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Abstract

We study the equation −�u + h(x)|u|q−1u = 0, q > 1, in R
N+ = R

N−1 ×R+ where h ∈ C(RN+ ), h � 0. Let (x1, . . . , xN ) be a

coordinate system such that RN+ = [xN > 0] and denote a point x ∈ R
N by (x′, xN ). Assume that h(x′, xN ) > 0 when x′ �= 0 but

h(x′, xN ) → 0 as |x′| → 0. For this class of equations we obtain sharp necessary and sufficient conditions in order that singularities
on the boundary do not propagate in the interior.

1. Introduction

In this paper we study solutions of the equation

−�u + h(x)|u|q−1u = 0, (1.1)

in R
N+ = R

N−1 × R+ where q > 1 and h ∈ C(RN+), h � 0. (If x ∈ R
N+ we write x = (x′, xN) where x′ =

(x1, . . . , xN−1).)
If h > 0 in R

N+ then boundary singularities of solutions of (1.1) cannot propagate to the interior. This is due to the
presence of the absorption term h|u|q−1u and the Keller–Osserman estimates [3] and [7]. In fact, in this case, (1.1)
possesses a maximal solution U in R

N+ and,

lim
xN→0
|x|�M

U(x) = ∞ ∀M > 0. (1.2)

A solution satisfying this boundary condition is called a large solution. If, in addition, h is bounded away from zero
then the large solution is unique. (See [1] for the case of bounded domains. If h is bounded away from zero, the
extension to unbounded domains is standard.)
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On the other hand, if h vanishes on a set F ⊂ R
N+ which has limit points on [xN = 0] then a singularity at these

limit points may propagate to the interior. By this we mean that there may exist a sequence {un} of solutions of (1.1)
in R

N+ which converges in

Ω =R
N+ \ F

but tends to infinity at some points of F .
In this paper we shall study the case where h is positive in Ω but may vanish on

F = {
(0, xN) ∈ R

N+ : xN > 0
}
.

Since h is positive in R
N+ \ F a singularity at the origin may propagate only along the set F . Furthermore a

weak singularity, such as that of the Poisson kernel, cannot propagate to the interior because any solution of (1.1)
is dominated by the harmonic function with the same boundary behavior. Therefore we must consider only strong
singularities, i.e. singularities which cannot occur in the case of a harmonic function but may occur with respect to
solutions of (1.1).

Suppose that

h
(
x′, xN

)
� h0

(∣∣x′∣∣),
where

h0 ∈ C1[0,∞), h0(s) > 0 for s > 0, h0(0) = 0.

It is clear that, the faster h0(s) tends to zero as s → 0 the greater the chance that a strong boundary singularity at the
origin will propagate to the interior.

Our aim is to determine a sharp criterion for the propagation of singularities with respect to solutions of (1.1) with

h ∈ C(RN+) such that h > 0 in R
N+ \ F . It turns out that such a criterion can be expressed in terms of functions of the

form

h̄(s) := e− ω(s)
s . (1.3)

We assume that ω satisfies the following conditions:

(i) ω ∈ C(0,∞) is a positive nondecreasing function,

(ii) s 
→ μ(s) := ω(s)
s

is monotone decreasing on R+,

(iii) lims→0 μ(s) = ∞
(1.4)

bounded. We establish the following results.

Theorem 1.1. Suppose that

lim inf
x→0
x′ �=0

h(x)/h̄
(∣∣x′∣∣) > 0 (1.5)

where h̄ is given by (1.3) and that (1.4) holds.
Suppose that ω satisfies the Dini condition,

1∫
0

(
ω(t)/t

)
dt < ∞. (1.6)

If {un} is a sequence of positive solutions of (1.1) in R
N+ converging (pointwise) in

Ω =R
N+ \ F

then the sequence converges in R
N+ and its limit is a solution of (1.1) in R

N+ .
In particular, (1.1) possesses a maximal solution U in R

N+ and U is a large solution.
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Theorem 1.2. Suppose that there exists a constant c > 0 such that

h(x) � ch̄
(∣∣x′∣∣) ∀x ∈R

N+ (1.7)

where h̄ is given by (1.3). Assume that (1.4) and the following additional conditions hold:

lim sup
j→∞

μ(a−j+1)

μ(a−j )
< 1 for some a > 1 (1.8)

and

lim
s→0

μ(s)/| ln s| = ∞. (1.9)

Condition (1.9) guarantees that, for every real k, (1.1) has a solution u0,k with boundary data kδ0 (where δ0 denotes
the Dirac measure at the origin).

Under these assumptions, if

1∫
0

(
ω(t)/t

)
dt = ∞ (1.10)

then

u0,∞ = limu0,k (1.11)

is a solution of (1.1) in Ω but

u0,∞(x) = ∞ ∀x ∈ F.

Corollary 1.1. Suppose that there exists a positive constant c such that

c−1h̄
(∣∣x′∣∣) � h(x) � ch̄

(∣∣x ′∣∣) ∀x ∈ R
N+ (1.12)

where h̄ is given by (1.3) and satisfies conditions (1.4), (1.8) and (1.9). Then the Dini condition (1.6) is necessary and
sufficient for the existence of a large solution of (1.1) in R

N+ . It is also necessary and sufficient for the existence of the
strongly singular solution u0,∞.

Problems concerning the propagation of singularities for semilinear equations with absorption have been studied
in [6,9] (elliptic case) and in [5,8,10] (parabolic case). In the elliptic case it was assumed that the absorption term
is positive everywhere in the interior of the domain, fading only on the boundary. Consequently singularities could
propagate only along the boundary.

In [5] the authors studied the equation

∂tu − �u + e− 1
t uq = 0 in R

N ×R+ (1.13)

and proved that if u is a positive solution with strong singularity at a point on t = 0 then u blows up at every point of
the initial plane. In [6] the authors studied the corresponding elliptic problem in a domain D where the coefficient of

the absorption term is e
− 1

ρ(x) , ρ(x) = dist(x, ∂Ω), proving a similar result.
In [8] the authors considered the equation,

∂tu − �u + e− ω(t)
t uq = 0 in R

N ×R+ (1.14)

where ω is a positive, continuous and increasing function on R+. They proved that if
√

ω satisfies the Dini condition
then there exist solutions with a strong isolated singularity at a point on t = 0. Similar sufficient conditions were ob-
tained in [9] and [10] with respect to an elliptic (respectively parabolic) equation, where the absorption term vanishes
at the boundary (respectively along the axis x = 0, t > 0). In addition some necessary conditions were presented, but
a considerable gap remained between these and the corresponding sufficient conditions. In the recent preprint [11] the
authors provide a rough condition for the propagation of singularities for equation (1.14) when the absorption term
vanishes along an ascending curve. Conditions for the non-propagation of singularities are not discussed.



318 M. Marcus, A. Shishkov / Ann. I. H. Poincaré – AN 30 (2013) 315–336
In the present paper, the proof of the sufficiency of the Dini condition (Theorem 1.1) is based on a refinement of the
energy estimates technique. Given R > 0 denote by xR the point (x′, xN) = (0,R) and let DR = BR(xR). For M > 0
denote by VM the solution of (1.1) in DR such that VM = M on ∂DR . For r ∈ (0,R) let D′

r := {(x′, xN): |x′| < r,

|xN − xR| < r}. By estimating various energy integrals of VM over domains D′
r and using a double iteration scheme

we show that, for a specific sequence {Mj } tending to infinity and a related sequence {rj } decreasing to a positive
number b,

sup
j

∫
D′

rj

(|∇VMj
|2 + h(x)V

q+1
Mj

)
dx < ∞

for every sufficiently small R. By a standard argument this leads to the conclusion that V R := limVM is bounded in a
neighborhood of F ∩ DR and consequently it is a solution of (1.1) in DR . Let wk denote the solution of (1.1) in R

N+
such that wk = k on xN = 0. Then wk � V R in DR and consequently w = limwk < V R in DR . This implies that
w is finite everywhere on F so that w is a large solution of (1.1) in R

N+ . Using this fact we prove the conclusion of
Theorem 1.1, first in the case that h = h̄ and then in the general case.

The proof of the necessity of the Dini condition (Theorem 1.2) is based on the analysis of a sequence of boundary
value problems whose solutions are dominated by u0,∞ and blow up on F . The sequence of boundary value problems
is of the form:

−�uj + aju
q
j = 0 in Ωj := [∣∣x′∣∣ < 2−j

] ∩ [xN > 0],
uj (x) = 0 on

[∣∣x′∣∣ = 2−j
] ∩ [xN > 0],

uj

(
x′,0

) = γj

(
x′) for

∣∣x′∣∣ � 2−j

where aj = sup|x′|<2−j h̄. The boundary data γj is chosen in such a way that, by a transformation akin to the similarity
transformation, each problem is reduced to a boundary value problem in [|x′| < 1] ∩ [xN > 0], which is independent
of j . Using this fact and a result of Brada [2] we derive precise upper and lower estimates for uj . By an iterative
technique these estimates lead to the conclusion that {uj } blows up at F .

The methods of the present paper can be applied to many of the problems with fading absorption mentioned before
(parabolic and elliptic). In a subsequent paper we shall consider a parabolic problem involving the equation

∂tu − Lu + h(x)|u|q−1u = 0 (1.15)

in a cylindrical domain D × R+ where D ⊂ R
N , 0 ∈ D and the absorption term fades along the axis x = 0, t > 0.

Here L is a linear, second order, uniformly elliptic operator with smooth coefficients which may depend on both space
and time variables.

Assuming that h = h̄(|x|), with h̄ as in (1.3), we shall study the question of propagation of singularities along this
axis, using the tools developed in the present paper.

2. Proof of Theorem 1.1

Given R > 0 let xR = (0,R) and denote by BR the ball of radius R centered at xR . We shall prove the following:

Theorem 2.1. Suppose that h = h̄. Then, under the assumptions of Theorem 1.1, for every R > 0, (1.1) has a solu-
tion V R in BR which blows up on ∂BR , i.e.,

V R(x) → ∞ as x → ∂BR.

Before proving this theorem, we show that it implies Theorem 1.1.
Let vk denote the (smallest) solution of (1.1) in R

N+ such that vk = k on the boundary. This means that

vk = lim
r→∞vk,r ,

where vk,r is the solution of (1.1) in Br(0) ∩R
N+ such that vk,r = k on

∂Br(0) ∩ [xN = 0]
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and vk,r = 0 on ∂Br(0) ∩ [xN > 0]. Note that, for fixed k, vk,r increases with respect to r . Put

V = lim
k→∞vk.

Condition (1.5) implies that there exist positive constants c1 and R1 such that

h(x) � c1h̄
(∣∣x′∣∣) for |x| < 2R1. (2.1)

Without loss of generality we assume that c1 = 1. Therefore, if V R is as in Theorem 2.1 then, for R ∈ (0,R1), V R is
a supersolution of (1.1) in BR . Since VR blows up at ∂BR we conclude that vk � V R in BR and consequently

V � V R ∀R ∈ (0,R1).

Further this implies that V is locally bounded in the strip R
N+ ∩ [xN < R′

0] and therefore, everywhere in R
N+ . By its

definition V is the smallest large solution of (1.1) in R
N+ .

Now let us assume that h = h̄. In this case we may apply Theorem 2.1 in the half-space [xN > a], for every real a.
In particular we deduce that for every a > 0 there exists a large solution of (1.1) in Br(a) for every r ∈ (0, a]. The
smallest large solution is denoted by V r

a . Let {un} be a sequence of positive solutions of (1.1) in R
N+ converging

pointwise to u in R
N+ \ F . For every a > 0 and r ∈ (0, a), un < V r

a in Br(a). Consequently {un} is bounded in Br(a)

for every r and a as above. This implies that {un} converges pointwise in R
N+ and the limit u is a solution of (1.1)

in R
N+ .

In the general case, it remains true that {un} is bounded in Br(a) for every a ∈ (0,R1) and r ∈ (0, a). This implies
that {un} converges pointwise in the strip R

N+ ∩[xn < R1] and the limit u is a solution of (1.1) in this strip. This in turn
implies that {un} converges to a solution u in R

N+ which is the first assertion of Theorem 1.1. By a standard argument,
if U is the supremum of all solutions of (1.1) in R

N+ then there exists a sequence of solutions {un} that converges to U

in R
N+ \ F . Therefore, the first assertion implies that U is a solution of (1.1) in R

N+ .
The proof of Theorem 2.1 is based on estimates of certain energy integrals of solutions of (1.1). In a half-space

these integrals are infinite. Therefore we shall estimate integrals over a bounded domain for solutions with arbitrary
large boundary data.

Condition (1.6) implies that lims→0 ω(s) = 0 while (1.4) implies that lims→0 h̄(s) = 0. We extend both of these
functions to [0,∞) by setting them equal to zero at the origin.

In the course of the proof we denote by c, c′, ci constants which depend only on N,q . The value of the constant
may vary from one formula to another. A notation such as C(b) denotes a constant depending on the parameter b as
well as on N,q .

2.1. Part 1

Let R,b be positive numbers such that R/8 < b < R/2. Denote by UM , M > 0, the solution of (1.1) in BR(0) such
that UM = M on ∂BR(0).

Let

Ωb = {
x = (

x′, xN

) ∈ R
N :

∣∣x′∣∣ < b, |xN | < b
}
.

We start with an elementary estimate of the energy integral:

Ib(M) =
∫
Ωb

(|∇UM |2 + h(x)U
q+1
M

)
dx. (2.2)

Lemma 2.1. Let h be as in (1.3) and assume (1.4). Then

Ib(M) � C1(b)Mq+1, C1(b) = cbN h̄(8b). (2.3)

Proof. Let vM := UM − M . Multiplying (1.1) (for u = UM ) by vM and integrating by parts we obtain,∫ (|∇UM |2 + h(x)U
q
MvM

)
dx = 0.
BR(0)



320 M. Marcus, A. Shishkov / Ann. I. H. Poincaré – AN 30 (2013) 315–336
Therefore

Ib(M) �
∫

BR(0)

(|∇UM |2 + h(x)U
q+1
M

)
dx

= M

∫
BR(0)

h(x)U
q
M dx � c′Mq+1h̄(R)RN � cbN h̄(8b)Mq+1. � (2.4)

Notation. Put

Ωb(s) := {
x ∈R

N : s <
∣∣x′∣∣ < b − s, |xN | < b − s

} ∀s ∈ (0, b/2). (2.5)

If v is a positive solution of (1.1) in BR(0), denote

Jb(s;v) :=
∫

Ωb(s)

(|∇xv|2 + h̄
(∣∣x′∣∣)vq+1)dx. (2.6)

Finally denote,

ϕb(s) :=
∫

∂Ωb(s)

h(x)
− 2

q−1 dσ. (2.7)

Proposition 2.1. There exists a constant c such that, for every positive solution v of (1.1) in BR(0),

Jb(s;v) � c

( s∫
0

ϕb(r)
− q−1

q+3 dr

)− q+3
q−1

∀s ∈ (0, b/2). (2.8)

Proof. Put Sb(s) := ∂Ωb(s) and denote by �n = �n(x) the unit outward normal to Sb(s) at x.
Multiplying Eq. (1.1) by v and integrating by parts over Ωb(s) we obtain,∫

Ωb(s)

(|∇xv|2 + h̄
(∣∣x′∣∣)vq+1)dx =

∫
Sb(s)

∂v

∂ �nv dσ . (2.9)

We estimate the term on the right-hand side using first Hölder’s inequality (for a product of three terms) and
secondly Young’s inequality:∣∣∣∣

∫
Sb(s)

v
∂v

∂ �n dσ

∣∣∣∣�
∫

Sb(s)

|∇xv||v|dσ

�
( ∫

Sb(s)

|∇xv|2 dσ

) 1
2
( ∫

Sb(s)

h(x)|v|q+1 dσ

) 1
q+1

ϕb(s)
q−1

2(q+1)

� c1

( ∫
Sb(s)

(|∇xv|2 + h(x)vq+1)dσ

) q+3
2(q+1)

ϕb(s)
q−1

2(q+1) . (2.10)

Substituting estimate (2.10) into (2.9) we obtain:

Jb(s;v) � c2

( ∫
Sb(s)

(|∇xv|2 + h(x)vq+1)dσ

) q+3
2(q+1)

ϕb(s)
q−1

2(q+1) . (2.11)

Since

− d

ds
Jb(s;v) =

∫ (|∇xv|2 + h(x)vq+1)dσ,
Sb(s)
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|xN | = b − s, inequality (2.11) is equivalent to

Jb(s;v) � c3ϕb(s)
q−1

2(q+1)

(
− d

ds
Jb(s;v)

) q+3
2(q+1) ∀s ∈ (0, b/2).

Solving this differential inequality, with initial data Jb(b/2;v) = 0, we obtain (2.8). �
In continuation we derive a more explicit estimate for h as in (1.3). We need the following technical lemma.

Lemma 2.2. Let A > 0, m ∈ N, l ∈ R
1 and let ω ∈ C1(0,∞) be a positive function satisfying condition (1.4). Then

there exist s̄ ∈ (0,1), depending on A, l and ω such that the following inequality holds:
s∫

0

tm−1ω(t)l exp
(−Aμ(t)

)
dt � sm+1ω(s)l−1

(m + 1)μ(s)−1 + A
exp

(−Aμ(s)
) ∀s: 0 < s < s̄. (2.12)

Proof. Due to condition (1.4)(ii) integration by parts yields:

s∫
0

tmω(t)l exp
(−Aμ(t)

)
dt = sm+1

m + 1
ω(s)l exp

(−Aμ(s)
) −

s∫
0

Atm−1

m + 1
exp

(−Aμ(t)
)
ω(t)l+1 dt

+
s∫

0

tm+1

m + 1
exp

(−Aμ(t)
)
ω′(t)ωl−1(Aμ(t) − l

)
dt. (2.13)

Again due to (1.4)(ii), there exists s̄ > 0 such that

Aμ(s) � l ∀s ∈ (0, s̄).

For later estimates it is convenient to choose s̄ in (0,1).
As ω(s) is non-decreasing, it follows that, for 0 < s � s̄,

(
s + Aω(s)

m + 1

) s∫
0

tm−1ω(t)l exp
(−Aμ(t)

)
dt � sm+1

m + 1
ω(s)l exp

(−Aμ(s)
)
.

This inequality is equivalent to (2.12). �
Proposition 2.2. Assume that h is given by (1.3) and satisfies (1.4). Then there exists a constant s∗ ∈ (0, b/2), de-
pending on N,q and the rate of blow-up of μ(s) = ω(s)/s as s → 0, such that

Jb(s;v) � cbN−1 expQ(s) ∀s ∈ (
0, s∗),

Q(s) = 2μ(s)

q − 1
+ q + 3

q − 1
lnμ(s) − q + 3

q − 1
ln s, (2.14)

for every positive solution v of (1.1) in BR(0).
If, in addition, there exists a positive constant β such that

β ln
1

s
� μ(s) 0 < s � s∗, (2.15)

then

Q(s) � Q0μ(s) 0 < s � s∗ (2.16)

where

Q0 := 2

q − 1
+ q + 3

(q − 1)
+ q + 3

β(q − 1)
. (2.17)
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Proof. Denote

Sb,1(s) = {
x:

∣∣x′∣∣ = s, |xN | < b
} ∪ {

x:
∣∣x′∣∣ = b − s, |xN | < b

}
and

Sb,2(s) = {
x: s <

∣∣x′∣∣ < b − s, |xN | = b
}
.

Then ∫
Sb,1

h̄
(∣∣x′∣∣)− 2

q−1 dσ = 2γN−1(b − s)
(
h̄(s)

− 2
q−1 sN−2 + h̄(b)

− 2
q−1 (b − s)N−2)

� 4bN−1γN−1 exp
2μ(s)

q − 1
0 < s < b/2, (2.18)

where γN−1 denotes the area of the unit sphere in R
N−1. Further, since μ is monotone decreasing,

∫
Sb,2

h̄
(∣∣x′∣∣)− 2

q−1 dσ = 2γN−1

b−s∫
s

exp
2μ(ρ)

q − 1
ρN−2 dρ

� 2(N − 1)−1bN−1γN−1 exp
2μ(s)

q − 1
. (2.19)

By (2.18) and (2.19):

ϕb(s) =
∫

Sb(s)

h̄
(∣∣x′∣∣)− 2

q−1 dσ � cbN−1 exp
2μ(s)

q − 1
, 0 < s < b/2,

where c = (4 + 2(N − 1)−1)γN−1. This implies,

s∫
0

ϕb(r)
− q−1

q+3 dr � c1b
− (N−1)(q−1)

q+3

s∫
0

exp

(
−2μ(r)

q + 3

)
dr, c1 = c

− q−1
q+3 . (2.20)

Let s∗ be the largest number in (0, b/2) such that

� s∗ � s̄ (s̄ as in Lemma 2.2 for l = 0, m = 1 and A = 2
q+3 ),

� μ
(
s∗)� A−1 = (q + 3)/2.

Then (2.20) and (2.12) imply

s∫
0

ϕb(r)
− q−1

q+3 dr � c2b
− (N−1)(q−1)

q+3
s2

ω(s)
exp

(
−2μ(s)

q + 3

)
, c2 = c1(q + 3)/6, (2.21)

for all s ∈ (0, s∗]. This inequality and (2.8) imply (2.14).
Suppose now that the function μ(·) given by (1.3) satisfies (2.15). Since ln r � r for r � 1, conditions (1.4), (2.14)

and (2.15) imply (2.16). �
Next we estimate energy integrals over domains of the form

Ωb(τ,σ ) := {
x = (

x′, xN

)
:

∣∣x′∣∣ < σ, |xN | < b − τ
}

(2.22)

where 0 < σ < b/2, 0 � τ < b.
Let η ∈ C∞([0,∞)) be a monotone decreasing function such that

η(s) = 1 if s < 1, η(s) = 0 if s > 2, η′(s) � 2 (2.23)
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and denote

ησ (s) = η(s/σ ).

We shall estimate the integrals,

Eb(τ, σ ;v) :=
∫

Ωb(τ,2σ)

(∣∣∇x

(
ησ

(∣∣x′∣∣)v)∣∣2 + h(x)ησ

(∣∣x′∣∣)2
vq+1)dx. (2.24)

Proposition 2.3. Assume condition (1.4). Let s∗ ∈ (0, b/2) be as in Proposition 2.2. Then the following inequality
holds for 0 < σ � s∗ and σ � τ < b:

Eb(τ, σ ;v)� cσ

(
−dEb(τ, σ ;v)

dτ

)
+ C2(b) expH(σ), (2.25)

where C2(b) := cb
2(N−1)

q+1 ,

H(σ) = 2
Q(σ) + μ(σ)

q + 1
+ (N − 1)(q − 1) − 2(q + 1)

q + 1
lnσ

= 2μ(σ)

q − 1
+ 2(q + 3)

q2 − 1
lnμ(σ) − c∗+ lnσ (2.26)

and

c∗ = 2(q + 3) + 2(q2 − 1) − (N − 1)(q − 1)2

q2 − 1
.

If, in addition, condition (2.15) holds then there exists a constant H0 depending only on q and β such that

H(σ) � H0μ(σ), (2.27)

where

H0 = 2

q − 1
+ 2(q + 3)

(q − 1)(q + 1)
+ c∗+

β
. (2.28)

Proof. Multiplying Eq. (1.1) by ησ (|x′|)2v and integrating by parts over Ωb(τ,2σ) we obtain,∫
Ωb(τ,2σ)

∇v · ∇(
vη2

σ

)
dx +

∫
Ωb(τ,2σ)

h(x)vq+1η2
σ dx =

∫
S′

b(τ,2σ)

∂v

∂ �nvη2
σ dx′, (2.29)

where S′
b(τ, σ ) = {x: |x′| < σ, |xN | = b − τ }.

We estimate the first term on the left hand side:∫
Ωb(τ,2σ)

∇v · ∇(
vη2

σ

)
dx =

∫
Ωb(τ,2σ)

∣∣∇(vησ )
∣∣2

dx −
∫

Ωb(τ,2σ)

v2|∇ησ |2 dx

�
∫

Ωb(τ,2σ)

∣∣∇(vησ )
∣∣2

dx − 4σ−2
∫

Ω̃b(τ,σ )

v2 dx, (2.30)

where

Ω̃b(τ, σ ) := {
σ <

∣∣x′∣∣ < 2σ, |xN | < b − τ
}
. (2.31)

Using Hölder’s inequality, conditions (1.3), (1.4) and estimate (2.14) with s = σ , we obtain:



324 M. Marcus, A. Shishkov / Ann. I. H. Poincaré – AN 30 (2013) 315–336
∫
Ω̃b(τ,σ )

v(x)2 dx �
( ∫

Ω̃b(τ,σ )

vq+1h(x)dx

) 2
q+1

( ∫
Ω̃b(τ,σ )

h(x)
− 2

q−1 dx

) q−1
q+1

� c′(bN−1 expQ(σ)
) 2

q+1 h̄(σ )
− 2

q+1
∣∣Ω̃b(τ, σ )

∣∣ q−1
q+1

� cb
2(N−1)

q+1 exp

(
2Q(σ)

q + 1

)
exp

(
2μ(σ)

q + 1

)
σ

(N−1)(q−1)
q+1 (2.32)

for σ < τ < b and 0 < σ < min{s∗, b
3 }. The application of (2.14) here is justified because, for τ and σ as above,

Ω̃b(τ, σ ) ⊂ Ωb(σ).
Combining (2.29)–(2.32) we obtain,∫

Ωb(τ,2σ)

∣∣∇(vησ )
∣∣2

dx +
∫

Ωb(τ,2σ)

h(x)vq+1η2
σ dx

�
∫

S′
b(τ,2σ)

∂v

∂ �nvη2
σ dx′ + cb

2(N−1)
q+1 exp

(
2(Q(σ) + μ(σ))

q + 1

)
σ

(N−1)(q−1)
q+1 −2

. (2.33)

Next, by Hölder’s inequality,∣∣∣∣
∫

S′
b(τ,2σ)

∂v

∂ �nvη2
σ dx′

∣∣∣∣�
∫

S′
b(τ,2σ)

∣∣∣∣ ∂

∂xN

(
vησ

(∣∣x′∣∣))∣∣∣∣vησ dx′

�
( ∫

S′
b(τ,2σ)

(
∂

∂xN

(vησ )

)2

dx′
)1/2( ∫

S′
b(τ,2σ)

(vησ )2 dx′
)1/2

and by Poincaré’s inequality in S′
b(τ, σ ),∫

S′
b(τ,2σ)

(vησ )2 dx′ � (c0σ)2
∫

S′
b(τ,2σ)

∣∣∇x′(vησ )
∣∣2

dx′.

Therefore∣∣∣∣
∫

S′
b(τ,2σ)

∂v

∂ �nvη2
σ dx′

∣∣∣∣� cσ

∫
S′

b(τ,2σ)

∣∣∇x(vησ )
∣∣2

dx′. (2.34)

Since

dEb(τ, σ ;v)

dτ
= −

∫
S′

b(τ,2σ)

(∣∣∇(vησ )
∣∣2 + h(x)vq+1η2

σ

)
dx′

inequalities (2.33) and (2.34) imply (2.25).
Finally, if (2.15) holds, (2.27) is obtained in the same way as (2.16). �

2.2. Part 2

Notation. Given M > 0 and ν ∈ (0,1), let sν = sν(M) be defined by,

exp
(
Q0μ

(
sν(M)

)) = h̄
(
sν(M)

)−Q0 = Mν, (2.35)

where Q0 is given by (2.17).
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Lemma 2.3. Put

γ := 2(q + 1 + β) − (N − 1)(q − 1)

βQ0(q + 1)
, (2.36)

where β is a positive number satisfying (2.15) and

ν0 :=
{

1 if γ � 0,
q−1
γ

if γ > 0. (2.37)

If

0 < ν < min(ν0,1) (2.38)

then,

Eb

(
0, sν

(
M ′);UM

)
� 2

(
Ib(M) + C3(b)M2M ′q−1) 1 � M ′ �M, (2.39)

where

C3(b) := cb
2N+q−1

q+1 h̄(8b)
2

q+1 . (2.40)

Proof. Put

I ′
b(s,M) :=

∫
Ωb

U2
M |∇ηs |2 dx.

Then,

Eb

(
0, sν

(
M ′),UM

)
� 2

∫
Ωb

(∣∣∇(UM)
∣∣2

η2
sν

+ h(x)U
q+1
M η2

sν

)
dx + 2

∫
Ωb

U2
M |∇ηsν |2 dx

� 2
(
Ib(M) + I ′

b(sν,M)
)
, sν = sν

(
M ′). (2.41)

By (2.23), ∇ηsν (|x′|) = 0 for |x ′| < sν and for |x′| > 2sν . Therefore, applying Hölder’s inequality and using the
monotonicity of h̄ we obtain

I ′
b

(
sν

(
M ′),M)

� 4s−2
ν

∫
Ω̃b(0,sν )

U2
M dx

� 4s−2
ν

( ∫
Ω̃b(0,sν )

U
q+1
M hdx

) 2
q+1

( ∫
Ω̃b(0,sν )

h̄
(∣∣x′∣∣) 2

1−q dx

) q−1
q+1

� cs−2
ν

(
bN h̄(8b)Mq+1) 2

q+1 h̄(sν)
− 2

q+1 s

(N−1)(q−1)
q+1

ν b
q−1
q+1

= c
(
bN h̄(8b)

) 2
q+1 b

q−1
q+1 M2s

−2+ (N−1)(q−1)
q+1

ν exp
2μ(sν)

q + 1
.

By (2.15) and (2.35)

s−1 � exp
(
μ(s)/β

)
, M ′−ν/Q0 = h̄(sν) = exp

(−μ(sν)
)
.

Therefore the previous inequality yields

I ′
b

(
sν

(
M ′),M)

� c
(
bN h̄(8b)

) 2
q+1 b

q−1
q+1 M2M

′ ν
βQ0

(2− (N−1)(q−1)
q+1 )+ 2

q+1
ν

Q0 .

Hence

I ′
b

(
sν

(
M ′),M)

� C3(b)M2M ′νγ (2.42)

with γ and C3(b) as in (2.36) and (2.40). By (2.38) νγ � q − 1. Therefore (2.41) and (2.42) imply (2.39). �
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Notation. For every M > 0 and 0 � s � b/2 denote,

Tb(s,M) = {
τ : s � τ < b, Eb(τ, s;UM) � 2C2(b) exp

(
H0μ(s)

)}
(2.43)

where C2(b) is the constant in (2.25) and H0 is given by (2.28).
Note that τ 
→ Eb(τ, s;UM) is continuous and non-increasing in the interval [s, b]. Therefore, if

Eb(s, s;UM) < 2C2(b) exp
(
H0μ(s)

)
then Tb(s,M) = ∅. Put,

τb(s,M) =
{

s if Tb(s,M) = ∅,

supTb(s,M) otherwise
(2.44)

and

τb,ν

(
M ′,M

) := τb

(
sν

(
M ′),M)

. (2.45)

Since limτ→b Eb(τ, s;UM) → 0 it follows that

sν
(
M ′)� τb,ν

(
M ′,M

)
< b. (2.46)

Furthermore,

Eb

(
τb,ν

(
M ′,M

)
, sν

(
M ′);UM

)
� 2C2(b) exp

(
H0μ

(
sν

(
M ′))) (2.47)

and, if τb,ν(M
′,M) > sν(M

′) then,

Eb

(
τ, sν

(
M ′);UM

)
� 2C2(b) exp

(
H0μ

(
sν

(
M ′))) (2.48)

for every τ ∈ (0, τb,ν(M
′,M)], with equality for τ = τb,ν(M

′,M).

Proposition 2.4. (i) Let

b′
ν

(
M ′,M

) := b − τb,ν

(
M ′,M

)
.

Then ∫
Ωb′

ν (M ′,M)

(|∇xUM |2 + h(x)U
q+1
M

)
dx � c0

(
bN−1M ′ν + C2(b)M

′ νH0
Q0

)
. (2.49)

(ii) Assume that

0 < ν � q + 1

4
min(1,Q0/H0), (2.50)

where H0 is given by (2.28) and Q0 is given by (2.17). Let a ∈ (1,2) and assume that M ′ is large enough so that,

C4(b) := c0
(
bN−1 + C2(b)

)
/C1(b) � M ′ (q+1)/2a (2.51)

where C1(b) and C2(b) are the constants in Lemma 2.1 and Proposition 2.3 respectively while c0 is the constant
in (2.49).

Then

Ib′
ν (M ′,M)(M) =

∫
Ωb′

ν (M ′,M)

(|∇xUM |2 + h(x)U
q+1
M

)
dx � C1(b)M ′ q+1

a . (2.52)

Proof. By (2.35),

M ′ = exp

(
Q0

ν
μ

(
sν

(
M ′))). (2.53)

Therefore, by (2.47),

Eb

(
τb,ν

(
M ′,M

)
, sν

(
M ′);UM

)
� 2C2(b)M

′ νH0
Q0 . (2.54)
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By Proposition 2.2 applied to the estimate of Jb(sν(M
′),UM),

Jb

(
sν

(
M ′),UM

)
� cbN−1 exp

(
Q0μ

(
sν

(
M ′))) = cbN−1M ′ν. (2.55)

Inequality (2.46) implies that b′
ν(M

′,M) � b − sν(M
′). Therefore

Ωb′
ν (M ′,M) ⊂ Ωb

(
τb,ν

(
M ′,M

)
, sν

(
M ′)) ∪ Ωb

(
sν

(
M ′))

(see (2.5) for definition of Ωb(s)). Consequently

Ib′
ν (M ′,M)(M) � Eb

(
τb,ν

(
M ′,M

)
, sν

(
M ′);UM

) + Jb

(
sν

(
M ′),UM

)
.

This inequality together with (2.54) and (2.55) imply (2.49).
In view of (2.50) we have,

bN−1M ′ν + C2(b)M
′ νH0

Q0 �
(
bN−1 + C2(b)

)
M ′ (q+1)/2a.

If M ′ satisfies (2.51), this inequality and (2.49) imply (2.52). �
Next we derive an upper bound for τb,ν(M

′,M) in terms of sν(M
′).

Lemma 2.4. Suppose that 0 < ν satisfies conditions (2.38) and (2.50) and that

M � exp

(
Q0

ν
μ

(
s∗)) (2.56)

where s∗ is as in Proposition 2.3. Then

exp

(
τb,ν(M

′,M)

2csν(M ′)

)
� c1

(
Ib(M) + C3(b)M2M ′q−1)C2(b)−1M

′− νH0
Q0 . (2.57)

Proof. Since ν satisfies (2.50) and 1 < a < 2,

0 < Q0(q + 1)

(
1 − 1

2a

)
� Q0(q + 1) − H0ν.

By (2.39),

Eb

(
τ, sν

(
M ′);M)

� Eb

(
0, sν

(
M ′);M)

� 2
(
Ib(M) + C3(b)M2M ′q−1) ∀τ ∈ (0, b) (2.58)

where 1 < M ′ < M .
If τb,ν � sν inequality (2.57) is trivial. Therefore we may assume that

τb,ν

(
M ′,M

)
> sν

(
M ′).

Temporarily denote

F(τ) = Eb

(
τ, sν

(
M ′);M)

.

By Proposition 2.3, (2.56) and (2.48),

F(τ) � 2csν
(
M ′)(−dF(τ)

dτ

)
∀τ : sν

(
M ′) < τ < τb,ν

(
M ′,M

)
. (2.59)

Solving this differential inequality with initial condition F(sν(M
′)) satisfying (2.58) we obtain,

Eb

(
τ, sν

(
M ′);M)

� c1
(
Ib(M) + C3(b)M2M ′q−1) exp

(
− τ

2csν

)
(2.60)

for every τ ∈ [sν(M ′), τb,ν(M
′,M)]. Combining (2.60) and (2.48) for τ = τb,ν(M

′,M) (in which case (2.48) holds
with equality) we obtain,

2C2(b) exp
(
H0μ

(
sν

(
M ′))) � c1

(
Ib(M) + C3(b)M2M ′q−1) exp

(
−τb,ν(M

′,M)

′

)
.

2csν(M )
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In view of (2.53) this inequality implies

exp

(
τb,ν(M

′,M)

2csν(M ′)

)
� c1

(
Ib(M) + C3(b)M2M ′q−1)C2(b)−1 exp

(−H0μ
(
sν

(
M ′)))

= c1
(
Ib(M) + C3(b)M2M ′q−1)C2(b)−1M

′− νH0
Q0 . � (2.61)

2.3. Part 3

In this part of the proof we apply the previous estimates to a specific sequence {Mj } defined below. As before R is
an arbitrary positive number and we require that R/4 < b < R/2.

Proposition 2.5. Let

Mj = exp
(
aj

)
, sj := sν(Mj ) (2.62)

where sν(·) is defined as in (2.35) and

1 < a < min

(
1 + νH0

2Q0
,2

)
. (2.63)

Put uj = UMj
. Then there exists j0 ∈N such that∫

Ωb/2

(|∇xuj |2 + h(x)u
q+1
j

)
dx � C1(b)M

q+1
j0

∀j > j0 (2.64)

where C1(b) = cbN h̄(8b).

Proof. By (2.62) and (2.35),

ajν/Q0 = μ(sj ). (2.65)

Let j0 be a positive integer to be determined later on. For each integer j � j0 we define the set of pairs{
bi,j , τ

i,j : i = j0, . . . , j
}

by induction as follows:

τ j,j = τb,ν(Mj ,Mj ), bj,j = b − τ j,j ,

τ i,j = τbi+1,j ,ν(Mi,Mj ), bi,j = bi+1,j − τ i,j , j0 � i < j.

Thus

bi,j = b −
j∑

k=i

τ k,j , j0 � i < j.

We show below that if j0 is sufficiently large then

j∑
i=j0

τ i,j < b/2 ∀j > j0, (2.66)

which implies,

b/2 < bi,j .

Specifically we choose j0 so that,
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(i) C4(b/2) � M
(q+1)/2a
j0

,

(ii) exp

(
Q0

ν
μ

(
s∗))� Mj0,

(iii) C5(b) := c1
C1(b) + C3(b)

C2(b)
� M

q+1
j0

(2.67)

with c1 as in (2.57). For the definition of C1(b), . . . ,C4(b) see (2.3), (2.25), (2.40) and (2.51).
We observe that C4(b) decreases as b increases. Therefore (assuming (2.66)) condition (i) implies,

C4(bi,j ) �M
(q+1)/2a
i , j0 � i � j, j0 � j. (2.68)

The left hand side in condition (2.67)(iii) increases as b increases. Therefore

C5(bi,j ) � (q + 1) lnMi, j0 � i � j, j0 � j. (2.69)

Put uj = UMj
. Assuming that (2.66) holds, we apply Proposition 2.4 to the case where b is replaced by bj0+1,j

and M ′ = Mj0+1, M = Mj ; we obtain,∫
Ωbj0,j

(|∇xuj |2 + h(x)u
q+1
j

)
dx � C1(b)M

q+1
j0

(2.70)

which implies (2.64).
It remains to verify (2.66). To this end we prove the following estimate:

τ i,j � c̄Q0(q + 1)
ω(si)

ν
, j0 � i � j (2.71)

where c̄ = 4c (c as in (2.57)).
The proof is by induction. We apply Lemma 2.4 in the case where

b is replaced by bi+1,j , M ′ = Mi, M = Mj, j0 � i � j.

For i = j we put bj+1,j := b. Note that, for M � Mj0 , condition (2.67)(ii) yields (2.56).
Applying Lemma 2.4 and Lemma 2.1 to the case i = j we obtain

exp
τ j,j

2csj
� C5(b)M

q+1−ν
H0
Q0

j .

Consequently, using (2.62) and condition (2.67)(iii)

τ j,j

2csj
� lnC5(b) +

(
q + 1 − ν

H0

Q0

)
lnMj

� 2(q + 1)
Q0μ(sj )

ν
. (2.72)

For the last inequality recall that sj = sν(Mj ), which implies,

lnMj = Q0μ(sj )

ν
.

Inequality (2.72) implies (2.71) for i = j .
Observe that sj ↓ 0 as j ↑ ∞ and consequently, ω(sj ) ↓ 0. Therefore if j0 is sufficiently large we have τ j,j < b/2

and bj,j > b/2. By Proposition 2.4,

Ibj,j
(Mj ) � C1(bj,j )M

(q+1)/a
j � C1(b)M

q+1
j−1 . (2.73)

Here we use condition (2.67)(i) and the fact that bj,j = b − τb,ν(Mj ,Mj ).
Now we apply Lemma 2.4 for i = j − 1, i.e., when b is replaced by bj,j and M ′ = Mj−1, M = Mj . This lemma,

combined with (2.73), yields
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exp
τ j−1,j

2csj−1
� c1

(
Ibj,j

(Mj ) + C3(bj,j )M
2
j M

q−1
j−1

)
C2(bj,j )

−1M
−ν

H0
Q0

j−1

� c1
(
C1(bj,j )M

q+1
j−1 + C3(bj,j )M

2
j M

q−1
j−1

)
C2(bj,j )

−1M
−ν

H0
Q0

j−1 .

By (2.63),

M2
j M

−ν
H0
Q0

j−1 � M2
j−1. (2.74)

Therefore, similarly to (2.72), we obtain

τ j−1,j

2csj−1
� lnC5(bj,j ) + (q + 1) lnMj−1

� 2(q + 1)
Q0μ(sj−1)

ν
, (2.75)

which, in turn, implies (2.71) for i = j − 1.
This process can be repeated inductively for i = j − 2, j − 3, . . . , j0 provided that bi+1,j � b/2. For each value

of i in this range we first apply Proposition 2.4 to obtain,

Ibi+1,j
(Mj ) � C1(bi+1,j )M

(q+1)/a

i+1 � C1(b)M
q+1
i . (2.76)

After that we apply Lemma 2.4 combined with (2.76) to obtain (2.71) for the respective value of i, always with the
same constant c̄. Therefore, to complete the proof, it remains to be shown that there exists j0 such that:

If j > j0, j0 � k < j and τ i,j satisfies (2.71) for k � i � j then,

j∑
i=k

τ i,j < b/2. (2.77)

By (2.65) and (1.4)

si � (Q0/ν)a−iω(si)� �a−i , � := Q0ω(s0)/ν.

Since, by assumption, (2.71) holds for k � i � j ,

j∑
i=k

τi,j � C(N,q, ν)

j∑
i=k

ω(si) � C(N,q, ν)

j∑
i=k

ω
(
�a−i

)
.

Further, using the monotonicity of ω,

j∑
i=k

ω
(
�a−i

)
�

j∫
k

ω
(
�a−s

)
ds < (lna)−1

βk∫
0

ω(r)

r
dr

where βk = �a−k . Because of the Dini condition, the last integral tends to zero when βk → 0. Therefore, if j0 is
sufficiently large (depending only on N,q, ν and a) (2.77) holds for all k � j0. �
Completion of proof of Theorem 2.1. Since UM increases as M increases

UR := lim
M→∞UM = lim

j→∞uj .

The function VM defined by

VM(x) = UM

(
x′, xN + R

)
is a solution of (1.1) in the ball BR(xR), where xR = (0,R). Put

V R := lim
M→∞VM in BR

(
xR

)
.

We show that V R is bounded in a neighborhood of the point (0,R).
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By interior elliptic estimates, (2.64) implies that

sup
j0�j

∫
Ωb/3

|uj |2 dx < ∞. (2.78)

Since h(x) � 0, uj is subharmonic in Ωb. Therefore (2.78) implies

sup
{
uj (x): j0 � j, x ∈ Ωb/4

}
< ∞. (2.79)

Thus UR is bounded in a neighborhood of the origin which means that V R is bounded in a neighborhood of (0,R).
For every r ∈ (0,R), V R < V r in Br(x

r). (Recall that xr denotes the point (x′, xN) = (0, r).) As V r is bounded in
a neighborhood of (0, r) we conclude that V R is locally bounded in BR ∩ [0 < xN < R].

Recall that h = h̄ is independent of xN . Therefore applying the same argument in the half-space [xN > a] we
deduce that for every a ∈ (0,2R) the sequence of solutions {VM} is uniformly bounded in a neighborhood of the
point (0,R + a/2). Hence V R is locally bounded in BR ∩ [R < xN ]. In conclusion, V R is locally bounded in BR and
therefore it is a solution of (1.1) in BR . �
3. Proof of Theorem 1.2

Put

rj := 2−j , Ωj = {(
x′, xN

)
:

∣∣x′∣∣ < rj , 0 < xN

}
, j = 1,2, . . . .

Further denote,

aj := exp
(−μ(rj )

)
, Aj = (

aj r
2
j

) 1
q−1 (3.1)

and, for x′ ∈ R
N−1,

γj

(
x′) =

{
A−1

j φ1(x
′/rj+1) if |x′| < rj+1,

0 if |x′| � rj+1
(3.2)

where φ1 is the first eigenfunction of the Dirichlet problem to −�y′ in BN−1
1 normalized by φ1(0) = 1. Recall that

μ(s) = ω(s)/s.
We consider the boundary value problems

−�uj + aju
q
j = 0 in Ωj,

uj (x) = 0 on {x ∈ ∂Ωj : xN > 0}, (3.3)

uj

(
x′,0

) = γj

(
x′) for

∣∣x′∣∣� rj .

In view of (1.4), {aj } is a decreasing sequence converging to zero and

aj = sup
s∈(0,rj )

exp
(−μ(s)

)
.

Therefore, for every xN > 0, {uj (0, xN)} is an increasing sequence and uj is a subsolution of the problem

−�w + h(x)wq = 0 in Ωj,

w(x) = 0 on {x ∈ ∂Ωj : xN > 0}, (3.4)

w
(
x′,0

) = γj

(
x′) for

∣∣x′∣∣� rj .

The proof of Theorem 1.2 is based on the following:

Proposition 3.1. For every xN > 0,

lim
j→∞uj (0, xN) = ∞.

In the next lemma we collect several results of Brada [2] that are used in the proof of this proposition.
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Lemma 3.1. Let a be a positive number, let q > 1 and let f be a positive function in L∞(BN−1
1 ), where BN−1

1 denotes
the unit ball in R

N−1 centered at the origin.
Consider the problem

−�u + buq = 0 in D0,

u(y) = 0 for y ∈ ∂D0: 0 < yN, (3.5)

u
(
y′,0

) = f
(
y′) for

∣∣y′∣∣� 1,

where

D0 = {
y = (

y′, yN

) ∈R
N :

∣∣y′∣∣ < 1, 0 < yN

}
.

If u is the solution of this problem then there exists a number α > 0 such that

lim
yN→∞ exp(

√
λ1yN)u(y) = αφ1

(
y′) (3.6)

uniformly in BN−1
1 . Here λ1 is the first eigenvalue and φ1 the corresponding eigenfunction of −�y′ in BN−1

1 normal-
ized by φ1(0) = 1.

The limit α satisfies

α � cb
− 1

q−1 supf. (3.7)

Proof. By [2, Theorem 4], (3.6) holds for some α ∈ R. Under our assumptions u is positive so that α � 0. By the
remark in [2, p. 357], if α = 0 then there exists k > 1 such that

lim
yN→∞ exp(

√
λkyN)u(y) = φk

(
y′)

where φk an eigenfunction of −�y′ in BN−1
1 corresponding to the k-th eigenvalue. However this is impossible because

φk changes signs. Thus α > 0.
Inequality (3.7) is a consequence of [2, Proposition 1]. �

3.1. An estimate of uj

We start by rescaling problem (3.3). Put

y = x/rj , ũj (y) = Ajuj (rj y), (3.8)

where Aj is given by (3.1). Then v := ũj is the solution of the problem

−�v + vq = 0 in D0,

v(y) = 0 for y ∈ ∂D0: 0 < yN, (3.9)

v
(
y′,0

) = γ̃
(
y′) for

∣∣y′∣∣� 1,

where

γ̃
(
y′) :=

{
φ1(2y′) if |y′| < 1

2 ,

0 otherwise.
(3.10)

Applying Lemma 3.1 to the solution v of (3.9) we obtain,

lim
yN→∞ exp(

√
λ1yN)v

(
y′, yN

) = αφ1
(
y′) (3.11)

where α is a positive number depending only on q,N . Consequently there exists β > 0 such that

1

2
αφ1

(
y′) exp(−√

λ1yN) � Ajuj (rj y)

� 2αφ1
(
y′) exp(−√

λ1yN) ∀yN � β,
∣∣y′∣∣� 1.
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This inequality is equivalent to

α

2Aj

φ1
(
x′/rj

)
exp(−√

λ1xN/rj ) � uj (x)

� 2α

Aj

φ1
(
x′/rj

)
exp(−√

λ1xN/rj ) ∀xN � βrj ,
∣∣x′∣∣ � rj . (3.12)

3.2. Comparison of uj and uj−1

Let τj be the number determined by the equation,

α

2
exp(−√

λ1τj /rj ) =
(

aj

aj−1

) 1
q−1

2− 2
q−1

= 2− 2
q−1 exp

−μ(rj ) + μ(rj−1)

q − 1
. (3.13)

By (3.1) and (3.2), this is equivalent to

α

2Aj

φ1
(
x′/rj

)
exp

(
−√

λ1
τj

rj

)
= γj−1

(
x′). (3.14)

Without loss of generality we may assume that (1.8) holds for a = 2. Therefore there exists κ ∈ (0,1) such that

μ(rj ) − μ(rj−1) � κμ(rj ). (3.15)

By (3.13),√
λ1

τj

rj
= μ(rj ) − μ(rj−1)

q − 1
+ c(N,q).

Therefore, by (3.15) and (1.4), there exist positive numbers c0, c1 and j0 (depending only on κ,N,q) such that

βrj < c0ω(rj ) � τj � c1ω(rj ) (3.16)

for every j � j0 (β as in (3.12)).
By (3.12), (3.14) and (3.16)

γj−1
(
x′) � uj

(
x′, τj

)
,

∣∣x′∣∣� rj , j � j0. (3.17)

By the maximum principle, (3.3), (3.17) and the fact that aj−1 > aj imply

uj−1
(
x′, xN

)
� uj

(
x′, xN + τj

) ∀j � j0, x ∈ Ωj . (3.18)

3.3. Proof of Proposition 3.1

Let j0 � k < m. Iterating inequality (3.18) for j = k + 1, . . . ,m we obtain,

uk

(
x′, xN

)
� um

(
x′, xN +

m∑
j=k+1

τj

)
∀x ∈ Ωm. (3.19)

Combining this inequality (for x′ = xN = 0) with (3.12) yields

1

2
α
(
akr

2
k

)− 1
q−1 = α

2Ak

� uk(0) � um

(
0,

m∑
j=k+1

τj

)
(3.20)

for every m,k such that j0 � k < m. By (1.10),
∞∑

ω(rj ) = ∞.
j=k



334 M. Marcus, A. Shishkov / Ann. I. H. Poincaré – AN 30 (2013) 315–336
Therefore, by (3.16)
∞∑

j=k

τj = ∞. (3.21)

Consequently,

sm,k :=
m∑

j=k+1

τj �⇒ lim
m→∞ sm,k = ∞. (3.22)

Note that akr
2
k → 0; therefore, by (3.20), for every M > 0 there exists jM such that

M < um(0, sm,k) jM � k < m. (3.23)

We claim that

supuj (0, xN) = ∞ ∀xN > 0. (3.24)

By negation, assume that

∃s > 0: supuj (0, s) = K < ∞.

By (3.12)

uj (x
′, s)

uj (0, s)
� 4α

∣∣x′∣∣� rj .

Here we use the fact that 1 = φ(0) = maxφ. It follows that, for every j such that 2j > β/s,

supuj

(
x′, s

)
� 4αK,

∣∣x′∣∣� rj .

Therefore, by the maximum principle, for every j as above,

uj

(
x′, xN

)
� 4αK ∀x ∈ Ωj ∩ [xN � s].

In view of (3.22), this contradicts (3.23). �
3.4. Proof of Theorem 1.2

Let P0(x, y) = cNxN |x − y|−N be the Poisson kernel for −� in R
N+ . Condition (1.9) implies that, for any positive

constants a,R

sup
|x′|<R

∣∣x′∣∣−a
h(x) < ∞. (3.25)

For every q > 1 choose a > 0 such that q < (N + 1 + a)/(N − 1). Then for every R > 0,∫
[|x|<R,0<xN ]

h(x)P
q

0 (x,0)xN dx < Ca

∫
[|x|<R,0<xN ]

|x|aP q

0 (x,0)xN dx < ∞.

Consequently, for every k > 0, the problem

−�v + h(x)vq = 0 in D0,

v = 0 on ∂�D0 := [∣∣x′∣∣ = 1, xN > 0
]
,

v = kδ0 on [xN = 0]
possesses a unique solution dominated by the supersolution kP0 (see [4]).

The function

v0,∞ := lim
k→∞v0,k in D0 (3.26)

is a solution of (1.1) in D0 ∩ [|x′| > 0] but it may blow up as |x′| → 0.
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Put

f (xN) =
∫

|x′|<1

v0,∞
(
x′, x̄N

)
dx′ ∀xN > 0.

If f (a) < ∞ for some a > 0 then v0,∞ is finite in D0 ∩ [xN > a] so that f (xN) < ∞ for every xN > a. Thus

f (a) < ∞ for some a > 0 �⇒ f (xN) < ∞ ∀xN � a. (3.27)

Let

b = inf
{
xN > 0: f (xN) < ∞}

. (3.28)

By (3.27)

f (xN) = ∞ ∀xN ∈ (0, b), f (xN) < ∞ ∀xN ∈ (b,∞). (3.29)

We have to show that b = ∞. By negation assume that b < ∞. First consider the case 0 < b. Let a ∈ (0, b) and put
η(x′);= v0,∞(x′, a). Then∫

|x′|<1

ϕη dx′ = ∞ ∀ϕ ∈ C
([∣∣x′∣∣� 1

])
such that ϕ(0) > 0.

Thus the measure μη = η dx′ is larger than kδ0 for every k > 0. The function V given by V (x) = v0,∞(x′, xN + a)

satisfies

−�V + h(x)V q = 0 in D0,

V = 0 on ∂�D0 := [∣∣x′∣∣ = 1, xN > 0
]
,

V = η on [xN = 0].
Therefore V � v0,∞, i.e.,

v0,∞
(
x′, xN + a

)
� v0,∞

(
x′, xN

)
.

But this implies

f (xN + a) = ∞ ∀xN ∈ (0, a + b)

which contradicts (3.28).
Next assume that b = 0. In this case,

v0,∞(0, xN) < ∞ ∀xN > 0 (3.30)

and consequently v0,∞ is a solution of (1.1) in D0. Let wj be the unique solution of the boundary value problem:

−�wj + ajw
q
j = 0 in Ωj,

wj = 0 on ∂Ωj ∩ [xN > 0], (3.31)

wj = ∞δ0 on [xN = 0],
where aj = h(rj ). As usual, this means that wj = limk→∞ wj,k where wj,k is the solution of the modified problem
where the boundary data on xN = 0 is wj,k(x

′,0) = kδ0. Since aj � h(x) in Ωj it follows that

wj � v0,∞ in Ωj . (3.32)

The function w∗
j given by w∗

j (x) := Ajwj (rj x) for x ∈ D0 is a solution of the problem:

−�w + wq = 0 in D0,

w = 0 on ∂�D0, (3.33)

w
(
x′,0

) = ∞δ0 on [xN = 0].
The solution of this problem is unique; consequently w∗ is independent of j and we denote it by w∗.
j
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Let C := sup|x′|<1/2 w∗(x′,1). Then wj(y) = A−1
j w∗(y/rj ) satisfies

wj

(
y′, rj

)
� cA−1

j ,
∣∣y′∣∣ < rj+1.

As γj (x
′) = 0 for |x′| > rj+1 it follows that

wj

(
y′, rj

)
� cγj

(
x′), ∣∣x′∣∣ < rj .

Hence

wj

(
x′, xN + rj

)
� uj (x) in Ωj .

Therefore, by Proposition 3.1,

lim
j→∞wj(0, xN) = ∞ ∀xN > 0.

Hence, by (3.32),

v0,∞(0, xN) = ∞ ∀xN > 0

in contradiction to (3.30). �
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