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Abstract

We study the equation —Au + h(x)|u|q_1u =0,¢9>1,in R-il\-, =RN-1 x R4 where h € C(]Rﬁ), h>0.Let (x1,...,xy)bea
coordinate system such that Rﬁ =[xy > 0] and denote a point x € RY by (x’, xy). Assume that i (x’, xy) > 0 when x’ = 0 but
h(x',xn) — Oas |x’| — 0. For this class of equations we obtain sharp necessary and sufficient conditions in order that singularities
on the boundary do not propagate in the interior.
© 2012 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study solutions of the equation
—Au+h@)|ul?lu=0, (1.1)

in RY = RV=! x R, where ¢ > 1 and h € C(RY), h > 0. (If x € RY we write x = (x/,xy) where x’ =
(X1, ..., xN-1).)

Ifh>0in Rﬁ then boundary singularities of solutions of (1.1) cannot propagate to the interior. This is due to the
presence of the absorption term h|u|?'u and the Keller—Osserman estimates [3] and [7]. In fact, in this case, (1.1)
possesses a maximal solution U in Rﬁf and,

lim U(x)=0c0 YM > 0. (12)
M

A solution satisfying this boundary condition is called a large solution. If, in addition, 4 is bounded away from zero
then the large solution is unique. (See [1] for the case of bounded domains. If 4 is bounded away from zero, the
extension to unbounded domains is standard.)
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On the other hand, if 4 vanishes on a set F' C }Rﬂ which has limit points on [xy = 0] then a singularity at these
limit points may propagate to the interior. By this we mean that there may exist a sequence {u,} of solutions of (1.1)
in R_ZZ which converges in

Q2=RV\F

but tends to infinity at some points of F'.
In this paper we shall study the case where / is positive in §2 but may vanish on

F={0,xy) eRY: xy >0}.

Since h is positive in Rﬁ \ F a singularity at the origin may propagate only along the set F. Furthermore a
weak singularity, such as that of the Poisson kernel, cannot propagate to the interior because any solution of (1.1)
is dominated by the harmonic function with the same boundary behavior. Therefore we must consider only strong
singularities, i.e. singularities which cannot occur in the case of a harmonic function but may occur with respect to
solutions of (1.1).

Suppose that

h(x’, xN) < ho(’x'

),

where
hoeCl[O, 00), ho(s) >0 fors >0, ho(0) =0.

It is clear that, the faster #o(s) tends to zero as s — 0 the greater the chance that a strong boundary singularity at the
origin will propagate to the interior.

Our aim is to determine a sharp criterion for the propagation of singularities with respect to solutions of (1.1) with
heC (RQ_’ ) such that 2 > 0 in Rf \ F. It turns out that such a criterion can be expressed in terms of functions of the
form

i(s) = e 5 (1.3)
We assume that w satisfies the following conditions:
@) w € C(0, 00) is a positive nondecreasing function,
(i1) s u(s) = @ is monotone decreasing on R, (1.4)
(iii) limg_, o u(s) = oo

bounded. We establish the following results.

Theorem 1.1. Suppose that
liminfh(x)/h(|x'[) > 0 (1.5)
x—0
x'#0

where h is given by (1.3) and that (1.4) holds.
Suppose that w satisfies the Dini condition,

1
/(a)(t)/t) di < oo. (1.6)
0

If {u,} is a sequence of positive solutions of (1.1) in Rﬁ converging (pointwise) in
2=RV\F

then the sequence converges in Rﬁ and its limit is a solution of (1.1) in Rﬁ_’.
In particular, (1.1) possesses a maximal solution U in Rﬁ and U is a large solution.
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Theorem 1.2. Suppose that there exists a constant ¢ > 0 such that

h(x) <ch(|x']) VxeRY (1.7)
where h is given by (1.3). Assume that (1.4) and the following additional conditions hold:
—j+1
lim sup M <1 forsomea=>1 (1.8)

joo M@/
and
Sli_r)rau(s)/|lns| = 00. (1.9)
Condition (1.9) guarantees that, for every real k, (1.1) has a solution ug y with boundary data kéy (Where &g denotes

the Dirac measure at the origin).
Under these assumptions, if

1
/ w(t)/t)d (1.10)
0
then
uoﬁoozlimuo,k (1.11)

is a solution of (1.1) in §2 but

upco(x) =00 VxeF.

Corollary 1.1. Suppose that there exists a positive constant ¢ such that
cilﬁ(|x/|) h(x) < ch(|x']) VxeR_ﬁ (1.12)

where h is given by (1.3) and satisfies conditions (1.4), (1.8) and (1.9). Then the Dini condition (1.6) is necessary and
sufficient for the existence of a large solution of (1.1) in Rﬁ . It is also necessary and sufficient for the existence of the
strongly singular solution ug,sc.

Problems concerning the propagation of singularities for semilinear equations with absorption have been studied
in [6,9] (elliptic case) and in [5,8,10] (parabolic case). In the elliptic case it was assumed that the absorption term
is positive everywhere in the interior of the domain, fading only on the boundary. Consequently singularities could
propagate only along the boundary.

In [5] the authors studied the equation

_1 . N
du—Au+e u?=0 inRY xR (1.13)

and proved that if u is a positive solution with strong singularity at a point on ¢ = 0 then u blows up at every point of
the initial plane. In [6] the authors studied the corresponding elliptic problem in a domain D where the coefficient of

1
the absorption term is e »® | p(x) = dist(x, d§2), proving a similar result.
In [8] the authors considered the equation,

i — Au+e=ul=0 inRY xR, (1.14)

where w is a positive, continuous and increasing function on R.. They proved that if ./ satisfies the Dini condition
then there exist solutions with a strong isolated singularity at a point on # = 0. Similar sufficient conditions were ob-
tained in [9] and [10] with respect to an elliptic (respectively parabolic) equation, where the absorption term vanishes
at the boundary (respectively along the axis x =0, ¢ > 0). In addition some necessary conditions were presented, but
a considerable gap remained between these and the corresponding sufficient conditions. In the recent preprint [11] the
authors provide a rough condition for the propagation of singularities for equation (1.14) when the absorption term
vanishes along an ascending curve. Conditions for the non-propagation of singularities are not discussed.
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In the present paper, the proof of the sufficiency of the Dini condition (Theorem 1.1) is based on a refinement of the
energy estimates technique. Given R > 0 denote by xR the point (x’, x5) = (0, R) and let Dg = Bg (x®). For M >0
denote by V) the solution of (1.1) in Dg such that Vyy = M on dDg. For r € (0, R) let D). := {(x’, xn): |x'| <,
|xy — x®| < r}. By estimating various energy integrals of Vj; over domains D) and using a double iteration scheme
we show that, for a specific sequence {M;} tending to infinity and a related sequence {r;} decreasing to a positive
number b,

s?p / (1VVa, 12 +h(x)v,74j1)dx <00
Dy,

for every sufficiently small R. By a standard argument this leads to the conclusion that V % :=1lim V) is bounded in a
neighborhood of F' N Dg and consequently it is a solution of (1.1) in Dg. Let wy denote the solution of (1.1) in Rﬁ
such that wy =k on xy = 0. Then wy < VX in Dy and consequently w = limwy < VR in Dg. This implies that
w is finite everywhere on F' so that w is a large solution of (1.1) in Rf. Using this fact we prove the conclusion of
Theorem 1.1, first in the case that 4 = h and then in the general case.

The proof of the necessity of the Dini condition (Theorem 1.2) is based on the analysis of a sequence of boundary
value problems whose solutions are dominated by 1 », and blow up on F. The sequence of boundary value problems
is of the form:

—Au; —+—aju;1. =0 inQ;:=[|x]< 2_j] N[xy > 0],

uj(x)=0 on[|x'|=27]N[xy >0l

uj(x',0)=y;(x') for|x'| < 277
where a; = sup,/| - h. The boundary data y ' is chosen in such a way that, by a transformation akin to the similarity
transformation, each problem is reduced to a boundary value problem in [|x’| < 11N [xy > 0], which is independent
of j. Using this fact and a result of Brada [2] we derive precise upper and lower estimates for u ;. By an iterative
technique these estimates lead to the conclusion that {u ;} blows up at F'.

The methods of the present paper can be applied to many of the problems with fading absorption mentioned before
(parabolic and elliptic). In a subsequent paper we shall consider a parabolic problem involving the equation

du—Lu+h)|ulf lu=0 (1.15)

in a cylindrical domain D x R where D C R", 0 € D and the absorption term fades along the axis x =0, ¢ > 0.
Here L is a linear, second order, uniformly elliptic operator with smooth coefficients which may depend on both space
and time variables.

Assuming that & = i(|x|), with / as in (1.3), we shall study the question of propagation of singularities along this
axis, using the tools developed in the present paper.

2. Proof of Theorem 1.1
Given R > 0 let x® = (0, R) and denote by By the ball of radius R centered at x®. We shall prove the following:
Theorem 2.1. Suppose that h = h. Then, under the assumptions of Theorem 1.1, for every R > 0, (1.1) has a solu-
tion VR in Bg which blows up on dBg, i.e.,
VR(x) — 00 asx— 0Bg.
Before proving this theorem, we show that it implies Theorem 1.1.

Let v denote the (smallest) solution of (1.1) in Rﬁ such that vy = k on the boundary. This means that

vr = lim vg,,
r—oo

where v, is the solution of (1.1) in B,(0) N Rﬁ such that vg , =k on
9B,(0) N [xy =0]
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and v - =0 on 9B, (0) N [xy > 0]. Note that, for fixed k, vi , increases with respect to r. Put
V= lim vg.
k— o0

Condition (1.5) implies that there exist positive constants c¢; and R; such that
h(x) > cih(|x'|) for x| <2Ry. 2.1

Without loss of generality we assume that ¢c; = 1. Therefore, if VR is as in Theorem 2.1 then, for R € 0, Ry), VR s
a supersolution of (1.1) in Bg. Since Vg blows up at d Bg we conclude that vy < VR in Bg and consequently

v<VE VRe(,R).

Further this implies that V is locally bounded in the strip Rﬁf N [xy < R(] and therefore, everywhere in R_’X . By its
definition V is the smallest larg_e solution of (1.1) in }Rﬂ .

Now let us assume that 7 = k. In this case we may apply Theorem 2.1 in the half-space [xy > a], for every real a.
In particular we deduce that for every a > O there exists a large solution of (1.1) in B, (a) for every r € (0, a]. The
smallest large solution is denoted by V. Let {u,} be a sequence of positive solutions of (1.1) in Rﬁ converging
pointwise to u in Rﬁ \ F.Foreverya >0andr € (0,a), u, <V} in B,(a). Consequently {u,} is bounded in B, (a)
for every r and a as above. This implies that {u,} converges pointwise in Rﬁ and the limit u is a solution of (1.1)
in RY.

In the general case, it remains true that {u,} is bounded in B, (a) for every a € (0, Ry) and r € (0, a). This implies
that {u,} converges pointwise in the strip Rﬁ N[x, < R1] and the limit & is a solution of (1.1) in this strip. This in turn
implies that {u,} converges to a solution « in Rﬂ which is the first assertion of Theorem 1.1. By a standard argument,
if U is the supremum of all solutions of (1.1) in Rﬁ then there exists a sequence of solutions {u,} that converges to U
in Rﬁ \ F. Therefore, the first assertion implies that U is a solution of (1.1) in Rﬁ .

The proof of Theorem 2.1 is based on estimates of certain energy integrals of solutions of (1.1). In a half-space
these integrals are infinite. Therefore we shall estimate integrals over a bounded domain for solutions with arbitrary
large boundary data.

Condition (1.6) implies that lims_,o w(s) = 0 while (1.4) implies that limg_, ¢ h(s) = 0. We extend both of these
functions to [0, co) by setting them equal to zero at the origin.

In the course of the proof we denote by ¢, ¢/, ¢; constants which depend only on N, ¢g. The value of the constant
may vary from one formula to another. A notation such as C(b) denotes a constant depending on the parameter b as
wellason N, q.

2.1. Part ]

Let R, b be positive numbers such that R/8 < b < R/2. Denote by Uy;, M > 0, the solution of (1.1) in Bg(0) such
that Up; = M on 0 Bg(0).
Let

2, = {x: (x’,xN) cRVN: |x/| <b, |xnl <b}.
We start with an elementary estimate of the energy integral:
I,(M) = f(|VUM|2 +h) UL dx. (2.2)
£2p
Lemma 2.1. Let h be as in (1.3) and assume (1.4). Then
I,(M) < Ci(b)MITY,  Ci(b) = bV h(8D). (2.3)

Proof. Let vy := Uy — M. Multiplying (1.1) (for u = Uy) by vy and integrating by parts we obtain,

/ (IVUMP* + h(x)U}vu) dx = 0.
Br(0)
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Therefore

I,(M) < / (VUM + R UL dx

Br(0)
=M f h(x)U dx < MITTh(R)RY < cbVh@bh)yMI™ . O (2.4)
BR(0)
Notation. Put
2p(s):={xeRY: s < [x'| <b—s, lxny| <b—s} Vse(0,b/2). (2.5)
If v is a positive solution of (1.1) in Bg(0), denote
Jp(s;v) := / (IVev* + A (|x')v?t) dx. (2.6)
2p(s)

Finally denote,

op(s) = / h(o) "7 do. 27
382, (s)

Proposition 2.1. There exists a constant ¢ such that, for every positive solution v of (1.1) in Br(0),

w

s +

_ —T
Jp(s;v) < c(/ (p;AV)fZT% dr) Vs € (0,b/2). (2.8)
0

Proof. Put Sj(s) := 3£2,(s) and denote by 7 =7 (x) the unit outward normal to Sp(s) at x.
Multiplying Eq. (1.1) by v and integrating by parts over £2,(s) we obtain,

/(|va|2+fl(|x’|)vq+l)dx= / g—ljvdo. (2.9)
n
£2p(s) Sp(s)

We estimate the term on the right-hand side using first Holder’s inequality (for a product of three terms) and
secondly Young’s inequality:

0
’ / v—ljda
on

< / IV,vlv] do

Sp(s) Sp(s)
1 1
<< f |vxv|2do>z< / h(x)|v|‘f“do)"“gob<s)2<7+lw
Sp(s) Sp ()
_q+3
<c1( / (|va|2+h(x)zﬂ“)do)2(q+l)wb<s>23q—+l'>. (2.10)
Sp(s)
Substituting estimate (2.10) into (2.9) we obtain:
qg+3
I(s; v><cz( / (|va|2+h(X)Uq+l)d‘7)2(q+1)‘ﬂb(5)2(q"—+l”- @.11)

Sp(s)
Since
d 2 41
— o (s = (IViv|* + h(x)v?" ) do,
S

Sp(s)
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|xy| = b — s, inequality (2.11) is equivalent to

q-1 d ZZIq—Jfl)
Jp(s; v) < c39p(s) 2D —d—Jb(S; v) Vs € (0,b/2).
s
Solving this differential inequality, with initial data J,(b/2; v) = 0, we obtain (2.8). O
In continuation we derive a more explicit estimate for £ as in (1.3). We need the following technical lemma.

Lemma 2.2. Let A >0, m € N, [ e R! and let v € C'(0, 00) be a positive function satisfying condition (1.4). Then
there exist s € (0, 1), depending on A, and w such that the following inequality holds:

s

/tm_lw(t)l exp(—Au(r)dr >

0

Sm+la)(S)l_l
m+Dus)"1+A

exp(—Au(s)) Vs:0<s <5. (2.12)

Proof. Due to condition (1.4)(ii) integration by parts yields:

p m+1
/tma)(t)l exp(—Ap(n)) dt = = - () exp(—An(s)) /

0 0

[

Again due to (1.4)(ii), there exists § > 0 such that

exp (—Ap®)w®' ! dr

- oxp( (—An®)o' '~ (Ap@) — 1) dt. (2.13)

Au(s) =1 Vs e (0,5).

For later estimates it is convenient to choose s in (0, 1).
As w(s) is non-decreasing, it follows that, for 0 < s < s,

A m+1
(s + mw—:s1)> /;m—lw(t)lexp(—A,u(t)) dt > :1+ ]a)(s)l eXp(—Au(s)).
0

This inequality is equivalent to (2.12). O

Proposition 2.2. Assume that h is given by (1.3) and satisfies (1.4). Then there exists a constant s* € (0,b/2), de-
pending on N, q and the rate of blow-up of u(s) = w(s)/s as s — 0, such that
Jp(s:v) <cbVlexpQ(s) Vse (0,5%),

2 3 3
0(s) = “(Sl)+ﬂ1 ()—ill 2.14)

for every positive solution v of (1.1) in Bg(0).
If, in addition, there exists a positive constant B such that

1
Bln— < u(s) 0<s<s*, (2.15)
s

then

0(s) < Qou(s) 0<s<s* (2.16)
where
2 q+3 q+3

= . 2.17
Q= =y T Bg-D @17)
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Proof. Denote
Sp1() = {x: [x| =5, eyl <b}U{x: [x/|=b—s, lxy| <b}
and
Spo(s)={x: s <|x'| <b—s, |xn|=b}.
Then
/ R(|x|) 7T do = 2pn (b — 5)(h(s) T TSN 2 4 h(h) 7T (b — 5)V2)

Shb.1

2u(s)
qg—1

<4bN"lyy_1exp 0<s<b/2, (2.18)

where yny_1 denotes the area of the unit sphere in RYN-L. Further, since W is monotone decreasing,

b—s

/ﬁ(\x’})_q%dﬁ=2m] /eXpZM—_(pl)pN_zdp
N s 1

2u(s)
g—1

2N =DV lyn_rexp (2.19)

By (2.18) and (2.19):

2
O Y

- _ 2
op(s) = / h(|x'|)" T do < cbV"lexp
Sp(s)
where ¢ = (4 + 2(N — 1)"")yy_1. This implies,

N

S

g1 _(N=D(g=D 2 _g-1

/‘Pb(”) " dr >c1b 05 /exp(— M(r)>dr, cp=c =y (2.20)
q+3

0 0

Let s* be the largest number in (0, /2) such that

o s*<s(sasinLemma22for/=0,m=1and A=),
o M(s*) >A" =(g+3)/2.

Then (2.20) and (2.12) imply

N

_g-1 _w-Dg=b  §2 2
/ o) dr 3 e~ U 3o (_ wes)
w(s) q—+3

0

>, c2=c1(q +3)/6, (2.21)

for all s € (0, s*]. This inequality and (2.8) imply (2.14).
Suppose now that the function w(-) given by (1.3) satisfies (2.15). Since Inr < r for r > 1, conditions (1.4), (2.14)
and (2.15) imply (2.16). O
Next we estimate energy integrals over domains of the form
2p(t,0):={x=(x",xn): [x'| <o, lxnl <b—7} (2.22)

where 0 <o <b/2,0< 7 <b.
Let n € C*°([0, 00)) be a monotone decreasing function such that

nis)=1 ifs<1, nis)=0 ifs>2, n'(s) <2 (2.23)
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and denote

No(s) =n(s/0).

We shall estimate the integrals,

Ep(t,030) = f (V2 (1o (Jx")0) [* + 2 )mo (|x]) 041 dx. (2.24)
2(1,20)

Proposition 2.3. Assume condition (1.4). Let s* € (0,b/2) be as in Proposition 2.2. Then the following inequality
holds for0 <o <s*ando <t <b:

dEy(t,0;v)

Ep(t,o;v) <co (—
dt

) + Cy(b)exp H (o), (2.25)

2AN-1)

where Cp(b) :==cb +1

Q)+pn@) (N—-D@—-1)-2@¢+1
+ Ino

H(o)=2
qg+1 q+1
2 2q +3
_ o) 2@t —¢* Ino (2.26)
g-1  ¢>—1

and

oo 2a+H+2? - D - N -D(g -1’
- o ,

If, in addition, condition (2.15) holds then there exists a constant Hy depending only on q and B such that
H(o) < Hou(o), (2.27)

where

2 2(q +3 *
Hy = C e N (2.28)

g—1 (@—-D@@+1) B

Proof. Multiplying Eq. (1.1) by 4 (Jx’])?v and integrating by parts over £2;(t, 20') we obtain,
a
Vo - V(vn2)dx + / h(x)v? 12 dx = / a—gvnﬁ dx’, (2.29)
n
2p(t,20) 2p(t,20) S8, (t.20)

where S;(7,0) ={x: [x'| <o, |xy|=b—1}.
We estimate the first term on the left hand side:

[ vever)ar= [ emPax- [ 9P

2p(1,20) 24(1,20) 25(1,20)
> f IV (io)| dx — 402 f v2dx, (2.30)
2(1,20) 8y (t,0)
where
2p(r,0):={o < |x'| <20, |xy| <b—1}. (2.31)

Using Holder’s inequality, conditions (1.3), (1.4) and estimate (2.14) with s = o, we obtain:
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2 g=1
/ v(x)zdx<< / quh(x)dx)ﬁl( / h(x)qzldx)q+l

2p(v,0) 2(t.0) 2p(z,0)
2 -2~ g1
<OV exp Q(0)) T h(0) T |2y (z, 0) |07

2N=1) 2 2 (N-D)(g—1
<cb ot exp( Q(O)>exp< MG))U o (2.32)
qg+1 q+1

for o <1t <b and 0 < 0 < min{s*, %}. The application of (2.14) here is justified because, for t and o as above,
2y(t,0) C 2(0).
Combining (2.29)—(2.32) we obtain,

’V(vng)|2dx+ / h(x)v? 12 dx
2p(1,20) 2p(t,20)

0 2N-1) 2 W=Dg=D _
< / —gvngdx’—i-cb g+l exp(w>o 2, (2.33)
on q+1
S, (t.20)
Next, by Holder’s inequality,
av a
‘ / ﬁvng dx'| < / m(vng(|x’|)) v dx’
S (1.20) S (1.20)
3 2 1/2 1/2
< < / <—(vna)> dx’) ( / (W,)° dX’>
Xy
8, (t,20) Sy, (t,20)
and by Poincaré’s inequality in S; (z, o),
2
/ (6)? dx' < (co0)? / |V (ne)|~dx’.

S} (1,20) S (1.20)

Therefore
d

‘ / 8_;1)1”](2’ dx'| < co / |Vx(v170)|2dx/. (2.34)

8;(t.20) S, (t.20)
Since

dEy(t,0;v) _

/ (IV i) | +h)vi+ n2) dx’
Sy, (z,20)

dt

inequalities (2.33) and (2.34) imply (2.25).
Finally, if (2.15) holds, (2.27) is obtained in the same way as (2.16). O

2.2. Part2

Notation. Given M > 0 and v € (0, 1), let s, = s5,,(M) be defined by,

exp( Qo (50 (M) = hi(s(M)) "% = M", (2.35)

where Qg is given by (2.17).
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Lemma 2.3. Put
=2(CI+1+,3)—(N—1)(61—1)
BQolg+1)

where B is a positive number satisfying (2.15) and
{ L ify <0,
Vo i=

)

L ify >0

If

0 < v <min(vg, 1)
then,

Ep(0,50(M'); Un) <2(I,(M) + C3())M*M'4™") 1< M'< M,
where

2
C3(b) —cb ‘1“ h(8b)T
Proof. Put

I)(s, M) := / Uy |Vns|*dx.
2

Then,

Ep(0,5,(M'), Uy) gz/(|V(UM)|2nfv —i—h(x)U[‘{,Ianv)dx+2/Uf,,|Vm,,|2dx
2 2p
<2(Iy(M) + Iy (sy, M), sy =s,(M").
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(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

By (2.23), Vn_sv(|x/|) =0 for |x’| < s, and for |x'| > 2s,. Therefore, applying Holder’s inequality and using the

monotonicity of 4 we obtain

I (sv(M'), M) < 45, f Uy dx

25(0.5)
= 2 )
q+ 2 q
<4s;2< / U;f;'lhdx) ( / h(|x') ™ dx>
2(0.50) 25(0.50)
L- ) W-b-b .,
es; (BN h@b)YMITY) T (s, " @+ Ts, T pal

2+<N 1)(q D ZM(SU)
X .
q+1

(bN 7(8b)) 75 b M2s

By (2.15) and (2.35)
sT <exp(u()/B),  M'TVCO=h(s,) =exp (—p(sy)).
Therefore the previous inequality yields

(N-D(g=D
Q=" g,

1 (s0(M'). M) < c(bV R(8)) 7T b7 M2 M 755
Hence

I (sv(M'), M) < C3(b)M* M"Y

with y and C3(b) as in (2.36) and (2.40). By (2.38) vy < g — 1. Therefore (2.41) and (2.42) imply (2.39).

(2.42)
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Notation. For every M > 0 and 0 < s < b/2 denote,
Ty(s, M) ={t: s <t <b, Ep(t,s; Un) = 2C2(b) exp(Hop(s))} (2.43)

where C»(b) is the constant in (2.25) and Hj is given by (2.28).
Note that t — Ej(t, s; Up) is continuous and non-increasing in the interval [s, b]. Therefore, if

Ep(s,s3 Un) < 2C2(b) exp(Hop(s))
then Ty (s, M) = . Put,

(s, M) = {Zup Tp(s, M) i)ftl?z:’r(vsv’ié‘g) - (2.44)
and

w0 (M, M) :=1(s (M), M). (2.45)
Since lim; ., Ep(t, s; Upy) — 0 it follows that

sv(M") < o(M', M) <b. (2.46)
Furthermore,

Ep(tp,0(M', M), 5,(M"); Upr) < 2C2(b) exp(Hou (s (M'))) (2.47)
and, if tp ,(M’, M) > s,(M’) then,

Ep(7,s0(M'); Upr) = 2C2(b) exp(Hop (s (M'))) (2.48)
for every 7 € (0, tp,,(M’, M)], with equality for T = 75 ,(M', M).
Proposition 2.4. (i) Let

by(M' M) :=b—1,(M' M).
Then

/ (IVeUn > + ) UL dx < eo(BV ' MY + C2(b)M/%). (2.49)
S, o’ )
(i1) Assume that

0<v< qT—l-l min(1, Qo/Hp), (2.50)
where Hy is given by (2.28) and Qy is given by (2.17). Let a € (1,2) and assume that M’ is large enough so that,

Ca(b) :=co(b" ! + C2(b)) / C1(b) < M@+ D/2a 2.51)
where C1(b) and Ca(b) are the constants in Lemma 2.1 and Proposition 2.3 respectively while cq is the constant
in (2.49).

Then
Ly o my (M) = / (|VXUM|2+h(x)U1(f,I+1)dxgCl(b)M’%. (2.52)

2y, )
Proof. By (2.35),
M’:exp(%u(sv(M/))). (2.53)
Therefore, by (2.47),

v H
Ey(tp.0(M'. M), 5, (M'); Unt) <2C2(b)M' 00 . (2.54)
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By Proposition 2.2 applied to the estimate of J, (s, (M"), Up),
Jp(sv(M'), Un) < cbV ! exp(Qou(sy(M'))) = cbN M.

Inequality (2.46) implies that b/, (M’, M) < b — s,,(M"). Therefore
i,y © 2 (2,0 (M, M), 50 (M) U 25 (50 (M"))

(see (2.5) for definition of £2;(s)). Consequently
Ly vy (M) < Ep(tp,0 (M’ M), 5, (M"): Unt) + Jp (50 (M), Unr).

This inequality together with (2.54) and (2.55) imply (2.49).
In view of (2.50) we have,

VH
belM/v + Cz(b)M/Tg g (bel + Cz(b))M/(q+l)/2a.
If M’ satisfies (2.51), this inequality and (2.49) imply (2.52). O

Next we derive an upper bound for 75 ,(M’, M) in terms of s,(M").

Lemma 2.4. Suppose that 0 < v satisfies conditions (2.38) and (2.50) and that

M > exp(@,u(s*))
v
where s* is as in Proposition 2.3. Then

(M, M) ol v
—— | < Iy(M C3(b)M"M'9="YCr(b)™' M 20,
Xp( 25, M) ) c1(Ip(M) + C3(b) )Ca(b) 0

Proof. Since v satisfies (2.50)and 1 <a < 2,

1
0< Qo(g + 1)<1 — Z) < Qol(g + 1) — Hyv.

By (2.39),

Ep(z,50(M'): M) < Ep(0,5,(M'); M) < 2(1,(M) + C3())M*M'?™") V1 €(0,b)

where 1l <M’ < M.
If 75, < s, inequality (2.57) is trivial. Therefore we may assume that

(M, M) > 5,(M).
Temporarily denote
F(t)=Ep(t,50(M'); M).
By Proposition 2.3, (2.56) and (2.48),

dF (1)
dr

F(r)échdM’)( ) vris, (M) <t <10 (M, M).

Solving this differential inequality with initial condition F (s, (M’)) satisfying (2.58) we obtain,

Ep(t,50(M'); M) < 1 (Ip(M) + C3(b)yM* M4~ 1) exP(‘ 2; )
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(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

for every 7 € [s,(M’), Ty, (M’, M)]. Combining (2.60) and (2.48) for t = 13 ,(M’, M) (in which case (2.48) holds

with equality) we obtain,

2Ca(b) exp(Hop (v (M'))) < e1(I5(M) + C3())M> M1 71) exp(_ 205, (M)

Tb,V(M,a M))
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In view of (2.53) this inequality implies

T ,V(M,a M) rq— — /
(W) < c1(Ip(M) + C3()M* M1~ ) C2 ()~ exp(—Hop sy (M)
=c1(I,(M) + cg(b)MZM/q—l)cz(b)—‘M"%. O (2.61)

2.3. Part 3

In this part of the proof we apply the previous estimates to a specific sequence {M;} defined below. As before R is
an arbitrary positive number and we require that R/4 <b < R/2.

Proposition 2.5. Let

Mj=exp(al),  s5;:=s50(M)) (2.62)
where s, (-) is defined as in (2.35) and

. VHy

1 <a <min 1+E,2 . (2.63)

Putu; = UM].. Then there exists jo € N such that
/ (1Veuj P+ h@ut )y dx < yMIT v > jo (2.64)
b2

where C1(b) = cbV h(8b).

Proof. By (2.62) and (2.35),

alv/Qo = u(s)). (2.65)
Let jo be a positive integer to be determined later on. For each integer j > jo we define the set of pairs

{bij. v i=jo,.... j}
by induction as follows:

Tj’jZ‘L’b,v(Mj,Mj), bj,j =b—l’j’j,
) =Ty ;0 (Mi, Mj), bij=bis1;—1t, jo<i<].
Thus
J
bij=b—> . jo<i<j.
k=i

We show below that if jj is sufficiently large then

j
> T <b/2 Vj> jo. (2.66)

i=jo
which implies,
b/2 < bi,j.

Specifically we choose jj so that,
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M) Calb/2) <MtV

(ii) ew(%u@*)) < Mj, (2.67)
Cib) +C3() _ gt
Cyby 0

with ¢ as in (2.57). For the definition of C(b), ..., C4(b) see (2.3), (2.25), (2.40) and (2.51).
We observe that C4(b) decreases as b increases. Therefore (assuming (2.66)) condition (i) implies,

(iii) Cs(b) ==y

1)/2 . . .
Calbi ) <MV jo<i<, jo<. (2.68)
The left hand side in condition (2.67)(iii) increases as b increases. Therefore
Cshij)<(@+DInM;, jo<i</j, jo<]J. (2.69)

Put uj = Uy;. Assuming that (2.66) holds, we apply Proposition 2.4 to the case where b is replaced by bjj 1,
and M’ = M 11, M = M;; we obtain,

/ (1Vaue; 2+ h0)u™ ) dx < Cr oYMt (2.70)

2p. .
b]()»]

which implies (2.64).
It remains to verify (2.66). To this end we prove the following estimate:

ij = w(s;) . . .
T scQolg+D—=. JoSIi<] 2.71)
where ¢ =4c (c as in (2.57)).
The proof is by induction. We apply Lemma 2.4 in the case where

b is replaced by b1, j, M =M;, M=M;, jo<i<]j.
For i = j we put bj11,; := b. Note that, for M > M j,, condition (2.67)(ii) yields (2.56).
Applying Lemma 2.4 and Lemma 2.1 to the case i = j we obtain

Hy

-ij] q+ v
exp —— < Cs(b)M o
2cs; J

Consequently, using (2.62) and condition (2.67)(iii)

AP C(b)+( 41 HO)] M
—— <InCs q —v—|InM;
2cs o !

<2(q+1)

Qonlsy). 2.72)
Vv

For the last inequality recall that s; = s,,(M ), which implies,

InM; = Qouls))
Vv

Inequality (2.72) implies (2.71) for i = j. N
Observe that s; | 0 as j 1 0o and consequently, w(s;) | 0. Therefore if jg is sufficiently large we have t/°/ < b/2
and b; j > b/2. By Proposition 2.4,

Iy, ; (M) < Cib; pMITV < Crym?™y. (2.73)

Here we use condition (2.67)(1) and the fact that b; ; =b — 75 (M, M ).
Now we apply Lemma 2.4 for i = j — 1, i.e., when b is replaced by b; ; and M" = M;_;, M = M. This lemma,
combined with (2.73), yields
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o 2pp4-1 1y, 08
\Cl(Ib (M) + C3(Dj, /)M M )CZ(b/ na M -1

P 2csj-1
c1(Cr(bj M 1+C3(b/ M Mq 1)CZ(b/ e IM 1(70~
By (2.63),

Hy
22, V00 2
MiM;_, 0 g M;_;. (2.74)
Therefore, similarly to (2.72), we obtain

ijlv]'

<InCs(0; )+ (@+DInM;_4

Qop(sj—1)
v b

2csj-1

S2q+ 1D (2.75)

which, in turn, implies (2.71) fori = j — 1.
This process can be repeated inductively fori = j — 2, j —3,..., jo provided that b; 1 ; > b/2. For each value
of i in this range we first apply Proposition 2.4 to obtain,

(M) < Ci(bis1 )MV <crpymi™!. (2.76)

1+1 J i+1

After that we apply Lemma 2.4 combined with (2.76) to obtain (2.71) for the respective value of i, always with the
same constant c¢. Therefore, to'c.omplete the proof, it remains to be shown that there exists jo such that:
If j > jo, jo <k < jandt"/ satisfies (2.71) for k <i < j then,

J
> i <b)2. (2.77)

By (2.65) and (1.4)
si <(Qo/ma~ w(s) <ta”', L= Qow(So)/V~
Since, by assumption, (2.71) holds for k <i < j,

ZT‘J C(N, q,v)Za)(s, <C(N,q, I))Z Ea
i=k

Further, using the monotonicity of w,

j J Bk
Zw(ﬁa_i) S/w(ﬁa_‘v)ds < (lna)_I/@d
k

i=k 0
where Br = £a—*. Because of the Dini condition, the last integral tends to zero when gy — 0. Therefore, if jo is
sufficiently large (depending only on N, g, v and a) (2.77) holds for all k > jo. O
Completion of proof of Theorem 2.1. Since U, increases as M increases

UR .= hm Uy = lim u;.
M—o0 j—o00

The function V), defined by
Vi (x) =Uy(x', xy + R)
is a solution of (1.1) in the ball Bg(x®), where x® = (0, R). Put
VvR.= lim Vy in BR(xR).
M— o0

We show that VR is bounded in a neighborhood of the point (0, R).
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By interior elliptic estimates, (2.64) implies that

sup f |u;|?dx < oo. (2.78)

Since h(x) = 0, u; is subharmonic in §2;. Therefore (2.78) implies
sup{u;j(x): jo < j, x € 2pa} < o0. (2.79)

Thus UZX is bounded in a neighborhood of the origin which means that V ¥ is bounded in a neighborhood of (0, R).

For every r € (0, R), VR < V" in B, (x"). (Recall that x” denotes the point (x’, xy) = (0, 7).) As V" is bounded in
a neighborhood of (0, r) we conclude that VR s locally bounded in Bg N[0 < xy < R].

Recall that h = h is independent of x. Therefore applying the same argument in the half-space [xy > a] we
deduce that for every a € (0,2R) the sequence of solutions {Vj,} is uniformly bounded in a neighborhood of the
point (0, R 4+ a/2). Hence VR s locally bounded in Bg N [R < xy]. In conclusion, VR s locally bounded in Bg and
therefore it is a solution of (1.1) in Bg. O

3. Proof of Theorem 1.2

Put
r =27/, sz{(x/,xN): |x’| <rj, O<xN}, j=12,....

Further denote,
aj:=exp(—u(ry).,  Aj=(ajr7) (3.1
and, for x’ e RN -1,

yi(x) = {A;lqsl Ofrien AT <rj, (3.2)

0 if [x'| > rj41

where ¢ is the first eigenfunction of the Dirichlet problem to —A s in BlN ~! normalized by ¢1(0) = 1. Recall that
nis) =w(s)/s.
We consider the boundary value problems

—Au; +aju(]1- =0 in gy,
uj(x)=0 on{xe€df2;: xy >0}, (3.3)
uj(x',0)=y;(x') for |x'| <r;.

In view of (1.4), {a;} is a decreasing sequence converging to zero and

aj= sup exp(—u(s)).
s€(0,r)

Therefore, for every xy > 0, {u;(0, xy)} is an increasing sequence and u is a subsolution of the problem
—Aw+hx)w? =0 in$;,
wx)=0 on{xe€d2;: xy >0}, (3.4
w(x’,0) =y;(x") for [x'| <r;.

The proof of Theorem 1.2 is based on the following:

Proposition 3.1. For every xy > 0,

_lim uj(O, xN) = 0Q.
—00

In the next lemma we collect several results of Brada [2] that are used in the proof of this proposition.
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Lemma 3.1. Let a be a positive number; let ¢ > 1 and let f be a positive function in L‘X’(Ble1 ), where B{\Ll denotes
the unit ball in RN~ centered at the origin.
Consider the problem

—Au+bu? =0 in Dy,
u(y)=0 foryeadDpy:0<yn, (3.5)
u(y',0)=f(y') for|y'|<1,
where
Do = {y = (y',yN) eRY: ’y" <1, 0< yN}.
If u is the solution of this problem then there exists a number o > 0 such that

Jlimexp(/aywuy) = an(y) (3.6)

uniformly in va_l. Here Ay is the first eigenvalue and ¢ the corresponding eigenfunction of — Ay in va_l normal-
ized by $1(0) = 1.
The limit o satisfies

1
a<chb Tsupf. (3.7

Proof. By [2, Theorem 4], (3.6) holds for some o € R. Under our assumptions u is positive so that « > 0. By the
remark in [2, p. 357], if @ = O then there exists k > 1 such that

Jim exp(v/Aeyw)u(y) = dx ()

where ¢ an eigenfunction of —A,/ in BlN -1 corresponding to the k-th eigenvalue. However this is impossible because
¢r changes signs. Thus « > 0.
Inequality (3.7) is a consequence of [2, Proposition 1]. O

3.1. An estimate of u j

We start by rescaling problem (3.3). Put
y=x/rj, uj(y)=Ajujr;y), (3.8)
where A is given by (3.1). Then v := i is the solution of the problem

—Av+v?9=0 in Dy,

v(y)=0 foryedDp:0 < yp, 3.9)
v(y,0)=7(y) for|[y<1,

where
S(y) = L 912 i Y] < 3, 3.10
J/(y) {0 otherwise. ( )

Applying Lemma 3.1 to the solution v of (3.9) we obtain,
Jim exp(vA1ymv(y', yn) = a1 (y') (3.11)

where « is a positive number depending only on g, N. Consequently there exists 8 > 0 such that

1
anﬁ] () exp(—v/A1yn) < Ajuj(rjy)

<2061 (y) exp(—yv/Aiyn)  Yyw =B,

y|<t
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This inequality is equivalent to
o
Hj(pl (x'/rj)exp(—=v/Aixn/rj) <uj(x)

2a

< yy ¢1(x'/rj)exp(—y/Axn/rj) Vxy = Brj, |x'| <rj. (3.12)
J
3.2. Comparison of uj and uj_|
Let 7; be the number determined by the equation,
1
. a—1 2
gexp(—\/)\.lfj/}’j) = < 4 )q 274 T
2 aj—|
2 - i)+ i—
0T exp M) F R (3.13)
q—1
By (3.1) and (3.2), this is equivalent to
o Tj
—qﬁl(x//rj)exp(—\/)»l—j) =yj_1(x). (3.14)
2Aj }"j
Without loss of generality we may assume that (1.8) holds for a = 2. Therefore there exists « € (0, 1) such that
w(r) — p(rj—1) = kp(r;y). (3.15)
By (3.13),
T; ri)— rij—
il D Z i) oy g,
rj qg—1

Therefore, by (3.15) and (1.4), there exist positive numbers cg, ¢ and jo (depending only on «, N, ¢) such that
Bri <cow(rj) <tj <cro(r)) (3.16)

for every j = jo (B asin (3.12)).
By (3.12), (3.14) and (3.16)

Vi) uj(x ), )| < g = o 3.17)
By the maximum principle, (3.3), (3.17) and the fact that a;_; > a; imply

wj—t1(x',xn) <uj(x',xn +15) Vj>jo, x € 2. (3.18)
3.3. Proof of Proposition 3.1

Let jo < k < m. Iterating inequality (3.18) for j =k + 1, ..., m we obtain,

m
i (x', xn) it (x/, vt Y r.,‘> Vx € 2. (3.19)
j=k+1
Combining this inequality (for x’ = xy = 0) with (3.12) yields
1 oy L o ”
5a(akrk) T — o <up(0) <up |0, .Xk;lrj (3.20)
]:

for every m, k such that jo <k <m. By (1.10),

Za)(rj) = 00.
j=k
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Therefore, by (3.16)

o
> rj=oc. (3.21)
j=k
Consequently,
m
Sk 1= Z T = mlignmsm,k = 00. (3.22)
j=k+1

Note that akr]g — 0; therefore, by (3.20), for every M > 0 there exists jj; such that

M <um©,smi) ju<k<m. (3.23)
We claim that
supu;(0,xy) =00 Vxy >0. (3.24)

By negation, assume that
s > 0: supu;(0,s) =K < o0.
By (3.12)
i
M <da |xl} <rj.
u;(0,s)
Here we use the fact that 1 = ¢ (0) = max ¢. It follows that, for every j such that 2/ > B/s,
supu;(x',s) <4aK, |x'|<rj.
Therefore, by the maximum principle, for every j as above,
uj(x/,xN) <4aK Vxef2;N[xy =s].
In view of (3.22), this contradicts (3.23). O
3.4. Proof of Theorem 1.2
Let Py(x, y) =cnxy|x — y|_N be the Poisson kernel for —A in Rﬁ_’ . Condition (1.9) implies that, for any positive

constants a, R

sup }x/|7ah(x) < 00. (3.25)

[x'|<R
For every ¢ > 1 choose a > 0 such that ¢ < (N + 14 a)/(N — 1). Then for every R > 0,
h(x)POq(x, O)xy dx < C, / |x|“P6I(x, 0)xy dx < o0o.
[lx|<R,0<xy] [Ix|<R,0<xpn]
Consequently, for every k > 0, the problem
—Av+h(x)v? =0 in Dy,
v=0 ondDy:=[|x'| =1, xy > 0],
v=kS8y on[xy=0]

possesses a unique solution dominated by the supersolution k Py (see [4]).
The function

V0,00 := lim vg in Dy (3.26)
k— 00

is a solution of (1.1) in Dy N [|x’| > 0] but it may blow up as |x’| — 0.
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Put

fGn) = / V0,00 (x', Xn) dx’ Vxy > 0.
|x’|<1

If f(a) < oo for some a > 0 then vy, is finite in Do N [xy > a] so that f(xx) < oo for every xy > a. Thus

fa) <oo forsomea>0 — f(xy)<oo Vxy=>=a. (3.27)
Let

b=inf{xy > 0: f(xy) < oo}. (3.28)
By (3.27)

fxn) =00 Vxye(0,b), fxn) <00 Vxn € (b, 00). (3.29)

We have to show that b = co. By negation assume that b < oo. First consider the case 0 < b. Let a € (0, ) and put
n(x"); = v0,00(x", @). Then
gndx' =00 Vg e C([|x'| <1]) such that ¢(0) > 0.
|x’|<1

Thus the measure w1, = ndx’ is larger than k8o for every k > 0. The function V given by V (x) = v 00 (x", Xy + a)
satisfies

—AV +h(x)V1=0 in Dy,
V=0 ondDy:=[[]x'|=1, xy>0],
V=n on[xy=0]
Therefore V > vp, o0, 1.€.,
V0,00 (X", XN + @) = 0,00 (x', xN).
But this implies
fxy+a)=00 Viye(0,a+b)

which contradicts (3.28).
Next assume that b = 0. In this case,

V0,00(0, x§) <00 Vxy >0 (3.30)
and consequently vg o is a solution of (1.1) in Dy. Let w; be the unique solution of the boundary value problem:

—Awj —l—ajwj =0 in £y,

w;j=0 ond2;N[xy>0], 3.31)

wj =008y on[xy=0],

where a; = h(r;). As usual, this means that w; = limy_, oo w; x Where w;  is the solution of the modified problem
where the boundary data on xy =0 is wj,k(x’, 0) = kdp. Since a; > h(x) in £2; it follows that

wj <o in £2;. 3.32)
The function w;’f given by w;.‘(x) :=Ajw;(rjx) for x € Dy is a solution of the problem:

—Aw+w?=0 in Dy,

w=0 on d;Dy, (3.33)

w(x’,0) =008y on [xy =0].

The solution of this problem is unique; consequently w;’f is independent of j and we denote it by w*.
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Let C :=sup|,/_1 2 w*(x’, 1). Then w;(y) = A;lw*(y/rj) satisfies
wi(y'.rj) = AT Y] <ri.
As y;j(x") =0 for |x'| > rj4 it follows that
wji(yorj) Zeri(x), ¥ <rj.
Hence
wj(x’,xN +rj) >uj(x) in$2;.
Therefore, by Proposition 3.1,

_lim wj(O,xN)zoo VxN > 0.
j—o00

Hence, by (3.32),
UO,oo(O: xy)=00 Vxy >0

in contradiction to (3.30). O
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