
Ann. I. H. Poincaré – AN 26 (2009) 763–775
www.elsevier.com/locate/anihpc

Killing graphs with prescribed mean curvature and Riemannian
submersions

M. Dajczer a,∗,1, J.H. de Lira b,2

a IMPA, Estrada Dona Castorina, 110, 22460-320, Rio de Janeiro, Brazil
b Departamento de Matematica, UFC, Bloco 914, Campus do Pici, 60455-760, Fortaleza, Ceara, Brazil

Received 25 October 2007; accepted 8 February 2008

Available online 21 March 2008

Abstract

It is proved the existence and uniqueness of graphs with prescribed mean curvature in Riemannian submersions fibered by flow
lines of a vertical Killing vector field.

Résumé

On démontre l’existence et unicité de graphes avec courbure moyenne prescrite dans les submersions fibrées par les solutions
d’un champ de vecteurs de Killing vertical.
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1. Introduction

Recent papers devoted to the study of CMC surfaces in certain homogeneous three-manifolds are based in the
description of these ambient spaces as Riemannian submersions over constant curvature model surfaces. For instance,
this is the case of [1,3,6] and [7]. In particular, in [3] the authors obtained CMC graphs in the Heisenberg space
regarding it as a submersion over R

2 fibered by geodesic flow lines of a Killing vector field. The goal in these works
is to extend classical results about CMC surfaces in Euclidean space as well as more recent results in non-flat space
forms to a more general setting.

One of the main issues in developing a theory for CMC hypersurfaces in general Riemannian ambients is the
existence of examples. Methods which rely mainly on geometric constructions may fail if the ambient space lacks
appropriate symmetries or structures. However, the problem may be solvable once it is reformulated in analytical
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terms as the existence of CMC graphs for a suitable notion of graph. This is the case of Riemannian manifolds carrying
a Killing vector field where the natural notion of Killing graph has been defined under additional assumptions.

The Dirichlet problem for prescribed mean curvature Killing graphs in ambient spaces endowed with a Killing
field with integrable orthogonal distribution was first solved for CMC surfaces in [5]. Then, it was extended in [4] to
hypersurfaces with prescribed mean curvature function. Under the integrability assumption, the ambient manifold has
a warped product structure with one of the factors giving rise to a totally geodesic hypersurface foliation.

In this paper, we consider a generalization of [3] and [4] to Riemannian submersion π : M̄n+1 → Mn whose ver-
tical fibers are given by flow lines of a Killing field but such that the normal distribution to the field may fail to be
integrable. The non-integrability induces several technical complications not present in [4]. Our aim is to show that
a natural setting of the Dirichlet problem for Killing graphs (defined in Section 2) with prescribed mean curvature
function in this context is to consider these as leaves transversal to a solid cylinder of the flow lines that project on
a compact domain on the base of the submersion. Using this approach, we give a unified proof of known and com-
pletely new existence results in a wide range of ambient Riemannian manifolds. Among the ambients for which this
paper applies, we should mention higher-dimensional Heisenberg spaces and odd-dimensional spheres submersed in
complex projective spaces.

The existence part of our result is proved using the continuity method for quasilinear elliptic PDE. In order to
obtain a priori estimates essential to this method we use Killing cylinders as barriers. Given a domain Ω in M with
compact closure and boundary Γ , the Killing cylinders over Γ and Ω̄ are, respectively, the subsets K = π−1(Γ ) and
M0 = π−1(Ω̄). We denote by Hcyl the inward mean curvature of K and by RicM̄ the Ricci tensor of M̄ .

With the above notations we have the following result.

Theorem 1. Let Ω ⊂ M be a domain with compact closure and C2,α boundary. Suppose that Hcyl > 0 and
RicM̄ � −n infΓ H 2

cyl. Let H ∈ Cα(Ω̄) and φ ∈ C2,α(Γ ) be given functions and ι : Ω̄ → M0 ⊂ M̄ be a C2,α im-
mersion transversal to the vertical fibers such that π ◦ ι = id|Ω̄ . If

sup
Ω

|H | � inf
Γ

Hcyl,

then there exists a unique function u ∈ C2,α(Ω̄) satisfying u|Γ = φ whose Killing graph Σ has mean curvature H .

The hypothesis on the existence of an immersion ι is used simultaneously to introduce a set of coordinates well
suited to the problem and to define properly the notion of Killing graph. In terms of these coordinates, it may be
rendered evident that the ambient metric is stationary. Moreover, ι(Ω̄) is used as barrier to producing an initial min-
imal graph by the direct method in Calculus of Variations. In higher-dimensional Heisenberg spaces there exists a
minimal leaf transverse to the flow lines of the vertical vector field. Thus, in this particular case there is no need of the
hypothesis. By contrast, if we consider the example of odd-dimensional spheres submersed in the complex projective
spaces, it is not guaranteed that always exist such minimal graphs with respect to the Hopf fibers.

Observe that me may recover the submersion structure of the ambient space from the existence of ι. On the other
hand, Riemannian submersions with totally geodesic fibers constitute an important example where we may rule out the
hypothesis of the existence of ι. In fact, if we assume that the Killing cylinder M0 over Ω̄ is geodesically complete,
then geodesic cones with boundary in K and vertex at the mean convex side of K may be taken as initial Killing
graphs after smoothing around the vertex.

This paper is organized as follows. In Section 2, we fix notation and made precise the notion of Killing graph.
We deduce the mean curvature equation and define adapted and basic reference frames crucial in the subsequent
analysis. In Section 3, we present some basic geometry of Killing cylinders. In Sections 4 and 5 we follow very
closely the arguments in [4] to construct analytical barriers to obtain height and boundary gradient estimates. Section 6
is devoted to the proof of interior gradient estimates based in the technique of normal perturbation of the graph due to
Korevaar [9]. We should point out that the technique used in [4] may still work but it becomes extremely cumbersome.
The continuity method and the existence of the minimal initial solution are presented in the final section.
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2. Killing graphs

Let π : M̄n+1 → Mn be a Riemannian submersion such that the leaves of the vertical foliation are the trajectories
of a non-singular Killing vector field denoted by Y ∈ X(M̄). Let Ω ⊂ M be a C2,α domain with compact closure. We
assume that the integral curves of Y in

M0 := π−1(Ω̄)

are complete lines. Since the hypersurfaces we work with are graphs over Ω̄ along the integral curves, when these
curves are circles we may pass to the universal cover of M0 without loss of generality.

Let ι : Ω̄ → M̄ be an immersion satisfying π ◦ ι = idΩ̄ such that the hypersurface Σ0 = ι(Ω̄) is transversal to the
flow lines. The initial values for the flow Ψ : R × Σ0 → M0 of Y are taken at Σ0, i.e., Σ0 corresponds to the level
hypersurface s = 0 for the flow parameter s. Set Ψs = Ψ (s, ·). Then, the level hypersurfaces Σs = Ψs(Σ0) constitute
a foliation of M0 by isometric hypersurfaces.

Fix a local reference frame v1, . . . , vn on Ω̄ and set

σij = 〈vi , vj 〉.
Let v̄1, . . . , v̄n be the corresponding local frame on Σ0, i.e., v̄i (p) = ι∗vi (x) if x ∈ Ω̄ and p = ι(x). By means of the
flux Ψ we define a local frame at q = Ψs(p) in M̄ by

∂s(q) = d

ds
Ψ (s,p) = Y

(
Ψ (s,p)

) = Ψ∗(s,p)∂s(p)

and

v̄i (q) = (Ψs ◦ ι)∗vi (x).

Let D1, . . . ,Dn in M̄ denote the basic vector fields π -related to v1, . . . , vn. If q = Ψ (s,p) for p ∈ Σ0, then π(q) =
π ◦ Ψ (s,p) = π(p). Therefore,

Di(q) = Ψ∗(s,p)Di(p).

That π is a Riemannian submersion yields

〈Di,Dj 〉 = 〈vi , vj 〉 = σij .

Setting

D0 := f 1/2∂s,

we complete a local reference frame D0,D1, . . . ,Dn on M̄ where f := 1/|Y |2 does not depend on s since Y is a
Killing field.

We extend the frame v̄1, . . . , v̄n adapted to the leaves Σs to a frame ∇̄s, v̄1, . . . , v̄n in M̄ by adding the gradient
vector field ∇̄s of the function s.

The two frames considered on M̄ are related by{ ∇̄s = f 1/2D0 + σ jiDj (s)Di,

v̄i = δiD0 + Di.

We easily see that the functions δi and Dj(s) do not depend on s.
The Killing graph Σ = Σu of a function u ∈ C2(Ω̄) is the hypersurface

Σu = {
Ψ

(
u(p),p

)
: p ∈ Σ0

}
.

We may regard u as a function in M0 by means of the extension

u(q) = u(x) if π(q) = x. (1)

Since Σ can also be considered as given by the immersion

ιu :x ∈ Ω̄ 
→ Ψ
(
u(x), ι(x)

)
,
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its tangent bundle is spanned by the vector fields

(ιu)∗vi = vi (u)Ψs + (Ψ ◦ ι)∗vi = vi (u)∂s + v̄i = f −1/2vi (u)D0 + v̄i . (2)

By (1), one has D0(u) = f 1/2∂su = 0, and hence

Di(u) = v̄i (u) − δiD0(u) = v̄i (u) = vi (u).

Therefore, we have using (2) that

(ιu)∗vi = (
f −1/2Di(u) + δi

)
D0 + Di.

It follows easily that a unit normal vector field to Σ pointing upwards is

N = 1

W

(
f 1/2D0 − ûjDj

)
, (3)

where

ûj := σ ijDi(u − s) (4)

and

W 2 := f + σij û
i ûj = f + ûi ûi

for ûi := σij û
j . Notice that ûj and W can also be seen as functions on M since they are independent of s.

Next, we compute the mean curvature of Σ . We assume, for simplicity, that the tangent frame v1, . . . , vn is or-
thonormal at x ∈ Ω . Hence, the basic frame D0,D1, . . . ,Dn is orthonormal at points of π−1(x). Thus,

〈∇̄D0N,D0〉 = f 1/2

W
〈∇̄D0D0,D0〉 − ûj

W
〈∇̄D0Dj,D0〉 = 1

W

〈∇̄D0D0, û
jDj

〉
,

where ∇̄ denotes the Riemannian connection on M̄ . We consider on M the vector field

Du := ûj vj = σ ijDi(u − s)vj .

Since ∇̄D0D0 is a horizontal vector field and π∗(ûjDj ) = ûj vj , we obtain

〈∇̄D0N,D0〉 = 1

W
〈π∗∇̄D0D0,Du〉.

By the well-known O’Neill submersion formula [12], we have

∇̄Dk
Dj = (∇̄Dk

Dj )
h + 1

2
[Dk,Dj ]v. (5)

Thus, we obtain for k � 1 that

〈∇̄Dk
N,Dk〉 = −f 1/2

W
〈∇̄Dk

Dk,D0〉 −
〈
∇̄Dk

(
ûj

W
Dj

)
,Dk

〉
= −

〈
∇vk

Du

W
, vk

〉

where ∇ denotes the Riemannian connection on M . We conclude that

nH = −divM̄ N = divM

Du

W
− 1

W
〈π∗∇̄D0D0,Du〉. (6)

Denote the covariant derivative in M of Du = ûj vj by

∇vk
Du := û

j

;kvj

and set ûk;i := σjkû
j

;i . Computing at any point the divergence in the right-hand side of (6) gives

divM

Du

W
= 1

W 3

(
W 2σ ik − ûi ûk

)
ûk;i − 1

2W 3
vi (f )ûi .

On the other hand,
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vi (f ) = −f 2vi〈Y,Y 〉 = −2f 2〈∇̄Di
Y,Y 〉 = 2f 2〈∇̄Y Y,Di〉

= 〈π∗∇̄D0D0, vi〉.
Thus, the mean curvature Eq. (6) becomes

Aikûk;i − (
f + W 2)〈π∗∇̄D0D0,Du〉 = B, (7)

where

Aik := W 2σ ik − ûi ûk and B := nHW 3.

We define the operator

Q[u] = 1

W 3

(
Aij ûj ;i − (

f + W 2)〈π∗∇̄D0D0,Du〉).
Therefore, we have shown that Σ is a hypersurface with prescribed mean curvature function H(x) and boundary
condition φ if u is a solution to the Dirichlet problem{

Q[u] = nH,

u|Γ = φ
(8)

where Γ = ∂Ω . The boundary of Σ is the Killing graph over Γ of φ.
Since Du = π∗∇̄(u − s) from (4) we obtain using (5) that

∇vk
Du = π∗

(∇̄Dk
∇̄(u − s) − ∇̄Dk

〈∇̄(u − s),D0
〉
D0

)
= σ ilπ∗

(〈∇̄Dk
∇̄(u − s),Dl

〉
Di − 〈∇̄(u − s),D0

〉〈∇̄Dk
D0,Dl〉Di

)
= σ il

(∇̄2
Dk,Dl

(u − s) + (
D0(u) − D0(s)

)〈∇̄Dk
Dl,D0〉

)
π∗Di

= σ il

(
∇̄2

Dk,Dl
(u − s) − 1

2
f 1/2〈[Dk,Dl],D0

〉)
vi .

Therefore,

ûj ;k = σji û
i
;k = ∇̄2

Dk,Dj
(u − s) + 1

2
γjk (9)

where γkj := f 1/2〈[Dk,Dj ],D0〉 is skew-symmetric.
Under the convention for u established in (1) we use the standard notation

ui = Di(u), ui = σ ijuj and ui;j = 〈∇̄Di
∇̄u,Dj 〉.

Then the matrix (ûi;j ) is related with the Hessian matrices (ui;j ) and (si;j ) by

ûi;j = 〈∇̄Dj
∇̄u,Di〉 − 〈∇̄Dj

∇̄s,Di〉 + 1

2
γij = ui;j − si;j + 1

2
γij . (10)

Hence, the principal part of the mean curvature Eq. (8) is given by the matrix (Aij ). One has

f |ξ |2 � Aij ξiξj � W 2|ξ |2. (11)

3. Killing cylinders

The Killing cylinder over Γ is the hypersurface K = π−1(Γ ). Thus

K = {
Ψ

(
s, ι(x)

)
: s ∈ R, x ∈ Γ

}
is ruled by the flow lines of Y through ι(Γ ) ⊂ Σ0.

We denote by η̄ the inward pointing unit vector field normal to K . Clearly, η̄ is a basic vector field and π∗η̄ = η

is the unit normal vector field to Γ in M pointing inward. We work with a tangent frame satisfying that v1 = η and
v2, . . . , vn are orthogonal to v1. In particular, their horizontal lifts Di verify along K that D1 = η̄ and Dj , 2 � j � n,
is tangent to K . Set

f 〈∇̄Y Y, η̄〉 = 〈∇̄D0D0, η̄〉 = κ,
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where κ can be seen as a function on Ω̄ since one way easily verify that Y(κ) = 0. Hence,

nHcyl =
∑
i,j

σ ij 〈∇̄Di
Dj , η̄〉 + κ =

∑
i,j

σ ij 〈∇vi
vj , η〉 + κ = (n − 1)HΓ + κ

where HΓ is the mean curvature of Γ in M .
In the sequel, we deduce some useful properties of the distance function d = dist(·,K) from K . We denote by Γε

and Kε the level sets d = ε in M and M̄ , respectively. Thus, Γε and Kε are equidistant from Γ and K , respectively.
It is immediate that Kε is a Killing cylinder over Γε . Since Γ is assumed to be C2,α , the function d is also C2,α at
points of Ψ (R × Ωε), where Ωε ⊂ Ω is a tubular ε-neighborhood of Γ in M for small ε > 0.

Given q ∈ Ψ (R × Ωε) we write q = expp dη for some p ∈ K . Hence,

|D1| = |∇̄d| = 1.

It follows that dkdi;k = 0. We also have

〈∇̄D0∇̄d,D0〉 = −〈∇̄D0D0, ∇̄d〉 := −κε

and

〈∇̄D1∇̄d,D1〉 = 1

2
D1|∇̄d|2 = 0.

Therefore,

�d|d=ε = −κε + σ ij 〈∇̄Di
∇̄d,Dj 〉 = −κε − σ ij bε

ij = −nHε
cyl, (12)

where bε
ij are the components of the Weingarten operator Aε and Hε

cyl the mean curvature of Kε .

Fact 2. All of the above calculations on the distance function d remain valid if we replace Ωε by the larger subset Ω0
in Ω consisting of the points which can be joined to Γ by a unique minimizing geodesic. It was shown in [10] that in
this set d has the same regularity as Γ .

In this paper the ambient Ricci tensor in direction v is defined by

RicM̄ (v) =
n∑

i=1

〈
R̄(ei, v)v, ei

〉
,

where R̄ is the curvature tensor in M̄ and e1, . . . , en, v is an orthonormal basis. We follow [8] or [13] and use the
result in Fact 2 for the proof of the following result.

Lemma 3. Assume that the Ricci curvature satisfies RicM̄ � −n infΓ H 2
cyl. Let y0 ∈ Γ be the closest point to a given

point x0 ∈ Γε ⊂ Ω0. If Hcyl > 0, then, we have

Hcyl(ε)|x0 � Hcyl|y0 .

We refer the reader to [4] for a proof of this lemma in a slightly different context.

4. The C0 estimate

In this section, we obtain a priori C0 estimates for solutions of the Dirichlet problem (8).
As in [4] we construct barriers for u in (8) on Ω0 (see Fact 2) by

ϕ(x) = sup
Γ

φ + h
(
d(x)

)

where d = dist(·,Γ ) is regarded as the distance from Γ on M and the function h will be chosen later. We work with
the frame v1 := ∇d, v2, . . . , vn and the corresponding frame D0,D1, . . . ,Dn. Thus, Di(d) = vi (d). We have,

ϕi = h′di and ϕi;j = h′′didj + h′di;j .
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We obtain from (4) and (10) that

ϕ̂j = σ ij (ϕi − si) = σ ij
(
h′di − si

) = h′di − si

and

ϕ̂i;j = ϕi;j − si;j + 1

2
γij = h′′didj + h′di;j − si;j + 1

2
γij .

Since γij is skew-symmetric, we have

Aij ϕ̂j ;i = W 2ϕ̂
j

;i − ϕ̂i ϕ̂j ϕ̂j ;i
= W 2(h′′ + h′di

;i − si
;i
) − (

h′di − si
)(

h′dj − sj
)(

h′′didj + h′dj ;i − sj ;i
)

= (
W 2 − h′2 + 2h′〈∇̄d, ∇̄s〉 − 〈∇̄d, ∇̄s〉2)h′′ + W 2h′di

;i + R

where

R := −h′sisj di;j − W 2si
;i + (

h′2didj − h′(disj + dj si
) + sisj

)
si;j . (13)

Notice that R is a polynomial of second degree in h′ and its coefficients are just functions on M . Using that

W 2 = f + ϕ̂kϕ̂k = f + h′2 − 2h′〈∇̄d, ∇̄s〉 + |∇̄s|2, (14)

we conclude that

Aij ϕ̂j ;i = (
f + |∇̄s|2 − 〈∇̄d, ∇̄s〉2)h′′ + W 2h′di

;i + R. (15)

We have from (12) that di
;i = κε − nHε

cyl. Since Dϕ = π∗(h′∇̄d − ∇̄s) from (4), we also have

〈π∗∇̄D0D0,Dϕ〉 = h′κε − 〈∇̄D0D0, ∇̄s〉. (16)

Thus, we obtain

W 3 Q[ϕ] = (
f + |∇̄s|2 − 〈∇̄d, ∇̄s〉2)h′′ − (

f κε + nW 2Hε
cyl

)
h′ + R∗

where

R∗ := R + (
f + W 2)〈∇̄D0D0, ∇̄s〉.

Now, we choose the test function

h = eCA

C

(
1 − e−Cd

)

where A > diam(Ω̄) and C > 0 is a constant to be chosen later. Then,

h′ = eC(A−d) and h′′ = −Ch′.

Hence,

Q[ϕ] � −(C + κε)
f h′

W 3
− h′

W
nHε

cyl +
R∗

W 3
.

Observe that f/W 2 � 1. Moreover, as C → ∞ we have that 1/W → 0 and

h′

W
= h′

(h′2 − 2h′〈∇̄d, ∇̄s〉 + |∇̄s|2 + f )1/2
→ 1.

In particular, we have

R∗

W 3
→ 0 as C → ∞.

Choose C  0 so that, in particular, C + κε > 0. Using supΩ |H | � infΓ Hcyl and Lemma 3, we obtain

Q[ϕ] < −n|H | � nH.
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Thus, one has at points of Ω0 that

Q[ϕ] < Q[u] = nH, ϕ|Γ � u|Γ .

The same argument as in [4] now proves that ϕ � u on Ω̄ . Thus, we have proved the following result.

Lemma 4. Under the assumptions of Theorem 1 there exists a constant C = C(Ω,H) such that

|u|0 � C + |φ|0
if u ∈ C2(Ω) ∩ C0(Ω̄) satisfies Q[u] = nH and u|Γ = φ.

5. Boundary gradient estimates

In this section our task is to produce a priori gradient estimates along Γ for the Dirichlet problem (8). This is
accomplished by constructing local lower and upper barriers for Σ in a tubular neighborhood of Γ .

As in the preceding section we follow closely the argument in [4]. We construct barriers of the form w + φ along a
tubular neighborhood Ωε of Γ as defined in Section 3. Here, w = ψ(d(x)) for some real function ψ to be chosen and
d = dist(·,Γ ). Moreover, the boundary data φ is extended to a function in Ωε along the normal geodesics in a way
we make precise later.

We denote

Q̃[u] = Q[u] − nH.

A simple estimate using (11) and then (16) gives

Q̃[w + φ] � aij ŵi;j + 1

W
|φ|2,α + b − nH, (17)

where

aij := Aij

W 3
= 1

W
σij − 1

W 3

(
ŵi + φ̂i

)(
ŵj + φ̂j

)
ŵi;j (18)

and

b = −f + W 2

W 3

(
ψ ′κε + 〈π∗∇̄D0D0,Dφ〉 − 〈∇̄D0D0, ∇̄s〉).

From now on Rj , j � 1, denotes a polynomial of at most second degree in ψ ′ whose coefficients are functions
in M . As in (14) and (15) we first obtain,

W 2 = f + ψ ′2 − 2ψ ′〈∇̄d, ∇̄s − ∇̄φ〉 + |∇̄s − ∇̄φ|2,
and then

W 2ŵi
;i − ŵiŵj ŵi;j = (

f + |∇̄s − ∇̄φ|2 − 〈∇̄d, ∇̄s − ∇̄φ〉2)ψ ′′ + W 2ψ ′di
;i + R1.

Moreover,

ŵi φ̂j ŵi;j = (
ψ ′di − si

)
φ̂j

(
ψ ′′didj + ψ ′di;j − si;j

)
= −ψ ′ψ ′′〈∇̄d, ∇̄s − ∇̄φ〉 + ψ ′′〈∇̄d, ∇̄s〉〈∇̄d, ∇̄s − ∇̄φ〉 + R2

and

φ̂i φ̂j ŵi;j = φ̂i φ̂j
(
ψ ′′didj + ψ ′di;j − si;j

) + R3.

Now define

ψ(d) = μ ln(1 + Kd)

for constants μ > 0 and K > 0 to be chosen later. Then using di = −nHε + κε we obtain
;i cyl
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W 2ŵi
;i − ŵiŵj ŵi;j = −ψ ′(nHε

cyl − κε

)
W 2 + R4,

ŵi φ̂j ŵi;j = −ψ ′ψ ′′〈∇̄d, ∇̄s − ∇̄φ〉 + R5

and

φ̂i φ̂j ŵi;j = R6.

Since (18) gives

W 3aij ŵi;j = W 2ŵi
;i − ŵiŵj ŵi;j − (

ŵi φ̂j + ŵj φ̂i
)
ŵi;j − φ̂i φ̂j ŵi;j ,

we now conclude from (17) that

W 3 Q̃[w + φ] � −ψ ′(nHε
cyl − κε

)
W 2 − 2

μ
ψ ′3〈∇̄d, ∇̄s − ∇̄φ〉 + (b − nH)W 3 + R7.

From the expressions above for b and W 2 it follows that

bW 3 + ψ ′κεW
2 = R8.

Hence, we obtain

W 3 Q̃[w + φ] � −
(

n
(
H + Hε

cyl

) + 2

μ
〈∇̄d, ∇̄s − ∇̄φ〉

)
ψ ′3 + R9.

We choose μ in such a way that μ → 0 as K → ∞. Namely,

μ = C

ln(1 + K)

for some constant C > 0 to be chosen later. As K → ∞ we have that

ψ ′(0) = CK

ln(1 + K)
→ +∞.

It also holds that ψ ′/W ∼ 1 as K → ∞. Thus, at points of Γ the last inequality becomes

W 3 Q̃[w + φ] � −
(

n
(
H + Hcyl

) + 2

μ
〈∇̄s − ∇̄φ,η〉

)
ψ ′3 + R9.

We choose the extension of φ in such a way that at points of Γ it holds

〈∇̄φ,η〉 < 〈∇̄s, η〉.
Therefore, assuming that Hcyl + H � 0 and choosing K large enough, we assure that Q̃[w + φ] < 0 on a small

tubular neighborhood Ωε of Γ . Notice that (w + φ)|Γ = φ|Γ . Choosing C and K large enough we also have that
w + φ � u|Γε + φ. Therefore, w + φ is a locally defined upper barrier for the Dirichlet problem (8). A lower barrier
may be constructed in a similar way. Thus, we have proved the following fact.

Lemma 5. Assume that u ∈ C2(Ω) ∩ C1(Ω̄) satisfies Q[u] = nH and u|Γ = φ. If |u| is bounded in Ω̄ , then

sup
Γ

|∇u| � C

by a constant that depends on |u|0.

6. Interior gradient estimates

6.1. The prescribed mean curvature case

In this general case, we adopt ideas from the classical estimate of Korevaar [9]. Suppose that the maximum of
|Du| is attained at an interior point, say x0 ∈ Ω , where we may assume that |Du| �= 0 without loss of generality.
Consider a geodesic ball B = B(x0, ρ) ⊂ Ω centered at x0 with small radius ρ � 1 so that |Du| � C at points of B̄
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for some positive constant C. Without loss of generality, we may assume after a translation along the flow lines of Y ,
if necessary, that u < 0 at points of the solid cylinder π−1(B̄).

Let η(x, s) � 0 be a continuous function defined in B̄ × R
− that vanishes on ∂B × R

− and is smooth wherever it
is positive. Then, let Σ̄ be the normal geodesic graph over Σ defined by

q = expp εη(p)N(p)

where p ∈ Σ is parametrized by (x,u(x)). Recall that N given in (3) was fixed to be upwards.
For small ε > 0, we may describe Σ̄ as a Killing graph of some function ū defined in Ω̄ . We denote by y the point

in Ω that maximizes ū−u. It is clear that y ∈ B and that Diū = Diu at this point. From (3) the tangent planes to both
graphs have the same slope with respect to the flow line π−1(y) of Y .

We claim that

Hū(y) � Hu(y) (19)

where Hu and Hū denote the mean curvature of Σ and Σ̄ , respectively. In fact, moving Σ upward along the flow lines
until the points (y,u(y)) ∈ Σ and (y, ū(y)) ∈ Σ̄ coincide, we obtain a tangency point for both graphs. Moreover, by
the choice of y it is clear that the translated copy of Σ is above Σ̄ locally around the point. Thus, the inequality (19)
is consequence of the comparison principle for the mean curvature PDE.

It is a well-known fact that since the variation of Σ we consider is along the normal direction, then the mean
curvature may be expanded as

nHū(x̄) = nHu(x) + εJη + O
(
ε2), (20)

where (x,u(x)) and (x̄, ū(x̄)) parametrize correspondent points in Σ and Σ̄ along the same normal geodesic and

J = �Σ + |A|2 + RicM̄ (N,N)

is the Jacobi operator produced by the linearization of the mean curvature equation. Here, �Σ is the Laplace–Beltrami
operator on Σ and |A| denotes the norm of its second fundamental form.

Let x̄ = y for some x. It follows from (19) and (20) that

εJη + O
(
ε2) = n

(
Hū(y) − Hu(x)

)
� n

(
Hu(y) − Hu(x)

)
.

On the other hand, Taylor’s expansion of Hu gives

Hu(y) = Hu(x) + εηHiT
i + O

(
ε2),

where T i are the components of the horizontal projection of the normal vector field N . Thus, we get at y that

�Ση + |A|2η + Ric(N,N)η � nηHiT
i + O(ε).

Therefore,

�Ση − Mη � O(ε) (21)

for some constant M > 0 which does not depend on η.
Next we proceed as in [9] choosing η = g(θ(x, s)) for some real function g to be chosen and a function θ defined so

that �Ση is large for sufficiently large |Du(x)|. Since ε is chosen small, then (21) will give a contradiction. Observe
that C being large implies that the tangent hyperplanes to Σ near (y,u(y)) are very sloppy.

That a tangent hyperplane to Σ is almost vertical means the tangential component ∇Σθ of the gradient of θ is
approximately θs . Then, we define

θ(x, s) = (
Ks + (

ρ2 − r2))+

for some small constant K > 0, where r(x) = distM(x0, x) is the geodesic distance measured from the center x0 of B

and (·)+ means positive part. We have 0 � θ � ρ. Since we are assuming height estimates for Σ , we may choose K

sufficiently small in such a way that θ > 0 in a neighborhood of (y,u(y)) in B × R
−. We restrict ourselves to points

where θ is differentiable. There,

θs = K > 0.
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Since

�Ση = g′′|∇Σθ |2 + g′�Σθ, (22)

we have from (21) and (22) that

g′′|∇Σθ |2 + g′�Σθ − Mg � O(ε). (23)

By hypothesis, the tangent plane of Σ at (y,u(y)) is not horizontal. Otherwise, we obtain from (3) that Du(y) = 0.
Let e be the unit vector that gives the steepest ascent direction in the tangent plane of Σ at (y,u(y)), namely,

e = 1

W |Du|
(|Du|2D0 + f 1/2ûjDj

)
.

Denoting by ∇̄θ the ambient gradient of θ and using that ρ � 1, we have

〈∇Σθ, e〉 = 〈∇̄θ, e〉 = f 1/2

W

(
K|Du| + ûjDj (θ)

|Du|
)

� f 1/2

W

(
K|Du| − ĈK − 2

)
,

where Ĉ > 0 is a constant independent of u given by the following estimate:

ûj

|Du|Dj(θ) = ûj

|Du|
(
KDj(s) − 2rvj (r)

)
� −2 − ĈK.

Since K and Ĉ are independent of u and the parameter s, we may assume that |Du| > 2/K + Ĉ, and conclude that

|∇Σθ | > 0.

Finally, for C1 > 0 large we choose

g(θ) = eC1θ − 1.

It is easily seen that this choice leads to a contradiction with (23). We conclude that |Du| and therefore |∇u| is
bounded by some constant which does not depend on u.

Lemma 6. Assume that u ∈ C3(Ω) ∩ C1(Ω̄) satisfies Q[u] = nH and u|Γ = φ. If u is bounded in Ω and |∇u| is
bounded in Γ , then |∇u| is bounded in Ω by a constant that depends only on |u|0 and supΓ |∇u|.

The usual elliptic regularity results guarantee that the above estimate is also true for a C2,α function (see [8]).

6.2. The constant mean curvature case

In this case a standard argument works. In fact, consider the positive function

Θ := 〈N,Y 〉 = f√
f + |Du|2

since a lower estimate of Θ clearly yields an upper estimate for |∇u|. Under the assumption that H is constant and
being Y a Killing field, it is well known (cf. [2]) that Θ is a Jacobi field, namely, JΘ = 0. By assumption the Ricci
tensor is bounded from below. Thus, since Σ is compact there is a constant c � 0 such that |A|2 + RicM̄ (N,N) � −c.

Thus Θ is a supersolution to the elliptic operator �Σ − c. Hence, the classical minimum principle states that

min
Σ

Θ � min
∂Σ

Θ.

This assures that |∇u| is uniformly bounded from above by a constant involving the boundary estimates for |∇u|.
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7. The proof of the theorem

In view of the Continuity Method, one must seek for an initial minimal surface with boundary given by Γ . This
may be accomplished by defining the sets

C = {
u ∈ C0,1(Ω): u|Γ = 0

}
and, given k > 0,

Ck = {
u ∈ C: |u|0,1 � k

}
.

The hypothesis on the existence of an immersion ι : Ω̄ → M̄ assures that the set C is non-empty since we may consider
the hypersurface ι(Ω̄) as the graph Σ0 of the function u = 0. For the case κ = 0, if we assume M0 is geodesically
complete, the immersion ι may be obtained as follows: we construct a geodesic cone by joining points of a Killing
graph in K over Γ to a vertex p0 inside M0. This cone is contained inside M0 since the Killing cylinder K is
mean convex and M0 is geodesically complete. Moreover, it may be smoothed out near the vertex. The resulting
hypersurface may be given as a Killing graph since the geodesic cone is always transversal to the geodesic vertical
fibers.

We then formulate the issue of the existence of a minimal graph spanning ι(Γ ) as the minimization of the functional

I(u) =
∫
Ω

W
(
x,∇u(x)

)√
σ dx, u ∈ C,

where

W =
√

f + ûi ûi

and the first derivatives of u are taken in a weak sense. Notice that f and ûi = ui − f 1/2δi do not depend on u. It is
clear that u is a critical point of I if and only if is a weak solution of the mean curvature equation in divergence form.
Since the coefficients of this equation (including H ) do not depend on the function, it follows from Theorems 11.10
and 11.11 in [8] that I has a extremum in C . In fact, these theorems require upper bounds in the Lipschitz norm of the
candidates u ∈ C which may be obtained from the a priori C1 estimates we derived earlier.

The C2,α regularity of the minimizer function u0 follows from very general results found in [11]. This function
defines a minimal graph over Ω with boundary Γ .

For the proof of the existence part we apply the well-known continuity method to the family of Dirichlet problems

Qσ [u] = nσH, u|Γ = σφ,

where σ ∈ [0,1]. The subset I of [0,1] consisting of values of σ for which there is a solution is non-empty since we
have an initial minimal graph spanning the boundary data φ. The openness of I is a direct consequence of a standard
application of the implicit function theorem since the derivative of Qσ is a linear homeomorphism. The closeness of I

follows from the a priori estimates we had proved and linear elliptic PDE theory. Thus, the continuity method assures
that 1 ∈ I .

In order to prove the uniqueness statement, we deduce a kind of flux formula. We suppose that there exists a
hypersurface Σ ′ in M0 with ∂Σ ′ = Γ and whose mean curvature is the same as Σ at corresponding points in flow
lines. This means that if x = π(p) for p ∈ Σ ′ then the mean curvature of Σ ′ at p is H(x). Translating Σ ′ we may
suppose that Σ , Σ ′ and a part of the cylinder K form an oriented cycle which bounds a domain U in M0. Since Y is
tangent to the part of the boundary of U contained in K , we conclude from divergence theorem applied to the field
HY in U that∫

Σ ′
〈HY,N ′〉 =

∫
Σ

〈HY,N〉

where N and N ′ define respectively the orientations in Σ and Σ ′. Applying now the divergence theorem to the
hypersurfaces Σ and Σ ′ we obtain that∫

〈Y, ν〉 =
∫

′
〈Y, ν′〉
Γ Γ
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where ν and ν′ are respectively the outward unit co-normals to Γ with respect to Σ and Σ ′. This implies that there
exists a point p in Γ where Σ and Σ ′ are tangent, that is, where ν|p = ν′|p . Thus, since Σ ′ is locally a graph near p,
we conclude from the boundary maximum principle that Σ = Σ ′. This concludes the proof of the theorem.
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