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Abstract

This paper is concerned with the analysis of a sixth-order nonlinear parabolic equation whose solutions describe the evolution of
the particle density in a quantum fluid. We prove the global-in-time existence of weak nonnegative solutions in two and three space
dimensions under periodic boundary conditions. Moreover, we show that these solutions are smooth and classical whenever the
particle density is strictly positive, and we prove the long-time convergence to the spatial homogeneous equilibrium at a universal
exponential rate. Our analysis strongly uses the Lyapunov property of the entropy functional.
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1. Introduction

Degond et al. derived in [5] a nonlocal quantum diffusion model for charged particles in, for instance, semicon-
ductors or cold plasmas by applying a moment method to a Wigner–BGK model. An asymptotic expansion of the
nonlocal model in terms of the scaled Planck constant h̄2 leads to a family of parabolic equations for the particle
densities n(t;x). The first member of this family is the classical heat equation ∂tn = �n. The second one is the
fourth-order Derrida–Lebowitz–Speer–Spohn (DLSS) equation, see (3) below, which is analyzed in [9,13]. This pa-
per is concerned with the third family member, obtained from an expansion to order h̄4 (see [3, Appendix]), which
reads as

∂tn = div

(
n∇

(
1

2

(
∂2
ij logn

)2 + 1

n
∂2
ij

(
n∂2

ij logn
)))

. (1)
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Here and in the following, we employ the notations ∂i = ∂/∂xi , ∂2
ij = ∂2/∂xi∂xj , etc. and the summation convention

over repeated indices from 1 to d . We study the initial-value problem for (1) in the d-dimensional torus Td ∼= [0,1]d
(imposing periodic boundary conditions) in dimensions d = 2 and d = 3. The one-dimensional problem has recently
been studied in [14].

Specifically, we establish and compare two solution concepts for (1). The first concept is concerned with weak
nonnegative solutions; in this framework we generalize the global existence result from [14] to the multidimensional
situation. The second concept is that of positive classical solutions; in analogy to the results obtained by Bleher et al.
for the fourth-order DLSS equation [2], we are able to establish the existence of such regular solutions for (1) locally
in time. Naturally, a classical solution is also a weak solution on the time interval of its existence. Vice versa, from
a given weak solution, one obtains classical solutions on all time subintervals on which the weak solution is strictly
positive and has a uniformly bounded energy (see below for the definition). Since we are not able to rule out the loss
of strict positivity due to the evolution, it thus might happen that the classical solution concept breaks down on certain,
possibly even infinite time intervals along the globally well-defined weak solution.

We shall provide further motivations to study (1) in Section 2 below. At this point, we simply want to put Eq. (1)
into the general context of higher-order parabolic equations. Mainly initiated by the research on pattern formation
in Cahn–Hilliard and related models in the late 1980’s, the literature on the rich mathematical structure of nonlinear
fourth-order and sixth-order equations has grown rapidly over the last two decades. Particular interest has been devoted
to equations that are positivity preserving: such equations allow for the introduction of a suitable solution concept such
that a nonnegative initial datum leads to a nonnegative global solution. Clearly, this is a core feature for equations that
model the evolution of particle densities, etc. On the other hand, positivity preservation is a rare property, since
general parabolic equations of fourth- or higher-order do not obey comparison principles. For instance, even the linear
equation ∂tn + (−�)mn = 0 is not positivity preserving if m> 1.

Among the positivity preserving models, the probably most famous study object is the fourth-order thin-film equa-
tion

∂tn + div
(
nβ∇�n

) = 0. (2)

It describes the surface tension-dominated motion of thin viscous films of height n(t;x)� 0 under free slip (β = 2)
or no-slip (β = 3) boundary conditions. The available literature on the existence, (non-)uniqueness and qualitative
properties of solutions is huge and steadily growing; see [1] for a collection of references.

Other models for thin viscous films lead to sixth-order equations. One example is

∂tn = div
(
nβ∇�2n

)
,

which models the spreading of a thin viscous fluid under the driving force of an elastic plate [8]. The model was first
introduced in [15, Formula (A8)] in space dimension d = 1 with β = 3 together with a more general form of this
equation arising in the isolation oxidation of silicon. Another application for such thin-film equations concerns the
bonding of Silicon–Germanium films to silicon substrates [8]. Further examples of sixth-order equations can be found
in [7,14,16].

The previously mentioned DLSS (or quantum diffusion) equation

∂tn + ∂2
ij

(
n∂2

ij logn
) = 0, (3)

provides another well-studied example of a fourth-order equation. Originally, the one-dimensional version of (3)
arose in the context of spin systems. Derrida et al. [6] derived it in the course of studying fluctuations of the interface
between the regions of predominantly positive and negative particle spins in the Toom model. There are numerous
results concerning the existence of weak solutions and their long-time behavior. We refer to [13] for some references.
Eq. (1) can be seen as a sixth-order extension of (3).

In the existence analysis for equations like (2), one of the main difficulties is to establish nonnegativity of the solu-
tions. Typically, sophisticated regularizations are constructed that lead to smooth and strictly positive approximative
solutions. The limit of vanishing regularizations then provides a nonnegative weak solution.

For our Eq. (1), the situation is more delicate since—like for the DLSS equation (3)—the nonlinearity in the
equation is not well-defined when n vanishes. This is a problem: Although nonnegativity of the solution is expected
on physical grounds, the possibility that a vacuum (localized in time and space) is created from an initially strictly
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positive density cannot be ruled out. Thus, atop of constructing strictly positive approximations, we need to define a
solution concept that works also for merely nonnegative densities with the property that the passage to the limit of
vanishing regularizations is possible.

The key idea here is to rewrite the nonlinearity in (1) in a way that substitutes the logarithm by an expression that
is still well-defined for n = 0. It turns out that the following equivalent representation of Eq. (1),

∂tn = �3n + ∂3
ijkF

(ijk)

1 (n) + ∂2
ijF

(ij)

2 (n), (4)

with the nonlinear operators

F
(ijk)

1 (n) = 4∂i
√
n
(
4∂j

4
√
n∂k

4
√
n − 3∂2

jk

√
n

)
,

F
(ij)

2 (n) = 8
d∑

k=1

(
∂2
ik

√
n − 4∂i

4
√
n∂k

4
√
n

)(
∂2
jk

√
n − 4∂j

4
√
n∂k

4
√
n

)
(5)

is appropriate to study both concepts of solutions: weak and classical.
The construction of strictly positive approximative solutions uses yet another transformation of the nonlinearity.

First, (1) is discretized in time with the implicit Euler scheme. The semi-discrete equation is regularized by an addi-
tional term of the form ε(�3 − 1) logn. Each time step then requires the solution of a strictly elliptic problem in terms
of y = logn. Classical elliptic theory provides L∞-bounds on y and thus strict positivity of n = exp(y).

The required compactness to perform the deregularization limit ε ↓ 0 and later the passage to the time-continuous
limit is obtained from the dissipation of a distinguished Lyapunov functional: The physical entropy

H[u] =
∫
Td

(
u(logu − 1) + 1

)
dx (6)

is nonincreasing along the solutions. In fact, using the entropy construction method of [12], which is based on system-
atic integration by parts, we are able to prove that the entropy dissipation −dH/dt controls certain spatial derivatives,

−dH[n]
dt

� κ

∫
Td

(∥∥∇3√n
∥∥2 + |∇ 6

√
n|6)dx, (7)

where ∇k denotes the tensor of all partial derivatives of order k. The resulting estimates are sufficient to pass to the
limit.

Our main results about weak solutions are the following two theorems.

Theorem 1 (Global existence of weak solutions). Let n0 ∈ L1(Td) be a nonnegative function with finite en-
tropy H[n0] < ∞. Then there exists a nonnegative function n ∈ W

1,4/3
loc (0,∞; H−3(Td)), satisfying

√
n ∈

L2
loc(0,∞;H 3(Td)) and n(0) = n0, that is a solution to (4) in the following weak sense:

∞∫
0

〈∂tn,ϕ〉dt +
∞∫

0

∫
Td

(
∂3
ijkϕ∂

3
ijkn + ∂3

ijkϕF
(ijk)

1 (n) − ∂2
ij ϕF

(ij)

2 (n)
)

dx dt = 0 (8)

for all test functions ϕ ∈ L4(0, T ;H 3(Td)).

It is not trivial at all to see that all integrals on the right-hand side of (8) are well-defined for functions n of the
stated regularity. At this point, we just mention that under these hypotheses, 4

√
n is a well-defined Sobolev function;

see Lemma 26 in Appendix A as well as [17] and [9, Section 3] for a discussion about the regularity of square and
fourth roots of nonnegative functions. The relevant estimates on the pairings inside the integrals are established in the
course of the proof; see, e.g., Lemma 10 below. Since dimension-dependent Sobolev embeddings are involved, this
particular concept of weak solution does not carry over to space dimensions d � 4.

We recall that Hk(Td) etc. are spaces of functions that are 1-periodic in each spatial coordinate direction. The
derivation of the sixth-order equation (1) in [3] was performed on R

d and hence, it does not include the derivation of
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physically relevant boundary conditions. In this work, we have chosen periodic boundary conditions to simplify the
analysis. In particular, integration by parts plays a pivotal role in our derivation of a priori estimates, and the boundary
integrals vanish for periodic functions. We note that in [3], radially symmetric solutions for (1) satisfying no-flux-type
boundary conditions have been considered instead.

Theorem 2 (Exponential time decay). Let n0 ∈ L1(Td) be a nonnegative function with finite entropy H[n0] < ∞ and
unit mass

∫
Td n0 dx = 1. Let n be the weak solution to (4) constructed in Theorem 1. Then there exists a constant

λ > 0, depending on d , such that for all t > 0,∥∥n(t; ·)− 1
∥∥
L1(Td )

�
√

2H[n0]e−λt .

Since Eq. (4) is semi-linear parabolic, it is accessible by methods from the theory of analytic semigroups. This
approach leads to the following result on classical solutions.

Theorem 3 (Existence and uniqueness of a classical solution). Let n0 ∈ H 2(Td) be strictly positive. Then there
exist T∗ > 0 and precisely one smooth and strictly positive classical solution n ∈ C∞((0, T∗);C∞(Td)) to (4) with
n(t) → n0 in H 2(Td) as t ↓ 0. Moreover, either T∗ = +∞, or there exists a limiting profile n∗ ∈ H 2(Td) such that
n(t) → n∗ in H 2(Td) as t ↑ T∗ and minx∈Td n∗(x) = 0.

In other words, the only possibility for a classical solution to break down is the loss of strict positivity. This
result parallels the one of [2] for the fourth-order DLSS equation in space dimension d = 1. Since stronger Sobolev
embeddings are available for the sixth-order equation (4), our result holds in dimensions d = 2 and d = 3 as well. It
is an open problem if loss of positivity can occur at t > 0 or not.

Naturally, we shall establish a connection between the concept of weak solutions, defined in (8), and classical
solutions. To do so, we need to introduce the energy: For a positive and smooth function u ∈ C∞(Td), define

E[u] = 1

2

∫
Td

u
∥∥∇2 logu

∥∥2 dx. (9)

This functional is equivalent to the L2-norm of ∇2√u in the sense that

c
∥∥∇2√u

∥∥2
L2 � E[u]� C

∥∥∇2√u
∥∥2
L2 (10)

for some constants 0 < c� C [9,13]. For smooth and positive solutions to (4), one easily proves that E is a Lyapunov
functional, see Lemma 6 below. The functional E[u] extends in a weakly lower semi-continuous manner to all non-
negative functions u with

√
u ∈ H 2(Td); see [9, Section 3] for details. Hence, if n is a weak solution in the sense of

Theorem 1, then E[n(t)] is well-defined for almost every t > 0. We expect that E is a Lyapunov functional also for
weak solutions, but currently we are not able to prove this conjecture, mainly because E is not a convex functional.

Theorem 4. Assume that the weak solution n from Theorem 1 has the property that E[n(t)] is uniformly bounded on
some interval (T1, T2), and that it is strictly positive at some time t0 ∈ [T1, T2); here T1 = 0 and/or T2 = +∞ are
admissible. Then there exists T∗ ∈ (T1, T2] such that n equals to the classical solution from Theorem 3 on (t0, T∗).
Moreover, either T∗ = T2 or n(t) loses strict positivity as t ↑ T∗ in the sense of Theorem 3.

It is well known for the fourth-order equation (3), that weak solutions may not be unique [13]. We expect the same
phenomenon to occur for (1). On the other hand, Theorem 4 asserts that a new weak solution n∗ can branch off from
a given classical solution n at some time T > 0 only if either n loses strict positivity, limt↑T infx∈Td n(t, x) = 0, or if
n∗ has locally unbounded energy, lim supt↓T E[n∗(t)] = +∞. This shows consistency between the notions of weak
and classical solutions. In view of Theorem 2, it is reasonable to conjecture that all weak solutions become classical
eventually as t → ∞.

The paper is organized as follows. Section 2 provides some background information on the derivation and prop-
erties of (1). In Section 3, we derive the alternative formulation (4) of (1) and we prove the entropy inequality (7).
Sections 4, 5, 6, and 7 are devoted to the proofs of Theorems 1, 2, 3, and 4, respectively. Finally, in Appendix A, we
collect some technical lemmas and recall some known results which are used in the existence analysis.
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Notations. All functions u defined on the torus T
d are assumed to be one-periodic in each coordinate. Specifically,

u : [0,1]d → R is said to belong to the function space Lp(Td), Wm,p(Td) or C∞(Td), respectively, if its periodic
extension Eu :Rd → R, defined by Eu(x) = u(x modTd), belongs to L

p

loc(R
d), Wm,p

loc (Rd) or C∞(Rd). Lebesgue
and Sobolev norms are calculated by integrating the respective powers of Eu and its weak derivatives (which are
periodic functions on R

d ) over the unit cube [0,1]d .

2. Derivation, motivation, and open problems

In this section, we indicate several motivations to study Eq. (1) by reviewing its derivation from the nonlocal quan-
tum model, putting it in the context of gradient flows, and establishing connections to the heat and DLSS equations.

2.1. On the derivation from the nonlocal quantum model

Degond et al. derived in [5] the nonlocal and nonlinear quantum diffusion model

∂tn = div(n∇A) in R
d , t > 0, (11)

where the potential A is defined implicitly as the unique solution to

n(t;x) =
∫
Rd

Exp

(
A(t;x)− |p|2

2

)
dp.

The so-called quantum exponential Exp is defined as the Wigner transformed operator exponential: Denoting by W

the Wigner transformation and by W−1 the corresponding Weyl quantization, then Exp(f ) = W−1 ◦ exp◦W(f ); see
[5] for details.

In the semi-classical limit h̄ ↓ 0, the expression Exp(A−|p|2/2) converges to eA, so that A = logn, and we recover
from (11) the classical heat equation. For h̄ > 0, however, the quantum exponential is a complicated, genuinely non-
local operator. An asymptotic expansion in terms of h̄ has been performed in [3, Appendix], leading to the following
local approximation of A in terms of n:

A = A0 + h̄2

12
A1 + h̄4

360
A2 + O

(
h̄6) (12)

with the local expressions

A0 = logn, A1 = −2
�

√
n√
n

, A2 = 1

2

∥∥∇2 logn
∥∥2 + 1

n
∂2
ij

(
n∂2

ij logn
)
.

Replacing A in (11) by A0, A1, or A2 yields, respectively, the heat equation, the DLSS equation (3), or the sixth-order
equation (1). In this sense, (3) and (1) constitute, respectively, the primary and secondary quantum corrections to the
classical diffusion equation.

2.2. Gradient-flow structure

Eq. (1) possesses—at least on a formal level—a variational structure. The divergence form implies that solutions
n formally conserve the total mass, i.e., the integral m = ∫

Td n(t;x)dx is independent of t . By homogeneity, we can
assume m = 1 without loss of generality. Thus, any solution to (1) defines a curve t �→ n(t) in the space of probability
measures on T

d . Provided that n is regular enough, this curve realizes a steepest descent in the energy landscape of
the energy functional E from (9) with respect to the L2-Wasserstein metric. Indeed, by a formal calculation, we obtain
the gradient-flow representation

∂tn = div

(
n∇ δE[n]

δn

)
from (11) with A ≡ A2, where A2 = δE[n]/δn is the variational derivative of E .

This variational structure is a remarkable property by itself. Atop of that, it establishes yet another connection to
the heat and DLSS equations. It is well known since the seminal paper [11] that the heat equation is the gradient flow
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of the entropy functional H from (6) with respect to the L2-Wasserstein distance. The dissipation of H along its own
gradient flow amounts to the Fisher information,

F[n] = −1

2

dH[n]
dt

= 1

2

∫
Td

n|∇ logn|2 dx,

while the second-order time derivative produces the energy from (9),

E[n] = 1

4

d2H[n]
dt2

= 1

2

∫
Td

n
∥∥∇2 logn

∥∥2 dx.

The Fisher information, in turn, has been proven to generate the DLSS equation (3) as a gradient flow with respect
to the L2-Wasserstein distance [9]. It is readily checked that E also equals the first-order time derivative of the en-
tropy along solutions of the DLSS equation. In this sense, the sixth-order equation (1) is related to the fourth-order
equation (3) in the same way as (3) itself is related to the heat equation.

We mention this point because the intimate relation between the heat and the DLSS equations (and, more generally,
between second-order porous medium and fourth-order diffusion equations) has been the key tool in obtaining optimal
rates for the intermediate asymptotics of solutions to (3) in [18]. It would be interesting to derive estimates on the long-
time behavior of solutions to (1) by similar means.

2.3. Open problems

Finally, we propose several questions about Eq. (1) that we consider of interest:

• With our methods, we are able to prove the dissipation property (7) only in dimensions d � 3. Is H still a Lyapunov
functional in higher dimensions d � 4?

• Is the Fisher information F a Lyapunov functional? Our only result in this direction so far is a formal proof of
dissipation of F in dimension d = 1.

• Is the energy E monotone along the weak solutions constructed here? If the answer is affirmative, then the addi-
tional hypotheses on the uniform boundedness of the energy could be removed from Theorem 4.

• Does (1) admit global weak solutions in dimensions d � 4? Even if we assume that an inequality of the form (7)
continues to hold, it is far from clear how to rewrite the weak formulation (8) in a form that does not take advantage
of Sobolev embeddings in low dimensions.

• If (1) is posed on R
d instead of Td , one readily verifies that there exists a family of self-similar solutions us ,

namely

us(t;x) = λ(t)−dU
(
λ(t)−1x

)
with λ(t) = (1 + 6t)1/6,

with the Gaussian profile

U(z) = exp

(
− |z|2

2 3
√

2

)
.

Do these “spreading Gaussians” play the same role for (1) as they do for the heat equation and for the DLSS
equation? In other words, is U an attracting stationary solution of (1) after the self-similar rescaling with x = λ(t)ξ

and t = (e6τ − 1)/6, and do arbitrary solutions converge to U at a universal exponential rate? In dimension d = 1,
there is numerical evidence for an affirmative answer.

3. Alternative formulations and functional inequalities

In this section, we derive two alternative formulations of the sixth-order equation (1) and prove an energy-
dissipation formula and an entropy-dissipation estimate. First, we show that (1) can be written as the sum of a
symmetric sixth-order term and a fourth-order remainder, and as the sum of a linear sixth-order part and a fifth-order
remainder.
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Lemma 5. Eq. (1) can be written for smooth positive solutions equivalently as

∂tn = ∂3
ijk

(
n∂3

ijk logn
) + 2∂2

ij

(
n∂2

ik logn∂2
jk logn

)
in T

d , t > 0, (13)

and also equivalently as

∂tn = �3n + ∂3
ijkF

(ijk)

1 (n) + ∂2
ijF

(ij)

2 (n) in T
d , t > 0, (14)

where the nonlinear operators F
(ijk)

1 and F
(ij)

2 are defined in (5).

We recall that we have employed the summation convention in the above formulas.

Proof. For the following formal calculations, we introduce the shorthand notations y = logn, yi = ∂i logn, yij =
∂2
ij logn, etc. Observing that ∂kn = nyk , n∂k(1/n) = −(∂kn)/n = −yk , we calculate

1

2
n∂k

(
∂2
ij logn

)2 = n∂2
ij y∂

2
ij yk,

and

n∂k

(
1

n
∂2
ij

(
n∂2

ij logn
)) = ∂3

ijk(nyij ) − yk∂
2
ij (nyij )

= ∂2
ij

(
yk(nyij ) + nyijk

) − yk∂
2
ij (nyij )

= ∂i
(
yk∂j (nyij ) + yjk(nyij )

) − yk∂
2
ij (nyij ) + ∂2

ij (nyijk)

= yik∂j (nyij ) + yijk(nyij ) + yjk∂i(nyij ) + ∂2
ij

(
n∂2

ij yk
)

= 2yik∂j (nyij ) + n∂2
ij y∂

2
ij yk + ∂2

ij

(
n∂2

ij yk
)

= 2∂j (nyij yik) − n∂2
ij y∂

2
ij yk + ∂2

ij

(
n∂2

ij yk
)
.

Summing these results, we obtain

1

2
n∂k

(
∂2
ij logn

)2 + n∂k

(
1

n
∂2
ij

(
n∂2

ij logn
)) = ∂2

ij

(
n∂2

ij yk
) + 2∂j (nyij yik).

Differentiation with respect to xk yields

∂k

(
1

2
n∂k

(
∂2
ij logn

)2 + n∂k

(
1

n
∂2
ij

(
n∂2

ij logn
)))

= ∂3
ijk

(
n∂3

ijky
) + 2∂2

jk(nyij yik),

which shows (13).
Similarly, introducing u = 4

√
n, ui = ∂iu, uij = ∂2

ij u, etc. and observing that ∂kn = 4u3uk , ∂2
ij n = 12u2uiuj +

4u3uij , and uuij = ∂2
ij (u

2)/2 − uiuj , we calculate

n∂3
ijky = ∂3

ijkn − 3

n
∂2
ij n∂kn + 2

n2
∂in∂jn∂kn

= ∂3
ijkn − 48u2uijuk − 16uuiujuk

= ∂3
ijkn − 12∂2

ij

(
u2)∂k(u2) + 16uiuj ∂k

(
u2)

= ∂3
ijkn + 4∂k

√
n
(
4∂i

4
√
n∂j

4
√
n − 3∂2

ij

√
n

)
= ∂3

ijkn + F
(ijk)

1 (n),

2nyikyjk = 32u4
(
uik

u
− uiuk

u2

)(
ujk

u
− ujuk

u2

)
= 8

(
∂2
ik

(
u2) − 4uiuk

)(
∂2
jk

(
u2) − 4ujuk

)
= 8

(
∂2
ik

√
n − 4∂i

4
√
n∂k

4
√
n

)(
∂2
jk

√
n − 4∂j

4
√
n∂k

4
√
n

)
= F

(ij)
(n). (15)
2
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Differentiating both equations and summing them leads to

∂3
ijk

(
n∂3

ijky
) + 2∂2

ij (nyikyjk) = �3n + ∂3
ijkF

(ijk)

1 + ∂2
ijF

(ij)

2 , (16)

which gives (14). �
In the next lemma, we make our claim about the Lyapunov property of the energy E , defined in (9), more precise.

Lemma 6. If n ∈ C∞((t1, t2);C∞(Td)) is a positive and classical solution to (1), then the energy E[n(t)] is a smooth
and nonincreasing function on the interval (t1, t2). In fact, the energy is dissipated according to

d

dt
E
[
n(t)

] = −
∫
Td

n(t)

∣∣∣∣∇(
1

2

(
∂2
ij logn(t)

)2 + 1

n(t)
∂2
ij

(
n(t)∂2

ij logn(t)
))∣∣∣∣2

dx, t > 0. (17)

Proof. The smoothness of E[n(t)] follows since on the set of positive functions u ∈ C∞(Td), the operation u �→ logu

is a smooth map from C∞(Td) to itself. Dissipation formula (17) follows by using formulation (1) and integration by
parts:

d

dt
E[n] =

∫
Td

(
1

2
∂tn

(
∂2
ij logn

)2 + n∂2
ij (logn)∂2

ij

(
∂tn

n

))
dx

=
∫
Td

∂tn

(
1

2

(
∂2
ij logn

)2 + 1

n
∂2
ij

(
n∂2

ij logn
))

dx

= −
∫
Td

n

∣∣∣∣∇(
1

2

(
∂2
ij logn

)2 + 1

n
∂2
ij

(
n∂2

ij logn
))∣∣∣∣2

dx,

which shows the claim. �
Finally, we prove the entropy-dissipation inequality (7).

Lemma 7. Let d � 3 and let u ∈ H 3(Td) be strictly positive on T
d . Then there exists κ > 0, depending only on d ,

such that∫
Td

(
∂3
ijk(logu)∂3

ijku + ∂3
ijk(logu)F

(ijk)

1 (u) − ∂2
ij (logu)F

(ij)

2 (u)
)

dx

� κ

∫
Td

(∣∣∇3√u
∣∣2 + |∇ 6

√
u|6)dx. (18)

Proof. The proof is based on an extension of the entropy construction method developed in [12] for one-dimensional
equations. A proof for d = 1 is given in [14]. Therefore, we restrict ourselves to the cases d = 2 and d = 3.
By (16), (18) is equivalent to, up to a factor,∫

Td

u
((
∂3
ijk logu

)2 − 2∂2
ij logu

(
∂2
ik logu∂2

jk logu
))

dx � κ

12

∫
Td

(
26

∣∣∇3√u
∣∣2 + 66|∇ 6

√
u|6)dx. (19)

Setting y = logn, yi = ∂i logn, yij = ∂2
ij logn, etc., a computation shows that (19) is equivalent to∫

d

u
(
12S[u] − κR[u])dx � 0, (20)
T
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where S[u] = y2
ijk − 2yij yjkyki and

R[u] = 2y2
i y

2
j y

2
k + 12y2

i yj yjkyk + 8yiyj ykyijk + 24yiyij yjkyk + 12y2
i y

2
jk + 48yiyijkyjk + 16y2

ijk.

The idea of the entropy construction method is to find the “right” integrations by parts which are neces-
sary to write the integrand of (20) as a sum of squares. To this end, we define the vector-valued function v =
(v1, . . . , vd)� :Td → R

d by

vk = (
2y2

i y
2
j + yiiy

2
j + 5yij yiyj + 5yiij yj

)
yk + (

3y2
i yj + 11yiij + 24yiyij

)
yjk − (5yiyj + 11yij )yijk.

A straightforward computation shows that the weighted divergence

T [u] = 1

u
div(uv) = e−y∂k

(
eyvk

)
can be written as

T [u] = 2y2
i y

2
j y

2
k + 3y2

i y
2
j ykk + 16y2

i yj yjkyk + 9y2
i yj yjkk + y2

i yjj ykk + 7yiiyj yjkyk + 40yiyij yjkyk

+ 3y2
i y

2
jk + 5yiyijj ykk + 40yiyij yjkk + 3yiyijkyjk + 11yijj yikk − 11y2

ijk + 24yij yjkyki .

By the divergence theorem, we have∫
Td

uT [u]dx = 0.

Hence, (20) is equivalent to∫
Td

u
(
12S[u] − κR[u] + T [u])dx � 0. (21)

We prove that there exists κ > 0 such that the integrand is nonnegative. The expression T [u] turns out to be the “right”
integration by parts formula allowing us to prove the nonnegativity of the above integral. At this point, we need to
distinguish the space dimension.

First, consider d = 2. Let x ∈ T
d be fixed. Without loss of generality, we may assume that ∇u(x) points into the

first coordinate direction, i.e. y2 = 0 at x. Then we compute

12S[u] − εR[u] + T [u]
= (2 − 2ε)y6

1 + 3y4
1(y11 + y22) + 4(4 − 3ε)y4

1y11 + 9y3
1(y111 + y122) − 8εy3

1y111 + y2
1(y11 + y22)

2

+ 7y2
1y11(y11 + y22) + 8(5 − 3ε)y2

1

(
y2

11 + y2
12

) + 3(1 − 4ε)y2
1

(
y2

11 + 2y2
12 + y2

22

)
+ 5y1(y111 + y122)(y11 + y22) + 40y1

(
y11(y111 + y122) + y12(y122 + y222)

)
+ 3(1 − 16ε)y1(y11y111 + 2y12y112 + y22y122) + 11

(
(y111 + y122)

2 + (y112 + y222)
2)

+ (1 − 16ε)
(
y2

111 + 3y2
112 + 3y2

122 + y2
222

)
= ξ�Aεξ + η�Bεη,

where ξ and η are the vectors

ξ = (
y3

1 , y1y11, y1y22, y111, y122
)�

, η = (y1y12, y112, y222)
�,

and the symmetric matrices Aε and Bε are defined by

Aε = 1

2

⎛⎜⎜⎜⎝
4 − 4ε 19 − 12ε 3 9 − 8ε 9

19 − 12ε 102 − 72ε 9 48 − 48ε 45
3 9 8 − 24ε 5 8 − 48ε

9 − 8ε 48 − 48ε 5 24 − 32ε 22
9 45 8 − 48ε 22 28 − 96ε

⎞⎟⎟⎟⎠ ,

Bε =
(46 − 48ε 23 − 48ε 20

23 − 48ε 14 − 48ε 11

)
.

20 11 12 − 16ε
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Sylvester’s criterion shows that the unperturbed matrices A0 and B0 are positive definite. Indeed, the principal minors
of A0 are 2, 47/4, 20, 13, and 149/4, and the principal minors of B0 are 46, 115, and 334. Since the set of (strictly)
positive definite matrices is open in the set of all real symmetric matrices, there exists ε0 > 0 such that for all 0 <

ε < ε0, the matrices Aε and Bε are positive definite, too. This shows that 12S[u] − εR[u] + T [u] � 0 for 0 < ε < ε0,
which implies (21).

Next, let d = 3. This case is similar to the previous one, but technically more involved. Again, we fix some x ∈
T
d and assume that ∇u(x) is parallel to the first coordinate direction, i.e. y2 = y3 = 0. For easier presentation, we

introduce the abbreviations

p+ = y22 + y33, p− = y22 − y33,

qj+ = yj22 + yj33, qj− = yj22 − yj33, j = 1,2,3.

Observe that

2
(
y2

22 + y2
33

) = p2+ + p2−,

2
(
y2
j22 + y2

j33

) = q2
j+ + q2

j−,

2(y22yj22 + y33yj33) = p+qj+ + p−qj−.

With these notations, we find that

12S[u] − εR[u] + T [u]
= (2 − 2ε)y6

1 + 3y4
1(y11 + p+) + 4(4 − 3ε)y4

1y11 + 9y3
1(y111 + q1+)

− 8εy3
1y111 + y2

1(y11 + p+)2 + 7y2
1y11(y11 + p+) + 8(5 − 3ε)y2

1

(
y2

11 + y2
12 + y2

13

)
+ 3(1 − 4ε)y2

1

(
y2

11 + 1

2

(
p2− + p2+

) + 2
(
y2

12 + y2
13 + y2

23

)) + 5y1(y111 + q1+)(y11 + p+)

+ 40y1
(
y11(y111 + q1+) + y12(y112 + q2+) + y13(y113 + q3+)

)
+ 3(1 − 16ε)y1

(
y111y11 + 1

2
(q1+p+ + q1−p−) + 2(y112y12 + y113y13 + y123y23)

)
+ 11

(
(y111 + q1+)2 + (y112 + q2+)2 + (y113 + q3+)2)

+ (1 − 16ε)

(
y2

111 + 3
(
y2

112 + y2
113

) + 3

2

(
q2

1+ + q2
1− + q2

2+ + q2
2− + q2

3+ + q2−3

) + 6y2
123

)

= ξ�Aεξ +
3∑

j=2

η�
j Bεηj + ζ�Cεζ + 2ν�Cεν + 1

4
(1 − 16ε)

(
q2

2+ + q2
2−

)
,

where

ξ = (
y3

1 , y1y11, y1p+, y111, q1+
)�

, ηj = (y1y1j , y11j , qj+)�,

ζ = (y1p−, q1−)�, ν = (y1y23, y123)
�.

The matrices Aε and Bε are almost identical to those given above, with minor modifications in the third and fifth rows
and columns:

Aε = 1

2

⎛⎜⎜⎜⎝
4 − 4ε 19 − 12ε 3 9 − 8ε 9

19 − 12ε 102 − 72ε 9 48 − 48ε 45
3 9 5 − 12ε 5 13/2 − 24ε

9 − 8ε 48 − 48ε 5 24 − 32ε 22
9 45 13/2 − 24ε 22 25 − 48ε

⎞⎟⎟⎟⎠ ,

Bε =
(46 − 48ε 23 − 48ε 20

23 − 48ε 14 − 48ε 11

)
.

20 11 47/4 − 12ε
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Furthermore, the matrix Cε is given by

Cε =
(

3 − 12ε 3/2 − 24ε
3/2 − 24ε 3 − 48ε

)
.

Again, the Sylvester criterion shows that A0, B0, and C0 are positive definite. The principal minors of A0 are 2, 47/4,
19/8, 5/8, and 453/64, while those of B0 are 46, 115, and 1221/4, and those of C0 are 3 and 27/4. Thus, there exists
ε0 > 0 such that for all 0 < ε < ε0, also Aε , Bε , and Cε are positive definite. �
4. Existence of weak solutions

The proof of Theorem 1 is divided into several steps.

4.1. Solution of the semi-discretized problem

Let T > 0 and τ > 0 be given. We wish to solve, for a given initial datum n0 ∈ L1(Td), the semi-discrete problem

1

τ
(n − n0) = �3n + ∂3

ijkF
(ijk)

1 (n) + ∂2
ijF

(ij)

2 (n) in T
d,

where F
(ijk)

1 and F
(ij)

2 are defined in (5).

Proposition 8. For a nonnegative function n0 ∈ L1(Td) of unit mass, ‖n0‖L1 = 1, and of finite entropy, H[n0] < ∞,
there exists a sequence of solutions nτ

1, n
τ
2, . . . in H 3(Td) to the elliptic problems

1

τ

∫
Td

(
nτ
k − nτ

k−1

)
φ dx +

∫
Td

(
∂3
ijkφ∂

3
ijkn

τ
k + ∂3

ijkφF
(ijk)

1

(
nτ
k

) − ∂2
ij φF

(ij)

2

(
nτ
k

))
dx = 0, (22)

holding for all test functions φ ∈ H 3(Td), with the initial solution nτ
0 = n0. These solutions are of unit mass, and the

entropy estimate

H
[
nτ
k

] + κτ

∫
Td

(∥∥∇3
√
nτ
k

∥∥2 + ∣∣∇ 6
√
nτ
k

∣∣6)dx �H
[
nτ
k−1

]
, k � 1, (23)

holds with κ > 0 given in Lemma 7.

Proof. For simplicity, we only give the argument for the construction of n = nτ
1 from n0. The passage from nτ

k to
nτ
k+1 works precisely in the same way since finiteness of the entropy is inherited from one step to the next.

Regularized problem. In a first step, we are going to construct strictly positive solutions nε ∈ H 3(Td) to the regu-
larized problem

1

τ
(n − n0) = �3n + ∂3

ijkF
(ijk)

1 (n) + ∂2
ijF

(ij)

2 (n) + ε
(
�3 logn − logn

)
. (24)

Writing n = ey , it follows from (15) that

�3n = ∂3
ijk

(
n∂3

ijky
) − ∂3

ijkF
(ijk)

1 (n).

Thus, assuming strict positivity and H 3-regularity of n, we can reformulate (24) as

1

τ
(n − n0) = ∂3

ijk

(
(n + ε)∂3

ijky
) − εy + ∂2

ijF
(ij)

2 (n), (25)

which is an equation in H−3(Td).
Fixed point operator. We define the continuous map Sε :X × [0,1] → W 2,4(Td) on the set

X =
{
u ∈ W 2,4(

T
d
)
: min

d
u(x) > 0

}

x∈T
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as follows. For given n ∈ X and σ ∈ [0,1], introduce

a(y, z) =
∫
Td

(
(σn + ε)∂3

ijky∂
3
ijkz + εyz

)
dx

f (z) = −σ

τ

∫
Td

(n − n0)zdx + σ

∫
Td

F
(ij)

2 (n)∂2
ij zdx

for all y, z ∈ H 3(Td). Observe that a is a bounded and coercive bilinear form on H 3(Td),

a(z, z)� ε

∫
Td

(|∇z|2 + z2)dx � cε‖z‖2
H 3

for some constant c > 0, and a varies continuously with (n,σ ) ∈ X × [0,1], since the embedding W 2,4(Td) ↪→
L∞(Td) is continuous.

Next, we claim that f is a bounded linear form on H 3(Td). Indeed, due to the continuity of the Sobolev embedding
W 2,4(Td) ↪→ W 1,8(Td) in dimensions d � 3 and the strict positivity and continuity of functions in W 2,4(Td), the
mapping F

(ij)

2 allows for the representation

F
(ij)

2 (n) = 2
∂2
ikn∂

2
kjn

n
− 4

∂2
ikn∂kn∂jn

n2
+ 2

(∂kn)
2∂in∂jn

n3
,

from which F
(ij)

2 (n) ∈ L2(Td) follows for all n ∈ W 2,4(Td). In fact, f varies continuously with (n,σ ) ∈ X × [0,1].
The Lax–Milgram Lemma provides the existence and uniqueness of a solution y ∈ H 3(Td) to the elliptic equation

a(y, z) = f (z) for all z ∈ H 3(
T
d
)
.

This solution depends H 3-continuously on (n,σ ) ∈ X × [0,1]. In particular, y ≡ 0 if σ = 0, and y solves (25) if
σ = 1.

The definition of the fixed point operator Sε is now completed by setting

Sε(n,σ ) = ey.

Since y ∈ H 3(Td) ↪→ L∞(Td), it is clear that Sε(n,σ ) ∈ H 3(Td) is a strictly positive and bounded function. In view
of the compactness of the embedding H 3(Td) ↪→ W 2,4(Td), Sε maps bounded subsets of X × [0,1] into precompact
sets in W 2,4(Td). Finally, notice that Sε(n,0) ≡ 1 for all n ∈ X and Sε(n∗,1) = n∗ for some n∗ ∈ X if and only if n∗
is a solution to (24). To verify the last statement, observe that n∗ = Sε(n∗,1) implies the H 3-regularity of n∗, which
justifies the passage from (25) to (24), and in particular it allows us to define �3 logn∗ as an element of H−3(Td).

A priori bound. Our goal is to obtain a fixed point of Sε(·,1) by means of the Leray–Schauder theorem. Having
already verified the continuity and relative compactness of Sε as well as the condition Sε(·,0) = 1, it remains to find
a suitable closed, bounded, convex subset B ⊂ X such that all solutions n∗ ∈ X of Sε(n∗, σ ) = n∗ for some σ ∈ [0,1]
lie in the interior of B . We shall choose

B = {
u ∈ W 2,4(

T
d
)
: minu� δ, ‖u‖W 2,4 � δ−1} (26)

with a suitable δ > 0 determined below.
Let n∗ ∈ W 2,4(Td) be a fixed point of S(·, σ ) for some σ ∈ [0,1]. By construction, we have n∗ = ey∗ ∈ H 3(Td)

for y∗ ∈ H 3(Td), and n∗ is strictly positive. The convexity of h(s) = s(log s − 1) + 1 implies that

1

τ

(
H[n∗] −H[n0]

) = 1

τ

∫
Td

(
h(n∗) − h(n0)

)
dx � 1

τ

∫
Td

(n∗ − n0)h
′(n∗)dx = 1

τ

∫
Td

(n∗ − n0) logn∗ dx

= −
∫
Td

(
∂3
ijky∗∂3

ijkn∗ + ∂3
ijky∗F (ijk)

1 (n∗) − ∂2
ij y∗F (ij)

2 (n∗)
)

dx − ε

σ

∫
Td

(∥∥∇3y∗
∥∥2 + y2∗

)
dx

� −κ

∫
d

(∥∥∇3√n∗
∥∥2 + |∇ 6

√
n∗|6

)
dx − ε

σ

∫
d

(∥∥∇3y∗
∥∥2 + y2∗

)
dx.
T T
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For the last estimate, the functional inequality (18) has been used. Thus, we have proven

H[n∗] + τκ

∫
Td

(∥∥∇3√n∗
∥∥2 + |∇ 6

√
n∗|6

)
dx + τε

σ

∫
Td

(∥∥∇3y∗
∥∥2 + y2∗

)
dx �H[n0]. (27)

A consequence of this inequality is that y∗ is bounded in H 3(Td),

‖y∗‖H 3 � C

∫
Td

(∥∥∇3y∗
∥∥2 + y2∗

)
dx � CH[n0]

τε

for some constant C > 0 depending on τ and ε (which are fixed positive numbers at this point), but not on σ ∈ [0,1].
The continuity of the embedding H 3(Td) ↪→ W 2,4(Td) yields the σ -independent bound

‖n∗‖W 2,4 �
CH[n0]

τε
, (28)

maybe for another constant C > 0. Furthermore, the continuity of the embedding H 3(Td) ↪→ L∞(Td) provides the
estimate

ess infn∗ � exp
(−‖y∗‖L∞

)
� exp

(
−CH[n0]

τε

)
> 0. (29)

From (28) and (29) follows that there exists a set B of the form (26) which contains all potential fixed points n∗. The
Leray–Schauder fixed point theorem in the version of [20] (see Theorem 28 in Appendix A) applies to our situation
and yields the existence of a solution nε to n = Sε(n,1).

Deregularization. From the entropy estimate, it follows that
√
nε is ε-uniformly bounded in H 3(Td), and 6

√
nε

is ε-uniformly bounded in W 1,6(Td). Hence, there exists a limit function n ∈ H 3(Td), such that, as ε ↓ 0, up to
subsequences,

√
nε ⇀

√
n in H 3(

T
d
)
, (30)

√
nε → √

n in W 2,4(
T
d
)

and in W 1,∞(
T
d
)
, (31)

4
√
nε → 4

√
n in W 1,4(

T
d
)
, (32)

4
√
nε ⇀

4
√
n in W 1,12(

T
d
)
. (33)

Here we take (30) for the definition of n; then (31) follows from the compactness of the embedding H 3(Td) ↪→
W 2,4(Td). The strong convergence in (32) is a direct consequence of Proposition 27, since 4

√
nε is “sandwiched”

between
√
nε and 6

√
nε . Concerning (33), observe that H 3(Td) embeds continuously into W 2,6(Td), so that 4

√
nε

is bounded in W 1,12(Td) by Lemma 26. In particular, 4
√
nε converges weakly to some limit in that space—which

necessarily agrees with the strong W 1,4(Td)-limit obtained in (32).
For the various terms in (24), this implies the following. The sequence

∂3
ijknε = 2

√
nε∂

3
ijk

√
nε + 6∂i

√
nε∂

2
jk

√
nε

converges weakly in L2(Td) to ∂3
ijkn, since

√
nε converges strongly in L∞(Td) and ∂3

ijk

√
nε converges weakly in

L2(Td), while ∂i
√
nε and ∂2

jk

√
nε both converge strongly in L4(Td). Further, the sequence

F
(ijk)

1 (nε) = 4∂i
√
nε

(
4∂j 4

√
nε∂k

4
√
nε − 3∂2

jk

√
nε

)
converges strongly in L2(Td), since ∂i

√
nε converges strongly in L∞(Td), ∂2

jk

√
nε converges strongly in L2(Td),

and ∂j 4
√
nε and ∂k 4

√
nε both converge strongly in L4(Td). Finally, we consider

F
(ij)

2 (nε) = 8
(
∂ik

√
nε∂jk

√
nε − 4∂2

jk

√
nε∂k

4
√
nε∂i

4
√
nε − 4∂2

ik

√
nε∂k

4
√
nε∂j

4
√
nε + 16∂i 4

√
nε∂j

4
√
nε(∂k

4
√
nε )

2).
The first term converges strongly in L2(Td) since it is the product of two second-order derivatives of

√
nε which

converge strongly in L4(Td). The second and third expressions converge strongly in L4/3(Td) since each of them is
the product of three strongly L4-convergent terms. To obtain weak L6/5-convergence of the last product, we use the
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strong L4-convergence of ∂i 4
√
nε to conclude strong convergence of ∂j 4

√
nε(∂k 4

√
nε )

2 in L4/3(Td), and combine this

with the weak convergence of ∂i 4
√
nε in L12(Td). Notice that weak convergence in L6/5(Td) suffices, since F

(ij)

2 (nε)

is tested in (22) against φ ∈ H 3(Td) and hence, ∂2
ij φ ∈ L6(Td).

Finally, the entropy estimate (27) shows that (
√
εyε) is bounded in H 3(Td) and hence,

εyε → 0 strongly in H 3(
T
d
)
.

The above convergence results allow us to perform the limit ε → 0 in (24), i.e., both sides converge in H−3(Td).
Hence, n is a nonnegative solution to (22).

Proof of auxiliary properties. It remains to verify that n has unit mass and that the dissipation inequality (23) holds.
Conservation of mass follows directly from (22) by using φ = 1 as a test function. The entropy estimate (27) shows
that nε satisfies

H[nε] + τκ

∫
Td

(∥∥∇3√nε

∥∥2 + |∇ 6
√
nε|6

)
dx �H[n0].

Since ∇3√nε ⇀ ∇3√n weakly in L2(Td) and ∇ 6
√
nε ⇀ ∇ 6

√
nε weakly in L6(Td), we conclude by lower semi-

continuity that

H[n] + τκ

∫
Td

(∥∥∇3√n
∥∥2 + |∇ 6

√
n|6)dx

� lim
ε→0

H[nε] + τκ lim inf
ε→0

∫
Td

(∥∥∇3√nε

∥∥2 + |∇ 6
√
nε|6

)
dx �H[n0].

This finishes the proof. �
4.2. Passage to the continuous limit

Proposition 8 guarantees the existence of a solution sequence (nτ
0, n

τ
1, n

τ
2, . . .) to the semi-discrete implicit Euler

scheme (22). Define accordingly the piecewise constant interpolants nτ ∈ L∞(0,∞;H 3(Td)) by

nτ (t) = nτ
k for (k − 1)τ < t � kτ, k ∈N, nτ (0) = nτ

0,

and introduce the discrete time derivative

δτ nτ (t) = 1

τ

(
nτ
k − nτ

k−1

)
for (k − 1)τ < t � kτ, k ∈N.

Corollary 9. The interpolated function nτ satisfies

T∫
0

∫
Td

δτ nτϕ dx dt +
T∫

0

∫
Td

(
∂3
ijkϕ∂

3
ijkn

τ + ∂3
ijkϕF

(ijk)

1

(
nτ

) − ∂2
ij ϕF

(ij)

2

(
nτ

))
dx dt = 0 (34)

for all test functions ϕ ∈ L4(0, T ;H 3(Td)).

Proof. Eq. (34) is a direct consequence of (22), and the definitions of nτ and δτ nτ . Simply choose φ = ϕ(t) ∈ H 3(Td)

as a test function in (22) for (k − 1)τ < t � kτ and integrate with respect to t ∈ (0, T ). Notice that at this point, the
L4-regularity of ϕ with respect to time is not of importance. In fact, we could replace L4 by L1. �

The following lemma summarizes various consequences of the discrete entropy estimate (23). Recall that we are
working in spatial dimensions d � 3.
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Lemma 10. For any finite T > 0,(
nτ

)
is bounded in L4/3(0, T ;H 3(

T
d
))
, (35)(∇√

nτ
)

is bounded in L12/5(0, T ;L∞(
T
d
))
, (36)(∇2

√
nτ

)
is bounded in L3(0, T ;L2(

T
d
))

and in L8/3(0, T ;L12/5(
T
d
))
, (37)(∇ 4

√
nτ

)
is bounded in L6(0, T ;L4(

T
d
))

and in L16/3(0, T ;L24/5(
T
d
))
, (38)(∇ 6

√
nτ

)
is bounded in L6(0, T ;L6(

T
d
))
, (39)

uniformly with respect to τ > 0.

Proof. First notice that the boundedness of
√
nτ in L2(0, T ;H 3(Td)) follows from the entropy estimate (23). Indeed,

by Lemma 23 from Appendix A and the conservation of mass, we find that∥∥√
nτ (t)

∥∥
H 3 � C

(∥∥∇3
√
nτ (t)

∥∥
L2 + ∥∥√

nτ (t)
∥∥
L2

) = C
(∥∥∇3

√
nτ (t)

∥∥
L2 + 1

)
,

where C > 0 does not depend on τ . Therefore,∥∥√
nτ

∥∥
L2(0,T ;H 3)

� C
(∥∥∇3

√
nτ

∥∥
L2(0,T ;H 3)

+ T 1/2) � C
(
H[n0] + T 1/2).

Estimate (39) follows also from the entropy estimate (23).
To prove the remaining estimates, first notice that, by the Gagliardo–Nirenberg inequality (see Lemma 25 in Ap-

pendix A), for some constants Bi > 0,∥∥√
nτ (t)

∥∥
L∞ � B1

∣∣√nτ (t)
∥∥d/6
H 3

∥∥√
nτ (t)

∥∥1−d/6
L2 ,∥∥∇√

nτ (t)
∥∥
L∞ � B2

∥∥√
nτ (t)

∥∥1/3+d/6
H 3

∥∥√
nτ (t)

∥∥2/3−d/6
L2 ,∥∥∇2

√
nτ (t)

∥∥
L2 � B3

∥∥√
nτ (t)

∥∥2/3
H 3

∥∥√
nτ (t)

∥∥1/3
L2 .

Integrating over (0, T ), we infer that∥∥√
nτ

∥∥
L12/d (0,T ;L∞)

� B1
∥∥√

nτ
∥∥d/6
L2(0,T ;H 3)

∥∥√
nτ

∥∥1−d/6
L∞(0,T ;L2)

� C, (40)∥∥∇√
nτ

∥∥
L12/(d+2)(0,T ;L∞)

� B2
∥∥√

nτ
∥∥(2+d)/6
L2(0,T ;H 3)

∥∥√
nτ

∥∥(4−d)/6
L∞(0,T ;L2)

� C, (41)∥∥∇2
√
nτ

∥∥
L3(0,T ;L2)

� B3
∥∥√

nτ
∥∥2/3
L2(0,T ;H 3)

∥∥√
nτ

∥∥1/3
L∞(0,T ;L2)

� C, (42)

where C > 0 does not depend on τ . Estimate (41) implies the bound (36) since 12/(d + 2)� 12/5 for d � 3. Taking
into account

∂3
ijkn

τ = ∂3
ijk

(√
nτ

)2 = 2
√
nτ ∂3

ijk

√
nτ + 2

(
∂i

√
nτ ∂2

jk

√
nτ + ∂j

√
nτ ∂2

ik

√
nτ + ∂k

√
nτ ∂2

ij

√
nτ

)
,

Hölder’s inequality and estimates (40)–(42) give

∥∥∇3nτ
∥∥4/3
L4/3(0,T ;L2)

� C

T∫
0

(∥∥√
nτ

∥∥4/3
L∞

∥∥∇3
√
nτ

∥∥4/3
L2 + ∥∥∇√

nτ
∥∥4/3
L∞

∥∥∇2
√
nτ

∥∥4/3
L2

)
dt

� C
∥∥√

nτ
∥∥4/3
L4(0,T ;L∞)

∥∥∇3
√
nτ

∥∥4/3
L2(0,T ;L2)

+ C
∥∥∇√

nτ
∥∥4/3
L12/5(0,T ;L∞)

∥∥∇2
√
nτ

∥∥4/3
L3(0,T ;L2)

� C,

since 12/d � 4 for d � 3. This proves (35). The first bound in (37) follows from (41), while

T∫
0

∥∥∇2
√
nτ (t)

∥∥8/3
L12/5 dt � B4

T∫
0

∥∥√
nτ (t)

∥∥2(24+d)/27
H 3

∥∥√
nτ (t)

∥∥2(12−d)/27
L2 dt,

yields the second bound, since 2(24 + d)/27 � 2. Finally, (38) is a consequence of (37) in combination with the
Lions–Villani estimate [17] on square roots (see Lemma 26 in Appendix A). �
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Lemma 11. For any finite T > 0, the sequence(
δτ nτ

)
is bounded in L4/3(0, T ;H−3(

T
d
))
, (43)

uniformly in τ > 0.

Proof. We need to show that there exists a constant M > 0 such that∣∣∣∣∣
T∫

0

∫
Td

δτ nτ (t;x)ϕ(t;x)dx dt

∣∣∣∣∣�M‖ϕ‖L4(0,T ;H 3)

holds for every test function ϕ ∈ L4(0, T ;H 3(Td)), independently of τ > 0. Since, according to (34), the discrete
time derivative can be decomposed as

δτ nτ = �3nτ + ∂3
ijkF

(ijk)

1

(
nτ

) + ∂2
ijF

(ij)

2

(
nτ

)
in the sense of L4/3(0, T ;H−3(Td)), it suffices to discuss the three terms on the right-hand side separately. For �3nτ ,
using Hölder inequality, it follows that

∣∣∣∣∣
T∫

0

∫
Td

∂3
ijkϕ(t;x)∂3

ijkn
τ (t;x)dx dt

∣∣∣∣∣�
T∫

0

∥∥ϕ(t)∥∥
H 3

∥∥nτ (t)
∥∥
H 3 dt � ‖ϕ‖L4(0,T ;H 3)

∥∥nτ
∥∥
L4/3(0,T ;H 3)

,

and the last expression is uniformly bounded with respect to τ in view of (35). Concerning ∂3
ijkF

(ijk)

1 , we find that

∣∣∣∣∣
T∫

0

∫
Td

∂3
ijkϕ(t;x)F (ijk)

1

(
nτ (t;x))dx dt

∣∣∣∣∣
� 4

T∫
0

∥∥ϕ(t)∥∥
H 3

∥∥∇√
nτ (t)

∥∥
L∞

(
3
∥∥∇2

√
nτ (t)

∥∥
L2 + 4

∥∥∇ 4
√
nτ (t)

∥∥2
L4

)
dt

� 4‖ϕ‖L4(0,T ;H 3)

∥∥∇√
nτ

∥∥
L12/5(0,T ;L∞)

(
3
∥∥∇2

√
nτ

∥∥
L3(0,T ;L2)

+ 4
∥∥∇ 4

√
nτ

∥∥2
L6(0,T ;L4)

)
,

which is bounded, in view of (36), (37), and (38). Finally,

∣∣∣∣∣
T∫

0

∫
Td

∂2
ij ϕ(t;x)F (ij)

2

(
nτ (t;x))dx dt

∣∣∣∣∣
�

T∫
0

∥∥∇2ϕ(t)
∥∥
L6

∥∥F2
(
nτ (t)

)∥∥
L6/5 dt

� C

T∫
0

∥∥ϕ(t)∥∥
H 3

(∥∥∇2
√
nτ (t)

∥∥
L12/5 + 8

∥∥∇ 4
√
nτ (t)

∥∥2
L24/5

)2 dt

� 2C‖ϕ‖L4(0,T ;H 3)

(∥∥∇2
√
nτ

∥∥2
L8/3(0,T ;L12/5)

+ 16
∥∥∇ 4

√
nτ

∥∥4
L16/3(0,T ;L24/5)

)
shows that also ∂2 F

(ij) is uniformly bounded with respect to τ in L4/3(0, T ;H−3(Td)), see (37) and (38). �
ij 2
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Lemma 12. There exists a nonnegative function n ∈ L4/3(0, T ;H 3(Td)) such that along a suitable sequence τ ↓ 0,

nτ ⇀ n in L4/3(0, T ;H 3(
T
d
))
, (44)

δτ nτ ⇀ ∂tn in L4/3(0, T ;H−3(
T
d
))
, (45)√

nτ → √
n in L2(0, T ;H 2(

T
d
))
, (46)

4
√
nτ → 4

√
n in L4(0, T ;W 1,4(

T
d
))
. (47)

Proof. Estimate (35) immediately implies (44), i.e., (a subsequence of) nτ converges weakly to some limit n in
L4/3(0, T ;H 3(Td)). This convergence is even stronger: The τ -uniform bound (43) on δτ nτ allows us to apply Aubin’s
compactness lemma [21] to nτ (using Lemma A.2 of [4]). It follows that nτ converges strongly to the same limit n in
L4/3(0, T ;H 2(Td)) and that δτ nτ converges to ∂tn weakly in L4/3(0, T ;H−3(Td)), proving (45).

Of course, nτ also converges strongly to n in L1(0, T ;L1(Td)). Therefore,

T∫
0

∫
Td

∣∣√nτ (t;x)− √
n(t;x)∣∣2

dx dt �
T∫

0

∫
Td

∣∣nτ (t;x)− n(t;x)∣∣dx dt → 0,

since |√a −√
b|2 � |a − b| for a, b� 0. It follows that

√
nτ converges strongly to

√
n in L2(0, T ;L2(Td)). Invoking

the Gagliardo–Nirenberg inequality, we obtain

T∫
0

∥∥∇2
√
nτ (t) − ∇2√n(t)

∥∥2
L2 dt

� B

T∫
0

∥∥√
nτ (t) − √

n(t)
∥∥4/3
H 3

∥∥√
nτ (t) − √

n(t)
∥∥2/3
L2 dt

� B

( T∫
0

(∥∥√
nτ (t)

∥∥2
H 3 + ∥∥√

n(t)
∥∥2
H 3

)
dt

)2/3( T∫
0

∥∥√
nτ (t) − √

n(t)
∥∥2
L2 dt

)2/3

,

which tends to zero since
√
nτ is uniformly bounded with respect to τ in L2(0, T ;H 3(Td)), by (35), and it converges

strongly to
√
n in L2(0, T ;L2(Td)). This proves (46).

Finally, (47) is a consequence of Proposition 27 (see Appendix A), applied with α = 1/2, β = 1/6, γ = 1/4, and
p = 2, q = 6, r = 4. Indeed, a simple combination of the strong convergence of

√
nτ in L2(0, T ;H 2(Td)) with the

boundedness of (
6√
nτ ) in L6(0, T ;W 1,6(Td)) (see (39)) gives the conclusion. �

Proof of Theorem 1. It remains to prove that the limit function n ∈ L4/3(0, T ;H 3(Td)) from Lemma 12 is the sought
weak solution for (8). In other words, we need to identify the limit ∂tn with the right-hand side of (4). We recall that,
by the weak convergence of δτ nτ to ∂tn in L4/3(0, T ;H−3(Td)),

T∫
0

〈∂tn,ϕ〉dt = lim
τ↓0

T∫
0

〈
δτ nτ ,ϕ

〉
dt

holds for all ϕ ∈ L4(0, T ;H 3(Td)). In view of (34), the goal is thus to prove that

lim
τ↓0

T∫
0

∫
Td

(
∂3
ijkϕ∂

3
ijkn

τ + ∂3
ijkϕF

(ijk)

1

(
nτ

) − ∂2
ij ϕF

(ij)

2

(
nτ

))
dx dt

=
T∫ ∫

d

(
∂3
ijkϕ∂

3
ijkn + ∂3

ijkϕF
(ijk)

1 (n) − ∂2
ij ϕF

(ij)

2 (n)
)

dx dt
0 T
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for all test functions ϕ from some dense set of L4(0, T ;H 3(Td)). Since the C∞ functions are dense in that set, it
suffices to prove the weak convergence of ∂3

ijkn
τ , F (ijk)

1 (nτ ), and F
(ij)

2 (nτ ) to their respective limits ∂3
ijkn, F (ijk)

1 (n),

and F
(ij)

2 (n) in L1(0, T ;L1(Td)).
First term of the integrand. From (44), it follows in particular that ∂3

ijkn
τ converges weakly to ∂3

ijkn in

L4/3(0, T ;L2(Td)) for any combination of the indices i, j , and k, and thus, as τ ↓ 0,

T∫
0

∫
Td

∂3
ijkϕ∂

3
ijkn

τ dx dt →
T∫

0

∫
Td

∂3
ijkϕ∂

3
ijkndx dt.

Second term of the integrand. We recall the definition of F
(ij)

1 from (5). As a consequence of (47), the first-order

derivatives ∂j
4√
nτ converge strongly to ∂j

4
√
n in L4(0, T ;L4(Td)) for all j . As a product of strongly convergent

sequences, each ∂j
4√
nτ ∂k

4√
nτ converges strongly in L2(0, T ;L2(Td)) to the respective product ∂j 4

√
n∂k

4
√
n. Clearly,

all second-order derivatives ∂2
jk

√
nτ tend strongly to their respective limits ∂2

jk

√
n in L2(0, T ;L2(Td)) as well, taking

into account (46). In combination with the strong convergence of ∂i
√
nτ to ∂i

√
n in L2(0, T ;L2(Td)), by (46), it

follows that each F
(ijk)

1 (nτ ) is the sum of products of two strongly convergent sequences in L2(0, T ;L2(Td)) and
consequently, the product converges strongly in L1(0, T ;L1(Td)) to the product of the limits:

T∫
0

∫
Td

∂3
ijkϕF

(ijk)

1

(
nτ

)
dx dt →

T∫
0

∫
Td

∂3
ijkϕF

(ijk)

1 (n)dx dt.

Third term of the integrand. Arguing as above, it follows from (46) and (47) that both summands in F
(ij)

2 (nτ )

converge strongly in L2(0, T ;L2(Td)) to their respective limits, and so the sequence of the product converges strongly
in L1(0, T ;L1(Td)) to the product of the limit. This means that

T∫
0

∫
Td

∂2
ij ϕF

(ij)

2

(
nτ

)
dx dt →

T∫
0

∫
Td

∂2
ij ϕF

(ij)

2 (n)dx dt

finishing the proof. �
5. Exponential time decay of weak solutions

Proof of Theorem 2. Let τ > 0 and let nτ
1, n

τ
2, . . . be the sequence of solutions to the semi-discretized problem

constructed in Proposition 8. The discrete entropy estimate (23) implies that

H
[
nτ
k

] + τκ

∫
Td

∣∣∇3
√
nτ
k

∣∣2 dx �H
[
nτ
k−1

]
, k ∈ N,

with a positive constant κ > 0 independent of k and τ . Employing the generalized logarithmic Sobolev inequality,∫
Td

nτ
k log

(
nτ
k

‖nτ
k‖L1(Td )

)
dx � 1

32π6

∫
Td

∥∥∇3
√
nτ
k

∥∥2 dx,

which is proven as in [13], and observing that ‖nτ
k‖L1(Td ) = ‖n0‖L1(Td ) = 1, we infer that

H
[
nτ
k

]
� 1

32π6

∫
Td

∥∥∇3
√
nτ
k

∥∥2 dx.

Then the above entropy inequality yields

H
[
nτ
k

] + 32π6τκH
[
nτ
k

]
�H

[
nτ
k−1

]
, k ∈N,
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which in turn implies for all t ∈ ((k − 1)τ, kτ ] that

H
[
nτ (t)

]
�

(
1 + 32π6τκ

)−t/τH[n0],
since k � t/τ . Recall that nτ (t) converges a.e. to n(t) as τ → 0, and observe that (1 + 32π6τκ)−t/τ converges to
exp(−32π6κt). Thus the limit τ → 0 gives

H
[
n(t)

]
�H[n0]e−32π6κt , t � 0.

An application of the Csiszár–Kullback–Pinsker inequality (see, e.g., [22, Section 2]) concludes the proof. �
6. Existence and uniqueness of classical solutions

In this section, we invoke the machinery of analytic semigroups to prove Theorem 3. Our approach follows closely
the strategy developed in [2] by Bleher at al. for the fourth-order DLSS equation. However, the more complicated
structure of the nonlinearities in our sixth-order equation induces a variety of additional technical difficulties.

6.1. Definitions

We collect some standard results on the operator �3. By abuse of notation, we use the symbol �3 for the
L1(Td)-closure of the operator �3ϕ = ∑d

i,j,k=1 ∂
2
i ∂

2
j ∂

2
k ϕ, defined for ϕ ∈ C∞(Td). Define the auxiliary function

H ∈ C∞(Rd) by

H(z) = (2π)−d

∫
Rd

e−|ζ |6eiζ ·z dζ,

and introduce for each t > 0 the so-called solution kernel G(t) ∈ C∞(Td) by

G(t;y) = t−d/6
∑
Λ∈Zd

H
(
t−1/6(y + Λ)

)
.

The series converges since H(z) decays exponentially for |z| → ∞. Classical parabolic theory provides the following
result.

Lemma 13. Let m ∈N0, p ∈ [1,∞), and α ∈ (0,1). If u ∈ Wm,p(Td), then the convolution U(t) = G(t) � u defines a
smooth curve, satisfying

U ∈ C∞(
(0,∞);C∞(

T
d
)) ∩ C0([0,∞);Wm,p

(
T
d
))
,

d

dt
U(t) = �3U(t), U(0) = u. (48)

If w ∈ Cα([t1, t2];Wm,p(Td)) is a Hölder continuous curve on [t1, t2], then the function

W(t) =
t∫

t1

G(t − s) � w(s)ds

defines a Hölder continuously differentiable curve, satisfying

W ∈ C1,α([t1, t2];Wm+6,p(
T
d
))
,

d

dt
W(t) = �3W(t) + w(t), W(t1) = 0. (49)

Proof. The proof of (48) and (49) is technical but standard. One possible approach, which would be most similar
to [2], is to observe that −�3 is the generator of the analytic semigroup defined by t �→ G(t) � f for all f ∈ L1(Td).
We refer to [10, Chapter 3] or to [19, Chapter 4] for further details on the semigroup approach. �

Apart from Lemma 13, we shall not need classical results on parabolic equations. Instead, we derive our core
estimates with the help of the following lemma.
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Lemma 14. For given α ∈N
d
0 , p � 1, and t > 0, the kernel G satisfies the estimate∥∥DαG(t)

∥∥
Lp � Γ t−(|α|+d(1−1/p))/6, (50)

where Γ > 0 is independent of t > 0.

Here and in the following, Dα denotes a partial derivative of order |α|.

Proof. For t > 0, define the half-open cube Q(t) = [0, t−1/6)d ⊂ R
d . Using the change of variables z(t) = t−1/6y,

we obtain∥∥DαG(t)
∥∥
Lp(Td )

= t−d/6
( ∫

[0,1)d

∑
Λ∈Zd

∣∣Dα
yH

(
t−1/6(y + Λ)

)∣∣p dy

)1/p

� t−d/6
∑
Λ∈Zd

( ∫
Q(t)

∣∣t−|α|/6Dα
zH

(
z + t−1/6Λ

)∣∣ptd/6 dz

)1/p

= t−(d+|α|−d/p)/6
( ∫
Rd

∣∣Dα
z H(z)

∣∣p dz

)1/p

.

Here we used the Minkowski inequality and the fact that, for each t > 0, the space R
d is the disjoint union of the

cubes Q(t) + t−1/6Λ, where Λ ∈ Z
d . So Γ = ‖DαH̃‖Lp(Rd ) is the required constant. �

6.2. Existence and uniqueness of a mild solution

Our main result of this subsection is contained in the following proposition.

Proposition 15. Let n0 ∈ H 2(Td) be strictly positive. Then there exist T > 0 and precisely one continuous curve
n : [0, T ] → H 2(Td) with n(0) = n0 that satisfies the following “very mild” formulation of (4):

n(t) = G(t) � n0 + ∂3
ijk

t∫
0

G(t − s) � F
(ijk)

1

(
n(s)

)
ds + ∂2

ij

t∫
0

G(t − s) � F
(ij)

2

(
n(s)

)
ds (51)

for every t ∈ (0, T ). This solution is differentiable with respect to t ∈ (0, T ) with a Hölder continuous derivative, i.e.
n ∈ C1,1/12([τ, T ];H 2(Td)) for every τ ∈ (0, T ).

To prove Proposition 15, we adapt the proof of Theorem 4.2(a) in [2] to the situation at hand. That means, we are
going to obtain the solution n to (51) as the unique fixed point of the map u �→ Φ[u], defined by

Φ[u](t) = G(t) � n0 + Ψ [u](t) (52)

on a suitable set VT ⊂ C0([0, T ];H 2(Td)), where Ψ = ∂3
ijkψ

(ijk)

1 + ∂2
ijψ

(ij)

2 and

ψ
(ijk)

1 [u](t) =
t∫

0

G(s) � F
(ijk)

1

(
u(t − s)

)
ds, ψ

(ij)

2 [u](t) =
t∫

0

G(s) � F
(ij)

2

(
u(t − s)

)
ds. (53)

The core ingredient of the proof of Proposition 15 is the following Lipschitz estimate on the nonlinearities F
(ijk)

1

and F
(ij)

2 .

Lemma 16. For any 0 < δ < 1, F (ijk)

1 and F
(ij)

2 are Lipschitz continuous as mappings from any bounded subset of

Uδ =
{
u ∈ H 2(

T
d
)
: minu(x)� δ, ‖u‖H 2 � δ−1

}
(54)
x
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into L3/2(Td) and into L1(Td), respectively, satisfying∥∥F (ijk)

1 (u)
∥∥
L3/2 �M1δ

−5,
∥∥F (ijk)

1 (u1) − F
(ijk)

1 (u2)
∥∥
L3/2 �M1δ

−4‖u1 − u2‖H 2, (55)∥∥F (ij)

2 (u)
∥∥
L1 �M2δ

−7,
∥∥F (ij)

2 (u1) − F
(ij)

2 (u2)
∥∥
L1 �M2δ

−6‖u1 − u2‖H 2, (56)

for all u,u1, u2 ∈ Uδ , where M1 and M2 are universal constants. Moreover, F (ijk)

1 and F
(ij)

2 map

U ′
δ = {

u ∈ Uδ ∩ W 3,3/2(
T
d
)
: ‖u‖W 3,3/2 � δ−1}

into L2(Td) and L3/2(Td), respectively, satisfying∥∥F (ijk)

1 (u)
∥∥
L2 �M1δ

−5,
∥∥F (ijk)

1 (u1) − F
(ijk)

1 (u2)
∥∥
L2 �M1δ

−4‖u1 − u2‖H 2, (57)∥∥F (ij)

2 (u)
∥∥
L3/2 �M2δ

−7,
∥∥F (ij)

2 (u1) − F
(ij)

2 (u2)
∥∥
L3/2 �M2δ

−6‖u1 − u2‖H 2, (58)

for all u,u1, u2 ∈ U ′
δ .

Proof. Since we are working in dimensions d � 3, every u ∈ Uδ is a strictly positive and continuous function on T
d ,

with ∂2
ij u ∈ L2(Td) and ∂iu ∈ L6(Td). It follows that we can write

F
(ijk)

1 (u) = 2
∂iu∂ju∂ku

u2
− 3

∂iu∂
2
jku

u
, (59)

F
(ij)

2 (u) = 2
∂2
iku∂

2
kj u

u
− 4

∂2
iku∂ku∂ju

u2
+ 2

(∂ku)
2∂iu∂ju

u3
. (60)

Thus, F (ijk)

1 and F
(ij)

2 are sums of products of derivatives (of order one or two) of u, divided by a power of u. By
application of Hölder’s inequality and the continuity of the Sobolev embedding H 2(Td) ↪→ W 1,6(Td), one readily
verifies the first inequalities in (55) and (56). The Lipschitz continuity is straightforward to verify from the represen-
tations (59) and (60) by repeated application of the triangle inequality. For proving (57) and (58), we use additionally
the continuous embedding W 3,3/2(Td) ↪→ W 2,3(Td). �

A consequence of the above lemma is that Ψ maps bounded curves u into Hölder continuous curves.

Lemma 17. Assume that there exists a δ > 0 such that u ∈ C([0, T );H 2(Td)) satisfies

(1) either u(t)� δ and ‖u(t)‖H 2 � δ−1,
(2) or u(t) > 0 and E[u(t)] � δ−1

for all 0 � t � T . Then Ψ [u] ∈ C1/12([0, T ];H 2(Td)), i.e.,∥∥Ψ [u](t ′) − Ψ [u](t)∥∥
H 2 � L

∣∣t ′ − t
∣∣1/12

for all t, t ′ ∈ [0, T ], (61)

where L> 0 depends on δ, but not on u.

Proof. To begin with, we remark that∥∥F (ijk)

1

(
u(t)

)∥∥
L3/2 �Z1 and

∥∥F (ij)

2

(
u(t)

)∥∥
L1 � Z2 (62)

hold for all t ∈ [0, T ], where the positive constants Z1 and Z2 depend on δ > 0 only. Indeed, if the first set of
assumptions on u is satisfied, then (62) is an immediate consequence of Lemma 16. If instead the second set of
assumptions is satisfied, then Hölder’s inequality implies∥∥F (ijk)

1

(
u(t)

)∥∥
L3/2 � 4

∥∥∇√
u(t)

∥∥
L6

(
4
∥∥∇ 4

√
u(t)

∥∥2
L4 + 3

∥∥∇2
√
u(t)

∥∥
L2

)
,∥∥F (ij)

2

(
u(t)

)∥∥
L1 � 8

(∥∥∇2
√
u(t)

∥∥
L2 + 4

∥∥∇ 4
√
u(t)

∥∥2
L4

)2
.

In view of (10) and Lemma 26 (see Appendix A), these right-hand sides are controlled in terms of E[u(t)] � δ−1 only.
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Now, let t , t ′ ∈ [0, T ] be given with τ = t ′ − t > 0. For a given α ∈N
d
0 with |α| = 2, introduce

Θα(t; τ) = ∥∥Dα
(
Ψ [u](t + τ) − Ψ [u](t))∥∥

L2 .

By definition of Ψ and a change of variables under the integrals, we find that

Θα(t; τ)�
t∫

0

(∥∥Dα∂3
ijk

(
G(s + τ) − G(s)

)
� F

(ijk)

1

(
u(t − s)

)∥∥
L2

+ ∥∥Dα∂2
ij

(
G(s + τ) − G(s)

)
� F

(ij)

2

(
u(t − s)

)∥∥
L2

)
ds

+
τ∫

0

(∥∥Dα∂3
ijkG(s) � F

(ijk)

1

(
u(t + τ − s)

)∥∥
L2 + ∥∥Dα∂2

ijG(s) � F
(ij)

2

(
u(t + τ − s)

)∥∥
L2

)
ds.

Using (62) and Young’s inequality for convolutions,

‖φ � ψ‖Lp � Υ ‖φ‖Lq‖ψ‖Lr ,

for φ ∈ Lp(Rd), ψ ∈ Lr(Rd), and 1 + 1/p = 1/q + 1/r , where Υ > 0, the term under the last integral above can be
estimated for 0 < s < τ as follows:∥∥Dα∂3

ijkG(s) � F
(ijk)

1

(
u(t + τ − s)

)∥∥
L2 � Υ1

∥∥∇5G(s)
∥∥
L6/5

∥∥F1
(
u(t + τ − s)

)∥∥
L3/2

� Υ1Z1Γ1

sϑ1
,∥∥Dα∂2

ijG(s) � F
(ij)

2

(
u(t + τ − s)

)∥∥
L2 � Υ2

∥∥∇4G(s)
∥∥
L2

∥∥F2
(
u(t + τ − s)

)∥∥
L1

� Υ2Z2Γ2

sϑ2
,

where, according to (50), the exponents are given by

ϑ1 = (5 + d/6)/6 < 1 and ϑ2 = (4 + d/2)/6 < 1.

We apply the analogous estimate to the expression under the first integral, and estimate further by employing rela-
tion (48). For 0 < s < t , we have

∥∥∇5(G(τ + s) − G(s)
)∥∥

L6/5 �
∥∥∥∥∥∇5

s+τ∫
s

�3G(σ)dσ

∥∥∥∥∥
L6/5

�
s+τ∫
s

∥∥∇5(�3G(σ)
)∥∥

L6/5 dσ � Γ ′
1

s+τ∫
s

dσ

σ 1+ϑ1
= Γ ′

1

ϑ1

(
s−ϑ1 − (s + τ)−ϑ1

)
.

In a similar fashion, we obtain∥∥∇4(G(s + τ) − G(s)
)∥∥

L2 �
Γ ′

2

ϑ2

(
s−ϑ2 − (s + τ)−ϑ2

)
.

In summary, this leads to

Θα(t; τ)� Υ1Z1Γ
′

1

ϑ1

t∫
0

(
s−ϑ1 − (s + τ)−ϑ1

)
ds + Υ2Z2Γ

′
2

ϑ2

t∫
0

(
s−ϑ2 − (s + τ)−ϑ2

)
ds

+ Υ1Z1Γ1

τ∫
0

s−ϑ1 ds + Υ2Z2Γ2

τ∫
0

s−ϑ2 ds

�
Υ1Z1Γ

′
1

(1 − ϑ1)ϑ1

(
(t + τ)1−ϑ1 − t1−ϑ1

) + Υ2Z2Γ
′

2

(1 − ϑ2)ϑ2

(
(t + τ)1−ϑ2 − t1−ϑ2

)
+ Υ1Z1Γ1

τ 1−ϑ1 + Υ2Z2Γ2
τ 1−ϑ2 .
1 − ϑ1 1 − ϑ2
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To finish the proof, we observe that, since 0 < ϑi < 1, we have (t + τ)1−ϑi � t1−ϑi + τ 1−ϑi , and ϑi � 11/12 in
dimensions d � 3. This proves the Hölder continuity of Θα(t; τ) with exponent 1/12 for |α| = 2. The cases |α| = 1
and α = 0 are similar. �
Proof of Proposition 15. As indicated above, we are going to show that Φ , given by (52), is a well-defined contraction
on a suitable subset VT ⊂ C([0, T ];H 2(Td)) for some sufficiently small T > 0.

Recall the definition of Uδ from (54). Since n0 ∈ H 2(Td) is strictly positive by assumption, we can choose δ > 0
such that n0 ∈ U2δ . Accordingly, for a given T > 0, define

VT = {
u ∈ C0([0, T ];H 2(

T
d
))

: u(t) ∈ Uδ for all t ∈ [0, T ]}.
Fix a curve u ∈ VT . In view of Lemma 16, F (ijk)

1 (u) and F
(ij)

2 (u) are continuous curves on [0, T ] with values in
L3/2(Td) and L1(Td), respectively.

Since Φ[u](0) = n0 for every u ∈ VT , the H 2-distance of Φ[u](t) to n0 becomes small as t ↓ 0, uniformly in
u ∈ VT . Moreover, since the infimum of Φ[u](t) is controlled in terms of this distance, one may choose T > 0
sufficiently small to achieve Φ[u](t) ∈ Uδ for all t ∈ [0, T ] and u ∈ VT . Hence, Φ :VT → VT is well-defined.

Next, we verify the contraction property of Φ . The calculations follow the same pattern as above, now using the
Lipschitz estimates in (55) and (56). Let u1, u2 ∈ VT be given. Then, for |α| = 2,∥∥Dα

(
Φ[u1](t) − Φ[u2](t)

)∥∥
L2

�
t∫

0

(∥∥∇5G(t − s) �
(
F

(ijk)

1

(
u1(s)

) − F
(ijk)

1

(
u2(s)

))∥∥
L2

+ ∥∥∇4G(t − s) �
(
F

(ij)

2

(
u1(s)

) − F
(ij)

2

(
u2(s)

))∥∥
L2

)
ds

� Υ1M1δ
−4

t∫
0

(t − s)−ϑ1
∥∥u1(s) − u2(s)

∥∥
H 2 ds + Υ2M2δ

−6

t∫
0

(t − s)−ϑ2
∥∥u1(s) − u2(s)

∥∥
H 2 ds

�
(

Υ1M1

δ4(1 − ϑ1)
+ Υ2M2

δ6(1 − ϑ2)

)
T 1/12 sup

0�s′�T

∥∥u1
(
s′) − u2

(
s′)∥∥

H 2 .

Similar estimates are obtained for |α| � 1. Diminishing T further if necessary, it follows that Φ is contractive on VT .
The claim about the Hölder continuity is a consequence of (61) in combination with (48). �
6.3. Bootstrapping

We prove that the very mild solution to (4) is actually smooth for t > 0. To this end, we need the following lemma.

Lemma 18. Let δ > 0 be given. For each m � 1, there exist continuous and increasing functions Q
(m)
1 ,Q

(m)
2 :

R+ →R+ such that∥∥F (ijk)

1 (u1) − F
(ijk)

1 (u2)
∥∥
Hm �Q

(m)
1

(‖u1‖Hm+1 + ‖u2‖Hm+1

)‖u1 − u2‖Hm+2, (63)∥∥F (ij)

2 (u1) − F
(ij)

2 (u2)
∥∥
Wm,3/2 �Q

(m)
2

(‖u1‖Hm+1 + ‖u2‖Hm+1

)‖u1 − u2‖Hm+2 (64)

hold (componentwise) for all u ∈ Uδ ∩ Hm+2(Td).

Observe that this lemma does not apply for m = 0, in which case one has to resort to the estimates provided in
Lemma 16.

Proof. Basically, we follow the ideas of the proof of Lemma 16, namely we apply several times the triangle inequality,
the Hölder inequality, and continuous Sobolev embeddings. However, due to the higher-order derivatives, the proof is
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technically more involved. Representations (59) and (60) show that F (ijk)

1 and F
(ij)

2 are sums of products of derivatives
of u divided by a power of u, i.e. sums of monomials of the form

Dα1
u . . .Dαk

u

uk−1
, (65)

where α� ∈ N
d
0 , � = 1, . . . , k, 1 � |α�| � 2, and

∑k
�=1 |αl | = K equals 3 and 4 for F

(ijk)

1 and F
(ij)

2 , respectively.
A partial derivative of such a monomial is again a sum of monomials of the form (65):

Dα

(
Dα1

u . . .Dαk
u

uk−1

)
=

∑ Dβ1
u Dβ2

u . . .Dβr
u

ur−1
,

for α ∈N
d
0 , |α| �m, 1 � |β�| �m+ 2, k � r � k + |α|, and

∑r
�=1 |β�| = K + |α|. In view of the continuous Sobolev

embeddings Hm+2(Td) ↪→ Wm+1,6(Td) and Hm+2(Td) ↪→ Cm(Td), it follows from the above representation of
DαF

(ijk)

1 (u) and DαF
(ij)

2 (u) that for every u ∈ Hm+2(Td), it holds that DαF
(ijk)

1 (u) ∈ L2(Td) and DαF
(ij)

2 (u) ∈
L3/2(Td) for each |α| �m and m� 1. Then, by the repeated application of the triangle and Hölder inequalities, we
obtain functions Q

(m)
1 and Q

(m)
2 as well as the estimates (63) and (64). �

Proposition 19. The very mild solution from Proposition 15 is a continuously differentiable curve from (0, T ] to
C∞(Td).

Proof. Let τ ∈ (0, T ) be fixed. We are going to prove, inductively on m, that

n ∈ C1,1/12([τ, T ];Hm+2(
T
d
))

(66)

for every integer m ∈ N0. For m = 0, the claim (66) is part of the conclusion of Proposition 15 above. The
compositions of the Hölder continuous curve n with the locally Lipschitz continuous nonlinearities F

(ijk)

1 and

F
(ij)

2 (see Lemma 16) are Hölder continuous with the same exponent, F
(ijk)

1 (n) ∈ C1/12([τ, T ];L3/2(Td)) and

F
(ij)

2 (n) ∈ C1/12([τ, T ];L1(Td)). For ψ
(ijk)

1 and ψ
(ij)

2 , defined in (53), the second part of Lemma 13 implies that

ψ
(ijk)

1 [n] ∈ C1,1/12([τ, T ];W 6,3/2(Td)) and ψ
(ij)

2 [n] ∈ C1,1/12([τ, T ];W 6,1(Td)). In combination with (48), it thus
follows directly from (51) that n ∈ C1/12([τ, T ];W 3,3/2(Td)). An iteration leads, via (57), to the improved regularity
F

(ijk)

1 (n) ∈ C1/12([τ, T ];L2(Td)), and thus to ψ
(ijk)

1 [n] ∈ C1,1/12([τ, T ];H 6(Td)). Furthermore, by (58), we infer

that F (ij)

2 (n) ∈ C1/12([τ, T ];L3/2(Td)) and hence, ψ(ij)

2 [n] ∈ C1,1/12([τ, T ];W 6,3/2(Td)). By the continuity of the

embedding W 6,3/2(Td) ↪→ H 5(Td), it follows that ψ(ij)

2 [n] ∈ C1,1/12([τ, T ];H 5(Td)). Then the representation (51)
proves (66) with m = 1.

Assuming (66) for some m� 1, it follows from Lemma 18 that F (ijk)

1 (n) ∈ C1/12([τ, T ]; Hm(Td)) and F
(ij)

2 (n) ∈
C1/12([τ, T ];Wm,3/2(Td)). By property (49) of the kernel G and since the Sobolev embedding Wm+6,3/2(Td) ↪→
Hm+5(Td) is continuous, we infer that ψ

(ijk)

1 ∈ C1,1/12([τ, T ];Hm+6(Td)) and ψ
(ij)

2 ∈ C1/12([τ, T ];Hm+5(Td)).
Using this inside the representation (51) and combining it with the smoothness property (48), we arrive at n ∈
C1,1/12([τ, T ];Hm+3(Td)), which implies (66) with m replaced by m + 1. �
Proof of Theorem 3. First, we extend the local solution n ∈ C([0, T ];H 2(Td)) obtained from Proposition 15 to the
respective maximal solution nmax by the usual procedure: Provided that n(T ) ∈ H 2(Td) is strictly positive, we can
invoke Proposition 15 with the new initial datum ñ0 := n(T ), thus obtaining another very mild solution ñ : [0, T̃ ] →
H 2(Td) to (4). Using the semigroup property G(τ)�G(σ) = G(τ +σ) for arbitrary σ , τ > 0, it can be easily checked
that the concatenation n+ : [0, T + T̃ ] → H 2(Td), given by

n+(t) =
{
n(t) for 0 � t � T ,

ñ(t − T ) for T � t � T + T̃ ,

is another continuous curve satisfying (51).
The maximal solution nmax : [0, T∗) → H 2(Td) is the uniquely determined curve that satisfies (51) on every subin-

terval [0, T ] ⊂ [0, T∗), but it cannot be extended to a solution on [0, T∗]. In view of our solution concept, this means
that
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(1) either T∗ = +∞, i.e., the solution is global,
(2) or nmax(t) → n∗ in H 2(Td) as t ↑ T∗, but the limiting profile n∗ is not strictly positive,
(3) or nmax(t) does not converge in H 2(Td) as t ↑ T∗.

We are going to exclude the last option. First notice that Proposition 19 guarantees that n is a classical and positive
solution on every subinterval (0, T ] ⊂ (0, T∗), so nmax ∈ C∞((0, T∗);C∞(Td)), as desired. This means that, in turn,
the formal calculation (17) is rigorous. Combining this with the continuity of nmax(t) in H 2(Td) at t = 0, it follows
that E[nmax(t)] � E[n0] < ∞ is uniformly bounded on [0, T∗). If T∗ < ∞, then nmax satisfies hypothesis (2) of
Lemma 17. Since nmax(t) = G(t) � n0 +Ψ [nmax](t) by definition, it is a Hölder continuous curve with exponent 1/12
in H 2(Td) on, say, [T∗/2, T∗) with a uniform Hölder constant L. This implies, in particular, that nmax(t) converges in
H 2(Td) to a limit n∗. �
7. From weak to classical solutions

In this brief last section, we prove Theorem 4 about the passage from weak to classical solutions. In preparation of
the proof of Theorem 4, we first show that any weak solution satisfies the very mild formulation (51), but in a weaker
sense.

Lemma 20. Any weak solution n in the sense of Theorem 1 is a Hölder continuous curve in H−3(Td), satisfying, for
t > 0,

n(t) = G(t) � n0 + ∂3
ijk

t∫
0

G(t − s) � F
(ijk)

1

(
n(s)

)
ds + ∂2

ij

t∫
0

G(t − s) � F
(ij)

2

(
n(s)

)
ds. (67)

Proof. By our definition of a weak solution, n lies in W
1,4/3
loc (0,∞;H−3(Td)). As a consequence, n is a Hölder

continuous curve with exponent 1/3 in H−3(Td) and, in particular, n is absolutely continuous in H−3(Td). Hence,
its time derivative ∂tn(t) is defined in H−3(Td) for almost every t > 0. Moreover, n ∈ L

4/3
loc (0,∞;H 3(Td)), thus,

n(t) ∈ H 3(Td) for almost every t > 0 and �3n ∈ L
4/3
loc (0,∞;H−3(Td)). It follows that

g := ∂tn − �3n ∈ L
4/3
loc

(
0,∞;H−3(

T
d
))
.

For fixed t > 0, consider the continuous curve u : (0, t) → C∞(Td), defined by u(s) = G(t − s) �n(s). Recalling (48),
it follows for arbitrary 0 < s < t that

∂su(s) = −�3G(t − s) � n(s) + G(t − s) � ∂sn(s) = G(t − s) �
(
∂sn(s) − �3n(s)

) = G(t − s) � g(s).

Therefore, u ∈ W
1,4/3
loc (0,∞;H−3(Td)), and

lim
t ′↑t

u
(
t ′
) = u(0) +

t∫
0

G(t − s) � g(s)ds.

Since u(0) = G(t) � n0 and u(t ′) → n(t) in H−3(Td) as t ′ ↑ t , formula (67) follows. �
Lemma 21. Let n be a weak solution to (51) whose energy is uniformly bounded on (T1, T2). Then F

(ijk)

1 (n(t)) is

bounded in L3/2(Td) and F
(ij)

2 (n(t)) is bounded in L1(Td), uniformly in (T1, T2).

Proof. By the Hölder and the Sobolev inequalities and Lemma 26 (see Appendix A), it follows that∥∥F (ijk)

1

(
n(t)

)∥∥
L3/2 � 4

∥∥∇√
n(t)

∥∥
L6

(
4
∥∥∇ 4

√
n(t)

∥∥2
L4 + 3

∥∥∇2
√
n(t)

∥∥
L2

)
� 4C

∥∥√
n(t)

∥∥
2

(
4C2

LV

∥∥√
n(t)

∥∥
2 + 3

)∥∥√
n(t)

∥∥
2,
H H H
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∥∥F (ij)

2

(
n(t)

)∥∥
L1 � 8

(∥∥∇2
√
n(t)

∥∥
L2 + 4

∥∥∇ 4
√
n(t)

∥∥2
L4

)2

� 8
(
1 + 4C2

LV

∥∥√
n(t)

∥∥
H 2

)2∥∥√
n(t)

∥∥2
H 2 .

The last terms are uniformly controlled in terms of E[n(t)] which concludes the proof. �
In the following, let n be a weak solution satisfying the hypotheses of Theorem 4. Without loss of generality we

may take t0 = 0. Then n0 ∈ H 2(Td) and minn0(x) > 0. Since we are working with a solution of uniformly bounded
energy, it is a priori clear that n(t) is bounded in H 2(Td). Actually, more is true.

Lemma 22. A weak solution n is a Hölder continuous curve in H 2(Td) on any time interval on which its energy is
uniformly bounded.

Proof. Let t > 0 and τ > 0 be fixed. Since G(t − s) ∈ C∞(Td) and f (n(s)) = ∂3
ijkF

(ijk)

1 (n(s)) +∂2
ijF

(ij)

2 (n(s)) ∈
H−3(Td) for all s ∈ (0, t), we have G(t − s) � f (n(s)) ∈ C∞(Td). It follows that

∇2G(t − s) � f
(
n(s)

) = ∇2∂3
ijkG(t − s) � F

(ijk)

1

(
n(s)

) + ∇2∂2
ijG(t − s) � F

(ij)

2

(
n(s)

)
.

By Young’s inequality, it follows further that∥∥∇2G(t − s) � f
(
n(s)

)∥∥
L2 � C

(∥∥∇5G(t − s)
∥∥
L6/5

∥∥F (ijk)

1

(
n(s)

)∥∥
L3/2 + ∥∥∇4G(t − s)

∥∥
L2

∥∥F (ij)

2

(
n(s)

)∥∥
L1

)
� C

(
(t − s)−(5+d/6)/6 + (t − s)−(4+d/2)/6)

� C(t − s)−11/12,

where C > 0 is a generic constant and recalling that d � 3. This implies that, for all t ∈ (0, T ) and τ > 0,∥∥∥∥∥∇2

t+τ∫
t

G(t + τ − s) � f
(
n(s)

)
ds

∥∥∥∥∥
L2

� C
(
(t + τ)1/12 − t1/12) � Cτ 1/12.

Similarly, we find that∥∥∇2(G(t + τ − s) − G(t − s) � f
(
n(s)

))∥∥
L2

� C
(∥∥∇5(G(t + τ − s) − G(t − s)

)∥∥
L6/5

∥∥F (ijk)

1

(
n(s)

)∥∥
L3/2

+ ∥∥∇4(G(t + τ − s) − G(t − s)
)∥∥

L2

∥∥F (ij)

2

(
n(s)

)∥∥
L1

)
.

By relation (48), for m = 4,5,

∥∥∇m
(
G(t + τ − s) − G(t − s)

)∥∥
Lp �

∥∥∥∥∥∇m

t+τ−s∫
t−s

dG

dθ
(ϑ)dϑ

∥∥∥∥∥
Lp

�
t+τ−s∫
t−s

∥∥∇m�3G(ϑ)
∥∥
Lp dϑ

� Γ

t+τ−s∫
t−s

ϑ−1−(m+d(1−1/p))/6 dϑ.

As in the proof of Lemma 17, this proves the continuity with the Hölder exponent 1/12. �
The above results, together with Theorem 3, provide the proof of Theorem 4.

Appendix A

We provide a collection of functional inequalities used throughout the calculations.

Lemma 23. Let m ∈N be given. Then there exists a constant C > 0 such that for all u ∈ Hm(Td),

‖u‖Hm � C
(∥∥∇mu

∥∥
L2 + ‖u‖L2

)
.
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Lemma 24. Let m,n ∈ N and 1 � p, r � ∞ be given and assume that n − d/r < m − d/p. Then the Sobolev space
Wm,p(Td) embeds compactly into Wn,r(Td). In the borderline case, if n − d/r = m − d/p is not an integer, the
embedding is still continuous.

The following result is from [23, p. 1034].

Lemma 25 (Gagliardo–Nirenberg inequality). Let m, n ∈ N0 with m> n and let 1 � p,q, r � ∞. Assume that there
exists θ ∈ (0,1) such that

n − d

r
= θ

(
m− d

p

)
− (1 − θ)

d

q
.

There exists a constant B > 0 such that for all u ∈ Wm,p(Td),∥∥∇nu
∥∥
Lr(Ω)

� B‖u‖θWm,p‖u‖1−θ
Lq . (68)

Estimates on square roots play a key role in the proofs of our results. The following result is a consequence of
Théorème 1(ii) in [17].

Lemma 26. Let 1 < p � ∞. Then there exists a constant CLV > 0 such that for all nonnegative functions u ∈
W 2,p(Td),

‖√u‖2
W 1,2p(Td )

� CLV‖u‖W 2,p(Td ). (69)

Proof. Let φ ∈ C2(R) be a nonnegative cut-off function satisfying φ(x) = 1 for 0 � x � 1, and φ(x) = 0 for x � 2
and for x � −1. Define accordingly φd ∈ C2(Rd) by

φd(x1, x2, . . . , xd) = φ(x1)φ(x2) · · ·φ(xd). (70)

Given u ∈ W 2,p(Td), consider w ∈ W 2,p(Rd) with w(x) = φd(x)Eu(x); recall that Eu is the periodic extension of u
to R

d . By definition of φd , we have w(x) = Eu(x) for x ∈ [0,1]d and suppw ⊂ [−1,2]d . On one hand,

‖D
√
u‖2p

L2p(Td )
=

d∑
j=1

∫
[0,1]d

∣∣∂j√Eu(x)
∣∣2p dx �

d∑
j=1

∫
Rd

∣∣∂j√w(x)
∣∣2p dx = ‖D

√
w‖2p

L2p(Rd )
. (71)

On the other hand, with constants Ap , Bd > 0,∥∥D2w
∥∥p

Lp(Rd )
=

∑
1�j�k�d

∫
Rd

∣∣∂2
jkw(x)

∣∣p dx

=
∑

1�j�k�d

∫
Rd

∣∣∂2
jkφdEu + ∂jφd∂kEu + ∂kφd∂jEu + φd∂

2
jkEu

∣∣p dx

�Ap‖φd‖pC2(Rd )

∑
1�j�k�d

∫
[−1,2]d

(|Eu|p + |∂jEu|p + |∂jEu|p + ∣∣∂2
jkEu

∣∣p)
dx

�ApBd‖φd‖pC2(Rd )
‖u‖p

W 2,p(Td )
. (72)

By Théorème 1(ii) in [17],

‖D
√
w‖2p

L2p(Rd )
�K

∥∥D2w
∥∥p

Lp(Rd )
, (73)

where K > 0 only depends on d and p. Then, combining (71) with (72) via (73), it follows that

‖D
√
u‖2p

2p d �ApBdK‖φd‖d 2 d ‖u‖p 2,p d .

L (T ) C (R ) W (T )
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Finally, observe that, trivially,

‖√u‖2p
L2p(Td )

= ‖u‖p
Lp(Td )

� ‖u‖p
W 2,p(Td )

.

Hence, (69) holds with the constant

CLV = (
1 + ApBdK‖φd‖pC2(Rd )

)1/p
,

ending the proof. �
The following result is proved in [14, Appendix]. It is needed to obtain strong convergence of the sequences (

√
un )

or ( 4
√
un ), given strong convergence of the sequence (un) and a uniform bound on ( 4

√
un ) or ( 6

√
un ), respectively.

Proposition 27. Let 0 < β < γ < α < ∞, 1 < p,q, r < ∞ be given, where αp = βq = γ r . Assume that (un) is a
sequence of strictly positive functions on T

d with the following properties:

(1) uα
n converges strongly to uα in W 1,p(Td), and

(2) u
β
n is bounded in W 1,q (Td).

Then u
γ
n converges strongly to uγ in W 1,r (Td).

The respective result holds for sequences of nonnegative functions un : (0, T )×T
d →R upon replacing W 1,s(Td)

by Ls(0, T ;W 1,s(Td)) for, respectively, s = p,q, r .

Finally, we recall a particular variant of the Leray–Schauder theorem that has been proven in [20].

Theorem 28 (Leray–Schauder). Let X be a Banach space and let B ⊂ X be a closed and convex set such that the zero
element of X is contained in the interior of B . Furthermore, let S :B × [0,1] → X be a continuous map such that
its range S(B × [0,1]) is relatively compact in X. Assume that S(x,σ ) �= x for all x ∈ ∂B and σ ∈ [0,1] and that
S(∂B × {0}) ⊂ B . Then there exists x0 ∈ B such that S(x0,1) = x0.
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