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Abstract

The present paper is devoted to the study of the incompressible Euler limit of the Boltzmann equation via the relative entropy
method. It extends the convergence result for well-prepared initial data obtained by the author in [L. Saint-Raymond, Convergence
of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Ration. Mech. Anal. 166 (2003) 47–80]. It explains
especially how to take into account the acoustic waves and relaxation layer, and thus to obtain convergence results under weak
assumptions on the initial data.

The study presented here requires in return some nonuniform control on the large tails of the distribution, which is satisfied
for instance by the classical solutions close to a Maxwellian built by Guo [Y. Guo, The Vlasov–Poisson–Boltzmann system near
Maxwellians, Comm. Pure Appl. Math. 55 (2002) 1104–1135].

Résumé

Cet article est consacré à l’étude – par la méthode d’entropie relative – de l’asymptotique de l’équation de Boltzmann conduisant
aux équations d’Euler incompressibles. Il étend le résultat établi par l’auteur dans [L. Saint-Raymond, Convergence of solutions
to the Boltzmann equation in the incompressible Euler limit, Arch. Ration. Mech. Anal. 166 (2003) 47–80] pour des données bien
préparées. Le problème est de prendre en compte les ondes acoustiques et la couche initiale de relaxation, pour obtenir un résultat
de convergence sous des hypothèses peu contraignantes sur la donnée initiale.

L’étude présentée ici requiert en contrepartie un contrôle (non uniforme) sur la distribution des grandes vitesses, qui est sa-
tisfait par exemple par les solutions classiques construites par Guo dans [Y. Guo, The Vlasov–Poisson–Boltzmann system near
Maxwellians, Comm. Pure Appl. Math. 55 (2002) 1104–1135].

Keywords: Incompressible Euler equations; Boltzmann equation; Hydrodynamic limits; Relaxation layer; Acoustic waves; Relative entropy
method

The subject matter of this article is to develop new tools for the study of hydrodynamic limits, and more precisely to
understand how the relative entropy method (to be described in the next section) can be adapted in domains where the
distribution is expected to present rapid variations. The main idea is that, in such domains, the formal hydrodynamic
approximation is not relevant, and that correctors have to be added in order to obtain the convenient asymptotics.
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The main point is indeed to obtain a refined description of the asymptotics taking into account both the relaxation
in the initial layer and the acoustic waves.

The subsequent modifications of the stability inequality are then very similar to those arising when taking into
account fast oscillations of small amplitudes in energy methods (see for instance [17] or [30]).

1. The relative entropy method

1.1. Strategy of the relative entropy method

The main idea behind energy and entropy methods is to compare the distribution under consideration and its formal
asymptotics in some appropriate metrics, and then to prove that this quantity tends to zero at the limit.

For the study of hydrodynamic limits of the Boltzmann equation, this program is applied as follows
• Step 1: The functional which measures the stability for the solutions fε to the scaled Boltzmann equation is obtained
naturally from the relative entropy

H(fε |M) =
∫∫ (

fε log
fε

M
− fε + M

)
dx dv

where M is some reference global equilibrium, for instance the reduced centered Gaussian:

M(v) = 1

(2π)3/2
exp

(
−|v|2

2

)
.

This functional is indeed a nonnegative Lyapunov functional for the Boltzmann equation. It further controls the
size of the fluctuation in incompressible regimes

H(fε |M) � 2
∫

(
√

fε − √
M)2 dv dx

(which is not the case of the L1-norm).
Note that the idea of using the notion of relative entropy for this kind of problems goes back to C. Bardos, F. Golse

and C.D. Levermore who introduce the notion of entropic convergence in [3], and independently to Yau for his elegant
derivation of the hydrodynamic limit of the Ginzburg–Landau lattice model [31].
• Step 2: The approximate solution is then determined by formal arguments, coupling expansions such as the Hilbert
or Chapman–Enskog expansions [21,8], filtering methods [30,17] and study of the boundary layers [25,10]. It depends
of course of the scaling of the Boltzmann equation.

In the regime we consider here, i.e. in the regime leading to the incompressible Euler equations, and assuming
specular reflection at the boundary, we expect the approximate solutions to be decomposed as the sum of

• a purely kinetic part (determined by the relaxation process in the initial layer);
• a fast oscillating hydrodynamic part (governed by the acoustic equations);
• a nonoscillating hydrodynamic part (obtained by formal expansion of Hilbert or Chapman–Enskog’s type) satis-

fying the incompressible Euler equations, supplemented by some suitable equation for the temperature.

For a formal derivation of this asymptotics including a brief justification of the suitable scaling, we refer to Appendix C
and the references therein.
• Step 3: The convergence is then obtained in the form of some stability inequality on the modulated entropy defined
by

H(fε |fapp) =
∫∫ (

fε log
fε

fapp
− fε + fapp

)
dx dv. (1.1)

This is of course the main difficult step, which requires many technical computations and estimates, and where the
theory of the Boltzmann equation under consideration plays a crucial role.
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1.2. Convergence results for the renormalized solutions to the scaled Boltzmann equation

Given the state of the art about renormalized solutions to the Boltzmann equation, we are actually able to establish
only a very partial convergence result.

Before stating more precisely that convergence result, let us introduce the usual notations and assumptions regard-
ing the Boltzmann equation:

∂tf + v · ∇xf = Q(f,f ),

f|t=0 = f in with H(f in|M) < +∞. (1.2)

The collision integral is given by

Q(f,f )(v) =
∫∫

R3×S2

(
f (v′)f (v′

1) − f (v)f (v1)
)
b(v − v1,ω)dv1 dω (1.3)

with

v′ ≡ v′(v, v1,ω) = v − (v − v1) · ωω,

v′
1 ≡ v′

1(v, v1,ω) = v1 + (v − v1) · ωω, (1.4)

and where the function b ≡ b(v − v1,ω), called the collision kernel, is measurable, a.e. positive and satisfies Grad’s
cutoff assumption, i.e. the bounds

0 < b(z,ω) � Cb

(
1 + |z|)β a.e. on R3 × S2,∫∫

S2

b(z,ω)dω � 1

Cb

|v|
1 + |v| a.e. on R3 (1.5)

for some Cb > 0 and β ∈ [0,1]. In most of the literature on the Boltzmann equation, the values of f at v1, v′ and v′
1

are denoted respectively

f1 := f (v1), f ′ := f (v′), f ′
1 := f (v′

1).

Throughout this paper, we shall henceforth follow this well-established usage.
The theory of renormalized solutions in this framework is due to Lions [22] following the fundamental paper by

Di Perna and Lions [13]. In order to study hydrodynamic limits, we also need some later improvements of the theory
due to Lions and Masmoudi [23] (introduction of a defect measure to recover the local conservation of momentum)
and to Mischler [26] (extension to spatial domains with boundaries). A compendium of these results can be found for
instance in [29]:

Theorem 1.1. Let Ω be some smooth domain. Given any initial data f in satisfying

H
(
f in

∣∣M)
< +∞,

there exists a renormalized solution f ∈ C(R+,L1
loc(Ω × R3)) relatively to M to the Boltzmann equation (1.2) with

initial data f in, supplemented with the condition of specular reflection on Σ− = {(x, v) ∈ ∂Ω × R3/v · n(x) < 0}:
f (t, x, v) = f

(
t, x, v − 2

(
v · n(x)

)
n(x)

)
.

Moreover, f satisfies

– the continuity equation

∂t

∫
f dv + ∇x ·

∫
f v dv = 0; (1.6)
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– the momentum equation with defect measure

∂t

∫
f v dv + ∇x ·

∫
f v ⊗ v dv + ∇x · m = 0 (1.7)

where m is a Radon measure on R+ × Ω with values in the nonnegative symmetric matrices;
– the entropy inequality

H(f |M)(t) +
∫

tracem(t) +
t∫

0

∫
Ω

D(f )(s, x) ds dx � H
(
f in

∣∣M)
(1.8)

where the entropy dissipation D(f ) is defined by

D(f ) = 1

4

∫∫∫
(f ′f ′

1 − ff1) log
f ′f ′

1

ff1
b dv dv1 dω.

In such a framework, the incompressible Euler asymptotics has been established for well-prepared initial data, that
is in the case when the purely kinetic part, the fast oscillating hydrodynamic part and the nonoscillating part of both
the density and temperature vanish asymptotically. Up to some standard change of variables, we can always assume
that the macroscopic density and the temperature are identically equal to 1. With the notations of Section 1.1, we then
choose fapp to be the Maxwellian distribution with unit mass and variance, centered at εu

fapp(t, x, v) = M1,εu(t,x),1(v) = 1

(2π)3/2
exp

(
−|v − εu|2

2

)
,

where ε is the order of magnitude of the Mach number and u is the limiting bulk velocity.
Furthermore we only consider asymptotics leading to smooth solutions u of the incompressible Euler equations

without Prandtl boundary layers.
More precisely the convergence result established in [28] can be stated as follows

Theorem 1.2. Let Ω be some smooth domain of R3 (possibly the whole space R3), or the three-dimensional torus T3.
Let f in

ε ∈ L1
loc(Ω ×R3) be a family of initial fluctuations around some global equilibrium M ( for instance the centered

reduced Gaussian), i.e. satisfying

1

ε2
H

(
f in

ε |M)
� Cin, (1.9)

and such that

1

ε2
H

(
f in

ε

∣∣M1,εuin,1
) → 0 as ε → 0, (1.10)

for some given divergence-free smooth vector field uin ∈ L2(Ω).
Let fε be a family of renormalized solutions to the scaled Boltzmann equation

ε∂tfε + v · ∇xfε = 1

εq
Q(fε, fε) on R+ × Ω × R3,

fε(0, x, v) = f in
ε (x, v) on Ω × R3, (1.11)

where q > 1, supplemented with the condition of specular reflection on Σ− = {(x, v) ∈ ∂Ω × R3/v · n(x) < 0}:
fε(t, x, v) = fε

(
t, x, v − 2

(
v · n(x)

)
n(x)

)
.

Then the family of fluctuations gε defined by fε = M(1+ εgε) is relatively weakly compact in L1
loc(dt dx,L1(dv)),

and any limit point g of (gε) is an infinitesimal Maxwellian

g = u · v.

Furthermore u coincides with the Lipschitz solution to the incompressible Euler equations
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∂tu + u · ∇xu + ∇xp = 0, ∇x · u = 0 on R+ × Ω,

u(0, x) = uin(x) on Ω,

u · n = 0 on R+ × ∂Ω (1.12)

as long as the latter does exist.

• Let us just mention that the first result obtained in this framework is due to Golse: in [5], the convergence
of renormalized solutions of the scaled Boltzmann equation to solutions of the incompressible Euler equations is
established for well-prepared data assuming further

(i) the local conservation of momentum which is not guaranteed for renormalized solutions of the Boltzmann equa-
tion; and

(ii) some nonlinear estimate, namely

(
1 + |v|2) g2

ε

1 + ε
2gε

relatively weakly compact in L1
loc

(
dt dx,w − L1(M dv)

)
which provides both a control on large velocities, and some equiintegrability with respect to space variables.

The proof is based on the following stability inequality

1

ε2
H(fε |M1,εw,1)(t) + 1

εq+3

t∫
0

∫
D(fε)(s, x) dx ds

� 1

ε2
H(fε,in|M1,εwin,1) + 1

ε

t∫
0

∫
A(w) ·

∫
(εw − v)fε(s, x, v) dv dx ds

− 1

2ε2

t∫
0

∫ (∇xw + (∇xw)T
) :

∫
(v − εw)⊗2fε(s, x, v) dv dx ds (1.13)

satisfied under assumption (i), for all t ∈ [0, T ) and all smooth solenoidal vector field w ∈ C∞
c ([0, T ] × Ω), where A

is the acceleration operator defined by

A(w) = ∂tw + w · ∇xw. (1.14)

The control of the last term in the right-hand side of (1.13) is then obtained from assumption (ii).
• Assumption (i) was removed by Lions and Masmoudi in [23]; their argument uses the local momentum conser-

vation with nonnegative matrix-valued defect measure satisfied by renormalized solutions of the Boltzmann equation.
Inequality (1.13) is then replaced by

1

ε2
H(fε |M1,εw,1)(t) + 1

ε2

∫
trace(mε)(t) + 1

εq+3

t∫
0

∫
D(fε)(s, x) dx ds

� 1

ε2
H(fε,in|M1,εwin,1) + 1

ε

t∫
0

∫
A(w) ·

∫
(εw − v)fε(s, x, v) dv dx ds

− 1

2ε2

t∫
0

∫ (∇xw + (∇xw)T
) :

(
mε(s) +

∫
(v − εw)⊗2fε(s, x, v) dv dx

)
ds. (1.15)

That the defect measure 1
ε2 mε vanishes in the incompressible Euler limit follows from the strong convergence result

to be proved.
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• Assumption (ii) was removed by the author first in the framework of the BGK equation [27], then in the case
of the original Boltzmann equation [28] using refined dissipation estimates. The main idea is to introduce a suitable
decomposition of the momentum flux, and estimate each term in that decomposition either by the modulated entropy,
or by the entropy dissipation. One therefore proves

− 1

2ε2

t∫
0

∫∫ (∇xw + (∇xw)T
) : (v − εw)⊗2(fε − M1,εw,1)(s, x, v) dv dx ds

� C

ε2

t∫
0

∥∥(∇xw + (∇xw)T
)∥∥

L2∩L∞(Ω)
H

(
fε |M1,εw,1

)
(s) ds + o(1). (1.16)

In other words, the argument is based on loop estimates instead of a priori estimates, and the conclusion follows from
Gronwall’s inequality.

1.3. About the assumptions on the initial data

The aim of this paper is to provide answers and tools to current limitations on the understanding of the incompress-
ible Euler limit of the Boltzmann equation. More precisely, our goal is to isolate problems of technical order (which
come from the lack of physical estimates for the renormalized solutions to the Boltzmann equation) from difficulties
linked to the physics of the system.

Note that the condition (1.10) in Theorem 1.2 is a very strong assumption on the family of initial data, meaning
that “well-prepared” has to be understood in the following sense.

• We first require that the initial distribution has a velocity profile close to local thermodynamic equilibrium, or in
other words that

gin
ε = ρin + uin · v + θ in |v|2 − 3

2
+ o(ε),

in entropic sense, in order that there is no relaxation layer.
• We then ask the limiting initial thermodynamic fields to satisfy the incompressibility and Boussinesq constraints

∇ · uin = 0, ∇(
ρin + θ in) = 0,

which ensures that there is no acoustic wave. We further require that the initial temperature fluctuation (and thus
mass fluctuation) is negligible

ρin = θ in = 0.

We therefore expect the temperature fluctuation to remain negligible.
• We finally need some spatial regularity on the limiting bulk velocity, more precisely we require some Lipschitz

continuity.

We are thus able to consider very general initial data (satisfying only the physical estimate (1.9)), but in the vicinity
of a small set of asymptotic distributions.

A natural question is then to know whether or not it is possible to get rid of these restrictions on the asymptotic
distribution. We will see that the first two assumptions come actually from the poor understanding of the Boltzmann
equation, in particular from the fact that renormalized solutions to the Boltzmann equation are not known to satisfy the
local conservation of energy (the heat flux is not even defined), whereas the last assumption concerning the regularity
of the limiting distribution is inherent to the modulated entropy method.

Considering solutions to the Boltzmann equation satisfying rigorously the basic physical properties, we can expect
to control the energy flux and extend the convergence result to take into account acoustic waves. In order to also deal
with the relaxation layer, we further need to understand the dissipation mechanism, which should be done by slight
modifications of the method.
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To close estimates in both cases, we will need an additional assumption on large velocities and large tails of the so-
lutions of the Boltzmann equation. We will therefore consider a stronger notion of solutions (for instance the solutions
built by Guo [19,20]) which ensures the (nonuniform) required controls, and we will establish in this framework a
convergence result without restriction on the initial data, i.e. without assuming any profile condition or thermodynamic
constraints.

However, obtaining full proofs valid in all physical configurations remain a challenging open problem, due in
particular to our limited knowledge concerning the solutions of the 3D incompressible Euler equations.

The first restriction is due to the apparition of Prandtl boundary layers (coming from the incompatibility between
the braking boundary condition and the inviscid motion equation) which are generally unstable [18], meaning that the
formal asymptotics is not expected to provide a good approximation.

The second restriction is inherent to the relative entropy method in its present form: flux terms are estimated in
terms of the modulated entropy, which requires a Lipschitz bound on the solution of the target equations. In order to
extend the method to the study of discontinuous asymptotics, one should probably modulate both the entropy and the
entropy dissipation, and use the local version (in t and x) of the entropy inequality:

∂t

1

ε2

∫ (
fε log

fε

M
− fε + M

)
dv + ∇x · 1

ε3

∫ (
fε log

fε

M
− fε + M

)
v dv = − 1

εq+3
D(fε).

Note that such a generalization of the relative entropy method, combined for instance with the weak notion of solution
to the one-dimensional Boltzmann equation [7,4], should offer perspectives for compressible hydrodynamic limits.

2. Description of the main results

2.1. Control of large tails and large velocities

Before stating our main theorem, let us briefly explain the difficulties encountered in extending the previous con-
vergence result.

We have seen that dealing with the well-prepared case requires to control the momentum flux, that is more or less
to obtain a bound on the quantity arising in assumption (ii). When considering more general initial data, we will have
to control the energy flux, that is a moment of order 3 of the distribution. Indeed we know that, even if the initial
temperature fluctuation is negligible, acoustic waves will couple all thermodynamic fields.

Such a control on gε |v|3 cannot come from the relative entropy (since Young’s inequality is saturated with a factor
|v|2). However, it is clear that, for Maxwellian distributions, the relative entropy controls all moments. The basic
idea (as in [28]) is therefore to use a decomposition of Chapman–Enskog’s type and to control the distance to local
equilibrium by the entropy dissipation, which requires to have some (nonuniform) control on large tails at our disposal.
That control will appear in our statement as an additional assumption, which can be removed by considering a suitable
notion of solution to the Boltzmann equation.

2.2. The incompressible Euler limit: convergence result

Theorem 2.1. Let Ω be some smooth bounded domain of R3, or the three-dimensional torus T3. Let f in
ε be a family

of measurable nonnegative functions on Ω × R3 satisfying the scaling condition (1.9)

1

ε2
H

(
f in

ε

∣∣M)
� Cin.

Assume furthermore that the fluctuations gin
ε defined by f in

ε = M(1 + εgin
ε ) converge entropically to some gin, i.e.

gin
ε ⇀ gin weakly in L1

loc(dt dx dv),

1

ε2
H

(
f in

ε

∣∣M) → 1

2

∫∫
M

(
gin

ε

)2
dv dx. (2.1)

Let fε be some family of solutions to the scaled Boltzmann equation
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ε∂tfε + v · ∇xfε = 1

εq
Q(fε, fε) on R+ × Ω × R3,

fε(0, x, v) = f in
ε (x, v) on Ω × R3, (2.2)

with q > 1, supplemented with the condition of specular reflection on Σ− = {(x, v) ∈ ∂Ω × R3/v · n(x) < 0}:
fε(t, x, v) = fε

(
t, x, v − 2

(
v · n(x)

)
n(x)

)
.

Assume that there exists some nonnegative constant C such that, for all ε∫
M

(
fε − M

M

)2

dv � C a.e. on R+ × Ω. (2.3)

Then the family of fluctuations (gε) defined by fε = M(1+εgε) is relatively weakly compact in L1
loc(dt dx,L1(dv)),

and any limit point g of (gε) as ε → 0 is an infinitesimal Maxwellian

g = u · v + θ

( |v|2 − 5

2

)
,

where (u, θ) coincides with the Lipschitz solution to the incompressible Euler equations

∂tu + u · ∇xu + ∇xp = 0, ∇x · u = 0 on R+ × Ω,

∂tθ + u · ∇xθ = 0 on R+ × Ω,

u(0, x) = Puin(x), θ(0, x) = 1

5

(
3θ in − 2ρin) on Ω,

u · n = 0 on R+ × ∂Ω (2.4)

as long as the latter does exist, say on [0, T ∗).
Furthermore the difference gε − g behaves asymptotically as

gosc

(
t

ε
, x, v

)
= (ρosc, uosc, θosc)

(
t

ε
, x

)
·
(

1, v,
1

2

(|v|2 − 3
))

where (ρosc, uosc, θosc) is the oscillating solution of the acoustic system (3.11) with initial data (ρin + 1
5 (3θ in −

2ρin), uin − Puin, θ in − 1
5 (3θ in − 2ρin)). More precisely,

gε(t, x, v) − g(t, x, v) − gosc

(
t

ε
, x, v

)
→ 0

strongly in L1
loc([0, T ∗) × Ω,L1(M dv)) as ε → 0.

Remark 2.2.

(i) The estimate (2.3) giving some control on large tails is satisfied for instance by the classical solutions of the
Boltzmann equation built by Guo when Ω = T3 [19] or Ω = R3 [20]. Of course for such solutions the local
conservation laws are satisfied.

(ii) The acoustic system (3.11) governing the oscillating part of the distribution becomes linear (with coefficients
depending on the nonoscillating part g) if there is no other resonance between acoustic waves than the trivial
ones.

(iii) In the case of unbounded domains, the linear penalization in (3.11) admits also continuous spectrum Sc: we
therefore expect the corresponding part of the solution

∫
λ∈Sc

Πλ(ρ,u, θ) dμ(λ) to satisfy some dispersion prop-
erty, and to converge strongly to 0 by Strichartz estimates (see [14] for a review on that topic). The oscillating
part is then obtained by considering the projection of (ρ,u, θ) on the subspace generated by the eigenmodes of
the acoustic penalization (ρosc, uosc, θosc) = ∑

λ∈Sp
Πλ(ρ,u, θ).

For the sake of simplicity, we restrict here our attention to the case when Sc = ∅. However a similar result can
be proved in any smooth domain (see Remark 3.4 in the next section for the case of R3).

(iv) Note that the purely kinetic part does not appear in that convergence statement since its contribution to the
L1

loc([0, T ∗)×Ω,L1(M(1+|v|2) dv)) norm is negligible. The entropic convergence we will establish is actually
stronger.
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3. Taking into account acoustic waves

3.1. The modulated entropy inequality

Since acoustic waves only contribute to the hydrodynamic part of the distribution, relaxing the constraints on the
initial thermodynamic fields does not require strong modifications of the method.

Outside from the initial layer, the strategy consists then in modulating the entropy by any fluctuation of Maxwellian
(without any restriction on the moments). We then expect the modulated entropy inequality to differ from the usual
one by some penalization arising in the acceleration operator. More precisely, we have the following

Proposition 3.1. Denote by fapp the fluctuation of Maxwellian defined by

logfapp = −3

2
log(2π) + ε

(
ρ − 3

2
θ

)
− 1

2
e−εθ |v − εu|2. (3.1)

Then, any solution to the scaled Boltzmann equation (2.2) such that (2.3) holds satisfies the following modulated
entropy inequality

H(fε |fapp)(t) + 1

εq+1

t∫
0

∫
D(fε) ds dx � H

(
f in

ε

∣∣f in
app

) +
t∫

0

∫
∂t exp(ερ)dx ds

− ε

t∫
0

∫∫
fε

(
1, e−εθ (v − εu),

1

2

(
e−εθ |v − εu|2 − 3

)) · Aε(ρ,u, θ) dv dx ds

−
t∫

0

∫∫
fε∇xu : Φε dx dv +

∫∫
fεe

1
2 εθ∇xθ · Ψε dx dv ds (3.2)

for some acceleration operator Aε(ρ,u, θ) to be defined by (3.10).

Proof. Start from the entropy inequality satisfied by the solution of the scaled Boltzmann equation with specular
reflection at the boundary:

H
(
fε(t)|M

) + 1

εq+1

t∫
0

∫∫
D(fε)(s, x) ds dx � H

(
f in

ε

∣∣M)
. (3.3)

By definition of the modulated entropy (1.1) and of the approximate solution (3.1), we then have

H(fε |fapp)(t) + 1

εq+1

t∫
0

∫
D(fε) ds dx � H

(
f in

ε

∣∣f in
app

) +
t∫

0

∫
∂t

(∫
fapp dv

)
dx ds

−
t∫

0

d

dt

∫∫ (
ε

(
ρ − 3

2
θ

)
− 1

2
e−εθ |v − εu|2 + 1

2
|v|2

)
fε dv dx ds (3.4)

with ∫
fapp dv = exp(ερ).

Using the continuity equation

∂t

∫
fε dv + ∇x · 1

∫
vfε dv = 0, (3.5)
ε
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the conservation of momentum

∂t

∫
vfε dv + ∇x · 1

ε

∫
v ⊗ vfε dv = 0, (3.6)

and the conservation of energy

∂t

∫
1

2
|v|2fε dv + ∇x · 1

ε

∫
1

2
|v|2vfε dv = 0, (3.7)

as well as the boundary condition on Σ−
fε(t, x, v) = fε

(
t, x, v − 2

(
v · n(x)

)
n(x)

)
,

and integrating by parts, we obtain

1

ε

d

dt

∫∫ (
ε

(
ρ − 3

2
θ

)
− 1

2
e−εθ |v − εu|2 + 1

2
|v|2

)
fε dv dx

=
∫∫

fε

(
∂t

(
ρ − 3

2
θ

)
+ (u · ∇x)

(
ρ − 3

2
θ

)
+ 1

ε
(v − εu) · ∇x

(
ρ − 3

2
θ

))
dv dx

+
∫∫

fεe
−εθ (v − εu) ·

(
∂tu + (u · ∇x)u + 1

ε
(v − εu) · ∇xu

)
dv dx

+ 1

2

∫∫
fεe

−εθ |v − εu|2
(

∂t θ + (u · ∇x)θ + 1

ε
(v − εu) · ∇xθ

)
dv dx

provided that u · n = 0 on ∂Ω .
Let us then introduce the kinetic momentum and energy fluxes

Φ =
(

v⊗2 − 1

3
|v|2Id

)
,

Ψ = 1

2
v
(|v|2 − 5

)
(3.8)

and their scaled translated variants

Φε = e−εθ

(
(v − εu)⊗2 − 1

3
|v − εu|2Id

)
,

Ψε = 1

2
e− 3

2 εθ (v − εu)
(|v − εu|2 − 5

)
(3.9)

and recall that Φ and Ψ belong to the orthogonal complement of the kernel Ker L where L is the linearized collision
operator at M . We have

e−εθ∇xu : (v − εu)⊗2 = ∇xu : Φε + 1

3
e−εθ∇x · u|v − εu|2,

1

2
e−εθ∇xθ · (v − εu)|v − εu|2 = e

1
2 εθ∇xθ · Ψε + 5

2
e−εθ∇xθ · (v − εu)

so that

1

ε

d

dt

∫∫ (
ε

(
ρ − 3

2
θ

)
− 1

2
e−εθ |v − εu|2 + 1

2
|v|2

)
fε dv dx

=
∫∫

fε

(
∂t

(
ρ − 3

2
θ

)
+ (u · ∇x)

(
ρ − 3

2
θ

))
dv dx

+
∫∫

fεe
−εθ (v − εu) ·

(
∂tu + (u · ∇x)u + 1

ε
eεθ∇x

(
ρ − 3

2
θ

)
+ 5

2ε
∇xθ

)
dv dx

+ 1

2

∫∫
fεe

−εθ |v − εu|2
(

∂t θ + (u · ∇x)θ + 2

3
∇x · u

)
dv dx

+ 1
∫∫

fε∇xu : Φε dx dv + 1
∫∫

fεe
1
2 εθ∇xθ · Ψε dx dv.
ε ε
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It is then natural to define the acceleration operator

Aε(ρ,u, θ) =
⎛
⎝ ∂tρ + (u · ∇x)ρ + 1

ε
∇x · u

∂tu + (u · ∇x)u + (
eεθ−1

ε

)∇x

(
ρ − 3

2θ
) + 1

ε
∇x(ρ + θ)

∂t θ + (u · ∇x)θ + 2
3ε

∇x · u

⎞
⎠ (3.10)

so that the inequality can be recasted in suitable form

1

ε

d

dt

∫∫ (
ε

(
ρ − 3

2
θ

)
− 1

2
e−εθ |v − εu|2 + 1

2
|v|2

)
fε dv dx

=
∫∫

fε

(
1, e−εθ (v − εu),

1

2

(
e−εθ |v − εu|2 − 3

)) · Aε(ρ,u, θ) dv dx

+ 1

ε

∫∫
fε∇xu : Φε dx dv + 1

ε

∫∫
fεe

1
2 εθ∇xθ · Ψε dx dv.

Plugging this last inequality in (3.4) leads to the announced result.
Note that the acceleration operator defined by (3.10) differs from the usual one (1.14) (defined for well-prepared

initial data) by some penalization forcing the weak limit to satisfy the constraints

∇x · u = 0, ∇x(ρ + θ) = 0. �
Remark 3.2. Note that the proof of Proposition 3.1 does not require any assumption on the spatial domain Ω .

3.2. Construction of the approximate solution

The next step is to construct a sequence of approximate solutions (ρε, uε, θε) to the systems

∂tρ + (u · ∇x)ρ + 1

ε
∇x · u = 0,

∂tu + (u · ∇x)u +
(

eεθ − 1

ε

)
∇x

(
ρ − 3

2
θ

)
+ 1

ε
∇x(ρ + θ) = 0,

∂t θ + (u · ∇x)θ + 2

3ε
∇x · u = 0 (3.11)

or in other words to the systems

Aε(ρ,u, θ) = 0.

More precisely, we will require that

Aε(ρε,uε, θε) → 0 in L2(dt dx) as ε → 0. (3.12)

One of the difficulty here (in comparison with classical penalization problems) is that we further need that these
approximate solutions conserve the total mass at higher order

1

ε2

∫
∂t exp(ερε) dx → 0 in L1(dt) as ε → 0. (3.13)

(Note that, for exact solutions, the total mass is exactly conserved.)
Such a construction is done by a filtering method, i.e. considering the family W ( t

ε
)(ρε, uε, θε) where W is the

semigroup generated by the linear penalization operator W defined by

W(ρ,u, θ) =
(

∇x · u,∇x(ρ + θ),
2

3
∇x · u

)
.

The first order approximation is then obtained by taking (strong ) limits in the filtered system. Nevertheless, because
of the high frequency oscillations, we do not expect the error in this first order approximation to converge strongly
to 0.

We therefore have to add some correctors (i.e. the second order approximation) in order to establish the convergence
statement (3.12).

More precisely, we have the following
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Proposition 3.3. Let (ρin, uin, θ in) belong to Hs(Ω) for some s > 5
2 .

Then there exist some T > 0, and some family (ρN
ε ,uN

ε , θN
ε ) such that

sup
N∈N

lim
ε→0

∥∥(
ρN

ε ,uN
ε , θN

ε

)∥∥
L1([0,T ],H s(Ω))

� CT , (3.14)

(
ρin,N

ε , uin,N
ε , θ in,N

ε

) → (
ρin, uin, θ in) in Hs(dx) as ε → 0 then N → ∞, (3.15)

Aε

(
ρN

ε ,uN
ε , θN

ε

) → 0 in L2(dt dx) as ε → 0 then N → ∞, (3.16)

and

1

ε2

∫
∂t exp

(
ερN

ε

)
dx → 0 in L1(dt) as ε → 0 then N → ∞. (3.17)

Proof. • Let us first introduce some notations to recast the system

Aε(ρ,u, θ) = 0

in a suitable form. For any V = (ρ,u, θ) we define the symmetric bilinear form B by

B(V ,V ) =
(

(u · ∇x)ρ

(u · ∇x)u + θ∇x

(
ρ − 3

2θ
)

(u · ∇x)θ

)
.

We are therefore interested in the (approximate) solutions to

∂tV + 1

ε
WV + B(V ,V ) = −

( 0
1
ε
(eεθ − 1 − εθ)∇x

(
ρ − 3

2θ
)

0

)

which are also approximate solutions (in the sense of (3.16)) to

∂tV + 1

ε
WV + B(V ,V ) = 0

provided that V is uniformly bounded in L∞([0, T ],W 1,∞ ∩L2(Ω)). Let us also recall that we further need that these
approximate solutions satisfy some global conservation of mass (3.17).

Let us then conjugate the system by the semi-group W ( t
ε
) generated by W

∂t

(
W

(
t

ε

)
V

)
+ W

(
t

ε

)
B(V ,V ) = 0,

or equivalently

∂t Ṽ + W
(

t

ε

)
B

(
W

(
− t

ε

)
Ṽ , W

(
− t

ε

)
Ṽ

)
= 0 (3.18)

denoting by Ṽ the filtered field Ṽ = W ( t
ε
)V .

We therefore expect the solutions (and approximate solutions) to (3.18) to have a very different behaviour depend-
ing on the nature of the spectrum of W . In the case when Ω is a smooth bounded domain, (Id − Δ)−1 is a compact
operator with discrete spectrum, from which we deduce that W has discrete spectrum. The (formal) limit system
depends therefore on the resonances between acoustic modes. In the case when Ω is an exterior domain, the Lapla-
cian has continuous spectrum and one can prove using dispersion properties that the corresponding acoustic waves
converge strongly to 0.

• Let us focus on the case of bounded domains. Let (iλk) be the sequence of eigenvalues of W corresponding to
the boundary condition of Neumann type

u · n = 0 on ∂Ω,

(see Appendix A.1 for a detailed study of the spectrum of W ). Denote by Πλ the projection on Ker(W − λ Id).
Note that a similar diagonalization result holds in the case of the torus T3, so that all that follows can be extended

in that case.
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At leading order, we then obtain

∂t Ṽ0 + BW(Ṽ0, Ṽ0) = 0, (3.19)

denoting by BW the limiting quadratic operator defined by

BW =
∑

k

∑
λk1 +λk2 =λk

Πλk
B(Πλk1

·,Πλk2
·). (3.20)

An algebraic computation (which is the basic argument in the compensated compactness method, see [24] for
instance) shows that, for all λ,μ = 0

Π0 B(ΠλṼ0,ΠμṼ0) = 0.

Indeed we have the following formula for Π0

Π0(ρ,u, θ) =
(

2ρ − 3θ

5
,Pu,

3θ − 2ρ

5

)
.

Then, with the notations ΠλṼ0 = (ρλ,uλ, θλ) and ΠμṼ0 = (ρμ,uμ, θμ), we get

Π0 B(ΠλṼ0,ΠμṼ0) = 1

2
Π0

(
(uλ · ∇x)ρμ + (uμ · ∇x)ρλ

(uλ · ∇x)uμ + (uμ · ∇x)uλ

(uλ · ∇x)θμ + (uμ · ∇x)θλ

)

= 1

10

(
(uλ · ∇x)(2ρμ − 3θμ) + (uμ · ∇x)(2ρλ − 3θλ)

5P((uλ · ∇x)uμ + (uμ · ∇x)uλ)

(uλ · ∇x)(3θμ − 2ρμ) + (uμ · ∇x)(3θλ − 2ρλ)

)

= 1

2

( 0
P(∇x(uλ · uμ) − uμ ∧ (∇x ∧ uλ) − uλ ∧ (∇x ∧ uμ))

0

)
(3.21)

since ∇x ∧ uλ = 0 and 3θλ − 2ρλ = 0.
In other words the equation governing the nonoscillating part can be decoupled from the rest of the system

∂tΠ0Ṽ0 + Π0 B(Π0Ṽ0,Π0Ṽ0) = 0,

which can be rewritten

∂t ρ̄ + (ū · ∇x)ρ̄ = 0, ∇x(ρ̄ + θ̄ ) = 0,

∂t ū + (ū · ∇x)ū + ∇xp = 0, ∇x · ū = 0, (3.22)

where (ρ̄, ū, θ̄ ) = Π0Ṽ0 = Π0V0. Note in particular that

∂t

∫
ρ̄ dx = 0.

A classical study based on harmonic analysis (see [14] for instance, and Appendix A.3 for a brief summary) allows
to prove that (3.19) has a unique strong solution V0 ∈ L∞

loc([0, T ∗),H s(Ω)) provided that V in ∈ Hs(Ω) for s > 5
2 .

The point is to check that

‖V ‖2
Hs(Ω) ∼ ‖Π0V ‖2

Hs(Ω) +
∑

k

(
1 + λ2

k

)s‖ΠkV ‖2
L2(Ω)

(see Appendix A.2 for more details). Note that

∂t Ṽ0 ∈ L∞
loc

([0, T ∗),H s−1(Ω)
)
.

Remarking that, for all λ = 0,∫
ρλ dx = 1

iλ

∫
(∇x · uλ)dx =

∫
uλ · ndσx = 0, (3.23)
∂Ω
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we get, denoting (ρ0, u0, θ0) = V0 = W (− t
ε
)Ṽ0,

∂t

∫
ρ0 dx = ∂t

∫
ρ̄ dx = 0.

Furthermore, the projection JN defined by (A.2) (which is a L2 projection on a finite dimensional subset of
C∞(Ω)) is such that

Ṽ0 − JNṼ0 → 0 as N → ∞ in L∞
loc

([0, T ∗),H s(Ω)
) ∩ W

1,∞
loc

([0, T ∗),H s−1(Ω)
)
,

and ∫
ρN

0 dx =
∫

ρ0 dx.

Note however that Ṽ0 (and consequently Ṽ N
0 = JNṼ0) is not an approximate solution to (3.18) in the sense

of (3.16). We have indeed

∂t Ṽ
N
0 + W

(
t

ε

)
B

(
W

(
− t

ε

)
Ṽ N

0 , W
(

− t

ε

)
Ṽ N

0

)
= (Id − JN)BW(Ṽ0, Ṽ0) + BW

(
Ṽ N

0 − Ṽ0, Ṽ
N
0 + Ṽ0

)
+ W

(
t

ε

)
B

(
W

(
− t

ε

)
Ṽ N

0 , W
(

− t

ε

)
Ṽ N

0

)
− BW

(
Ṽ N

0 , Ṽ N
0

)
where the last term is expected to be an oscillating term, that is to converge weakly but not strongly to 0. We therefore
need to build the second order approximation.

The second order approximation V N
1 is defined by

Ṽ N
1 = JN

∑
λk1+λk2 =λk

exp( it
ε
(λk − λk1 − λk2))

i(λk1 + λk2 − λk)
Πλk

B
(
Πλk1

Ṽ N
0 ,Πλk2

Ṽ N
0

)
(3.24)

so that

∂t

(
εṼ N

1

) = −JN

(
W

(
t

ε

)
B

(
W

(
− t

ε

)
Ṽ N

0 , W
(

− t

ε

)
Ṽ N

0

)
− BW

(
Ṽ N

0 , Ṽ N
0

))

+ 2εJN

∑
λk1 +λk2 =λk

exp( it
ε
(λk − λk1 − λk2))

i(λk1 + λk2 − λk)
Πλk

B
(
Πλk1

Ṽ N
0 , ∂tΠλk2

Ṽ N
0

)
.

From the bounds on Ṽ0 (which are clearly inherited by Ṽ N
0 ) and the definition of B, we deduce that, for all N > 0 and

all σ > 0

Ṽ N
1 in L∞

loc

([0, T ∗),Hσ (Ω)
)

(with an estimate depending on N ), and that, for all T < T ∗

sup
N∈N

lim
ε→0

∥∥Ṽ N
0 + εṼ N

1

∥∥
L∞([0,T ],H s(Ω))

� C‖Ṽ0‖L∞([0,T ∗],H s(Ω)).

It remains then to check that Ṽ N
0 + εṼ N

1 is an approximate solution to (3.18) in a strong sense.

∂t

(
Ṽ N

0 + εṼ N
1

) + W
(

t

ε

)
B

(
W

(
− t

ε

)(
Ṽ N

0 + εṼ N
1

)
, W

(
− t

ε

)(
Ṽ N

0 + εṼ N
1

))
= (Id − JN)BW(Ṽ0, Ṽ0) + BW

(
Ṽ N

0 − Ṽ0, Ṽ0 + Ṽ N
0

)
+ (Id − JN)

∑
λk1+λk2 =λk

exp

(
i
t

ε
(λk − λk1 − λk2)

)
Πλk

B
(
Πλk1

Ṽ N
0 ,Πλk2

Ṽ N
0

)
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+ εW
(

t

ε

)
B

(
W

(
− t

ε

)
Ṽ N

1 , W
(

− t

ε

)(
2Ṽ N

0 + εṼ N
1

))

+ 2εJN

∑
λk1 +λk2 =λk

exp(− it
ε
(λk1 + λk2 − λk))

i(λk − λk1 − λk2)
Πλk

B
(
Πλk1

∂t Ṽ
N
0 ,Πλk2

Ṽ N
0

)
. (3.25)

From the uniform bound on Ṽ N
0 and the convergence Ṽ N

0 → Ṽ0 we deduce that the first three terms in the right-hand
side of the previous identity go to zero as N → ∞. For fixed N , using the (nonuniform) estimates on Ṽ N

0 and Ṽ N
1 and

the bound from below on |λk − λk1 − λk2 |, we obtain that the three other terms go to zero as ε → 0. We conclude that

∂t

(
Ṽ N

0 + εṼ N
1

) + W
(

t

ε

)
B

(
W

(
− t

ε

)(
Ṽ N

0 + εṼ N
1

)
, W

(
− t

ε

)(
Ṽ N

0 + εṼ N
1

))

goes to zero in L∞
loc([0, T ∗),H s−1(Ω)) as ε → 0 then N → ∞.

In other words (Ṽ N
0 + εṼ N

1 ) is an approximate solution to (3.18) in the sense of (3.16). However it does not satisfy
the (approximate) global conservation of mass (3.17).

Indeed we have proved that the oscillating modes have zero total mass (see (3.23)) and that the equation governing
the nonoscillating part of Ṽ0 is conservative, from which we deduce that the first three terms in the right-hand side
of (3.25) have no contribution to the variation of the total mass. But the last two terms are expected to give some
variation of the total mass of order ε, which is not admissible for (3.17) to hold.

We therefore need to build some third order approximation.

The third order approximation Ṽ N
2 is then defined by

Ṽ N
2 =

∑
k∈Z∗

exp(−i t
ε
λk)

iλk

Π0 B
(
Πλk

Ṽ N
1 ,2Π0Ṽ

N
0

) +
∑
k∈Z∗

exp(−i t
ε
λk)

iλk

Π0 B
(
Π0Ṽ

N
1 ,2Πλk

Ṽ N
0

)

− 2
∑
λk =0

exp(− it
ε
λk)

(λk)2
Π0 B

(
Πλk

∂t Ṽ
N
0 ,Π0Ṽ

N
0

) − 2
∑
λk =0

exp(− it
ε
λk)

(λk)2
Π0 B

(
Π0∂t Ṽ

N
0 ,Πλk

Ṽ N
0

)
. (3.26)

From the bounds on Ṽ N
0 and Ṽ N

1 , we get the required regularity estimate on Ṽ N
2 (depending on N ).

The same type of computations as (3.25) shows that, for fixed N ,

∂t

(
ε2Ṽ N

2

) = O(ε)L∞
loc([0,T ∗),H s−1(Ω))

so that Ṽ N
ε = Ṽ N

0 + εṼ N
1 + ε2Ṽ N

2 is an approximate solution to (3.18) in the sense of (3.16).
It remains then to check that the total mass is approximatively conserved in the sense of (3.17). Let us first recall

that the only contribution to the total mass comes from the nonoscillating part. We can prove that

∂tΠ0Ṽ
N
ε + W

(
t

ε

)
B

(
W

(
− t

ε

)
Ṽ N

ε , W
(

− t

ε

)
Ṽ N

ε

)
= (Π0 − Π0,N )BW(Ṽ0, Ṽ0) + Π0 BW

(
Ṽ N

0 − Ṽ0, Ṽ0 + Ṽ N
0

)
+ (Π0 − Π0,N )

∑
λk1 +λk2 =λk

exp

(
i
t

ε
(λk − λk1 − λk2)

)
Πλk

B
(
Πλk1

Ṽ N
0 ,Πλk2

Ṽ N
0

) + O
(
ε2)

using the fact (see (3.21)) that for λk1 = 0 and λk2 = 0,

Π0 B
(
Πλk1

Ṽ N
0 ,Πλk2

Ṽ N
0

) = 0.

Integrating the first component with respect to x, we obtain that the total mass is conserved up to order 2.
In particular, denoting (ρN

ε ,uN
ε , θN

ε ) = W (− t
ε
)Ṽ N

ε , we get

1

ε2

∫
∂t exp

(
ερN

ε

)
dx = 1

ε

∫
exp

(
ερN

ε

)(
∂tρ

N
ε + uN

ε · ∇xρ
N
ε + 1

ε
∇x · uN

ε

)
dx

= 1
∫ (

∂tρ
N
ε + uN

ε · ∇xρ
N
ε + 1∇x · uN

ε

)
dx
ε ε
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+
∫

exp(ερN
ε ) − 1

ε

(
∂tρ

N
ε + uN

ε · ∇xρ
N
ε + 1

ε
∇x · uN

ε

)
dx

which tends to zero as ε → 0 for any fixed N . �
Remark 3.4. In the case when Ω = R3, the construction of the sequence of approximate solutions is actually much
simpler. The point is to see that the acoustic waves generated by the linear penalization satisfy some dispersion
property, and consequently converge strongly to zero by Strichartz estimates.

In particular, one does not need to consider precisely the coupling resulting from the nonlinearity. Using Duhamel’s
formula, one can indeed prove that the corresponding contribution converges strongly to zero. For a detailed study
regarding that case, we refer for instance to [12].

Combining that result with our general method of proof (Proposition 3.1 and final arguments in Section 3.3)
should lead to the following convergence statement in R3: the family of fluctuations (gε) defined by fε = M(1 + εgε)

converges entropically on ]0, T ∗[ to the infinitesimal Maxwellian

g = u · v + θ

( |v|2 − 5

2

)
,

where (u, θ) is the Lipschitz solution on [0, T ∗[ to the incompressible Euler equations (2.4).

3.3. Convergence proof

The previous results on the sequence of approximate solutions to
Aε(ρ,u, θ) = 0

should allow to control the acceleration term in the relative entropy inequality (3.2). In order to obtain a stability
inequality, we need then to obtain some control on the flux term.

Lemma 3.5. Let (fε) be some solution to the scaled Boltzmann equation (2.2) satisfying (2.3). Denote by Φε and Ψε

the kinetic momentum and energy fluxes defined by (3.9).
Then the flux term occurring in the modulated entropy inequality can be controlled by both the modulated entropy

and the entropy dissipation:

− 1

ε2

t∫
0

∫∫
fε∇xu : Φε dx dv ds − 1

ε2

t∫
0

∫∫
fεe

1
2 εθ∇xθ · Ψε dx dv ds

� C

ε2

t∫
0

∥∥Dx(u, θ)(s)
∥∥

L2∩L∞(Ω)
H(fε |fapp)(s) ds + o(1) (3.27)

where the constant C depends only on the L∞ norm of (ρ,u, θ).

Proof. Such an estimate relies on some suitable decomposition of the flux term which is very similar to Chapman–
Enskog’s expansion, and which is also used to study the weak Navier–Stokes limit of the Boltzmann equation
(see [15]).

• More precisely we introduce the renormalized fluctuation

ĝε = 2

ε

(√
fε − √

fapp√
fapp

)

so that

fε = fapp

(
1 + εĝε + ε2

4
ĝ2

ε

)
. (3.28)

The interest in considering such a renormalized fluctuation is that its L2 norm is controlled by the modulated entropy:∫∫
fappĝ

2
ε dv dx � 2

2
H(fε |fapp).
ε



L. Saint-Raymond / Ann. I. H. Poincaré – AN 26 (2009) 705–744 721
It therefore makes sense to use the Hilbertian theory of the linearized collision operator Lε defined by

Lεg =
∫

fapp1(g + g1 − g′ − g′
1)b(v − v1,ω)dv1 dω.

In particular, Lε is known to satisfy the Fredholm alternative, from which we deduce that there exists Φ̃ε and Ψ̃ε in
(Ker Lε)

⊥ such that

LεΦ̃ε = Φε, LεΨ̃ε = Ψε.

One has therefore

1

ε

∫
fappĝεΦε dv =

∫
fappΦ̃ε

1

ε
Lε ĝε dv

= −1

2

∫∫∫
fappfapp1Φ̃ε(ĝε ĝε1 − ĝ′

ε ĝ
′
ε1)b(v − v1,ω)dω dv1 dv

− 2

ε2

∫∫∫
Φ̃ε

√
fappfapp1

(√
f ′

εf
′
ε1 − √

fεfε1
)
b(v − v1,ω)dω dv1 dv

where the last term can be controlled by the entropy dissipation.
The suitable decomposition is more precisely

1

ε2

∫
fεΦε dv = 1

4

∫
fappΦεĝ

2
ε dv − 1

2

∫∫∫
fappfapp1Φ̃ε(ĝε ĝε1 − ĝ′

ε ĝ
′
ε1)b dω dv1 dv

− 2

ε2

∫∫∫
Φ̃ε

√
fappfapp1

(√
f ′

εf
′
ε1 − √

fεfε1
)
b dωdv1 dv (3.29)

and similarly

1

ε2

∫
fεΨε dv = 1

4

∫
fappΨεĝ

2
ε dv − 1

2

∫∫∫
fappfapp1Ψ̃ε(ĝε ĝε1 − ĝ′

ε ĝ
′
ε1)b dω dv1 dv

− 2

ε2

∫∫∫
Ψ̃ε

√
fappfapp1

(√
f ′

εf
′
ε1 − √

fεfε1
)
b dωdv1 dv. (3.30)

• In both decompositions (3.29) and (3.30) the last term is controlled by the entropy dissipation in the following
way.

From the functional inequality (z − y) log z
y

� 4(
√

z − √
y)2, we deduce that

∫∫∫
fappfapp1

(√
f ′

εf
′
ε1

f ′
appf

′
app1

−
√

fεfε1

fappfapp1

)2

b dv dv1 dω � D(fε).

Thus, by the Cauchy–Schwarz inequality,∫
fapp

(∫∫
fapp1

(√
f ′

εf
′
ε1

f ′
appf

′
app1

−
√

fεfε1

fappfapp1

)
b dv1 dω

)2

ν−1
ε dv � D(fε)

denoting as usual by νε the collision frequency defined by

νε =
∫

fapp1b dv1 dω.

The classical theory of the linearized Boltzmann operator Lε established by Grad [16] implies on the other hand
that ∫

fapp(Φ̃ε)
2νε dv � C

∫
fapp

(
Φ2

ε

)
dv,∫

fapp(Ψ̃ε)
2νε dv � C

∫
fapp

(
Ψ 2

ε

)
dv

(see Appendix B.1 for a review of the main results).
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Then

− 2

ε2

∫∫∫
Φ̃ε

√
fappfapp1

(√
f ′

εf
′
ε1 − √

fεfε1
)
b dωdv1 dv = O

(
ε(q−1)/2)

L2(dt dx)
,

− 2

ε2

∫∫∫
Ψ̃ε

√
fappfapp1

(√
f ′

εf
′
ε1 − √

fεfε1
)
b dωdv1 dv = O

(
ε(q−1)/2)

L2(dt dx)
.

• The other terms are expected to be controlled by the modulated entropy since∫
fappĝ

2
ε dx dv � 2

ε2
H(fε |fapp).

Nevertheless, as Ψε = O(|v|3) as |v| → ∞, we need some additional integrability with respect to the v-variable.
The main idea to obtain such refined estimates is to use the control on the relaxation, and more precisely the

decomposition

ĝε = Πεĝε + (ĝε − Πεĝε)

where Πε is the projection on hydrodynamic modes, i.e. on Ker Lε . The explicit formula for Πε shows that

‖Πεĝε‖2
L2(dx,Lp(fapp dv))

� Cp

ε2
H(fε |fapp) (3.31)

for all p < +∞.
On the other hand, using a truncated cross-section, we can obtain a control on the purely kinetic part Π⊥

ε ĝε =
(ĝε − Πεĝε). Let L̄ε be the linear collision operator associated with the truncated cross-section b̄ defined by

b̄(v − v1,ω) = b(v − v1,ω)

1 + ∫
fapp1b(v − v1,ω)dv1 dω

,

so that

ν̄ε =
∫

fapp1b̄ dv1 dω � 1.

Then start from the identity

1

ε
L̄ε ĝε = −1

2

∫∫
fapp1(ĝε ĝε1 − ĝ′

ε ĝ
′
ε1)b̄(v − v1,ω)dω dv1

− 2

ε2

∫∫ √
fapp1

fapp

(√
f ′

εf
′
ε1 − √

fεfε1
)
b̄(v − v1,ω)dω dv1.

Using the fact that L̄ε is coercive on (Ker L̄ε)
⊥, we easily obtain that

Π⊥
ε ĝε = O

(
ε(q+1)/2

√
1

εq+3
D(fε)

)
L2(fapp dv)

+ O

(
ε

1

ε2
H(fε |fapp)

)
L1(dx,L2(fapp dv))

. (3.32)

Using the control of large tails (2.3), we get for all p < 1∫
fapp

(
fε

fapp

)2p

dv �
(∫

f 2
ε

M
dv

)p(∫ (
M2p

f
2p−1
app

)1/(1−p)

dv

)1−p

� Cp

provided that ε is sufficiently small (depending on p), since the moments of fapp differ from those of M by quantities
of order ε. We then have

εĝε = O(1)L∞
t,x (L4p(fapp dv)) and thus εΠ⊥

ε ĝε = O(1)L∞
t,x (L4p(fapp dv)). (3.33)

Coupling this last estimate with (3.32) leads finally to

(
Π⊥

ε ĝε

)2 = O

(
ε(q−1)/2

√
1

εq+3
D(fε)

)
4p/(2p+1)

+ O

(
1

ε2
H(fε |fapp)

)
1 4p/(2p+1)

. (3.34)

L (fapp dv) L (dx,L (fapp dv))
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Using (3.31)–(3.34) to control the first and second terms in decompositions (3.29) and (3.30) leads to the announced
estimate of the fluxes. �
Remark 3.6. Note that the control of large tails (2.3) is a very strong assumption which is not really necessary to
conclude. It indeed provides an Lq(fapp dv) (q > 2) estimate on ĝε , while a weighted L2((1 + |v|3)fapp dv) should
be sufficient.

Proof of Theorem 2.1. Equipped with these preliminary results, we are now able to achieve the proof of Theorem 2.1
in the case when the initial velocity profile is close to local thermodynamic equilibrium, i.e. when

1

ε2
H

(
f in

ε

∣∣Mexp(ερin),εuin,exp(εθin)

) → 0. (3.35)

Denote as previously by fapp the fluctuation of Maxwellian defined by

logfapp = −3

2
log(2π) + ε

(
ρ − 3

2
θ

)
− 1

2
e−εθ |v − εu|2.

Combining Proposition 3.1 and Lemma 3.5 leads to the following inequality

1

ε2
H(fε |fapp)(t) + 1

εq+3

t∫
0

∫
D(fε) ds dx � 1

ε2
H

(
f in

ε

∣∣f in
app

) + 1

ε2

t∫
0

∫
∂t exp(ερ)dx ds

− 1

ε

t∫
0

∫∫
fε

(
1, e−εθ (v − εu),

1

2

(
e−εθ |v − εu|2 − 3

)) · Aε(ρ,u, θ) dv dx ds

+ C

ε2

t∫
0

∥∥Dx(u, θ)(s)
∥∥

L2∩L∞(Ω)
H(fε |fapp)(s) ds + o(1).

Integrating next this differential inequality leads to

1

ε2
H(fε |fapp)(t) + 1

εq+3

t∫
0

∫
D(fε) dv dx ds

� 1

ε2
H

(
f in

ε

∣∣f in
app

)
exp

(
C

t∫
0

∥∥Dx(u, θ)(s)
∥∥

L2∩L∞(Ω)
ds

)
+ o(1)

+ 1

ε2

t∫
0

exp

(
C

t∫
s

∥∥Dx(u, θ)(τ )
∥∥

L2∩L∞(Ω)
dτ

)∫
∂t exp(ερ)dx ds

− 1

ε

t∫
0

exp

(
C

t∫
s

∥∥Dx(u, θ)(τ )
∥∥

L2∩L∞(Ω)
dτ

)

×
∫∫

fε

(
1, e−εθ (v − εu),

1

2

(
e−εθ |v − εu|2 − 3

)) · Aε(ρ,u, θ) dv dx ds. (3.36)

Plugging the approximate solution (ρN
ε ,uN

ε , θN
ε ) built in Proposition 3.3 in Gronwall’s inequality (3.36) leads then

to

1

ε2
H(fε |fapp) → 0 in L∞

loc

([0, T ∗)
)
. (3.37)

Indeed the first term in the right-hand side is proved to converge to 0 as ε → 0 then N → ∞ using the identity
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H
(
f in

ε

∣∣f in
app

) = H
(
f in

ε

∣∣Mexp(ερin),εuin,exp(εθin)

) + H
(

Mexp(ερin),εuin,exp(εθin)

∣∣f in
app

)
+

∫∫ (
f in

ε − Mexp(ερin),εuin,exp(εθin)

)
log

Mexp(ερin),εuin,exp(εθin)

f in
app

dv dx

together with the assumption on the initial data (3.35) and the convergence statement (3.15)(
ρin,N

ε , uin,N
ε , θ in,N

ε

) → (
ρin, uin, θ in)

which implies in particular that

1

ε2
H

(
Mexp(ερin),εuin,exp(εθin)

∣∣f in
app

) → 0.

The convergence of the two other terms in the right-hand side of (3.36) is obtained by combining the uniform
bound (with respect to ε and N )∥∥Dx

(
uN

ε , θN
ε

)∥∥
L∞([0,T ],L2∩L∞(Ω))

� CT

with the convergence statements (3.16) and (3.17)

1

ε2

∫
∂t exp

(
ερN

ε

)
dx → 0, Aε

(
ρN

ε ,uN
ε , θN

ε

) → 0.

The entropic convergence (3.37) implies the strong convergence of the fluctuation 1
ε
(fε − fapp) in L∞

loc([0, T ∗),
L1(dx dv)), in particular the convergence result stated in the theorem. Indeed we have seen that the L2 norm of

√
fappĝε = 2

ε
(
√

fε − √
fapp )

is bounded by the square-root of the modulated entropy 1
ε2 H(fε |fapp). Thus, using the decomposition (3.28), we get

gε − 1

ε

fapp − M

M
→ 0 in L∞

loc

([0, T ∗),L1(dx dv)
)

as ε → 0 then N → ∞, and finally

gε − g − gosc → 0 in L∞
loc

([0, T ∗),L1(dx dv)
)

as ε → 0. �
Remark 3.7. As mentioned in Remark 3.4, the final argument presented in this paragraph can be extended to the case
of unbounded domains – replacing L1(dx) by L1

loc(dx).

4. Taking into account the Knudsen layer

4.1. The modulated entropy inequality

For general initial data, the purely kinetic part of the solution to the Boltzmann equation is expected to converge
to 0 exponentially in time, in particular in L1

loc([0, T ∗) × Ω × R3), but not in L∞
loc([0, T ∗),L1

loc(Ω × R3)). In order
to consider the relaxation process in the relative entropy method, one thus has to construct a refined approximation
fapp, and then to introduce it in the modulated entropy inequality (3.2). This requires in particular to also modulate
the entropy dissipation.

Proposition 4.1. Denote by fapp some smooth function on [0, T ] × Ω × R3 satisfying the boundary condition

fapp(t, x, v) = fapp
(
t, x, v − 2

(
v · n(x)

)
n(x)

)
on Σ−.

Then, the solution to the scaled Boltzmann equation (2.2) satisfies the following modulated entropy inequality
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H(fε |fapp)(t) + 1

εq+1

t∫
0

∫
D(fε |fapp) ds dx � H

(
f in

ε

∣∣f in
app

)

− ε

t∫
0

∫∫
gε

(
∂tfapp + 1

ε
v · ∇xfapp − 1

εq+1
Q(fapp, fapp)

)
dv dx ds

+ 1

4εq−1

t∫
0

∫∫∫∫
(gεgε1 − g′

εg
′
ε1)(f

′
appf

′
app1 − fappfapp1)b dv dv1 dωdx ds (4.1)

where gε denotes the fluctuation

gε = 1

ε

fε − fapp

fapp
,

and D(fε |fapp) is the modulated entropy dissipation defined by

D(fε |fapp) = 1

4

∫∫
(f ′

εf
′
ε1 − fεfε1) log

(
f ′

εf
′
ε1fappfapp1

fεfε1f ′
appf

′
app1

)

− (f ′
appf

′
app1 − fappfapp1)

(
f ′

εf
′
ε1

f ′
appf

′
app1

− fεfε1

fappfapp1

)
b dv dv1 dω. (4.2)

Remark 4.2. Note that the integrand arising in the definition of the modulated entropy dissipation is always nonneg-
ative, which is crucial to get some stability. We have indeed

D(fε |fapp) = 1

4

∫∫∫
fεfε1

(
k

(
f ′

εf
′
ε1

fεfε1

)
− k

(
f ′

appf
′
app1

fappfapp1

)

−
(

f ′
εf

′
ε1

fεfε1
− f ′

appf
′
app1

fappfapp1

)
k′

(
f ′

appf
′
app1

fappfapp1

))
b dv dv1 dω

where k is the convex function defined by k(z) = (z − 1) log z.
This has naturally to be compared with the definition (1.1) of the modulated entropy

H(fε |fapp) =
∫∫

fapp
(
h(fε − 1) − h(fapp − 1) − (fε − fapp)h

′(fapp − 1)
)
dv dx

with h(z) = (1 + z) log(1 + z) − z.

Proof. Start from the entropy inequality (3.3) satisfied by the solution of the scaled Boltzmann equation with specular
reflection at the boundary:

H
(
fε(t)

∣∣M) + 1

εq+1

t∫
0

∫
D(fε)(s, x) ds dx � H

(
f in

ε

∣∣M)
.

By definition of the modulated entropy (1.1), we then have

H(fε |fapp)(t) + 1

εq+1

t∫
0

∫
D(fε) ds dx

� H
(
f in

ε

∣∣f in
app

) −
t∫

0

∫∫
logfapp

(
∂t + 1

ε
v · ∇x

)
fε dv dx ds

−
t∫ ∫∫ (

fε

fapp
− 1

)(
∂t + 1

ε
v · ∇x

)
fapp dv dx ds (4.3)
0
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using the specular reflection on the boundary for fε and fapp.
Now, for solutions of the Boltzmann equation satisfying (2.3), the collision term Q(fε,fε) makes sense, and the

kinetic equation (2.2) holds in the sense of distributions. We thus have

−
t∫

0

∫∫
logfapp

(
∂t + 1

ε
v · ∇x

)
fε dv dx ds

= − 1

εq+1

t∫
0

∫∫
(logfapp)Q(fε, fε) dv dx ds

= − 1

4εq+1

t∫
0

∫∫∫∫
(f ′

εf
′
ε1 − fεfε1) log

(
fappfapp1

f ′
appf

′
app1

)
b dv dv1 dωdx ds

using the classical symmetries of the collision integrand.
In the same way, we have

−
t∫

0

∫∫ (
fε

fapp
− 1

)(
∂t + 1

ε
v · ∇x

)
fapp dv dx ds

= −
t∫

0

∫∫
fε − fapp

fapp

(
∂tfapp + 1

ε
v · ∇xfapp − 1

εq+1
Q(fapp, fapp)

)
dv dx ds

+ 1

4εq+1

t∫
0

∫∫∫∫
(f ′

appf
′
app1 − fappfapp1)

(
f ′

ε

f ′
app

+ f ′
ε1

f ′
app1

− fε

fapp
− fε1

fapp1

)
b dv dv1 dωdx ds.

Plugging both identities in (4.3) leads then to

H(fε |fapp)(t) + 1

εq+1

t∫
0

∫
D(fε |fapp) ds dx � H

(
f in

ε

∣∣f in
app

)

−
t∫

0

∫∫
fε − fapp

fapp

(
∂tfapp + 1

ε
v · ∇xfapp − 1

εq+1
Q(fapp, fapp)

)
dv dx ds

+ 1

4εq+1

t∫
0

∫∫∫∫
(f ′

appf
′
app1 − fappfapp1)

×
((

fε

fapp
− 1

)(
fε1

fapp1
− 1

)
−

(
f ′

ε

f ′
app

− 1

)(
f ′

ε1

f ′
app1

− 1

))
b dv dv1 dωdx ds

which is the expected inequality. �
4.2. Construction of the approximate solution

The next step is to construct a sequence of approximate solutions fapp to the family of (homogeneous) relaxation
equations

∂tf = 1

εq+1
Q(f,f ),

f (x)|t=0 = f in(x). (4.4)
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More precisely, we will require that

∂tf − 1

εq+1
Q(f,f ) → 0 in as ε → 0. (4.5)

One of the difficulty here is that we further need to control the dependence with respect to the spatial variable x, to
get some uniform bound on

1

ε2

τε∫
0

∥∥v · ∇x logfapp(s)
∥∥

L∞(Ω,Lp′
(fapp dv))

ds → 0 as ε → 0 (4.6)

for some τε characterizing the size of the initial layer and some p′ > 2 to be determined later.
More precisely, we have the following

Proposition 4.3. Let f in
ε be some sequence of initial data such that the fluctuations gin

ε = 1
ε

f in
ε −M

M
converge entropi-

cally to some gin ∈ L2(M dv dx), i.e. such that

1

ε2
H

(
f in

ε

∣∣M) →
∫∫

M
(
gin)2

dx dv,

1

ε

f in
ε − M

M
→ gin in L1

loc(M dv dx). (4.7)

Then there exists some family fapp of nonnegative functions satisfying approximatively the homogeneous Boltzmann
equation as ε → 0 then N → ∞

∂tfapp − 1

εq+1
Q(fapp, fapp) → 0 in L2(dt dx,Lp′

(fapp dv)
)

(4.8)

with suitable initial data
1

ε2
H

(
f in

ε

∣∣f in
app

) → 0. (4.9)

It furthermore satisfies the relaxation estimate

1

εq+1

t∫
0

∥∥∥∥f ′
appf

′
app1

fappfapp1
− 1

∥∥∥∥
L∞(Ω,Lp′

(fappfapp1b dv dv1 dω))

ds → 0, (4.10)

and the regularity estimate

‖v · ∇x logfapp‖L2(dx,Lp′
(fapp dv))

� Cε uniformly in time, (4.11)

for some p′ > 4.

Proof. In order to build the approximate solution we need, we will start from the solution f N
ε of the homogeneous

Boltzmann equation (4.4) with some smooth initial data f in,N
ε , then truncate the contribution of large velocities to get

a bound from below on fapp.
Step 1: we have therefore to choose some suitable initial data f in,N

ε .
In view of Proposition B.2 and the remarks below, in order that f N

ε has good decay properties with respect to v

and a smooth dependence with respect to x (which is now a simple parameter), it is enough to impose such conditions
on the initial data.
We first define

f̃ in,N
ε = χN ∗ f in

ε

where χN is a regularizing kernel acting on the space variable x. Note that, because of the entropic convergence of
the initial data (4.7), for all fixed N ,

1
2
H

(
f in

ε

∣∣f̃ in,N
ε

) → 1
∫∫

M
(
gin − gin,N

)2
dv dx as ε → 0,
ε 2
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and thus
1

ε2
H

(
f in

ε

∣∣f̃ in,N
ε

) → 0 as ε → 0 then N → ∞.

We then define f in,N
ε such that

• it coincides with f̃ in,N
ε if |v| � N ;

• it coincides with the Maxwellian MN
ε of same moments as f̃ in,N

ε if |v| � 2N ;
• it has the same moments as f̃ in,N

ε .

We further require that f in,N
ε depends smoothly on x, which can be realized by some suitable fluctuation of the local

Maxwellian MN
ε for N < |v| < 2N .

Using again the entropic convergence of the initial data (4.7), it is then easy to see that

1

ε2
H

(
f in

ε

∣∣f in,N
ε

) → 0 as ε → 0 then N → ∞. (4.12)

With that choice of f in,N
ε , using (4.7), we get∥∥∥∥f in,N

ε − MN
ε

MN
ε

∥∥∥∥
α,r

� CNε

uniformly in x and ε, for all α < 1
2 and all r � 0, where

‖g‖α,r
def= sup

v

(
1 + |v|)r

e(α− 1
2 )|v|2 |g|.

In particular, for ε sufficiently small, f N
ε is defined globally in time (see Proposition B.2 and remarks below in

Appendix B) and satisfies the uniform relaxation estimate∥∥∥∥f N
ε − MN

ε

MN
ε

(t)

∥∥∥∥
α,r

� CNε exp

(
−γ

t

εq+1

)
. (4.13)

We have now to check that f N
ε depends smoothly on the space variable x. Start from the equation satisfied by ∇xf

N
ε

∂t∇xf
N
ε = 2

εq+1
Q

(∇xf
N
ε , f N

ε

)
= 2

εq+1
Q

(∇xf
N
ε ,

(
f N

ε − MN
ε

)) + 2

εq+1
Q

(∇xf
N
ε ,MN

ε

)
,

which can be rewritten using the semi-group UN
ε generated by the collision operator linearized at MN

ε , and Duhamel’s
formula

∇xf
N
ε

MN
ε

(t) = UN
ε

(
t

εq+1

)∇xf
in,N
ε

MN
ε

+
t∫

0

UN
ε

(
t − s

εq+1

)
2

εq+1

1

MN
ε

Q

(
MN

ε

∇xf
N
ε

MN
ε

,MN
ε

f N
ε − MN

ε

MN
ε

)
(s) ds.

From the relaxation estimate (4.13), we deduce that

1

εq+1

t∫
0

∥∥∥∥f N
ε − MN

ε

MN
ε

(s)

∥∥∥∥
α,r

ds � Cε.

Extending – by a simple change of variables – the continuity estimates of Proposition B.1 to the semi-group UN
ε , and

using standard continuity estimates for the quadratic operator (see for instance the lemma in Appendix B.2), we then
obtain by Gronwall’s lemma∥∥∥∥∇xf

N
ε

MN
(t)

∥∥∥∥ � CNε, (4.14)

ε α,r
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with CN depending on N , α and r but not on ε.
Step 2: in order to have a bound from below on fapp, we then need to truncate large velocities as follows

fapp = (
f N

ε − MN
ε

)
1|v|2�K|ln ε| + MN

ε

so that, using the bound (4.13)

fapp

MN
ε

= 1 + ε
f N

ε − MN
ε

εMN
ε

1|v|2�K|ln ε| � 1 − CNεe( 1
2 −α)K|ln ε| � 1

2

for ε sufficiently small, provided that(
1

2
− α

)
K < 1. (4.15)

Of course, the same argument provides also a bound from above, so that

1

2
MN

ε � fapp � 3

2
MN

ε . (4.16)

Note that, for ε sufficiently small,

f in
app = f in,N

ε ,

so that
1

ε2
H

(
f in

ε

∣∣fapp
) → 0 as ε → 0 then N → ∞. (4.17)

The regularity estimate (4.14) is also clearly inherited by fapp:∥∥∥∥∇xfapp

MN
ε

(t)

∥∥∥∥
α,r

� CNε,

which implies in particular (4.11).
In the same way, we deduce from (4.13) the following relaxation estimate for fapp:∥∥∥∥fapp − MN

ε

MN
ε

(t)

∥∥∥∥
α,r

� CN exp

(
−γ

t

εq+1

)
.

Combined with the L∞ bound (4.16), it leads to∥∥∥∥f ′
appf

′
app1

fappfapp1
− 1

∥∥∥∥
Lp′

(fappfapp1b dv dv1 dω)

� Cp′ε

∥∥∥∥ (fapp − MN
ε )p

′

ε(MN
ε )p

′−1

∥∥∥∥
1/p′

L1(dv)

� Cp′ε exp

(
−γ

t

εq+1

)∥∥∥∥f in,N
ε − MN

ε

MN
ε

∥∥∥∥
α,r

provided that αp′ > 1
2 . In particular,

1

εq+1

t∫
0

∥∥∥∥f ′
appf

′
app1

fappfapp1
− 1

∥∥∥∥
L∞(Ω,Lp′

(fappfapp1b dv dv1 dω))

ds � CNε

tends to 0 as ε → 0, then N → ∞. We have therefore proved the relaxation statement (4.10).
However the homogeneous Boltzmann equation (4.4) is no longer satisfied: it remains then to check that it is

satisfied in some approximate sense.
We have

∂tfapp − 1

εq+1
Q(fapp, fapp)

= − 1

εq+1
Q

(
f N

ε , f N
ε

)
1|v|2>K|ln ε| +

1

εq+1
Q

(
f N

ε − fapp, f
N
ε + fapp

)
= − 1

q+1
Q

(
f N

ε , f N
ε

)
1|v|2>K|ln ε| +

1
q+1

Q
((

f N
ε − Mε

N

)
1|v|2>K|ln ε|, f N

ε + fapp
)
. (4.18)
ε ε
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Using the bound from below (4.16) and the decay estimate (4.13), we get∥∥∥∥ 1

εq+1

1

fapp
Q(f N

ε ,f N
ε )1|v|2>K|ln ε|

∥∥∥∥
Lp′

(fapp dv)

� C

εq+1

∥∥∥∥ 1

MN
ε

Q
(
f N

ε , f N
ε

)∥∥∥∥
α,r

(∫
exp

((
1

2
(p′ − 1) − α′p′

)
1|v|2>K|ln ε|

)
dv

)1/p′

� C

εq+1

(∥∥MN
ε

∥∥
α,r

+ ε

∥∥∥∥f N
ε − MN

ε

εMN
ε

∥∥∥∥
α,r

)2(∫
exp

((
1

2
(p′ − 1) − α′p′

)
1|v|2>K|ln ε|

)
dv

)1/p′

for some α′ < α, which proves that the first term in the right-hand side of (4.18) goes to zero at least like O(ε3) as
ε → 0 for any fixed N , provided that

K

(
1

2p′ + α′ − 1

2

)
> q + 4. (4.19)

In the same way, we have∥∥∥∥ 1

εq+1

1

fapp
Q

((
f N

ε − MN
ε

)
1|v|2>K|ln ε|, f N

ε + fapp
)∥∥∥∥

Lp′
(fapp dv)

� C

εq

∥∥∥∥ (f N
ε − MN

ε )

ε(MN
ε )

1− 1
p′ +

1|v|2>K|ln ε|
∥∥∥∥

Lp′
(dv)

∥∥∥∥ (f N
ε + fapp)

(MN
ε )

1− 1
p′ +

∥∥∥∥
Lp′

(dv)

� C

εq

∥∥∥∥f N
ε − MN

ε

εMN
ε

∥∥∥∥
α,r

(∥∥MN
ε

∥∥
α,r

+ ε

∥∥∥∥f N
ε − MN

ε

εMN
ε

∥∥∥∥
α,r

)(∫
exp

((
1

2
(p′ − 1) − α′p′

)
1|v|2>K|ln ε|

)
dv

)1/p′

for some α′ < α, which proves that the second term in the right-hand side of (4.18) goes to zero at least like O(ε3) as
ε → 0 for any fixed N .

We therefore choose some K satisfying both conditions (4.15) and (4.19), which is possible provided that α′, and
thus α are sufficiently close to 1

2 . The statement (4.8) is then satisfied. �
4.3. Convergence proof

The previous estimates on the sequence of approximate solutions to

∂tf − 1

εq+1
Q(f,f ) = 0

should allow to control the different terms in the entropy inequality (4.1) provided that the fluctuation gε can be
estimated in terms of the scaled relative entropy 1

ε2 H(fε |fapp) in a suitable norm.
We therefore establish the following

Lemma 4.4. Let (fε) be some solution to the scaled Boltzmann equation (2.2) satisfying (2.3). Denote by fapp the
sequence of approximate solutions to the relaxation equation built in Proposition 4.3.

Then the fluctuation gε defined by

gε = 1

ε

fε − fapp

fapp
,

is controlled by the modulated entropy as follows: for all p < 4
3 , there exists Cp > 0 such that

‖gε‖2
L2(Ω,Lp(fapp dv))

� Cp

ε2
H(fε |fapp).

Proof. We first recall from the previous section that the renormalized fluctuation ĝε defined by

ĝε = 2

ε

√
fε − √

fapp√
f
app
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is controlled in L2 norm by the modulated entropy∫∫
fappĝ

2
ε dv dx � 2

ε2
H(fε |fapp).

From the control on large tails (2.3), we get for all q < 4

∫
fapp

(
fε

fapp

)q/2

dv �
(∫

f 2
ε

M
dv

) q
4
(∫

M4/(4−q)

f
(2q−4)/(4−q)
app

dv

)1− q
4

� Cq

provided that ε is sufficiently small (depending on q): indeed fapp is bounded from below by MN
ε and the moments

of MN
ε differ from those of M by quantities of order ε. Therefore,

εĝε = 2

(√
fε

fapp
− 1

)
= O(1)L∞(Ω,Lq(fapp dv)).

Using the identity

gε = ĝε + ε

4
ĝ2

ε ,

and ∥∥∥∥ε

4
ĝ2

ε

∥∥∥∥
2

L2(Ω,Lp(fapp dv))

� 1

4
‖εĝε‖L∞(Ω,L2p/(2−p)(fapp dv))‖ĝε‖L2(Ω,L2(fapp dv))

we get the expected inequality, meaning that the relative entropy controls some spatial L2 norm of the fluctuation. �
Proof of Theorem 2.1. Equipped with these preliminary results, we are now able to achieve the proof of Theo-
rem 2.1 in the general case. Actually we will prove that on a thin time layer, the distribution becomes close to local
thermodynamic equilibrium in the following sense

1

ε2
H(fε |fapp)(τε) → 0 for some τε → 0 as ε → 0

with

logfapp(τε) = −3

2
log(2π) + ε

(
ρin − 3

2
θ in

)
− 1

2
e−εθ in ∣∣v − εuin

∣∣2
.

Then, we will use the results of the previous section, combined with the continuity with respect to time of the solutions
to the system (3.11), to obtain the convergence on the time interval [τε, T

∗).
Step 1: combining Proposition 4.1 and Lemma 4.4 leads to the following inequality

1

ε2
H(fε |fapp)(t) + 1

εq+3

t∫
0

∫
D(fε |fapp) ds dx

� 1

ε2
H

(
f in

ε

∣∣f in
app

) − 1

ε

t∫
0

∫∫
gε

(
∂tfapp + 1

ε
v · ∇xfapp − 1

εq+1
Q(fapp, fapp)

)
dv dx ds

+ Cp

2εq+1

t∫
0

∥∥∥∥f ′
appf

′
app1

fappfapp1
− 1

∥∥∥∥
L∞(Ω,Lp′

(fappf 1
appb dv dv1 dω))

1

ε2
H(fε |fapp)(s) ds.

Integrating next this differential inequality leads to
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1

ε2
H(fε |fapp)(t) + 1

εq+3

t∫
0

∫
D(fε |fapp) dv dx ds � 1

ε2
H

(
f in

ε

∣∣f in
app

)
exp

(
χapp(0, t)

)

− 1

ε

t∫
0

exp
(
χapp(s, t)

) ∫∫
gε

(
∂tfapp + 1

ε
v · ∇xfapp − 1

εq+1
Q(fapp, fapp)

)
dv dx ds (4.20)

where χapp is the function defined by

χapp(s, t) = Cp

2εq+1

t∫
s

∥∥∥∥f ′
appf

′
app1

fappfapp1
− 1

∥∥∥∥
L∞(Ω,Lp′

(fappfapp1b dv dv1 dω))

ds.

Plugging the approximate solution fapp built in Proposition 4.3 in Gronwall’s inequality (4.20) leads then to

sup
t∈[0,τε ]

1

ε2
H(fε |fapp)(t) → 0 (4.21)

for any τε such that

εq+1

τε

→ 0 and
τε

ε
→ 0.

Indeed the first term in the right-hand side of (4.20) is proved to converge to 0 as ε → 0 using the convergence of the
initial data (4.17) and the uniform bound (4.10):

1

ε2
H

(
f in

ε

∣∣f in
app

)
exp

(
χapp(0, t)

) → 0.

The convergence of the other term in the right-hand side of (4.20) is obtained by combining the uniform bound (4.10)
with the convergence statement (4.8) and the regularity estimate (4.11)

1

ε

t∫
0

exp
(
χapp(s, t)

) ∫∫
gε

(
∂tfapp − 1

εq+1
Q(fapp, fapp)

)
dv dx ds → 0,

1

ε

t∫
0

exp
(
χapp(s, t)

) ∫∫
gε

(
1

ε
v · ∇xfapp

)
dv dx ds → 0.

Step 2: we choose for instance

τε = εq

and we define f̃app by

f̃app = fapp on [0, τε)

and

log f̃app = −3

2
log(2π) + ε

(
ρ − 3

2
θ

)
− 1

2
e−εθ |v − εu|2 for t � τε,

with the following continuity condition for the moments

(ρ,u, θ)(τε) = lim
t→τ−

ε

(ρ,u, θ)(t) = (
ρin, uin, θ in).

Combining Proposition 3.1 and Lemma 3.5, and integrating the resulting differential inequality on [τε, t] leads to
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1

ε2
H(fε |f̃app)(t) + 1

εq+3

t∫
τε

∫∫
D(fε) dv dx ds

� 1

ε2
H(fε |f̃app)(τε) exp

(
C

t∫
τε

∥∥Dx(u, θ)(s)
∥∥

L2∩L∞(Ω)
ds

)
+ o(1)

+ 1

ε2

t∫
τε

exp

(
C

t∫
s

∥∥Dx(u, θ)(τ )
∥∥

L2∩L∞(Ω)
dτ

)∫
∂t exp(ερ)dx ds

+ 1

ε

t∫
τε

exp

(
C

t∫
s

∥∥Dx(u, θ)(τ )
∥∥

L2∩L∞(Ω)
dτ

)

×
∫∫

fε

(
1, e−εθ (v − εu),

1

2

(
e−εθ |v − εu|2 − 3

)) · Aε(ρ,u, θ) dv dx ds. (4.22)

Translating (with respect to time) the approximate solution (ρN
ε ,uN

ε , θN
ε ) built in Proposition 3.3 on [τε, T

∗ + τε),
and plugging it in Gronwall’s inequality (4.22) leads then to

sup
t∈[τε ,T ]

1

ε2
H(fε |f̃app) → 0 for all T < T ∗, (4.23)

provided that the first term in the right-hand side converges to 0 as ε → 0 then N → ∞.
It remains therefore to check that

1

ε2
H(fε |f̃app)(τε) → 0

which results from the estimate obtained in the first step. We indeed have

1

ε2
H(fε |fapp)(τε) → 0

and, by Proposition 4.3,

fapp

f̃app
(τε) = 1 + 1|v|2�K|ln ε|

f N
ε − MN

ε

MN
ε

(τε) = 1 + O

(
ε exp

(
− τε

εq+1

))
L∞

,

from which we deduce that

1

ε2
H(fε |f̃app)(τε) = 1

ε2
H(fε |fapp)(τε) + 1

ε2

∫∫
fε log

fapp

f̃app
(τε) dx dv → 0

as ε → 0.
Step 3: the entropic convergences (4.21), (4.23) imply the strong convergence of the fluctuation gε in L∞

loc([0, T ∗),
L1(dx dv)), in particular the convergence result stated in the theorem. Indeed we have seen that the L2 norm of the
renormalized fluctuation ĝε is bounded by the square-root of the modulated entropy 1

ε2 H(fε |fapp). Thus, using the
decomposition (3.28), we get

gε − 1

ε

f̃app − M

M
→ 0 in L∞

loc

([0, T ∗),L1(dx dv)
)

as ε → 0 then N → ∞.
Finally, using the fact that the purely kinetic part of the approximate solution is equal to 0 on [τε, T

∗) and converges
to 0 in L1

loc([0, T ∗),L1(dx dv)), we get

gε − g − gosc → 0 in L∞
loc

(
(0, T ∗),L1(dx dv)

) ∩ L1
loc

([0, T ∗),L1(dx dv)
)

as ε → 0. �
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Appendix A. Spectral study of the acoustic operator

A.1. Spectrum of W

The acoustic waves are governed by the pseudodifferential operator W defined by

W(ρ,u, θ) =
(

∇x · u,∇x(ρ + θ),
2

3
∇x · u

)
,

which is skew-symmetric on L2(Ω) equipped with the norm

∥∥(ρ,u, θ)
∥∥2

L2(Ω)
= ‖ρ‖2

L2(Ω)
+ ‖u‖2

L2(Ω)
+ 3

2
‖θ‖2

L2(Ω)
.

Let us first describe its spectrum:

W(ρ,u, θ) = iλ(ρ,u, θ) with u · n = 0

if and only if

– either λ = 0 and

∇x · u = 0 with u · n = 0 on ∂Ω,

∇x(ρ + θ) = 0

– or λ = 0 and

θ = 2

3
ρ,

iλu = ∇x(ρ + θ),

5

3
Δx(ρ + θ) = −λ2(ρ + θ) with n · ∇x(ρ + θ) = 0 on ∂Ω.

That means that – on the orthogonal of its kernel – W has the same spectral structure as the Laplacian with
Neumann boundary condition.

In the case when Ω is a smooth bounded domain, there exists an Hilbertian basis (ϕn)n∈I of L2(Ω) such that

−Δxϕn = μnϕn with n · ∇xϕn = 0 on ∂Ω

with μn > 0 for n ∈ N∗, and

−Δxϕn = 0 with n · ∇xϕn = 0 on ∂Ω

for n ∈ I \ N∗.
It is then easy to check that

Proposition A.1. The family (ψn)n∈Z defined by

ψn =
(

3

5
ϕ|n|, i sgn(n)

√
3

5μ|n]
∇xϕ|n|,

2

5
ϕ|n|

)

is an Hilbertian basis of (KerW)⊥.

Remark. In the case when Ω is a smooth unbounded domain, the Laplacian has also continuous spectrum, and the
following spectral decomposition (of Fourier type) holds
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ϕ = ϕ̄ +
+∞∫
0

ϕ̂(μ)dm(μ),

−Δϕ =
+∞∫
0

μϕ̂(μ)dm(μ)

where m is the spectral measure of the Laplacian on ]0,+∞[, and ϕ̄ denotes the harmonic component of ϕ.
We could then have an explicit formula for W in terms of the spectral measure m.

A.2. Suitable functional spaces

An explicit computation shows that

Π0(ρ,u, θ) =
(

2ρ − 3θ

5
,Pu,

3θ − 2ρ

5

)
where P denotes the Leray projection on divergence-free vector fields (satisfying Neumann’s boundary condition). In
particular, Π0 is continuous on Hs(Ω), and we have

1

C

∥∥(ρ,u, θ)
∥∥

Hs(Ω)
�

∥∥Π0(ρ,u, θ)
∥∥

Hs(Ω)
+ ∥∥(Id − Π0)(ρ,u, θ)

∥∥
Hs(Ω)

,∥∥Π0(ρ,u, θ)
∥∥

Hs(Ω)
+ ∥∥(Id − Π0)(ρ,u, θ)

∥∥
Hs(Ω)

� C
∥∥(ρ,u, θ)

∥∥
Hs(Ω)

.

On (KerW)⊥, as the spectral decomposition according to W corresponds to the spectral decomposition according
to the Laplacian, we have

‖ψ‖2
Hs(Ω) ∼

∑
n∈Z∗

(
1 + λ2

n

)s∣∣〈ψ,ψn〉L2(Ω)

∣∣2
.

Both results imply that∥∥(ρ,u, θ)
∥∥2

Hs(Ω)
∼ ∥∥Π0(ρ,u, θ)

∥∥2
Hs(Ω)

+
∑
n∈Z∗

(
1 + λ2

n

)s∣∣〈ψ,ψn〉L2(Ω)

∣∣2 (A.1)

A.3. Well-posedness and stability of (3.19) in the case of bounded domains

Let us now state the main result regarding the local existence of solutions to the filtered acoustic system.

Proposition A.2. Let V in ∈ Hs(Ω) for s > 5
2 . Then the filtered acoustic system

∂tV0 + BW(V0,V0) = 0,

V0|t=0 = V in

where the quadratic operator BW is defined by (3.20), has a unique strong solution V0 ∈ L∞
loc([0, T ∗),H s(Ω)).

Proof. We recall briefly the strategy to build solutions to (3.19), and more generally to hyperbolic equations such as
the incompressible Euler equations (see [9] for instance for a detailed proof).

The first step is to define a suitable approximation scheme by projecting the equation on a finite-dimensional subset
of C∞(Ω̄). Here we will consider the projection

JN =
∑
n�N

Πλn + Π0,N (A.2)

where Π0,N is the composition of Π0 and of the projection on the N first harmonics (note that both operators com-
mute). The Cauchy problem for

∂tJNψ + JN BW(JNψ,JNψ) = 0
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is then solved using the Cauchy–Lipschitz theorem. We will denote by ψN the solution to that N th approximate
system.

The next step is to establish some stability inequality (uniform with respect to N ) , which comes actually from a
precised energy estimate. For the sake of simplicity we will not mention the superscript N of ψN in the intermediate
computations. We actually prove

d

dt
‖Π0,Nψ‖2

Hs(Ω) � −〈
Π0,Nψ

∣∣B(Π0,Nψ,Π0,Nψ)
〉
Hs(Ω)

� Cs‖Π0,Nψ‖2
Hs(Ω)‖Π0,Nψ‖W 1,∞(Ω)

since the equation on the nonoscillating part Π0ψ can be decoupled (see the computation (3.21) in Section 3.2). Thus,
if the initial data belongs to Hs(Ω) for s > 5

2 , there exists some T ∗ (which does not depend on N ) such that

‖Π0,Nψ‖2
L∞([0,T ],H s(Ω)) � CT

for all T < T ∗. In the same way, we have

d

dt

∑
k∈Z∗

(
1 + λ2

k

)s‖Πλk
ψ‖2

L2(Ω)
� −

∑
k∈Z∗

∑
λk1+λk2 =λk

(
1 + λ2

k

)s 〈
Πλk

∣∣B(Πλk1
ψ,Πλk2

ψ)
〉
L2(Ω)

� Cs

∑
k∈Z∗

∑
λk1+λk2 =λk

(
1 + λ2

k

)s/2(
1 + λ2

k1

)s/2‖Πλk
ψ‖L2(Ω)

× ‖Πλk1
ψ‖L2(Ω)‖Πλk2

ψ‖W 1,∞(Ω).

(Note that the higher order terms disappear due to the conservative properties of B and to the symmetries of the res-
onance condition λk1 + λk2 = λk , which extends a classical result on the commutator in pseudo-differential calculus.)
Using the Cauchy–Schwarz inequality, we then obtain

d

dt

∑
k∈Z∗

(
1 + λ2

k

)s‖Πλk
ψ‖2

L2(Ω)
� Cs

( ∑
k∈Z∗

(
1 + λ2

k

)s/2‖Πλk
ψ‖L2(Ω)

)2

sup
λ

‖Πλψ‖W 1,∞(Ω).

Since, for λ = 0

‖Πλψ‖W 1,∞(Ω) ∼ (
1 + λ2)1/2‖Πλψ‖L∞(Ω),

the crucial point to conclude is the summability condition∑
n∈Z∗

λ−2β
n < +∞ for all β >

3

2
,

which implies that, for all s > 5
2 ,

sup
λ

‖Πλψ‖W 1,∞(Ω) � Cs‖ψ‖Hs(Ω).

Thus, if the initial data belongs to Hs(Ω) for s > 5
2 , there exists some T ∗ (which does not depend on N ) such that∥∥ψN

∥∥2
L∞([0,T ],H s(Ω))

� CT .

The last step is to take limits as N → ∞ using the previous uniform bounds. As the lifespan T ∗ of the approximate
solutions and the local (in time) bound in Hs(Ω) depend only on the Hs norm of the initial data, the sequence of
approximate solutions admits some weak limit.

By Sobolev embeddings, we further get some strong compactness on the sequence of approximate solutions, which
allows to take limits in the evolution equation and gives the existence of a solution ψ to

∂tψ + BW(ψ,ψ) = 0.

The uniqueness is obtained by rewriting the precised energy estimate for the difference between two solutions,
which leads to some stability inequality in Hs(Ω). �
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Appendix B. Study of the homogeneous relaxation equation

In order to derive rigorously hydrodynamic limits of the Boltzmann equation, we need to understand the effects of
the relaxation process, especially to establish quantitative variants of the mechanism of decreasing of the entropy.

As we restrict our attention to fluctuations around some global equilibrium (say around the centered reduced Gaus-
sian M), the relaxation towards local thermodynamic equilibrium is essentially governed by the linearized collision
operator L defined by

Lg = − 2

M
Q(M,Mg).

The quadratic part of the collision operator Q defined by

Qg = 1

M
Q(Mg,Mg).

is indeed expected to act as a corrector.

B.1. Refined estimates on the linearized collision operator L

We first recall that L is a compact perturbation of some multiplication operator:

Lemma. (See [21].) Assume that b satisfies Grad’s cut-off assumption (1.5) for some β ∈ [0,1]. Then the linearized
collision operator L can be decomposed as

Lg(v) = ν
(|v|)g(v) − Kg(v)

where K is a compact integral operator on L2(M dv) and ν = ν(|v|) is a scalar called the collision frequency that
satisfies, for some nonnegative ν−, ν+,

ν−
(
1 + |v|)β � ν

(|v|) � ν+
(
1 + |v|)β

.

The proof of that result is based on a clever change of variables sometimes called “Carleman’s collision
parametrization” although it goes back to Hilbert [21]. The compactness of K is then obtained by proving that its
iterated kernel belongs to L2.

As a consequence of that result, we get in particular the following coercivity estimate:

Corollary. Assume that b satisfies Grad’s cut-off assumption (1.5) for some β ∈ [0,1]. Then the linear collision
operator L is a nonnegative unbounded self-adjoint operator on L2(M dv) with domain

D(L) = {
g ∈ L2(M dv)

∣∣ |v|βg ∈ L2(M dv)
} = L2(R3;νM(v)dv

)
and nullspace

Ker(L) = span
{
1, v1, v2, v3, |v|2}.

Moreover the following coercivity estimate holds: there exists c > 0 such that, for each g ∈ D(L) ∩ (Ker(L))⊥∫
gLg(v)M(v)dv � c‖g‖2

L2(Mν dv)
.

In order to obtain the required regularity estimates on the solution to the linear relaxation equation

∂τ g = −Lg, (B.1)

we need some additional properties of the compact part K of L. These properties have been studied in detail by Grad
in his fundamental paper [16], and later improved by Caflisch [6].
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Lemma. (See [16].) Assume that b satisfies Grad’s cut-off assumption (1.5) for some β ∈ [0,1]. Then the compact
part K of the linear collision operator L satisfies the following continuity estimates

‖Kg‖ 1
4 , 3

2 (1−β)
� C0‖g‖L2(M dv),

‖Kg‖α,r+2−β � Cα,r‖g‖α,r

for any α ∈ [0, 1
2 ) and r � 0, where

‖f ‖α,r = sup
v∈R3

(
1 + |v|r)e(α− 1

2 )
∣∣v|2 ∣∣f (v)

∣∣.
Using these continuity statements, we are then able to establish the exponential trend to equilibrium in suitable

functional spaces.

Proposition B.1. Assume that b satisfies Grad’s cut-off assumption (1.5) for some β ∈ [0,1]. Let gin be some function
such that∥∥gin

∥∥
α,r

< +∞
for some α ∈ [ 1

4 , 1
2 ), r � 0, and∫

Mgin dv =
∫

Mginvi dv =
∫

Mgin|v|2 dv = 0.

Then, the solution g to the linear relaxation equation (B.1) converges exponentially to 0: there exist some nonnegative
constants C,γ (depending only on α and r) such that∥∥g(τ)

∥∥
α,r

� C exp(−γ τ)
∥∥gin

∥∥
α,r

.

Proof. Since L is a Fredholm operator on L2(Mdv), it generates a semi-group that we will denote U in all the sequel.
In particular g(τ) = U(τ)gin is well-defined for all τ � 0.

• From the energy inequality

∫
Mg2(τ, v) dv +

τ∫
0

∫
MgLg(s, v) dv ds �

∫
M(gin)2(v) dv

and the coercivity estimate, we deduce by Gronwall’s lemma∫
M(Π⊥g)2(τ, v) dv �

(∫
M

(
gin)2

(v) dv

)
exp(−cτ). (B.2)

But we also have

Πg(τ) = Πgin = 0.

We therefore get the expected exponential decay in the space L2(M dv).
• It remains then to obtain some exponential decay with respect to v when α < 1

2 .
Using Hilbert’s decomposition of L and Duhamel’s formula, we obtain

g(τ) = exp(−ντ)gin +
τ∫

0

exp
(−ν(τ − s)

)
Kg(s) ds.

We then have

∥∥exp(γ τ)g(τ )
∥∥

α,r
�

∥∥gin
∥∥

α,r
+

τ∫
0

∥∥exp
(−(ν − γ )(τ − s)

)
K exp(γ s)g(s)

∥∥
α,r

ds, (B.3)

provided that γ < ν−. Now, splitting the contributions of large and moderate velocities, we get
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∥∥exp(γ s)Kg(s)
∥∥

α,r
�

(
1 + |v0|r

)
exp

((
α − 1

4

)
|v0|2

)∥∥exp(γ s)Kg(s)
∥∥ 1

4 ,0

+ 1

(1 + |v0|2−β)

∥∥exp(γ s)Kg(s)
∥∥

α,r+2−β

and thus, using the continuity results stated in the previous lemma, we deduce

∥∥exp(γ s)Kg(s)
∥∥

α,r
� C0

(
1 + |v0|r

)
exp

((
α − 1

4

)
|v0|2

)∥∥exp(γ s)g(s)
∥∥

L2(M dv)

+ Cα,r

(1 + |v0|2−β)

∥∥exp(γ s)g(s)
∥∥

α,r
.

Plugging this last estimate in (B.3), using (B.2) and choosing γ < min(ν−, c) we obtain

∥∥exp(γ τ)g(τ )
∥∥

α,r
�

∥∥gin
∥∥

α,r
+ C

(
1 + |v0|r

)
exp

((
α − 1

4

)
|v0|2

)∥∥gin
∥∥

L2(M dv)

+ C

(1 + |v0|2−β)
sup

s∈[0,τ ]

∥∥exp(γ s)g(s)
∥∥

α,r
.

Choose |v0|2 large enough so that C/(1 + |v0|2−β) � 1/2. Then

sup
s∈[0,τ ]

∥∥exp(γ s)g(s)
∥∥

α,r
� Cα,r

∥∥gin
∥∥

α,r
. �

B.2. Well-posedness and stability of the homogeneous Boltzmann equation

For the study of the nonlinear relaxation equation

∂τ f = Q(f,f ) (B.4)

which can be rewritten in perturbative form

∂τ g = −Lg + εQ(g, g),

f = M(1 + εg),

we further need to control the contribution of the nonlinear effects. A simple computation which can be found for
instance in [5] leads to the following statement:

Lemma. Assume that b satisfies Grad’s cut-off assumption (1.5) for some β ∈ [0,1]. Then the symmetric bilinear
operator Q defined by polarization satisfies the following continuity estimates∥∥ν−1 Q(g,h)

∥∥
α,r

� C‖g‖α,r‖h‖α,r .

Combining these nonlinear estimates with the results on the linear relaxation equation stated in Proposition B.1
leads then to

Proposition B.2. Assume that b satisfies Grad’s cut-off assumption (1.5) for some β ∈ [0,1]. Let α ∈ [0, 1
2 ) and r � β .

Then there exists some δ > 0 (depending only on α and r) such that, for all nonnegative initial data f in such that∫
f in dv = 1

3

∫
f in|v|2 dv = 1,∫

f inv dv = 0,

and ∥∥∥∥f in − M

M

∥∥∥∥ � δ

α,r
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the homogeneous nonlinear Boltzmann equation (B.4) admits a unique global solution f .
Furthermore, that solution converges exponentially to M : there exists some nonnegative constants C and γ (de-

pending only on α and r) such that∥∥∥∥f − M

M
(τ)

∥∥∥∥
α,r

� C exp(−γ τ)

∥∥∥∥f in − M

M

∥∥∥∥
α,r

.

Proof. The global existence result is based on Duhamel’s formula and on Picard’s fixed point theorem. Indeed the
Boltzmann equation (B.4) can be reduced to the integral equation

g = N [g], (B.5)

where the functional N is defined by

N [g](τ ) = U(τ)gin +
τ∫

0

U(τ − s)Q(g, g)(s) ds. (B.6)

The global well-posedness of the Cauchy problem for (B.4) is then established by proving that N is a contraction
in a ball of L∞(R+ × R3) ∩ C(R+,L∞(R3)). The relaxation estimate is obtained in the same way, considering some
weighted spaces with exponential decay with respect to time.

More precisely, we consider the following norm

‖g‖ = sup
s∈R+

eγ s
∥∥g(s)

∥∥
α,r

for some nonnegative γ to be fixed later.
• Applying Proposition B.1 gives directly an estimate for the first term∥∥U(t)gin

∥∥ � Cα,r

∥∥gin
∥∥

α,r
,

provided that γ is smaller than the linear relaxation constant γα,r .
• To control the second term is much more difficult since an inverse power of ν appears in the continuity estimate
on Q. In order to improve the integrability with respect to v, we therefore go back to Hilbert’s decomposition:

τ∫
0

U(τ − s)Q(g,h)(s) ds =
τ∫

0

exp
(−ν(τ − s)

)
Q(g,h)(s) ds

+
τ∫

0

τ−s∫
0

exp
(−ν(τ − s − σ)

)
KU(σ)Q(g,h)(s) dσ ds.

From the continuity estimate on Q we then deduce∥∥∥∥∥
τ∫

0

exp
(−ν(τ − s)

)
Q(g,h)(s) ds

∥∥∥∥∥ � Cα

(
sup
τ,v

τ∫
0

ν exp
(−ν(τ − s)

)
exp(γ τ − 2γ s) ds

)
‖g‖‖h‖

� C‖g‖‖h‖,
provided that 2γ < ν−.

Using further the continuity of U and the continuity of K we get, provided that r − β � 0,∥∥KU(σ)Q(g,h)(s)
∥∥

α,r
� C

∥∥U(σ)Q(g,h)(s)
∥∥

α,r−β

� C exp(−γα,r−βσ )
∥∥Q(g,h)(s)

∥∥
α,r−β

� C exp(−γα,r−βσ )
∥∥ν−1 Q(g,h)(s)

∥∥
α,r

� C exp(−2γ s − γα,r−βσ )‖g‖‖h‖,
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with γα,r−β < ν− (see the proof of Proposition B.1), and consequently∥∥∥∥∥
τ∫

0

τ−s∫
0

exp
(−ν(τ − s − σ)

)
KU(σ)Q(g,h)(s) dσ ds

∥∥∥∥∥ � C‖g‖‖h‖

for some nonnegative constant C depending on r , ν−, α, β and γ , provided that 2γ < γα,r−β .
We therefore obtain∥∥∥∥∥

τ∫
0

U(τ − s)Q(g,h)(s) ds

∥∥∥∥∥ � C′
α,r‖g‖‖h‖.

• Finally we have∥∥N [g]∥∥ � Cα,r

∥∥gin
∥∥

α,r
+ C′

α,r‖g‖2

and ∥∥N [g] − N [h]∥∥ � C ′
α,r

(‖g‖ + ‖h‖)‖g − h‖.
Choosing a0 and a1 such that

2C′
α,ra1 < 1 and Cα,ra0 + C′

α,ra
2
1 � a1,

we get that N is a contraction on the ball of radius a1 as soon as∥∥gin
∥∥

α,r
� a0.

We then conclude by Picard’s fixed point theorem. �
Remarks.

(i) Note that, as a consequence of that proof, we also get that the solution to the nonlinear homogeneous Boltzmann
equation (B.4) depends Lipschitz continuously of the initial data provided that it belongs to the ball of radius a0.

(ii) As the mass, momentum and kinetic energy are conserved by the homogeneous Boltzmann equation, up to some
Galilean change of variables, we can extend the previous result to the case when

R =
∫

f in dv = 1,

U = 1

R

∫
f inv dv = 0,

Θ = 1

3R

∫
f in|v − U |2 dv = 1.

All the constants involved in the estimates we have established will depend smoothly on the thermodynamic
parameters R, U and Θ , and thus it will be possible to make them uniform for (R,U,Θ) in a ball around
(1,0,1).

Appendix C. Formal derivation of the incompressible Euler asymptotics

For the sake of completeness, we recall here the formal expansions leading to the incompressible Euler limit. Note
that it has been only recently observed ([1] for time independent problems and [2,11] for time dependent problems)
that, under convenient scaling, incompressible equations could be directly derived from the Boltzmann equation.

Our starting point is the nondimensional Boltzmann equation:

Ma ∂tf + v · ∇xf = 1

Kn
Q(f,f ) (C.1)

where Ma denotes the Mach number (measuring the compressibility of the fluid) and Kn is the Knudsen number,
defined as the ratio between the mean free path and the observation length scale. The precise formulation of the
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collision operator Q will not be useful for the sequel of our presentation. What is needed is the physics encoded in
this mathematical operator.

Because collisions are assumed to be elastic, Q has some symmetry properties leading to the following identities∫
Q(f,f )(v) dv =

∫
Q(f,f )vi dv =

∫
Q(f,f )|v|2 dv = 0. (C.2)

In particular, integrating the kinetic equation (C.1) against 1, v and 1
2 |v|2, we recover the local conservations of mass,

momentum and energy, or in other words the first principle of thermodynamics.
Using the same symmetries, we also obtain

D(f )
def= −

∫
Q(f,f ) lnf (v) dv � 0 (C.3)

and thus the local decay of entropy (note that the mathematical entropy is the opposite of the physical entropy!):

Ma ∂t

∫
f lnf dv + ∇x ·

∫
f lnf (v)v dv � 0. (C.4)

We therefore obtain a Lyapunov functional for the Boltzmann equation, which expresses the irreversibility predicted
by the second principle of thermodynamics.

Collisions are responsible of that relaxation process: each elementary process looses some information on the
precise microscopic configuration that is realized, so that the global effect of collisions is to increase the uncertainty.
The asymptotic distribution, which minimizes the entropy, and cancels the entropy dissipation∫

Q(f,f ) lnf (v) dv = 0 ⇔ ∀v ∈ R3, Q(f,f )(v) = 0,

is the Gaussian having the same mass R = ∫
f dv, momentum RU = ∫

f v dv and energy 1
2R(U2 + 3Θ) =

1
2

∫
f |v|2 dv. In other words, the thermodynamic equilibrium obeys Maxwell’s statistics.

C.1. The incompressible inviscid regime

In the fast relaxation limit, i.e. when the Knudsen number Kn tends to zero, we thus expect the gas to be at local
thermodynamic equilibrium. The distribution f is therefore completely determined by the macroscopic quantities
R = R(t, x), U = U(t, x) and Θ = Θ(t, x).

Let us first recall that, at leading order with respect to the Knudsen number Kn, the hydrodynamic equations,
obtained from the local conservation laws replacing f by the corresponding local Maxwellian

f (t, x, v) ∼ R(t, x)

(2πΘ(tx, x))3/2
exp

(
−|v − U(t, x)|2

2Θ(t, x)

)
,

are, up to terms of order O(Kn),

Ma ∂tR + ∇x · (RU) = 0,

Ma ∂t (RU) + ∇x · (RU ⊗ U + RΘId) = 0,

Ma ∂t

(
1

2
RU2 + 3

2
RΘ

)
+ ∇x ·

(
1

2
RU2U + 5

2
RΘU

)
= 0, (C.5)

known as the compressible Euler system for perfect gases.
Of course such an asymptotics does not remain relevant if the Mach number Ma also goes to zero in the regime

to be considered. The Mach number Ma – defined as the ratio between the bulk velocity of the fluid and the speed of
sound – measures indeed the compressibility of the fluid: if Ma → 0 the first equation in (C.5) is nothing else than
the incompressibility constraint ∇ · (RU) = 0. The equations of motion are then obtained by a systematic multiscale
expansion. Their precise formulation depends further on another important feature of the fluid, namely on its viscosity,
which is measured by the Reynold’s number Re.
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Note that, for perfect gases (i.e. for all gases which can be described by Boltzmann’s equation), the Von Karmann’s
relation states

Re = Ma

Kn

so that all features of the fluid are completely determined by the two nondimensional parameters Ma and Kn (see [1]
for more details).

C.2. Taking limits as ε → 0

In all the sequel we are interested in the regimes leading to the incompressible Euler equations: we will thus choose

Ma = ε, Kn = εq with q > 1,

meaning in particular that U/
√

Θ = O(ε), and we consider the limit ε → 0.
We will further restrict our attention to the homogeneous case, in the sense that the density R and temperature Θ

will be assumed to be fluctuations of order ε around their equilibrium values, say without loss of generality around 1.
Denoting by ρ, u and θ the fluctuations of mass, momentum and temperature, and plugging the expansions

R = 1 + ερ, U = εu, Θ = 1 + εθ,

in the previous hydrodynamic equations (C.5), we get at leading order with respect to ε

∇ · u = 0,

∇(ρ + θ) = 0, (C.6)

which are the macroscopic constraints (incompressibility and Boussinesq relations), then at second order the equations
of motion

∂tu + (u · ∇x)u + ∇p = 0,

∂t θ + ∇x · (θu) = 0. (C.7)

Remarks. Dealing with the more general case when R and Θ have variations of order 1 is not really more difficult
from a formal point of view. We actually get the following asymptotics

∇ · u = 0,

∇(RΘ) = 0,

and

∂tR + ∇x · (Ru) = 0,

∂tu + (u · ∇x)u + 1

R
∇p = 0.

The point is that the mathematical theory of that system is not so well understood as for (C.6), (C.7). Further-
more the asymptotic analysis would require to control quantities of different sizes (namely R = O(1), Θ = O(1)

and U = O(ε)), and thus to introduce new mathematical tools.
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