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Abstract

We show that every linearly repetitive Delone set in the Euclidean d-space R
d , with d � 2, is equivalent, up to a bi-Lipschitz

homeomorphism, to the integer lattice Z
d . In the particular case when the Delone set X in R

d comes from a primitive substitution
tiling of Rd , we give a condition on the eigenvalues of the substitution matrix which ensures the existence of a homeomorphism
with bounded displacement from X to the lattice βZd for some positive β. This condition includes primitive Pisot substitution
tilings but also concerns a much broader set of substitution tilings.

1. Introduction

Let (Z, δ) be a metric space. A subset X of Z is called a Delone set or separated net if there exist r,R > 0 such
that each ball of radius R in Z contains at least one point of X and each ball of radius r in Z contains at most one
point of X. Let X1 and X2 be two Delone sets in Z. We say that they are bi-Lipschitz equivalent if there exist a
homeomorphism φ : X1 → X2 and a constant K > 0 such that

1

K
δ
(
x, x′)� δ

(
φ(x),φ

(
x′))� Kδ

(
x, x′)

holds for all x and x′ in X1. The map φ is then called a bi-Lipschitz homeomorphism between X1 and X2. We say that
a homeomorphism φ : X1 → X2 is a bounded displacement if

sup
x∈X1

δ
(
φ(x), x

)
< ∞.

Clearly a bounded displacement between two Delone sets is a bi-Lipschitz homeomorphism.
In the case when the ambient metric space (Z, δ) is the d-dimensional Euclidean space Rd , d � 2, endowed with the

Euclidean distance, the problem to know whether two Delone sets are bi-Lipschitz equivalent was raised by Gromov
in [6], and boiled down in Toledo’s review [18] to the following question for the 2-dimensional Euclidean space:
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Is every separated net in R
2 bi-Lipschitz equivalent to Z

2? Counterexamples to this question were given independently
by Burago and Kleiner [2] and McMullen [11]. McMullen also showed that when relaxing the bi-Lipschitz condition
to a Hölder one, all separated nets in R

d are equivalent. Later, Burago and Kleiner [3] gave a sufficient condition for a
separated net to be bi-Lipschitz equivalent to Z

2 and asked the following question: If one forms a separated net in the
plane by placing a point in the center of each tile of a Penrose tiling, is the resulting net bi-Lipschitz equivalent to Z

2?
They studied the more general question of knowing whether a separated net arising from a cut-and-project tiling is
bi-Lipschitz equivalent to Z

2 (recall that the Penrose tiling is also a cut-and-project tiling [4]) and solved it in some
cases that do not include the case of Penrose tilings, thus leaving the former question open.

More recently, Solomon [15] gave a positive answer in the case of Penrose tilings by using the fact that they can
be constructed using substitutions (see for instance [7]). In fact, Solomon proved that each separated net arising from
a primitive substitution tiling in R

2 is bi-Lipschitz to Z
2. Moreover, as an application of the work of Laczkovich [10],

he showed that for every substitution tiling of Rd of Pisot type there is a bounded displacement between its associated
separated net and βZd for some β > 0 (see Section 2 for more details).

During the same period and surprisingly rather independently, Delone sets in R
d , have been used in mathematical

physics as models of solid materials. In particular, after the discovery of quasicrystals at the beginning of the 80s [14],
a strong impulse has been devoted to model these quasi-periodic materials by appropriate Delone sets, introducing in
this way the notion of “repetitive” Delone sets.

Later, Lagarias and Pleasants focused on “linearly repetitive” Delone sets [9] as a subclass of repetitive Delone sets
that models all known examples of quasicrystals. This class includes all Delone sets arising from self-similar tilings
(it contains in particular the Penrose tiling drawn with triangles and the Penrose tiling drawn with “thick” and “thin”
rhombi [7]) but is actually much broader (see [16,12] and [17]).

In this paper, we make a connection between these two fields of research by using the second point of view (Delone
sets and quasicrystals) to improve some known results concerning separated nets which are bi-Lipschitz equivalent
to Z

d or obtained from Z
d by a bounded displacement.

On one hand, we prove that for any d � 2, every linearly repetitive Delone set in R
d is bi-Lipschitz equivalent

to Z
d . On the other hand, we show that Delone sets arising from a class of substitution tilings of Rd , which is larger

than the class of Pisot-type tilings, are obtained from Z
d by a bounded displacement.

From now on, we will prefer the denomination “Delone sets”, more widely used in the literature when the ambient
metric space is the d-dimensional Euclidean space, than “separated nets”.

2. Definitions and results

2.1. Repetitive Delone sets

Let d � 2 and X be a Delone set in R
d . We denote by B(x, r) the closed ball around x of radius r in R

d . A set of
the form X ∩ B(x, r) with x ∈ X is called a patch (with size r) of X centered at x. A Delone set X is called repetitive
if for each r > 0, there exists M > 0 such that for each point z in R

d , and for every patch with size r , X ∩ B(x, r),
there exists y in X ∩ B(z,M), such that:

X ∩ B(y, r) = (
X ∩ B(x, r)

) + y − x.

The smallest such M is denoted by MX(r) and it is called the repetitivity function of X (see [9]). If there exists L > 0
such that MX(r) � Lr , then X is called linearly repetitive.

Our first result is the following:

Theorem 2.1. Every linearly repetitive Delone set in R
d is bi-Lipschitz equivalent to Z

d .

Remark 1. Of course Theorem 2.1 is trivial when the dimension d = 1 since, in this case, every Delone set (with no
extra assumptions) is bi-Lipschitz equivalent to Z.

2.2. Substitution tilings

Our second result concerns tilings arising from primitive substitutions. For more details about substitutions and
tilings, see for instance [16]. Let d � 2 and Λ be a closed subset of the Euclidean space R

d . A tiling of Λ is an
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at most countable collection T = (tj )j∈J of closed subsets of Λ that cover Λ and have pairwise disjoint interiors.
The sets tj are called tiles and, in this paper, all tiles are supposed to be homeomorphic to the unit closed ball in R

d .
Tiles may also be colored, which means that formally they carry a label or color with them. There are several notions
of equivalence between tiles which depend on the tilings under consideration. Let E be a group of isometries of Rd

containing all translations: two tiles p and q are E -equivalent (or in short q is an E -copy of p) if q is the image of p

by an isometry in E . If furthermore p and q are colored, then they must have the same color.
Let P = {p1, . . . , pk} be a finite collection of tiles. A tiling T of Λ ⊂ R

d is E -generated by P if every tile in T is
an E -copy of some tile in P . The tiles in P are called prototiles. The set of all tilings of Λ that are E -generated by P
is denoted by ΩE,P (Λ). When Λ =R

d , we write ΩE,P instead of ΩE,P (Rd).
Given λ > 1 and a subset U ⊂R

d , let λU := {λx | x ∈ U} be the dilation of U by λ. Similarly, if M is a collection
of tiles, the dilation of M by λ is the collection λM := {λt | t ∈ T }. Clearly, if M is a tiling, then λM is also a tiling.
A substitution rule (with dilation factor λ > 1) is a collection S = (Spi

)ki=1, where for each i ∈ {1, . . . , k}, Spi
is a

tiling of λpi which is E -generated by P . Thus, each Spi
gives the rule of how to decompose λpi into prototiles, for

each i. Every substitution induces a natural map IS on ΩE,P , which first dilates tiles by λ and then replaces dilated
tiles by a patch of prototiles according to the substitution rule, for more details see Appendix B.

A tiling T in ΩE,P is said to be admissible for S if it belongs to

ΩS :=
⋂
k�0

Ik
S(ΩE,P ).

For any given substitution, we can associate an integer matrix, in which each element counts how many tiles of
a given type appear in a tile of another type after dilation and substitution. Depending on the definition of tile-type,
we may obtain different matrices. For our purposes here, we consider the following definition (see also [15]): Given
a substitution rule S , we say that two tiles pi and pj have the same type (or are S-equivalent) if there exists an
isometry O of R

d such that O(pi) = pj and O(Spi
) = Spj

. Let Q = {q1, . . . , qn} be the set of tile-types of all
prototiles. The substitution matrix is then defined as the n × n matrix MS = (mi,j )i,j , where each mi,j is the number
of tiles of type qj that belong to Sp where p is any prototile of type qi . The definition of tile-type implies that mi,j

does not depend on p and thus MS is well-defined.
Finally, we recall some basic definitions of Perron–Frobenius theory needed to state our result. A matrix M is

primitive if there exists n > 0 such that all the elements of Mn are positive. By Perron–Frobenius theorem, every
primitive matrix M has a largest positive real eigenvalue μ, the Perron eigenvalue, and moreover it has no other
eigenvalue with the same modulus as μ. It is easy to check that the Perron eigenvalue of MS for a given substitution
rule S is μ = λd when MS is primitive.

Given a tiling T in ΩE,P , define XT to be the set of barycenters of all the tiles in T . It is clear that XT is a Delone
set in R

d , and we call it the Delone set induced by T .

Theorem 2.2. Suppose that S is a substitution rule with dilation factor λ, that the substitution matrix MS is primitive
and that

r(M) := max
{|η| ∣∣ η 	= μ is an eigenvalue of M

}
< λ,

where μ is the Perron eigenvalue of MS . Then there exists β > 0 such that for every tiling T in ΩS , the Delone
set XT induced by T is obtained from βZd by a bounded displacement.

Remark 2. A substitution rule S is of Pisot type if r(MS) < 1 (compare with the definition in [15]).

We finish this section by introducing some useful notations. For any d � 1, we denote by μd the Lebesgue measure
in R

d . For every subset U of Rd , we denote its boundary by ∂U . Furthermore, for every subset U of Rd and every
Delone set X in R

d , we denote by N (X,U) the number of points of X inside U .

3. Proof of Theorem 2.1

In [3], Burago and Kleiner gave a sufficient condition for a Delone set in R
2 to be bi-Lipschitz equivalent to Z

2.
This condition concerns the speed of convergence to an asymptotic density of the number of points of X inside larger
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and larger balls. As we will see, it turns out that an analog condition works in every dimension d � 2. First, we need
some definitions. A cube C with size l(C) > 0 in R

d is a subset of the form C = x + [0, l(C)]d , where x ∈ R
d . Let

X ⊂R
d be a Delone set. Given ρ > 0 and a cube C ⊂R

d with size l(C), define eρ(C) to be the density deviation

eρ(C) = max

(
ρμd(C)

N (X,C)
,
N (X,C)

ρμd(C)

)
. (3.1)

Next, for k ∈ N, define Eρ(k) as the supremum of the quantities Eρ(C), where C ranges over all cubes with size
l(C) = k and vertices at Zd . The condition reads as follows.

Theorem 3.1. Let d � 2 and X ⊂R
d be a Delone set. Suppose that there is ρ > 0 such that the product

+∞∏
m=1

Eρ

(
2m

)

converges. Then X is bi-Lipschitz equivalent to Z
d .

Remark 3. When d = 2, Theorem 3.1 corresponds to the main theorem of [3]. In the proof of [3], the authors solve a
prescribed volume form equation. To prove this result for d > 2 we use a very useful construction by Rivière and Ye
[13], which actually simplifies the original proof of [3]. The proof of Theorem 3.1 is given in Appendix A.

Linearly repetitive Delone sets are good candidates to satisfy the condition of Theorem 3.1 as suggested by the
following result of Lagarias and Pleasants:

Theorem 3.2. (See [9].) Let d � 2 and X be a linearly repetitive Delone set in R
d . Then there exist positive constants

ρ(X) and δ(X) < 1, such that for any cube C with size l(C), we have:∣∣N (X,C) − ρ(X)μd(C)
∣∣ = O

(
l(C)d−δ(X)

)
. (3.2)

Remark 4. Lagarias and Pleasants proved a stronger version of the above theorem by giving similar estimates for the
occurrences of every patch in X. We will not use this stronger version here.

Proof of Theorem 2.1. Let X be a linearly repetitive Delone set in R
d . By Theorem 3.1, it is enough to show that there

exists ρ > 0 such that the product
∏∞

m=1 Eρ(2m) converges. Indeed, Theorem 3.2, tells us that there exist ρ(X),M, δ

and l0, all positive, such that∣∣∣∣N (X,C)

μd(C)
− ρ(X)

∣∣∣∣� Ml(C)−δ,

for every cube C in R
d with side l(C) � l0. Since ρ(X) > 0, a simple computation shows that there exist constants

M ′, l1 > 0 such that

max

(∣∣∣∣ρ(X)μd(C)

N (X,C)
− 1

∣∣∣∣,
∣∣∣∣ N (X,C)

ρ(X)μd(C)
− 1

∣∣∣∣
)
� M ′l(C)−δ

for every cube C with side l(C) � l1 and thus

1 � eρ(X)(C) � 1 + M ′l(C)−δ.

Taking the supremum we get

1 � Eρ(X)

(
l(C)

)
� 1 + M ′l(C)−δ, for all l(C) � l1. (3.3)

It follows that
∑∞

m=1 logE(2m) converges which implies that
∏∞

m=0 E(2m) also converges and the conclusion now
follows. �
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4. Proof of Theorem 2.2

First let us introduce some notations. A unit cube in R
d is a cube with size 1 whose vertices have integer coordi-

nates. We denote by U the set of all subsets of Rd which coincide with a finite union of unit cubes. Similarly, for all
δ > 0, we denote by Uδ the set of all subsets of Rd which coincide with a finite union of cubes with size δ whose
vertices have coordinates in δZd . In [10], Laczkovich obtained the following very elegant characterization of Delone
sets that can be obtained from a lattice βZd by a bounded displacement.

Theorem 4.1. (See [10].) For any d � 2 and for every Delone set X in R
d and every α > 0, the following statements

are equivalent:

(1) There exists K > 0 such that for every subset U ∈ U ,∣∣N (X,U) − αμd(U)
∣∣ �Kμd−1(∂U); (4.1)

(2) There is a bounded displacement from X onto α−1/d
Z

d .

Remark 5. Notice that by rescaling Theorem 4.1 works as well if we prove Eq. (4.1) for all subsets U in some Uδ .

Using Laczkovich’s characterization and the above remark, Theorem 2.2 turns to be a straightforward corollary of
the following result, whose proof follows arguments introduced in [1] and is given in Appendix B.

Theorem 4.2. Let d > 0 and let S be a substitution rule with dilation factor λ and primitive substitution matrix MS .
If r(MS) < λ, then there exist δ > 0, K > 0 and α > 0 such that for every tiling T in ΩS ,∣∣N (XT ,U) − αμd(U)

∣∣� Kμd−1(∂U) (4.2)

for every subset U ∈ Uδ .
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Appendix A. Proof of Theorem 3.1

Burago and Kleiner proved that Theorem 3.1 is a consequence of the following proposition that they prove in
dimension 2.

Proposition A.1. Let u : Rd → R be a positive function which is constant on each open unit cube with vertices in Z
d ,

and let ρ > 0 be given. Assume that u and 1/u are bounded. For any cube C in R
d , let e(C) be the quantity

max

{
ρ

1
|C|

∫
C

u
,

1
|C|

∫
C

u

ρ

}
,

where |C| = μd(C) is the Lebesgue measure of the cube C. Define an “error” function E : N → R by letting
E(k) be the supremum of e(·) taken over the collection of cubes of the form [i1, i1 + k] × · · · × [id , id + k], where
(i1, . . . , id ) ∈ Z

d . If the product
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+∞∏
i=1

E
(
2i

)

converges, then there exists a bi-Lipschitz homeomorphism Ψ : Rd →R
d with det(∇Ψ ) = u a.e.

We prove this proposition in any dimension. Our proof is shorter than the specific one done in the two-dimensional
case in [3] and relies on the following lemma1 proved by D. Ye and T. Rivière:

Lemma A.2. (See [13].) Let D = [0,1]d , A = [0,1]d−1 ×[0,1/2] and B = [0,1]d−1 ×[1/2,1]. Let α > 0 and β > 0
such that α + β = 1. There exists a bi-Lipschitz homeomorphism Φ from D into itself such that:

(i) Φ(x) = x, x ∈ ∂D;
(ii) det(∇Φ) ≡ 2α in A and det(∇Φ) ≡ 2β in B;

(iii) ‖∇(Φ − Id)‖L∞(D) � Cη|β − α|;
(iv) ‖∇(Φ−1 − Id)‖L∞(D) � Cη|β − α|,

where 0 < η � α, 0 < η � β and Cη only depends on η.

In order to prove Proposition A.1, we adapt to our context a constructive method developed in [13]. Let n̄ =
(n1, . . . , nd) be a point in Z

d and m > 0 be a positive integer. Consider the cube:

Cn̄,m =
d∏

l=1

[
nl, nl + 2m

]
.

In each of these cubes, for each integer i, 0 � i � m, and each integer vector k̄ = (k1, . . . , kd) in Λm,i := Z
d ∩∏d

l=1[0,2m−i ), we consider the smaller cube:

Cn̄,m,i,k̄ =
d∏

l=1

[
nl + kl2

i , nl + (kl + 1)2i
]
.

Notice that for each 0 � i � m, and every pair k̄ 	= k̄′, the cubes Cn̄,m,i,k̄ and Cn̄,m,i,k̄′ have disjoint interiors. Moreover,⋃
k̄∈Λm,i

Cn̄,m,i,k̄ = Cn̄,m.

Take ε = (ε1, . . . , εd) ∈ {0,1}d , let 1 � p � d and denote by A
p

n̄,m,i,k̄
(ε), B

p

n̄,m,i,k̄
(ε) and D

p

n̄,m,i,k̄
(ε) the following

subsets of Cn̄,m,i,k̄ :

A
p

n̄,m,i,k̄
(ε) =

p−1∏
l=1

[
nl + kl2

i , nl + (kl + 1)2i
] ×

[
np + kp2i , np +

(
kp + 1

2

)
2i

]

×
d∏

l=p+1

[
nl +

(
kl + εl

2

)
2i , nl +

(
kl + εl + 1

2

)
2i

]
,

B
p

n̄,m,i,k̄
(ε) =

p−1∏
l=1

[
nl + kl2

i , nl + (kl + 1)2i
] ×

[
np +

(
kp + 1

2

)
2i , np + (kp + 1)2i

]

×
d∏

l=p+1

[
nl +

(
kl + εl

2

)
2i , nl +

(
kl + εl + 1

2

)
2i

]
,

1 Actually (iv) is not explicitly written in [13] but turns to be a straightforward consequence of the construction.
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and

D
p

n̄,m,i,k̄
(ε) = A

p

n̄,m,i,k̄
(ε) ∪ B

p

n̄,m,i,k̄
(ε).

Let u : Rd → R be a positive function which is constant on each open unit cube with vertices in Z
d and consider the

two positive numbers

α
p

n̄,m,i,k̄
(ε) =

∫
A

p

n̄,m,i,k̄
(ε)

u(x) dx∫
D

p

n̄,m,i,k̄
(ε)

u(x) dx
,

and

β
p

n̄,m,i,k̄
(ε) =

∫
B

p

n̄,m,i,k̄
(ε)

u(x) dx∫
D

p

n̄,m,i,k̄
(ε)

u(x) dx
.

We clearly have

α
p

n̄,m,i,k̄
(ε) + β

p

n̄,m,i,k̄
(ε) = 1.

Lemma A.3. ∀ε ∈ {0,1}d , ∀p ∈ {1, . . . , d}, ∀k̄ ∈ Λm,i , ∀i ∈ {1, . . . ,m}, ∀m > 0, and ∀n̄ ∈ Z
d , we have:

1

2

1

(E(2i−1))2
� α

p

n̄,m,i,k̄
(ε) � 1

2

(
E

(
2i−1))2

and

1

2

1

(E(2i−1))2
� β

p

n̄,m,i,k̄
(ε) � 1

2

(
E

(
2i−1))2

.

Consequently, if u satisfies the hypothesis of Proposition A.1, then there exists 0 < η� < 1 such that

η� � α
p

n̄,m,i,k̄
(ε)

and

η� � β
p

n̄,m,i,k̄
(ε).

Proof. The very definition of E(2i ) shows that for all Cn̄,m,i,k̄ we have:

1

E(2i )
ρ|Cn̄,m,i,k̄| �

∫
Cn̄,m,i,k̄

u(x) dx � E
(
2i

)
ρ|Cn̄,m,i,k̄|.

These estimates remain true for a given i, for every finite collection Ri of cubes Cn̄,m,i,k̄ with disjoint interiors:

1

E(2i )
ρ|Ri |�

∫
Ri

u(x) dx � E
(
2i

)
ρ|Ri |.

We remark that when 1 � i � m, Ap

n̄,m,i,k̄
(ε) and B

p

n̄,m,i,k̄
(ε) are precisely finite union of cubes Cn̄,m,i−1,k̄ with disjoint

interiors. The proof of the lemma follows easily. �
Up to homothety and rotation, we are in a situation to apply Lemma A.2 and get a bi-Lipschitz homeomorphism

Φ
p

n̄,m,i,k̄
(ε) from D

p

n̄,m,i,k̄
(ε) into itself such that:

(i) Φ
p

n̄,m,i,k̄
(ε)(x) = x, x ∈ ∂D

p

n̄,m,i,k̄
(ε);

(ii) det(∇Φ
p

n̄,m,i,k̄
(ε)) = 2α

p

n̄,m,i,k̄
(ε) in A

p

n̄,m,i,k̄
(ε);

(iii) det(∇Φ
p

(ε)) = 2β
p

(ε) in B
p

(ε);

n̄,m,i,k̄ n̄,m,i,k̄ n̄,m,i,k̄
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(iv) ‖∇(Φ
p

n̄,m,i,k̄
(ε) − Id)‖L∞(D

p

n̄,m,i,k̄
(ε)) � 1

2Cη�((E(2i−1))2 − (E(2i−1))−2);

(v) ‖∇(Φ
p

n̄,m,i,k̄
(ε)−1 − Id)‖L∞(D

p

n̄,m,i,k̄
(ε)) � 1

2Cη�((E(2i−1))2 − (E(2i−1))−2).

We denote by Φ
p

n̄,m,i,k̄
the bi-Lipschitz homeomorphism from Cn̄,m,i,k̄ into itself defined by Φ

p

n̄,m,i,k̄
(x) =

Φ
p

n̄,m,i,k̄
(ε)(x) if x ∈ D

p

n̄,m,i,k̄
(ε), and consider the bi-Lipschitz homeomorphism obtained by composition:

Φn̄,m,i,k̄ = Φd

n̄,m,i,k̄
◦ Φd−1

n̄,m,i,k̄
◦ · · · ◦ Φ1

n̄,m,i,k̄
.

Since the Jacobians of the Φ
p

n̄,m,i,k̄
are constant by parts, a simple calculation shows that

det(∇Φn̄,m,i,k̄) = 2d

∫
Cn̄,m,i−1,k̄′ u(x)dx∫
Cn̄,m,i,k̄

u(x) dx
,

for any sub-cube Cn̄,m,i−1,k̄′ in Cn̄,m,i,k̄ . It is also direct to check that:

‖∇Φn̄,m,i,k̄‖L∞(Cn̄,m,i,k̄ )
�Ki,d and

∥∥∇Φ−1
n̄,m,i,k̄

∥∥
L∞(Cn̄,m,i,k̄ )

� Ki,d ,

where

Ki,d =
(

1 + 1

2
Cη�

((
E

(
2i−1))2 − (

E
(
2i−1))−2))d

.

We denote by Φn̄,m,i the bi-Lipschitz homeomorphism from Cn̄,m into itself defined by Φn̄,m,i(x) = Φn̄,m,i,k̄(x) if
x ∈ Cn̄,m,i,k̄ , and we consider the bi-Lipschitz homeomorphism obtained by composition:

Ψn̄,m = Φn̄,m,m ◦ Φn̄,m,m−1 ◦ · · · ◦ Φn̄,m,1.

The map Ψn̄,m is a bi-Lipschitz homeomorphism on Cn̄,m which satisfies:

• Ψn̄,m = Id on ∂Cn̄,m;
• det(∇Ψn̄,m) = u

1
|Cn̄,m|

∫
Cn̄,m

u(x)dx
in each unit cube with integer vertices in Cn̄,m;

• ‖∇Φn̄,m‖L∞(Cn̄,m) �
∏m

i=1 Ki,d and ‖∇Φ−1
n̄,m‖L∞(Cn̄,m) �

∏m
i=1 Ki,d .

Lemma A.4. If the product
∏+∞

i=1 E(2i ) converges, then the product
∏+∞

i=1 Ki,d converges too.

Proof. It is enough to show that the product

+∞∏
i=1

(
1 + 1

2
Cη�

((
E

(
2i−1))2 − (

E
(
2i−1))−2))

converges and this last product converges if the series:

+∞∑
i=1

ln

(
1 + 1

2
Cη�

((
E

(
2i−1))2 − (

E
(
2i−1))−2))

converges. This will be true if

+∞∑
i=1

((
E

(
2i−1))2 − (

E
(
2i−1))−2)

< +∞,

and thus if
+∞∑((

E
(
2i−1)) − (

E
(
2i−1))−1)

< +∞. (�)

i=1
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On the one hand, the convergence of the product
∏+∞

i=1 E(2i ) implies that the series

+∞∑
i=1

ln
(
1 + (

E
(
2i−1) − 1

))
converges which in turn implies that

+∞∑
i=1

(
E

(
2i−1) − 1

)
< +∞.

On the other hand, for i0 large enough

+∞∑
i=i0

((
E

(
2i−1)) − (

E
(
2i−1))−1) � 2

+∞∑
i=i0

((
E

(
2i−1)) − 1

)
. �

We extend each Ψn̄,m by the Identity out of Cn̄,m to get a bi-Lipschitz homeomorphism of Rd .
It follows from Lemma A.4 that the sequence of bi-Lipschitz constants of the bi-Lipschitz homeomorphisms Ψn̄,m

is bounded and thus, using Azerlà–Ascoli theorem, there exists an accumulation point Φ which is a bi-Lipschitz
homeomorphism on R

d and which satisfies:

det(∇Φ) = u

ρ

in each unit cube with integer vertices in R
d . By post-composing Φ with a homothety with ratio ρ

1
d we get an answer

to Proposition A.1.
The reminder of the proof of Theorem 3.1, which uses the Hall marriage lemma, follows exactly [3] and the

dimension is irrelevant, see Section 4 in [3].

Appendix B. Proof of Theorem 4.2

We first state Theorem B.1 below, which is a generalization of the main theorem in [1].

Theorem B.1. Let d � 2 and let S be a substitution rule with dilation factor λ and primitive substitution matrix MS .
If r(MS) < λ, then there exist δ > 0, K > 0 and α > 0 such that for every tiling T in ΩS ,∣∣N (T ,U) − αμd(U)

∣∣ � KL(T , ∂U)

for every U ∈ Uδ , where N (T ,U) stands for the number of tiles of T that are contained in U and L(T , ∂U) stands
for the number of tiles of T that intersect ∂U .

Let us show how to prove Theorem 4.2 assuming Theorem B.1. We need to compare the number of tiles that
intersect the boundary of a subset U ∈ Uδ with the measure of its boundary.

For a subset A of Rd , define

rmin(A) := sup
{
r > 0

∣∣ there exists x ∈ A s.t. B(x, r) ⊂ A
}
.

Given a tiling T of Rd , define

rT = inf
{
rmin(t)

∣∣ t ∈ T
}

and

RT = sup
{
diam(t)

∣∣ t ∈ T
}
/2.

If 0 < rT < RT < +∞, then we say that T is locally finite and define KT := �4dRd
T r−d

T �. Notice that the substitution
tilings we consider in this paper are locally finite. A simple computation yields (see [1] for details):
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Lemma B.2. Let d � 2 and T be a locally finite tiling of Rd , then each ball of radius smaller than or equal to 2RT
meets at most KT tiles of T .

Corollary B.3. Let d � 2, T be a locally finite tiling of Rd and δ > 0. Then, for every subset U ∈ Uδ we have:

L(T , ∂U) �KT

(√
d − 1

2RT
+ 1

)d−1

δ−(d−1)μd−1(∂U).

Proof. Each facet of ∂U is covered by less than (�√d − 1/(2RT )� + 1)d−1 (d − 1)-cubes of size 2RT /
√

d − 1
having pairwise disjoint (d − 1)-interiors. Each of these cubes is included in a d-ball of radius 2RT and thus intersect
at most KT tiles of T . The number of facets of ∂U is equal to δ−(d−1)μd−1(∂U). �

Since there is exactly one point of XT in the center of each tile of T , it follows that

0 �N (XT ,U) −N (T ,U) � L(T , ∂U). (B.1)

Combining this inequality with Theorem B.1 and Corollary B.3 we obtain that there exists a constant K > 0 such
that ∣∣N (XT ,U) − αμd(U)

∣∣ < Kμd−1(∂U) (B.2)

for every for every U ∈ Uδ , which proves Theorem 4.2.
We now turn to the proof of Theorem B.1. First let us choose the adequate scale δ. Let T be a tiling in ΩS . We say

that δ fits with T if it is chosen large enough such that for any subset U ∈ Uδ :

• U contains a tile of T ;
• for any connected component C of ∂U , KT <N (T ,C);
• two distinct connected components of ∂U cannot intersect the same tile of T .

From now, δ will be chosen to fit with T . The proof of Theorem B.1 is divided in four key arguments.
• The first argument is a topological simplification. We show that it suffices to consider U in Uδ such that U and ∂U

are connected. Indeed, for any U ∈ Uδ , there is a finite collection V1, . . . , Vn of pairwise disjoint connected elements
in Uδ such that:

U =
n⋃

i=1

Vi.

We denote by ∂Vi,0, . . . , ∂Vi,p(i) the connected components of ∂Vi , and fix ∂Vi,0 to be the connected component that
bounds the component of the complementary of Vi with infinite diameter. For j = 1, . . . , p(i), ∂Vi,j is the boundary
of an element Vi,j ∈ Uδ which is connected and whose interior does not intersect Vi . We denote by V̂i the union:

V̂i = Vi ∪ Vi,1 ∪ · · · ∪ Vi,p(i),

it belongs to Uδ is connected and its boundary ∂Vi,0 is connected. If Theorem B.1 works for a δ that fits with T and
all U ∈ Uδ which are connected and have a connected boundary, we obtain that there exists a constant K > 0 such
that, on one hand:∣∣N (T , V̂i) − αμd(V̂i)

∣∣ < KL(T , ∂Vi,0), ∀i ∈ {1, . . . , n}, (B.3)

and on the other hand:∣∣N (T ,Vi,j ) − αμd(Vi,j )
∣∣ < KL(T , ∂Vi,j ), ∀i ∈ {1, . . . , n}, ∀j ∈ {

1, . . . , p(i)
}
. (B.4)

Since

N (T , V̂i) =N (T ,Vi) +
p(i)∑(

N (T ,Vi,j ) +L(T , ∂Vi,j )
)

j=1
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and

μd(V̂i) = μd(Vi) +
p(i)∑
j=1

μd(Vi,j ),

we get

∣∣N (T ,Vi) − αμd(Vi)
∣∣ < (K + 1)

(
p(i)∑
j=0

L(T , ∂Vi,j )

)
, ∀i ∈ {1, . . . , n}.

Summing on all the connected components of U we get∣∣N (T ,U) − αμd(U)
∣∣ < (K + 1)L(T , ∂U).

From now we will restrict ourselves to the case when U and ∂U are connected. The remainder of the proof follows
the same lines of the proof of the main result in [1].

• The second argument is a geometrical one and is developed in the following two lemmas. These lemmas are
proved in [1] for the two-dimensional case. The generalization of the first one to higher dimension is straightforward
and therefore we skip it, while the proof of the second one requires slight modifications so is given for the convenience
of the reader.

Lemma B.4. Let T be a locally finite tiling and γ be a simple curve. Then,

diam(γ ) � 2RT tL(T , γ ),

where L(T , γ ) denotes the number of tiles that γ intersects.

Lemma B.5. Let T be a locally finite tiling and C be a compact arc connected subset of Rd . Then, for every locally
finite tiling T ′ satisfying RT ′ > RT t , and KT t < L(T ′,C) � L(T ,C), we have:

L
(
T ′,C

)
� (2KT ′ + 1)

RT t

RT ′
L(T ,C),

where KT ′ is the constant defined in Lemma B.2.

Proof. Given y ∈R
d , set

Cy := {
t ∈ T ′ ∣∣ t ∩ B2RT ′ (y) 	= ∅}

and Ĉy :=
⋃
t∈Cy

t.

We construct a finite subset Y = {yi}pi=1 of C as follows. First, fix any point of C to be y1. Next, suppose that y1, . . . , yj

have been chosen in such a way that, for each i ∈ {1, . . . , j}, the point yi does not belong to Ĉyk
for every k ∈

{1, . . . , i−1}. Then, if the sets {Ĉyi
}ji=0 cover C, we set p = j and the construction is completed; otherwise, we choose

any point in the intersection of C and the complement of
⋃j

i=1 Ĉyi
as yj+1 and continue iterating the construction.

Since L(T ′,C) is finite (this is because T ′ is locally finite and C is compact) and, in each iteration we add at least one
tile of T ′ intersecting C to the region covered by {Ĉyi

}ji=0, the construction stops after finitely many iterations. Thus,
we have constructed a set Y = {yi}pi=1 with the following properties:

(1)
⋃

y∈Y Ĉy covers C;
(2) d(yi, yj ) > 2RT for every i, j ∈ {1, . . . , p} with i 	= j .

Lemma B.2 implies that for each i ∈ {1, . . . , p}, the set Cyi
contains at most KT ′ tiles of T ′. From (1), we deduce that

L
(
T ′,C

)
� pKT ′ . (B.5)

By hypothesis, p > 1.
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Now define B = {Bi = Byi
(RT ′ −RT t)}pi=1. From (2) it is clear that the balls in B are pairwise disjoint and that the

minimal distance between two distinct balls in B is (strictly) greater than 2RT t . Fix i ∈ {1, . . . , p}. Since p > 1, there
is a point z ∈ C that belongs to the complement of Bi . It follows that there is a path γi : [0,1] → C such that γi(0) = yi

and γi(1) = z. It is clear that the map η : t �→ ‖yi − γ (t)‖ is continuous, η(0) = 0 and η(1) > RT ′ − RT t . By
continuity, we deduce that there exists ti ∈ [0,1] such that γi([0, ti]) is included in Bi and ‖γi(ti)− yi‖ = RT ′ −RT t .
Applying Lemma B.4 we get

RT ′ − RT t � diam
(
γi

([0, ti]
))

� 2RT tL
(
T , γi

([0, ti]
))

for all i ∈ {1, . . . , p}. Adding these inequalities yields

p(RT ′ − RT t) � 2RT t

p∑
i=1

L
(
T , γi

([0, ti]
))

. (B.6)

Now, observe that since the image of γi([0, ti]) is included in Bi for each i, and the distance between Bi and Bj with
i 	= j is greater than 2RT t , each tile in T that intersects γi([0, ti]) does not intersect γj ([0, tj ]) for every j 	= i. On
the other hand, the image of γi is included in C. Hence, we deduce that

p(RT ′ − RT ) � 2RT L(T ,C). (B.7)

Finally, combining (B.7) and (B.5) we get

L
(
T ′,C

)
� 2KT ′

RT t

RT ′ − RT t
L(T ,C). (B.8)

To finish the proof, fix c > 0 arbitrarily and consider the following two cases. First, suppose that RT ′/RT � 1 + c.
Since L(T ′,C) � L(T ,C), it follows that

L
(
T ′,C

)
� (1 + c)

RT t

RT ′
L(T ,C). (B.9)

Now suppose that RT ′/RT > 1 + c. It is easy to check that

(1 + c)(RT ′ − RT ) > cRT ′ .

Replacing this inequality in (B.8) we get

L
(
T ′,C

)
� 2KT ′

RT t

RT ′

(
1 + 1

c

)
L(T ,C). (B.10)

Combining (B.10) and (B.9) yields

L
(
T ′,C

)
� max

{
1 + c,2KT ′

(
1 + 1

c

)}
RT t

RT ′
L(T ,C).

An easy computation shows that the last bound is optimal when c = 2KT ′ and the conclusion follows. �
• The third argument is a combinatorial one, and is related to the notion of hierarchical decompositions for sub-

stitution tilings as studied in [1], which we recall now. Let S be a substitution rule with dilation factor λ and T be a
tiling in ΩE,P . The substitution map IS is defined as follows: Each tile t in T is first dilated by λ and then replaced
by O(Spi

), where t is an E -copy of pi and O is the isometry in E sending pi to t . The union of all these tiles is clearly

a tiling, which we denote IS(T ). Similarly, we also can define J (l)

S : ΩE,λ(l+1)P → ΩE,λlP in a natural way. Recall
that ΩS is defined as

ΩS =
⋂
k�0

Ik
S(ΩE,P ).

It is plain to check that the map IS is onto when restricted to ΩS . This implies that for each admissible tiling T , there
is a sequence (T l )l�0 of tilings, called a hierarchical sequence of T , such that

• T 0 = T ;
• for each l � 0, T l ∈ ΩE,λlP and J (l)(T l+1) = T l .
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Remark 6. For every tiling T in ΩS and all l � 0, it is easy to see that rT l = λlrT > 0 and RT l = λlRT < +∞.
Thus, KT l = KT for all l � 0.

Proposition B.6. (See [1].) Let T be an admissible tiling for S and let (T l)l�0 be a hierarchical sequence of T and
suppose that δ > 0 fits T . For every subset U ∈ Uδ such that U and ∂U are connected, there exists a finite collection
U0, . . . ,Um−1 of closed subsets of U such that:

(i) UT =: ⋃m−1
i=0 Ui = ⋃

t∈uT t where uT = {t ∈ T | t ⊂ U};
(ii) all Ul’s have pairwise disjoint interiors;

(iii) for each l ∈ {0, . . . ,m − 1}, Ul is a union of tiles in T l , and does not contain a tile in T l+1;
(iv) U does not contain a tile of T m.

The collection {U0, . . . ,Um−1} is called a hierarchical decomposition of U associated with T . Moreover,

N
(
T l ,Ul

)
� ‖MS‖1L

(
T l+1, ∂U

)
, (B.11)

for all l ∈ {0, . . . ,m − 1}, where ‖MS‖1 is the maximum absolute column sum of the substitution rule M , and

λm−l−1 � RT
rT

L
(
T l , ∂U

)
, (B.12)

for all l ∈ {0, . . . ,m − 1}.

Proof. Despite the fact that in [1], the proof of Proposition B.6 is given in the particular case when U is a bounded
connected domain of the plane, it works here exactly along the same lines. �

• The last argument is an algebraic one. It consists into applying Perron–Frobenius theory to the substitution
matrix MS . Recall that we are assuming that M is primitive. Thus, Perron–Frobenius theorem asserts that MS has
a largest real eigenvalue μ > 0, the Perron eigenvalue, which is simple and larger than one. Recall that r(M) is the
modulus of the second largest eigenvalue of M , that is,

r(M) = max
{|η| ∣∣ η 	= μ is an eigenvalue of M

}
.

Now, if v is a right-eigenvector associated with the eigenvalue μ with positive coefficients and we let e be the unit
vector ( 1√

n
, . . . , 1√

n
), then we have the following well-known consequence of Perron–Frobenius theorem, see for

instance [8].

Proposition B.7. For all ρ > r(M), there exist K = K(ρ) > 0 and α > 0 such that∥∥Ml
Se − αμlv

∥∥
1 � Kρl (B.13)

for all integer l > 0.

Recall that Q is the set of types of prototiles. Given qi, qj ∈ Q, mi,j counts the number of tiles of type qi in Sp

where p is any prototile in qj . The relation with Perron–Frobenius theory comes from the fact that if m
(l)
i,j is the

corresponding element of Ml
S , then m

(l)
i,j counts the number of tiles of type qi in a prototile of type qj after applying

the substitution to it l times.

Proof of Theorem B.1. Let {U0, . . . ,Um−1} be the hierarchical decomposition of U given by Proposition B.6. Since
N (T ,U) � 1, we have that m � 1. Recall that Q = {q1, . . . , qn} denote the set of S-equivalent classes of tiles in P .
The S-equivalent relation can be extended to the set of tiles E -equivalent to some tile in λlP , for every integer l � 0.
We have that a tile λlt is S-equivalent to λlp for some p ∈ P if and only if t is S-equivalent to p. Thus, the number
of S-equivalence classes of the tiles in P and λlP is the same. Denote by {λlq1, . . . , λ

lqn} the set of S-equivalence
classes of tiles in λlP and by {λlp1, . . . , λ

lpn} a set of representatives of these classes.
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Observe that

N (T ,U) =
m−1∑
l=0

∑
t l∈Ul

N
(
T , t l

) =
m−1∑
l=0

n∑
i=1

∑
t l∈Ul

t l∈λlqi

N
(
T , t l, λlqi

)
, (B.14)

where N (T , t l , λlqi) denotes the number of tiles of T included in the tile t l ∈ λlqi . Using the matrix MS , we deduce

N
(
T , t l, λlqi

) =
n∑

j=1

ml
i,j ,

where ml
i,j denotes the (i, j)-element of the matrix Ml

S . Moreover, it is straightforward to check, using the fact that

any tile in λqi is tiled by O(Rd)-copies of tiles in qj , for j = 1, . . . , n, and that MS counts these tiles, that

w = (
μd(p1), . . . ,μd(pn)

)
is a right-eigenvector for MS with eigenvalue λd , which is the Perron–Frobenius eigenvalue of MS . Thus, as a direct
corollary of Proposition B.7, we get:

Corollary B.8. For all ρ > r(MS), there are K0 and α > 0 such that for all l ∈ {0, . . . ,m}, all i ∈ {1, . . . , n}, we have∣∣N (
T , t l, λlpi

) − αμd

(
λlpi

)∣∣� K0ρ
l.

On the other hand

μd(UT ) =
m−1∑
l=0

∑
t l∈T l ,

t l⊂Ul

μd

(
t l

) =
m−1∑
l=0

n∑
i=1

∑
t l∼λlpi∈T l ,

t l⊂Ul

μd

(
λlpi

)
. (B.15)

Multiplying (B.15) by α and then subtracting to (B.14) we get

N (T ,U) − αμd(UT ) =
m−1∑
l=0

n∑
i=1

∑
t l∼λlpi∈T l ,

t l⊂Ul

(
N

(
T , t l, λlqi

) − αμd

(
λlpi

))
. (B.16)

Applying Corollary B.8 to (B.16) yields

∣∣N (T ,U) − αμd(UT )
∣∣ � m−1∑

l=0

n∑
i=1

∑
t l∼λlpi∈T l ,

t l⊂Ul

K0ρ
l =

m−1∑
l=0

N
(
T l ,Ul

)
K0ρ

l. (B.17)

After combining (B.11) and (B.17), we get

∣∣N (T ,U) − αμd(UT )
∣∣ � K0‖M‖1

m−1∑
l=0

L
(
T l+1, ∂U

)
ρl. (B.18)

We want to apply Lemma B.5 to give an upper bound of N (T l+1, ∂U) in terms of N (T , ∂U) for all l ∈
{0, . . . ,m − 1}. First, observe that the sequence N (T l , ∂U), l ∈ N, is decreasing. Define l0 to be the largest
l ∈ {1, . . . ,m} such that N (T l , ∂U) > KT . Now, we split the sum in (B.24) into two parts

l0−1∑
l=0

L
(
T l+1, ∂U

)
ρl +

m−1∑
l=l0

L
(
T l+1, ∂U

)
ρl. (B.19)

We apply Lemma B.5 to each term in the first sum, which gives

L
(
T l+1, ∂U

)
� (2KT l+1 + 1)

RT t L(T , ∂U)

RT l+1
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for all l ∈ {0, . . . , l0 − 1}. Since KT l = KT and RT t/RT l = λ−l for every l � 0, it follows that

l0−1∑
l=0

L
(
T l+1, ∂U

)
ρl � (2KT t + 1)λ−1L(T , ∂U)

l0−1∑
l=0

(
ρ

λ

)l

. (B.20)

Now we estimate the second sum in (B.19). Since ρ < λ and the sequence N (T l , ∂U), l ∈ N, is decreasing, we
have

m−1∑
l=l0

L
(
T l+1, ∂U

)
ρl � L

(
T l0, ∂U

)m−1∑
l=l0

λl �KT

(
λm − λl0

λ − 1

)
. (B.21)

From (B.12) we get λm � λRT t/rT tL(T , ∂U). Setting NT t := (KT tRT t/rT )(λ/(λ − 1)) and replacing into
(B.21) we get

m−1∑
l=l0

L
(
T l+1, ∂U

)
ρl � NT tL(T , ∂U). (B.22)

Combining (B.20) and (B.23), we get

m−1∑
l=0

L
(
T l+1, ∂U

)
ρl �

(
(2KT t + 1)

l0−1∑
l=0

(
ρ

λ

)l

+ NT t

)
L(T , ∂U). (B.23)

Using B.24 we conclude that

∣∣N (T ,U) − αμd(UT )
∣∣ � K0‖M‖1(2KT t + 1)

(
(2KT t + 1)

l0−1∑
l=0

(
ρ

λ

)l

+ NT t

)
L(T , ∂U). (B.24)

Since we can choose r(M) < ρ < λ, for all δ that fits with T , there exists a constant K̂ which depends only on T such
that ∣∣N (T ,U) − αμd(UT )

∣∣ � K̂L(T , ∂U). (B.25)

On the other hand, we have∣∣μd(U) − μd(UT )
∣∣� (2RT )dL(T , ∂U), (B.26)

for all U ∈ Uδ . Combining these last two equations, we get that for all δ that fits with T , there exists a constant K

which depends only on T such that:∣∣N (T ,U) − αμd(U)
∣∣ � KL(T , ∂U). � (B.27)
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