, consequently, supϕ � [1+mλ̂κ(diamM)α] infϕ.
So, using the previous expression for the projective metric, given ϕ,ψ ∈ Λˆ one can easily check that
λκ,δ
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Θκ(ϕ,ψ)� log

(
κ · supϕ + λ̂κ infϕ

κ · infϕ − λ̂κ infϕ
· κ · supψ + λ̂κ infψ

κ · infψ − λ̂κ infψ

)

� log

(
κ(1 + mλ̂κ(diamM)α)(1 + λ̂) infϕ

κ · (1 − λ̂) · infϕ

)

+ log

(
κ(1 + mλ̂κ(diamM)α)(1 + λ̂) infψ

κ · (1 − λ̂) · infψ

)

� 2 log

(
1 + λ̂

1 − λ̂

)
+ 2 log

(
1 + mc diam(M)α

)
for some positive constant c. This implies the finite Θκ -diameter of Λ

λ̂κ,δ
and finishes the proof of the lemma. �

4.2. Consequences of the spectral gap in Cα(M,R)

Now we shall deduce the existence of equilibrium states and some of their ergodic properties.

4.2.1. Existence of equilibrium states
Using the spectral gap property in the space of Hölder continuous observables we get the existence of a unique

Hölder continuous invariant density h.

Proposition 4.4. There exists a unique density h ∈ Cα(M,R) such that Lφh = λh. In particular, μ = hν an equilib-
rium state for f with respect to φ. Finally, the density dμ/dν is bounded away from zero and infinity and Hölder
continuous.

Proof. Consider the normalized operator L̃φ = λ−1Lφ , where λ is the spectral radius of L and write Λ+ for the
cone of strictly positive continuous functions on M . Since Λκ,δ ⊂ Λ+ then the projective metrics satisfy Θ+(ϕ,ψ)�
Θκ(ϕ,ψ) for any ϕ,ψ ∈ Λκ,δ , where

Θ+(ϕ,ψ) = log

(
supx∈M{ϕ(x)/ψ(x)}
infy∈M{ϕ(y)/ψ(y)}

)
.

By the previous proposition, L̃φ(Λκ,δ) has finite diameter in Λκ,δ for any sufficiently large κ . Therefore, as discussed
at the end of Subsection 3.4, L̃φ is a contraction in the Θκ -metric and there exists 0 < τ < 1 such that for any
ϕ,ψ ∈ Λκ,δ and n, k � 1

Θ+(
L̃n+k

φ (ϕ), L̃n
φ(ψ)

)
�Θκ

(
L̃n+k

φ (ϕ), L̃n
φ(ψ)

)
� �τn, (4.5)

where � is the Θκ -diameter of the cone Λ
λ̂κ,δ

. This proves that (L̃n
φϕ)n is a Cauchy sequence in the projec-

tive metric. For the reference measure ν we have that
∫
L̃φϕ dν = ∫

ϕ dν, ∀ϕ ∈ C0(M,R). Given ϕ ∈ Λκ,δ with∫
ϕ dν = 1 it is clear that supϕ � 1 and infϕ � 1. Together with the remark that any ϕ ∈ Λκ,δ satisfies supϕ �

[1 + mκ diam(M)α] infϕ this shows that

1

R1
� infϕ � 1 � supϕ � R1 (4.6)

where R1 = 1 + mκ diam(M)α . Write ϕn = L̃n
φ(ϕ). First notice that (ϕn)n is an equi-Hölder sequence since |ϕn(x) −

ϕn(y)| � κ infϕd(x, y)α � κd(x, y)α for all d(x, y) < δ and all n, which proves that all ϕn are κm-Hölder continuous.
From the previous discussion we know that

∫
ϕn dν = 1 for every n and, consequently, the sequence ϕn is uni-

formly bounded from above and below. In fact, observe first that
∫

ϕk dν = ∫
ϕl dν = 1 implies inf ϕk

ϕl
� 1 � sup ϕk

ϕl
.

Therefore, from (4.5) we get

e−�τn

<
supx∈M{ϕk(x)/ϕl(x)}
infy∈M{ϕk(y)/ϕl(y)} = eθ+(ϕk,ϕl ) < e�τn

for every k and l � n. In consequence,
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e−�τn

< inf
ϕk

ϕl

� 1 � sup
ϕk

ϕl

< e�τn

(4.7)

and (ϕk)k is a Cauchy sequence in the C0-norm. In fact,

sup |ϕk − ϕl | � sup

(
|ϕl |

∣∣∣∣ϕk

ϕl

− 1

∣∣∣∣
)
� R1

(
e�τn − 1

)
� 3R1�τn (4.8)

for every k, l � n and any n � − log(�)/ log(τ ). This yields that (ϕk) converges uniformly to some function h in
Λκ,δ satisfying

∫
hdν = 1 and, consequently, κm-Hölder continuous. It follows from a standard argument that μ =∫

hdν is an f -invariant probability measure. Furthermore, the sequence (L̃n
φ(ψ))n converges to the same limit for

any normalized function ψ ∈ Λκ,δ . Indeed, if this was not the case then the same arguments used before are enough
to conclude that the sequence

ψn :=
{

ϕn, if n is odd,

L̃n
φ(ψ), otherwise

is Cauchy and, consequently, converges. This shows that the functions L̃n
φ(ϕ) and L̃n

φ(ψ) must have the same limit

and proves the uniqueness of the Hölder invariant density h ∈ Cα(M,R) such that L̃φh = h. By Theorem B and
Lemma 6.5 in [41] we know that equilibrium states coincide with invariant probability measures absolutely continuous
with respect to ν. Hence, μ = hν is an equilibrium state for f with respect to φ. This finishes the proof of the
proposition. �

Here we provide further information on the velocity of convergence to the invariant density in the space of Hölder
continuous observables. More precisely,

Corollary 4.5. Set ϕ ∈ Λκ,δ be such that
∫

ϕ dν = 1 and let h denote the Θκ -limit of ϕn = L̃n
φ(ϕ). Then, ϕn converges

exponentially fast to h in the Hölder norm.

Proof. It follows from and (4.7) and (4.8) that |ϕn − h|∞ � 3R1�τn and

e−�τn � inf
ϕn

h
� 1 � sup

ϕn

h
� e�τn

(4.9)

for every n ∈N. Now we claim that Bκ(h,ϕn) � 1. In fact this is immediate in the case that ϕn ≡ h. Assume otherwise,
by contradiction, and notice that Bκ(h,ϕn) < 1 implies ϕn �= h. Using (4.9), there exists a point z = zn ∈ M such that
ϕn(z) > h(z). Take x0 such that ϕn(x0) − h(x0) = min{ϕn − h}. Therefore, if 0 < d(w,x0) < δ we obtain that

ϕn(w) − ϕn(x0)

d(w,x0)α
� h(w) − h(x0)

d(w,x0)α
.

In consequence

Bκ(h,ϕn) �
ϕn(zn) − (h(w) − h(x0))/κd(w,x0)

α

h(zn) − (ϕn(w) − ϕn(x0))/κd(w,x0)α
� 1.

Analogously, one concludes that Aκ(h,ϕn) � 1. Using the definition of Θκ and the exponentially fast Θκ -convergence
of ϕn we get e−�τn

< Aκ(h,ϕn) � 1 � Bκ(h,ϕn) � e�τn
, ∀n ∈ N. For notational simplicity, given x �= y, set

Hh(x, y) = (h(x) − h(y))/κd(x, y)α and Hϕn be the corresponding expression for ϕn. The previous estimates im-
ply that e�τn

Hh(x, y) − Hϕn(x, y)� e�τn
ϕn(z) − h(z). In particular

Hh(x, y) − Hϕn(x, y) < ϕn(z) − h(z) + (
e�τn − 1

) · (ϕn(z) − Hϕn(x, y)
)
� 5R1�τn

for every large n. Since the other inequality follows from completely analogous computations one deduces that |h −
ϕn|α,δ � 5R1�τn for every large n. Therefore, |h − ϕn|α � 5mR1�τn which together with the previous estimate
‖h − ϕn‖∞ � 3R1�τn proves the corollary. �

The strict invariance of the cone Λκ,δ is now enough to obtain a spectral gap property for the normalized operator
L̃φ = λ−1

φ Lφ .
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Theorem 4.6 (Spectral gap). There exists 0 < r0 < 1 such that the operator L̃φ acting on the space Cα(M,R) admits
a decomposition of its spectrum given by Σ = {1} ∪ Σ0, where Σ0 contained in a ball B(0, r0).

Proof. Let E1 be the one-dimensional eigenspace relative to the eingenvalue 1, and let E0 := {ϕ ∈ Cα(M,R):∫
ϕ dν = 0}. Observe that

∫
hdν = 1, the subspaces E0,E1 are L̃φ-invariant and Cα(M,R) = E1 ⊕ E0: given

ϕ ∈ Cα(M,R) just write ϕ = ∫
ϕ dν · h + [ϕ − ∫

ϕ dν · h]. Therefore, to obtain the spectral gap property it is enough
to prove that L̃n

φ |E0 is a contraction for any large n.

Take κ � 1 large such that Λκ,δ is preserved by L̃φ . Pick ϕ ∈ E0 with norm less or equal to 1 and notice that ϕ+2 ∈
Λκ,δ because |ϕ +2|α,δ = |ϕ|α,δ � 1 and also 1 � κ inf |ϕ +2|. Therefore L̃n

φ(ϕ +2) converges to
∫
(ϕ +2) dν ·h = 2h

and ∥∥L̃n
φ(ϕ)

∥∥ = ∥∥L̃n
φ(ϕ + 2) − L̃n

φ(2)
∥∥ �

∥∥L̃n
φ(ϕ + 2) − 2h

∥∥ + ∥∥L̃n
φ(2) − 2h

∥∥� 20KR1�τn,

is exponentially contracted. This concludes the proof of the theorem. �
A first consequence of the spectral gap is the following strong convergence.

Corollary 4.7. The equilibrium state μ coincides with the limit of the push-forwards (f j )∗ν of the conformal mea-
sure ν.

Proof. First recall that L∗ν = λν. Thus, given any ϕ ∈ C0(M) it follows that
∫

ϕ d(f
j∗ ν) = ∫

ϕ ◦ f j dν =∫
ϕ(λ−jLj 1) dν which converges to

∫
ϕhdν = ∫

ϕ dμ as j tends to infinity. Since ϕ is arbitrary this proves that

μ = limf
j∗ ν as claimed. �

4.2.2. Uniqueness of equilibrium states and exponential decay of correlations
In this subsection we show that there is a unique equilibrium state for f with respect to φ and derive good mixing

properties.

Theorem 4.8. The equilibrium state μ = μφ has exponential decay of correlations for Hölder observables: there
exists 0 < τ < 1 such that for all ϕ ∈ L1(ν), ψ ∈ Cα(M) there is K(ϕ,ψ) > 0 such that∣∣∣∣

∫ (
ϕ ◦ f n

)
ψ dμ −

∫
ϕ dμ

∫
ψ dμ

∣∣∣∣� K(ϕ,ψ) · τn, ∀n� 1.

Proof. First we write the correlation function

Cϕ,ψ(n) :=
∫ (

ϕ ◦ f n
)
ψ dμ −

∫
ϕ dμ

∫
ψ dμ =

∫ (
ϕ ◦ f n

)
ψhdν −

∫
ϕ dμ

∫
ψ dμ.

It is no restriction to assume that
∫

ψ dμ = 1. Then, using that h is bounded away from zero and infinity we get

∣∣∣∣
∫ (

ϕ ◦ f n
)
ψhdν −

∫
ϕ dμ

∫
ψ dμ

∣∣∣∣ =
∣∣∣∣
∫

ϕ

( L̃n
φ(ψh)

h
− 1

)
dμ

∣∣∣∣�
∥∥∥∥ L̃

n
φ(ψh)

h
− 1

∥∥∥∥
0
· ‖ϕ‖1

where ‖ϕ‖1 = ∫ |ϕ|dμ. If ψh ∈ Λκ,δ for some sufficiently large κ as in Theorem 4.1 then it follows from (4.8) that
the first term in the right-hand side above satisfies∥∥∥∥ L̃

n
φ(ψh)

h
− 1

∥∥∥∥
0
� 2R1

∥∥∥∥ 1

h

∥∥∥∥
0

(
e�τn − 1

)
� Cτn,

for some positive constant C and so | ∫ (ϕ ◦f n)ψ dμ− ∫
ϕ dμ

∫
ψ dμ|� K(ϕ,ψ)τn. In general write ψh = g where

g = g+
B − g−

B and g±
B = 1

2 (|g| ± g) + B for B > 0 large so that g±
B ∈ Λκ,δ and apply the latter estimates to g±

B . By
linearity, the same estimate holds for g for some constant K(ϕ,ψ) � K(ϕ,g+

B )+K(ϕ,g−
B ). This concludes the proof

of the exponential decay of correlations. �
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As a consequence we remove the topologically mixing assumption from [41] and still deduce that there exists a
unique equilibrium state and it is exact.

Corollary 4.9. The probability measure μ is exact and the unique equilibrium state for f with respect to φ.

Proof. Let ϕ ∈ L1(μ) be such that ϕ = ϕn ◦ f n for some measurable functions ϕn. Given any ψ ∈ Cα(M) it follows
from the previous theorem that∣∣∣∣

∫ (
ϕ −

∫
ϕ dμ

)
ψ dμ

∣∣∣∣ =
∣∣∣∣
∫ (

ϕn ◦ f n
)
ψ dμ −

∫
ϕ dμ

∫
ψ dμ

∣∣∣∣� K(ϕn,ψ)τn,

where the constant K(ϕn,ψ) depends only on the value of
∫

ϕn dμ = ∫
ϕ dμ and ‖ψ‖α . Hence K(ϕn,ψ) does

not depend on n and, consequently,
∫
(ϕ − ∫

ϕ dμ)ψ dμ = 0, for all Hölder continuous ψ . The later implies that
ϕ = ∫

ϕ dμ for μ-almost every x, proving that μ is exact. In consequence, μ = hν is an ergodic probability measure
whose basin of attraction contains ν-almost every point. Therefore the uniqueness of the equilibrium state follows
from Theorem 2.1. �
4.2.3. Central limit theorem

Here we obtain a central limit theorem from the strong mixing properties. Let F be the Borel sigma-algebra of
M and Fn := f −n(F) be a non-increasing family of σ -algebras. Recall that a function ξ : M → R is Fn-measurable
iff ξ = ξn ◦ f n for some measurable ξn. Let L2(Fn) = {ξ ∈ L2(μ): ξ is Fn-measurable} and note that L2(Fn) ⊃
L2(Fn+1) for each n � 0. Given ϕ ∈ L2(μ), we denote by E(ϕ|Fn) the L2-orthogonal projection of ϕ to L2(Fn).
The strategy now is to apply a general result due to Gordin by proving that the L2(Fn) components E(ϕ|Fn) of any
observable ϕ are summable.

Lemma 4.10. For every α-Hölder continuous function ϕ with
∫

ϕ dμ = 0 there is R0 = R0(ϕ) such that
‖E(ϕ|Fn)‖2 � R0τ

n for all n� 0.

Proof. Observe that since ‖ψ‖1 � ‖ψ‖2 and
∫

ϕ dμ = ∫
ϕhdν = 0 it follows that

∥∥E(ϕ|Fn)
∥∥

2 = sup

{∫
ξϕ dμ: ξ ∈ L2(Fn), ‖ξ‖2 = 1

}

= sup

{∫ (
ψ ◦ f n

)
ϕ dμ: ψ ∈ L2(μ), ‖ψ‖2 = 1

}
�K(ϕ,ψ)τn,

which proves the lemma. �
Now the central limit theorem in Corollary 2 follows from the following abstract result due to Gordin (see e.g. [42]).

Theorem 4.11. Let (M,F,μ) be a probability space, f : M → M be a measurable map such that μ is f -invariant
and ergodic. Consider ϕ ∈ L2(μ) such that

∫
ϕ dμ = 0 and denote by Fn the non-increasing sequence of sigma-

algebras Fn = f −n(F), n � 0. If
∑∞

n=0 ‖E(ϕ|Fn)‖2 < ∞ then σϕ is finite, and σϕ = 0 iff ϕ = u ◦ f − u for some
u ∈ L2(μ). Moreover, if σϕ > 0 then for any interval A ⊂R

μ

(
x ∈ M:

1√
n

n−1∑
j=0

(
ϕ
(
f j (x)

) −
∫

ϕ dμ

)
∈ A

)
→ 1

σϕ

√
2π

∫
A

e
− t2

2σ2 dt,

as n tends to infinity.

4.2.4. Uniform continuity of the densities for the equilibrium states
Here we shall prove the first stability result for the equilibrium state: the density of the equilibrium state with

respect to the corresponding conformal measure varies continuously in the C0-norm. This is not immediate since the
Ruelle–Perron–Frobenius operator in general does not vary continuously with the dynamical system in the space of
Hölder continuous observables as discussed in Example 4.14. Nevertheless, we could get the continuity of the density
function which is the main result of this section.
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Proposition 4.12. Let F be a family of local homeomorphisms and W be a family of potentials satisfying (H1),
(H2) and (P) with uniform constants. Then the topological pressure F ×W � (f,φ) �→ logλf,φ = Ptop(f,φ) and the
density function

F ×W → (
Cα(M,R),‖ · ‖0

)
,

(f,φ) �→ dμf,φ

dνf,φ

are continuous.

Proof. Recall that Proposition 3.4 implies that Ptop(f,φ) = logλf,φ where λf,φ is the spectral radius of the operator
Lf,φ . Moreover, it follows from the proof of Corollary 4.5 that for any ϕ ∈ Λκ,δ satisfying

∫
ϕ dν = 1 one has in

particular∥∥∥∥λ−n
f,φL

n
f,φϕ − dμf,φ

dνf,φ

∥∥∥∥
0
� 3R1�τn, (4.10)

for all n. Notice the previous reasoning applies to ϕ ≡ 1 ∈ Λκ,δ . Moreover, since the spectral gap property estimates
depend only on the constants L, σ and deg(f ) it follows that all transfer operators L

f̃ ,φ̃
preserve the cone Λκ,δ for all

pairs (f̃ , φ̃) and that the constants R1 and � can be taken uniform in a small neighborhood U of (f,φ). Furthermore,
one has that

∫
λ−1

f,φLf,φ dνf,φ = 1 and so the convergence

lim
n→+∞

1

n
log

∥∥L̃n
f̃ ,φ

(1)
∥∥

0 = lim
n→+∞

1

n
log

∥∥λ
f̃ ,φ

−nLn
f̃ ,φ

(1)
∥∥

0 = 0

given by Proposition 4.4 and Corollary 4.5 can be taken uniform in U . This is the key ingredient to obtain the continuity
of the topological pressure and density function. Indeed, let ε > 0 be fixed and take n0 ∈N such that∣∣∣∣ 1

n0
log

∥∥Ln0
f̃ ,φ

(1)
∥∥

0 − log(λ
f̃ ,φ

)

∣∣∣∣ <
ε

3
,

for all f̃ ∈ U . Moreover, using Ptop(f,φ) = logλf,φ by triangular inequality we get

∣∣Ptop(f,φ) − Ptop(f̃ , φ)
∣∣ � ∣∣∣∣ 1

n0
log

∥∥Ln0
f̃ ,φ

(1)
∥∥

0 − log(λ
f̃ ,φ

)

∣∣∣∣ +
∣∣∣∣ 1

n0
log

∥∥Ln0
f,φ(1)

∥∥
0 − log(λf,φ)

∣∣∣∣
+

∣∣∣∣ 1

n0
log

∥∥Ln0
f,φ(1)

∥∥
0 − 1

n0
log

∥∥Ln0
f̃ ,φ

(1)
∥∥

0

∣∣∣∣.
Now, it is not hard to check that, for n0 fixed, the function U → C0(M,R) given by

f̃ �→ Ln0

f̃ ,φ
1 =

∑
f̃ n0 (y)=x

eSn0 φ(y)

is continuous. Consequently, there exists a neighborhood V ⊂ U of f such that | 1
n0

log‖Ln0
f,φ(1)‖0 −

1
n0

log‖Ln0
f̃ ,φ

(1)‖0| < ε/3 for every f̃ ∈ V . Altogether this proves that |Ptop(f,φ) − Ptop(f̃ , φ)| < ε for all f̃ ∈ V .
Since ε was chosen arbitrary we obtain that both the leading eigenvalue and topological pressure functions vary con-
tinuously with the dynamics f . Finally, by Eq. (4.10) above applied to ϕ ≡ 1 and triangular inequality we obtain
that ∥∥∥∥dμ

f̃ ,φ

dν
f̃ ,φ

− dμf,φ

dνf,φ

∥∥∥∥
0
� 6R1�τn + ∥∥λ−n

f̃ ,φ
Ln

f̃ ,φ
1 − λ−n

f,φL
n
f,φ1

∥∥
0

for all n. Hence, proceeding as before one can make the right-hand side above as close to zero as desired provided
that f̃ is sufficiently close to f . This proves the continuity of the density function and finishes the proof of the
proposition. �

We will finish this section with some comments on the non-continuous dependence of the Ruelle–Perron–Frobenius
operators, acting on the space of Hölder continuous observables, as a function of the dynamics f .
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Remark 4.13. Notice first that Hölder continuous observables are Lipschitz continuous with respect to the metric
d(·, ·)α . Hence, for simplicity we provide below an example of discontinuity of the Ruelle–Perron–Frobenius operator
Lf : Lip(M) → Lip(M) with respect to the dynamics f , where Lip(M) are the space of continuous observables such
that

Lip(f ) := sup
n�=y

|f (x) − f (y)|
d(x, y)

< ∞.

Example 4.14. The key idea of the following surprisingly simple example of discontinuity of Ruelle–Perron–
Frobenius operator with respect to the dynamics is that the operator of composition ϕ → ϕ ◦ g acting in the
space of Lipschitz functions does not vary continuously with g. Consider the expanding dynamics fn on the circle
S1 � R/[−1/2,1/2) given by that fn(x) = 2(x + 1

10n
) (mod 1). Obviously, fn converges to f , f (x) = 2x (mod 1)

in the C∞-topology. Now, take a periodic Lipschitz function ϕ in the circle such that ϕ(x) = |x| say, for |x| � 1/8
and ϕ(x) = 0 for 1/2 � |x| � 1/5. Just take the potential φ ≡ 0 and write Ln, L for the Perron–Frobenius operators
corresponding to fn, f respectively. Therefore, taking 0 < xn < yn < 1/10n, we obtain that

Lip
(
(Ln −L)(ϕ)

)
� |Ln(ϕ)(yn) −Ln(ϕ)(xn) +L(ϕ)(xn) −L(ϕ)(yn)|

yn − xn

= ||yn/2 − 1/10n| − |xn/2 − 1/10n| + |xn/2| − |yn/2||
yn − xn

= |−yn − xn|
yn − xn

= 1 = Lip(ϕ).

Thus Ln : Lip(S1,R) → Lip(S1,R) does not converge to L even in the strong operator topology. In particular, Ln does
not converge to L in the norm topology.

5. Ruelle–Perron–Frobenius in Cr(M,RRR): Spectral gap and strong stability results

Throughout this section we assume that f is a Cr -local diffeomorphism (r � 1) and the potential φ belongs to
Cr(M). Here we restrict the analysis of the transfer operator to the space of smooth observables.

5.1. Spectral gap for the transfer operator in Cr(M,R)

Here we shall assume that f is a Cr (r � 1) local diffeomorphism on a compact manifold M satisfying (H1) and
(H2) and φ ∈ Cr(M,R) satisfies (P′). In fact, we require L � 1 to be close to 1 such that

Ξr := eεφ
qLr + (deg(f ) − q)σ−1

deg(f )
< 1, (5.1)

which we use as counterpart of (3.2) in this differentiable setting. We prove that the transfer operator Lφ : Cr(M,R) →
Cr(M,R) has a spectral gap. The strategy is to show Lφ-invariance of the cones of smooth observables

Λr
κ =

{
ϕ ∈ Cr(M,R): ϕ > 0 and

‖Dsϕ‖0

infϕ
� κ

c
(r)
s

for s = 1 . . . r

}
,

for some constants c
(r)
s with s = 1 . . . r defined recursively using the corresponding constants for the cones corre-

sponding to smaller differentiability. The choice of the constants c
(r)
s is made in order to guarantee that observables in

Λr
κ associated to large κ belong to some cones Λr−i

κi
for some large constants (ki)i=1...r−1 where the Ruelle–Perron–

Frobenius operator acts as a contraction in the projective metric. The precise construction is described in what follows.
For r = 1 just consider

Λ1
κ =

{
ϕ ∈ Cr(M,R): ϕ > 0 and

‖Dϕ‖0

infϕ
� κ

}
,

which corresponds to the previous cone with c
(1) = 1. For r = 2 we obtain that the cone Λ2

κ can be written as
1
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Λ2
κ =

{
ϕ ∈ C2(M,R): ϕ > 0,

‖Dϕ‖0

infϕ
� (1 − Ξ2)κ

2eεφ maxx ‖D2f −1(x)‖ and
‖D2ϕ‖0

infϕ
� κ

}
,

with c
(2)
2 = 1 and c

(2)
1 = 2(1 − Ξ2)

−1eεφ maxx ‖D2f −1(x)‖. Assuming that we have defined the positive constants

(c
(r−1)
s )s=1...r−1 associated to the cones Λr−1

κ of Cr−1-observables we define the constants c
(r)
s as follows. Set⎧⎪⎨

⎪⎩
c
(r)
r = 1;

c
(r)
r−1 = r!(1 − Ξr)

−1eεφ max1�j�r−1 maxx

∥∥Dr−1f −1(x)
∥∥j ;

c
(r)
r−t = c

(r)
r−t+1 · c(r−1)

r−t , for t = 2 . . . r − 1.

Roughly, the choice of c
(r)
r−1 is made in order to guarantee that at most r! terms arising in the computation of higher

order derivatives of the observable Lφϕ are dominated by the term involving Drϕ, while the recursive choice of the

constants c
(r)
s with s < r guarantees that the cones corresponding to smaller differentiability are contracted. Hence,

our main result in this section is as follows.

Theorem 5.1. There exists a positive constant ε′
φ > 0 (depending only on f and r) such that if φ satisfies condition

(P′) given by

supφ − infφ < εφ and max
s�r

∥∥Dsφ
∥∥

0 < ε′
φ

then there are κ0 > 0 and 0 < λ̂ < 1 such that Lφ(Λr
κ) ⊂ Λr

λ̂κ,δ
for every κ � κ0.

Proof. We shall prove the theorem recursively on the differentiability r . First set r = 1 and consider ϕ ∈ Λ1
κ for

κ > 0 large. Given x ∈ M let (xj )j denote the set of preimages by f of the point x and denote by f −1
i corresponding

the local inverse branch for the function f in a neighborhood of x with fi(xi) = x. It is not hard to check that
|Lφϕ(x)| � eεφ inf |Lφϕ| for every x ∈ M . Moreover,

D(Lφϕ)(x) =
deg(f )∑
j=1

eφ(xj )Dϕ(xj )Df −1
j (x) +

deg(f )∑
j=1

ϕ(xj )e
φ(xj )Dφ(xj )Df −1

j (x) (5.2)

and, consequently, ‖D(Lφϕ)(x)‖ is bounded by

deg(f )∑
j=1

∣∣eφ(xj )
∣∣∥∥Dϕ(xj )Df −1

j (x)
∥∥ +

deg(f )∑
j=1

∣∣ϕ(xj )e
φ(xj )

∣∣∥∥Dφ(xj )Df −1
j (x)

∥∥.

By our assumptions (H1) and (H2) it follows that the isomorphism ‖Df −1
j (·)‖ � L for j = 1 . . . q and is indeed a

contraction for j > q . Thus, using (P′) and that supϕ � infϕ + ‖Dϕ‖0 diam(M) we get

‖D(Lφϕ)(x)‖
inf |Lφϕ| �

∑q

j=1 L|eφ(xj )|‖Dϕ(xj )‖0 + ∑
j>q σ−1|eφ(xj )|‖Dϕ(xj )‖0

deg(f )einfφ infϕ

+
∑q

j=1 L|ϕ(xj )e
φ(xj )|‖Dφ(xj )‖0 + ∑

j>q σ−1|ϕ(xj )e
φ(xj )|‖Dφ(xj )‖0

deg(f )einfφ infϕ

� eεφ
qL + σ−1(deg(f ) − q)

deg(f )

‖Dϕ‖0

infϕ
+ eεφ

∥∥Dφ(xj )
∥∥

0

supϕ

infϕ

qL + σ−1(deg(f ) − q)

deg(f )

� Ξ1 · κ + Ξ1 ε′
φ

(
1 + ‖Dϕ‖0 diam(M)

)
which can be taken smaller than λ̃ κ , for some constant 0 < λ̃ < 1 by our choice of εφ in (5.1) provided that ε′

φ is

sufficiently small. In consequence we obtain that ‖D(Lφϕ)‖0 � λ̃κ inf |Lφϕ|, which proves the theorem in the case
that r = 1.
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We now consider the case r = 2. Fix κ > 0 and consider ϕ ∈ Λ2
κ . Differentiating (5.2) by means of the chain rule

we obtain sums involving the seven terms

D2φ(xj )
[
Df −1

j (x)
]2

eφ(xj )ϕ(xj ),

Dφ(xj )D
2f −1

j (x)eφ(xj )ϕ(xj ),

Dφ(xj )Df −1
j (x)eφ(xj )Dϕ(xj )Df −1

j (x),

Dφ(xj )Df −1
j (x)eφ(xj )Dφ(xj )Df −1

j (x),

eφ(xj )Dφ(xj )Df −1
j (x)Dϕ(xj )Df −1

j (x),

eφ(xj )D2ϕ(xj )
[
Df −1

j (x)
]2

,

eφ(xj )Dϕ(xj )D
2f −1

j (x).

Our assumption maxs�r ‖Dsφ‖0 < ε′
φ with ε′

φ > 0 small implies that all but the last two previous terms can be taken
neglectable. In consequence, proceeding as before we conclude that there exists a uniform constant C > 0 depending
only on f such that

‖D2(Lφϕ)(x)‖
inf |Lφϕ| � Cε′

φ + eεφ
‖D2ϕ‖0

infϕ

qL2 + σ−2(deg(f ) − q)

deg(f )
+ eεφ

‖Dϕ‖0

infϕ
max
x∈M

∥∥D2f −1(x)
∥∥

� Cε′
φ + Ξ2κ + 1 − Ξ2

2
κ

which can be again taken smaller than λ̃ κ , for some constant 0 < λ̃ < 1, provided that κ is large enough and ε′
φ is

small. This estimate, which involves the information on the smaller derivatives, proves the strict invariance of the cone
Λ2

κ under the operator Lφ . The complete statement in the theorem follows by completely analogous computations for
the s-derivatives of Lφg, with 2 < s � r . In fact, the remaining of the proof can be obtained recursively for � + 1
using previous information or s ∈ {1,2, . . . , �} by analogous computations of higher order derivatives using the chain
rule and estimating dominating terms as above. In fact the number of terms associated containing the derivatives Dsϕ,
s = 1 . . . r are clearly less than r! and, by definition of the cones, each of such terms is bounded by (1 − Ξr)/r!. Then
if ε′

φ is small proceeding as above we get that Λr
κ is strictly preserved by Lφ , which proves the theorem. �

Again we use that the smaller cone has finite diameter in the projective metric in the case of the cones for differen-
tiable observables, whose proof can be simply adapted from the one of Proposition 4.3. For that reason we shall omit
its proof.

Proposition 5.2. Given 0 < λ̂ < 1, the cone Λr

λ̂κ,δ
has finite Λr

κ -diameter.

In the next subsection we will use Birkhoff’s theorem to deduce good spectral properties for the Ruelle–Perron–
Frobenius operator.

5.2. Strong stability properties

Here we establish the statistical and spectral stochastic stability results. The discussion in Remark 4.13 shows
that this property was far from being immediate. In the space of Cr -observables (r � 1) the Perron–Frobenius vary
continuously with the dynamics in the strong (pointwise) operator topology. However, it can also be shown that in
general such operators do not vary continuously in norm in the space of bounded linear operators. In fact, the stability
results presented here will follow from the careful study of the spectral properties of the transfer operators and will be
consequence of the uniformity of the gap spectral for all close dynamical systems and potentials.

Throughout this subsection let F r be a family of Cr , r � 1 local diffeomorphisms and let Wr be some family of
Cr -potentials satisfying (H1), (H2) and (P′) with uniform constants. Let B(Cr(M,R),Cr(M,R)) denote the space of
bounded linear operators on Cr(M,R) endowed with the strong operator topology.
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Proposition 5.3. The Ruelle–Perron–Frobenius operator function

F r ×Wr → B
(
Cr(M,R),Cr(M,R)

)
,

(f,φ) �→ Lf,φ

is continuous in the Cr -topology.

Proof. Let (f,φ), (f̃ , φ̃) ∈F r ×Wr be given. Then for any fixed ϕ ∈ Cr(M,R) and x ∈ M we get that

∥∥L
f̃ ,φ̃

(ϕ)(x) −L
f̃ ,φ̃

(ϕ)(x)
∥∥ �

deg(f )∑
j=1

∥∥ϕ
(
f̃ −1

i

)
(x) · eφ̃(f̃ −1

i (x)) − ϕ
(
f −1

i

)
(x) · eφ(f −1

i (x))
∥∥

where, as before, f −1
i denote the inverse branches of f at x. Moreover, the right-hand side above goes to zero

independently of x as (f̃ , φ̃) converges to (f,φ) in the C1-topology. Furthermore, ‖DL
f̃ ,φ̃

(ϕ)(x) − DL
f̃ ,φ̃

(ϕ)(x)‖
is bounded by

deg(f )∑
j=1

∥∥D
(
ϕ
(
f̃ −1

i

)
(x) · eφ̃(f̃ −1

i (x))
) − D

(
ϕ
(
f −1

i

)
(x) · eφ(f −1

i (x))
)∥∥,

which also converges uniformly to zero by standard triangular argument as the element provided that (f̃ , φ̃) converge
to (f,φ). We note that analogous computations hold for higher order derivatives which lead to the statement of the
proposition. �

Now we deduce our functional analysis approach to deduce the important continuity of the topological pressure,
a fact unknown in [41].

Proposition 5.4. The topological pressure function F r ×Wr � (f,φ) → Ptop(f,φ) is continuous in the Cr -topology,

for r � 1. Moreover, the densities
dμf,φ

dνf,φ
vary continuously with respect to (f,φ) ∈ F r ×Wr .

Proof. This proof goes along the same lines of the proof of Proposition 4.12. For that reason we will prove the result
by focusing on the main differences. First notice that λf,φ is the leading eigenvalue and spectral radius of the operator
Lf,φ acting in any space of the Banach spaces Cr with r � 0. Now, using once more that all transfer operators
associated to all (f̂ , φ̂) in some neighborhood U of (f,φ) preserve the same cone of functions we obtained, following
Proposition 4.4 and Corollary 4.5, that the limit

lim
n→+∞

1

n
log

∥∥L̃n

f̂ ,φ̂
(1)

∥∥
r
= lim

n→+∞
1

n
log

∥∥λ−n
f,φL

n
f̂ ,φ̂

(1)
∥∥

r
= 0

is uniform for all (f̂ , φ̂) in some neighborhood U of (f,φ). Therefore, by standard triangular inequality together with
the continuity of the transfer operators in the Cr -strong topology it follows that given ε > 0 there exists n0 such that

∣∣Ptop(f,φ) − Ptop(f̂ , φ̂)
∣∣ � ∣∣∣∣ 1

n0
log

∥∥Ln0
f̂ ,φ̂

(1)
∥∥

r
− log(λ

f̂ ,φ̂
)

∣∣∣∣ +
∣∣∣∣ 1

n0
log

∥∥Ln0
f,φ(1)

∥∥
r
− log(λf,φ)

∣∣∣∣
+

∣∣∣∣ 1

n0
log

∥∥Ln0
f,φ(1)

∥∥
r
− 1

n0
log

∥∥Ln0
f̂ ,φ̂

(1)
∥∥

r

∣∣∣∣ < ε

as (f̂ , φ̂) converges to (f,φ). This argument shows that the leading eigenvalue, thus the topological pressure, vary con-
tinuously. Proceeding as in the proof of Proposition 4.4, noticing that Cr(M,R) ⊂ C0(M,R) and

∫
λ−1

f,φLf,φ dν = 1,
one obtains from the contraction on the projective metric Θκ that∥∥∥∥dμ

f̂ ,φ̂

dν ˆ ˆ
− dμf,φ

dνf,φ

∥∥∥∥ � 6R1�τn + ∥∥λ−n

f̂ ,φ̂
Ln

f̂ ,φ̂
1 − λ−n

f,φL
n
f,φ1

∥∥
r

f ,φ r
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where R1 is a uniform upper bound for the C0-norm of the iterates λ−n
f,φLn

f,φ1 in a neighborhood of (f,φ), the
constant � is the diameter of the cone Λr

κ , and 0 < τ < 1. Using the continuity of the transfer operators given in
Proposition 5.3 then for any fixed n the last expression in the right-hand side above can be made arbitrarily small
provided that (f̂ , φ̂) is sufficiently close to (f,φ). This proves the continuity of the density function and finishes the
proof of the proposition. �

We are now in a position to prove that the equilibrium states are strongly stable under deterministic perturbations.

Proof of Theorem C. The continuity of topological pressure given by Proposition 5.4 together with Theorem D in
[41] that the conformal measures νfn,φn converge to νf,φ in the weak∗ topology as (fn,φn) goes to (f,φ) in the

Cr -topology. Now, using that
dμf,φ

dνf,φ
is Cr and also varies continuously in the Cr -norm with (f,φ) ∈ F r × Wr it

follows that the equilibrium state μf,φ also varies continuously in the weak∗ topology, which completes the proof of
the theorem. �

Finally we derive the strong stochastic stability of the spectra. Consider any family θε , 0 < ε � 1 of probability
measures in F r × Wr such that its support supp θε is contained in a neighborhood Vε(f,φ) of (f,φ) depending
monotonically on ε and satisfying

⋂
0<ε�1 Vε(f,φ) = {(f,φ)}. We refer to (θε)ε as an arbitrary random perturbation

of (f,φ) ∈F r ×Wr . We first prove that the stochastic transfer operator Lε : Cr(M,R) → Cr(M,R) given by

Lε(ϕ) =
∫

L
f̃ ,φ̃

ϕ dΘε(f̃ , φ̃) (5.3)

is well defined and preserves a cone of Cr -observables.

Lemma 5.5. The stochastic transfer operator Lε defined in (5.3) is well defined. Moreover, there exists 0 < λ̂ < 1 so
that Lε(Λ

r
κ) ⊂ Λr

λ̂κ
for every small ε and every large κ .

Proof. First we prove that the stochastic transfer operator Lε is well defined. Given any fixed ϕ ∈ Cr(M,R) it follows
that L

f̃ ,φ̃
(ϕ) is Cr for all (f̃ , φ̃) ∈ F r × Wr . Moreover, since the constants are taken uniform in the family F r and

Wr then it is a consequence of Lebesgue dominated convergence theorem that Lε(ϕ) is also Cr . This proves the first
claim in the lemma.

On the other hand, by construction we obtain 0 < λ̂ < 1 and κ large so that L
f̃ ,φ̃

(Λr
κ) ⊂ Λr

λ̂κ
for every (f̃ , φ̃) in a

neighborhood of (f,φ). In particular, if ε is small then this property holds in Vε(f,φ) and, consequently, Lε(Λ
r
κ) ⊂

Λr

λ̂κ
. This proves the second statement finishes the proof of the lemma. �

We finish our section by proving our spectral stochastic stability result.

Proof of Theorem D. Let (f,φ) ∈ F r × Wr be fixed. By Proposition 5.3 the transfer operators L
f̃ ,φ̃

acting on the

space Cr(M,R) vary continuously with (f̃ , φ̃) ∈F r ×Wr in the strong operator topology.
Recall also that the dominant eigenvalue for Lf,φ equals to the spectral radius and has multiplicity one and that both

the leading eigenvalue and corresponding eigenspace vary continuously. Moreover, since all transfer operators L
f̃ ,φ̃

preserve the same cone Λr
κ for all (f̃ , φ̃) in a small neighborhood of (f,φ) then it follows from the last proposition

that the same property holds for Lε with ε small. Proceeding as in the later sections we get that Lε has a spectral gap
for every small ε. In particular, there exists a unique eigenvalue λε , which coincides with the spectral radius of Lε ,
and the eigenspace associated to λε is one-dimensional.

We claim that the spectral radius λε of Lε varies continuously for all small ε and that it converges to λf,φ when-
ever ε tends to zero. If ε > 0 is small we have that all operators λ−1

ε Lε preserve the same cone of functions Λr
κ .

Moreover, there exists a conformal measure νε , that is, such that L∗
ενε = λενε and it follows from the normalization∫

λ−1
ε Lε1dνε = 1 that the convergence limn

1
n

log‖λ−n
ε Ln

ε1‖r = 0 is uniform for all small ε. Proceeding as in the
proof of Proposition 5.4 we deduce that the functions ε → λε and ε → dμε/dνε vary continuously for all small ε. In
fact, proceeding as before one obtains that
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∥∥∥∥dμε

dνε

− dμf,φ

dνf,φ

∥∥∥∥
r

� 6R1�τn + ∥∥λ−n
ε Ln

ε1 − λ−n
f,φL

n
f,φ1

∥∥
r

where R1 is a uniform upper bound for the C0-norm of the iterates λ−n
ε Ln

ε1 for all small ε, the constant � is the
diameter of the cone Λr

κ and 0 < τ < 1. Using that for n fixed the functions Ln
ε1 and Ln

f,φ1 are uniformly close
provided that ε is small then one deduces that λε → λf,φ and consequently, that the density dμε/dνε converges to
dμf,φ/dνf,φ as ε → 0. This concludes the proof of our theorem. �
6. Examples

In this section we provide some examples and comment on our assumptions.

Example 6.1. Let f0 : Td → Td be a linear expanding map. Fix some covering U by domains of injectivity for f0
and some U0 ∈ U containing a fixed (or periodic) point p. Then deform f0 on a small neighborhood of p inside
U0 by a pitchfork bifurcation in such a way that p becomes a saddle for the perturbed local diffeomorphism f . In
particular, such perturbation can be done in the Cr -topology, for every r > 0. By construction, f coincides with f0 in
the complement of P1, where uniform expansion holds. Observe that we may take the deformation in such a way that
f is never too contracting in P1, which guarantees that conditions (H1) and (H2) hold, and that f is still topologically
exact. Condition (P′) is clearly satisfied by any Cr -potential close to φ ≡ 0. Hence, there exists a unique measure of
maximal entropy μ for f , it is absolutely continuous with respect to a conformal measure ν, supported in the whole
manifold Td and has exponential decay of correlations on the space Cr -observables. Moreover, it follows from our
results that the density dμ/dν is Cr and it varies continuously in the C[r]-topology with the dynamical system f ,
where [r] denotes the integer part of r . Furthermore, the topological pressure function Ptop(f,φ) varies continuously
among the pairs (f,φ) that satisfy conditions (H1), (H2) and (P′) with uniform constants. Finally, in the case that
r � 1 we have that the maximal entropy measure is strong stable under deterministic perturbations and satisfies a
random spectral stability.

In fact, the previous example can be modified to deal with expanding maps with indifferent periodic points in a
higher-dimensional setting. A particularly interesting one-dimensional example is given by the Manneville–Pomeau
transformation and the family of potentials ϕt = −t log |Df |. An intermittency phenomenon occurs at t = 1 but no
longer occurs whenever t is close to zero as we now discuss with detail.

Example 6.2 (Manneville–Pomeau map). If α ∈ (0,1), let fα : [0,1] → [0,1] be the C1+α-local diffeomorphism
given by

fα(x) =
{

x(1 + 2αxα) if 0 � x � 1
2 ,

2x − 1 if 1
2 < x � 1.

Observe that conditions (H1) and (H2) are verified and the family ϕα,t = −t log |Dfα| of Cα-potentials do satisfy
condition (P) for all |t |� t0 small and α ∈ (0,1) since∣∣ϕα,t (x) − ϕα,t (y)

∣∣ = ∣∣t log
∣∣Dfα(x)

∣∣ − t log
∣∣Dfα(y)

∣∣∣∣ = |t | log
|Dfα(x)|
|Dfα(y)| � |t | log(2 + α).

Hence, we obtain that for all |t | � t0 there exists a unique equilibrium state μt , it is absolutely continuous with respect
to a conformal measure νt and has exponential decay of correlations in the space of Hölder observables. Moreover,
dμt/dνt is Hölder continuous and it varies continuously in the C0-norm for all |t |� t0.

Moreover no transition occurs once one considers the order of contact α of the indifferent fixed point to in-
crease. Indeed, if α is arbitrary large then it follows from our previous reasoning that there exists a small interval
Iα = [−tα, tα] containing zero such that the topological pressure R+ × [−tα, tα] � (α, t) �→ Ptop(fα,ϕα,t ) varies
continuously. Moreover, there is a unique equilibrium state for the Cα-potential ϕα,t with |t | � tα and it is C[α]-
strong stable under deterministic perturbations: for every (α, t) ∈ R+ × [−tα, tα] there exists a unique equilibrium
state μα,t absolutely continuous with respect to a conformal measure να,t , its density dμα,t /dνα,t is C[α] and
varies continuously with (α, t). Finally, since our strong random spectral stability result applies for general ran-
dom perturbations one can consider e.g. θε to be the uniform distribution in the one-parameter family of pairs
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{(fα,ϕα,tα ): α ∈ (α0 − ε,α0 + ε)} ⊂ F × W . In particular, the random dynamical system associated considers ran-
dom orbits using maps with indifferent fixed points with different contact orders. Here our results yield that the
random Ruelle–Perron–Frobenius operator Lε has the spectral gap property and that its spectral radius λε converges
to exp(Ptop(fα,ϕα,tα ))|α=α0 as ε tends to zero.
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