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Abstract

In this paper we prove a smoothing property for the L2-critical nonlinear Schrödinger equation and we use it to study the blowup
dynamics for singular solutions below the energy level.

Résumé

Dans cet article, on montre un effet régularisant pour l’équation de Schrödinger L2-critique et on utilise ce résulat pour étudier
la dynamique d’explosion pour les solutions singulières ayant des données initiales peu régulières.
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1. Introduction

Consider the L2-critical nonlinear Schrödinger equation

i∂tu + �u + κ|u| 4
d u = 0; u|t=0 = u0 ∈ Hs

(
Rd

)
. (1)

Here, � = ∑d
j=1 ∂2

xj
is the Laplace operator on Rd and u : Rt ×Rd

x → C is a complex-valued function. The parameter
κ equal to 1 (resp. −1) corresponds to the focusing (resp. defocusing) NLS. It is well known (see [7] for instance)
that the Cauchy problem (1) is locally well-posed in Hs for every s � 0.
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The unique solution satisfies the following conservation law∫ ∣∣u(t, x)
∣∣2

dx =
∫ ∣∣u0(x)

∣∣2
dx.

Also, if s � 1, the energy

E(t) = 1

2

∫ ∣∣∇u(t, x)
∣∣2

dx − κd

4 + 2d

∫ ∣∣u(t, x)
∣∣ 4

d
+2

dx

is conserved as t varies. Here ∇ = (∂x1 , ∂x2 , . . . , ∂xd
) denotes the spatial gradient in Rd .

For s > 0 Eq. (1) is subcritical: the lifespan of the solution depends only on the Hs norm of the data. Define [0, T ∗)
to be the forward maximal lifespan of the solution of (1). We have the following blowup alternative: either T ∗ = +∞
or T ∗ < +∞ and

lim
t↑T ∗

∥∥Dsu(t)
∥∥

L2 = +∞.

The space L2 and the equation have the same scaling. More precisely, if u solves (1), then, for every λ > 0, so it does
uλ(x, t) = λd/2u(λ2t, λx), with data uλ(0, x) = λu0(λx). But ‖uλ(0, ·)‖L2(R2) = ‖u0‖L2(R2) and from this point of
view (1) is L2-critical. In this case the situation is more subtle and the time of existence depends on shape of the data.
More precisely, the blow up criterion becomes

T ∗ < +∞ 	⇒ lim
T ↑T ∗

∫∫
[0,T ]×Rd

∣∣u(t, x)
∣∣ 4

d
+2

dx dt = +∞.

The blowup or “wave collapse” corresponds to self-trapping of beams in laser propagation. A lot of theoretical
and numerical works are dedicated to this subject when the initial data belongs to H 1 (see [7,21–26,31,38] and the
references therein). This theory, which is based on energy arguments, is closely connected to the notion of ground
state: the unique positive radial solution of the elliptic problem

�Q − Q + |Q| 4
d Q = 0.

For a revisited H 1 blowup theory the reader is referred to [19].
For the case of initial data belonging to Hs , with 0 � s < 1, the classical energy arguments do not work. Nev-

ertheless, the general consensus is that, in this case too, the same phenomena happen (concentration, universality of
blowup profile. . . ).

The first result in this direction is due to J. Bourgain [5] for d = 2 and s = 0. In fact, by using a refined version of
the Strichartz inequality proved in [29] and harmonic analysis techniques, this author proved that if a solution of (1),
with initial data in L2, blows up at finite time T ∗ > 0, then there is concentration of some part of its total mass in
small balls of size (T ∗ − t)1/2. Using this work by Bourgain, F. Merle and L. Vega [27] proved, among other things,
an asymptotic compactness property in L2(R2) up to the invariance of the equation.

In [20] the first author defines the minimal mass δ0 as the L2 norm necessary to ignite a wave collapse and stresses
its role in the blow up mechanism for one and two space dimensions (see also [6]). These results were generalized to
higher dimensions by P. Bégout and A. Vargas [1].

For s close2 to 1 and in dimension two, Colliander et al. [9] have proved that the blowup solutions, which are
radially symmetric, concentrate at least the mass of the ground state. This result was extended by Tzirakis [35] to
dimension 1 and by Visan and Zhang [37] to general dimension. Their proof is based on the so called I -method
introduced in [8]. This type of concentration result was already known for s = 1. In [18] the first author and T. Hmidi
have proved a refined compactness lemma adapted to the blowup theory of NLS and used it to improve the results
of [9]: they have removed the assumption of radial symmetry of the initial data and proved that Q is a profile for the
singular solutions with minimal mass.

The energy method also proves that in the defocusing case (κ = −1), for data in H 1, the solution is global. For
data in Hs(R2), s > 2/3, Bourgain [5] proved that the solution of (1)κ=−1 is global. This was improved by Fang and

2 More precisely, for s > 1+√
11

5 .
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Grillakis [14]. Related results for other dimensions have recently appeared in the work of Da Silva, Pavlovic, Staffilani
and Tzirakis [12,13]. A global well posedness result for s = 0, and d � 3, with the additional assumption of radial
symmetry, has been proved by Tao, Visan and Zhang [33] with different methods (namely, using the results of [20]
and [1], see also [34]).

In this paper we prove the following theorem.

Theorem 1.1. For d = 1, set s1 = 3/4. For 2 � d � 4, set sd = d
d+2 . Finally, for d � 5, set sd = d2+2d−8

d(d+2)
. The solution

of (1) with initial data u0 ∈ Hs(Rd), s > sd , can be written

u(t) = eit�u0 + w(t), t ∈ [0, T ∗[,
with w ∈ C([0, T ∗[,H 1(Rd)). Furthermore, if T ∗ is finite then there exists a constant C > 0 such that∥∥∇w(t)

∥∥
L2 � C√

T ∗ − t
, (2)

for every t ∈ [0, T ∗[.

Remark 1.2. This type of result (i.e. the extra-regularity of the Duhamel part of the solution) was firstly discovered,
and used, by Bourgain [5] in the context of the defocusing L2-critical Schrödinger equation with initial data in Hs(R2),
s > 2/3.

Remark 1.3. Theorem 1.1 says that the blowup phenomenon has an H 1 mechanism. In fact, any singular solution can
be split en two parts: an Hs part which is global (since it is linear) and an H 1 part, which blows up. This explains,
in particular, why despite the fact that u(t) ∈ Hs , with s < 1, all the blowup profiles discovered in [18] belong to H 1

(see Remark 1.7 in [18]).

Combined with the well-known smoothing effects for the linear Schrödinger equation ([10,30] and [36]) Theo-
rem 1.1 yields

Corollary 1.4. Under the assumptions of Theorem 1.1, u(t) ∈ H 1
loc(R

d) for almost every t ∈ [0, T ∗[.

For the rest of this section we take κ = 1 (the focusing case) and assume that, in the context of Theorem 1.1, the
maximal time of existence T ∗ is finite. The energy E(w(t)) of w(t) is, of course, not conserved. However, we believe
that a weaker result is true: at blowup time, the potential part of E(w(t)) is asymptotically equal to the kinetic one.
This result can be easily proved when the initial data u0 lies in H 1 and we may conjecture that it remains true for
initial data in Hs when s > sd . More precisely we have

Conjecture. Under the assumptions and notations of Theorem 1.1, assume that κ = 1 and T ∗ is finite. Then we have

E(w(t))

‖∇w(t)‖2
L2

−→ 0, as t → T ∗. (3)

Remark 1.5. If this conjecture is true, it would imply that global existence occurs for every u0 ∈ Hs, s > sd, such
that ‖u0‖L2 < ‖Q‖L2 . (See Appendix A for the proof of this claim and other discussions.)

The rest of this paper is organized as follows. In Section 2, we recall some function spaces and prove some re-
sults needed for the proof of our theorem which is given in Section 3. Some proof of auxiliary results are given in
Appendix A.

2. Preliminaries

In this preliminary section, we are going to recall some definitions and prove some basic properties of the objects
that will be used in our analysis.
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In what follows positive constants will be denoted by C and will change from line to line. If necessary, by C�,...,�

we denote positive constants depending only on the quantities appearing in the indices.
Let us first recall the dyadic decomposition of the full space Rd . Let χ ∈ C∞

0 (Rd) and ϕ ∈ C∞
0 (Rd\{0}) two radially

symmetric functions such that

• χ(ξ) + ∑
j�0 ϕ(2−j ξ) = 1, 1

3 � χ2(ξ) + ∑
j�0 ϕ2(2−j ξ) � 1,

• suppϕ(2−j ·) ∩ supp ϕ(2−k·) = ∅, if |j − k| � 2,
• j � 1 ⇒ suppχ ∩ suppϕ(2−j ) = ∅.

For every v ∈ S ′ one defines the inhomogeneous Littlewood–Paley operators

P−1v = χ(D)v; ∀j ∈ N, Pj v = ϕ
(
2−j D

)
v and Sj =

∑
−1�k�j−1

Pk.

From the paradifferential calculus introduced by J.-M. Bony [3] the product uv can be formally divided into three
parts as follows:

uv = Tuv + Tvu + R(u, v),

where

Tuv =
∑
j

Sj−1uPjv, and R(u, v) =
∑
j

PjuP̃j v,

with P̃j =
1∑

i=−1

Pj+i = Pj−1 + Pj + Pj+1.

Tuv is called paraproduct of v by u and R(u, v) the remainder term.
Our proof, which relies on ideas introduced in [5], uses the notion of Bourgain spaces Xs,b.

Definition 2.1 (Bourgain spaces). Let I be an interval of R. For every pair of real numbers (s, b), the space Xs,b[I ] is
the space of functions u from I to C such that

‖u‖Xs,b[I ] = inf
{‖φ‖Xs,b , φ|I = u

}
< ∞,

where

‖φ‖Xs,b =
[∫∫ (

1 + |ξ |2s
)(

1 + ∣∣λ + |ξ |2∣∣)2b∣∣φ̃(ξ, λ)
∣∣2

dξ dλ

] 1
2

.

Here, φ̃ denotes the Fourier transform of φ in the variables (x, t).

We collect in the next proposition some properties of these spaces that will be needed in our proof.

Proposition 2.2. Let I be an interval of R containing 0.

(A) For every s ∈ R and b > 1/2, Xs,b[I ] ↪→ C0(I,Hs(Rd)).

(B) For every s, b ∈ R, (Xs,b)∗ = X−s,−b .
(C) For any Schwartz time cuttof η ∈ S(R) and u0 ∈ Hs(Rd), we have∥∥η(t)eit�u0

∥∥
Xs,b(R×Rd )

� Cη,b‖u0‖Hs(Rd ).

(D) For every s ∈ R, − 1
2 < b′ � 0, 0 � b � b′ + 1, |I | � 1 and f ∈ Xs,b′ [I ] we have

‖F‖Xs,b[I ] � C|I |1−b+b′ ‖f ‖Xs,b′ [I ],

where F(t, x) = ∫ t
ei(t−s)�f (s, x) ds.
0
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(E) For every b > 1
2 and every a > 3

4 if d = 1 and every a > d
d+2 if d � 2, there exists C = C(a, b) such that

‖u∇v‖
L

d+2
d

x,t

� C‖u‖Xa,b‖v‖Xa,b , ∀u,v ∈ Xa,b.

(F) For every 2 � p � 2(d+2)
d

and γ > d+2
2 ( 1

2 − 1
p
), there exists C = C(p,γ ) such that

‖u‖L
p
x,t

� C‖u‖X0,γ , ∀u ∈ X0,γ .

(G) For every 2(d+2)
d

< p � +∞, a > (d + 2)( d
2(d+2)

− 1
p
) and b > 1

2 , there exists C = C(p,a) such that

‖u‖L
p
x,t

� C‖u‖Xa,b , ∀u ∈ Xa,b.

For the proof of (A)–(D), see [5] and [17]. We will give proofs of (E), (F) and (G) in the next subsections.

2.1. Proof of Proposition 2.2(E)

The key estimate is the following improved Strichartz’s inequality:

Proposition 2.3. For α = 1
4 if d = 1, for α = 1

2 if d = 2, and for every α < 2
d+2 if d � 3, there exists C = C(α), such

that the following estimate∥∥eit�f eit�g
∥∥

L
d+2
d (Rd+1)

� C

(
M

N

)α

‖f ‖L2‖g‖L2

holds for all L2 functions f and g with supp f̂ ⊂ {ξ ∈ Rd : |ξ | � 2M} and supp ĝ ⊂ {ξ ∈ Rd : N � |ξ | � 2N} for all
0 < M � N.

Remark 2.4. For the case d = 2, this inequality was proved by Bourgain (see Lemma 111 in [5]).

Remark 2.5. The exponents appearing in this proposition are sharp.
For d = 1 take f̂ = 1M�ξ�2M, ĝ = 11�ξ�1+M1/2 and

Σ =
{
(t, x) ∈ R2: |x + 2t | � M−1/2

20
, |t | � M−1

20

}
, with M � 1.

It is easy to see (since M small) that for all ξ ∈ [M,2M] and (t, x) ∈ Σ, we have |xξ + t |ξ |2| � 1
2 . Hence, there is a

constant c > 0, such that �(ei(xξ+t |ξ |2)) � c. Thus,

∣∣eit�f (x)
∣∣=

∣∣∣∣∣
2M∫

M

ei(xξ+t |ξ |2) dξ

∣∣∣∣∣ ∼ M, ∀(x, t) ∈ Σ.

Similarly, for every (x, t) ∈ Σ

∣∣eit�g(x)
∣∣ =

∣∣∣∣∣
1+M1/2∫

1

ei(xξ+t |ξ |2) dξ

∣∣∣∣∣ =
∣∣∣∣∣

M1/2∫
0

ei(η(x+2t)+t |η|2) dη

∣∣∣∣∣ ∼ M1/2.

But |Σ | ∼ M−3/2, and so∥∥eit�f eit�g
∥∥

L3(R2)
� CM.

Since ‖g‖2 = M1/2 and ‖f ‖2 = M1/4 we get the result.

The example in higher dimensions d � 2, is quite different. Consider f̂ = 1A, where, for some M � 1, A = {ξ =
(ξ1, ξ2, . . . , ξN ): M2 � ξ1 � 2M2, |ξk| � M , k = 2,3, . . . , d}, and ĝ = 1B, where B = {ξ = (ξ1, ξ2, . . . , ξd): 1 � ξ1 �
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1 + M2, |ξk| � M , k = 2,3, . . . , d}. Then, we see that, for |t | � 1
20dM2 , |x1| � 1

20dM2 , |x2|, |, |x3|, . . . , |xd | � 1
20dM

,

|eit�f (x)| � Md+1 and |eit�g(x)| � Md+1. Therefore ‖eit�f eit�g‖
L

d+2
d

� CMd+1+ 2
d+2 , while ‖f ‖2 = ‖g‖2 =

M
d+1

2 . This gives the desired result.

Proof of Proposition 2.3. By rescaling, it suffices to consider the case N = 1. If M ∼ 1, then, this proposition follows
from Hölder and Strichartz and estimates. We will only deal with the case M � 1.

• Case d � 2. Proposition 2.3, for d � 2, follows from the following estimates and an interpolation argument.

Theorem 2.6. (Cf. [32].) Assume that f and g are functions belonging to L2(Rd), such that supp f̂ , supp ĝ ⊂ {ξ :
|ξ | � 2}, and dist(supp f̂ , supp ĝ) ∼ 1. Then, for all p > d+3

d+1 ,∥∥eit�f eit�g
∥∥

L
p
x,t

� C‖f ‖L2‖g‖L2 .

Proposition 2.7. Assume that f and g are functions belonging to L2(Rd), such that supp f̂ ⊂ {ξ ∈ Rd : |ξ | � 2M}
and supp ĝ ⊂ {ξ ∈ Rd : 1 � |ξ | � 2} for some M � 1/4. Then,∥∥eit�f eit�g

∥∥
L2

x,t
� CM

d−1
2 ‖f ‖L2‖g‖L2 .

Proof. We follow the arguments introduced in [4] (see also [28] and [32]). Let ψ ∈ S(R) such that ψ(0) = 1 and

ψ̂(τ ) = 1 if |τ | < 1, ψ̂(τ ) = 0 if |τ | > 2.

By the dominated convergence we have∥∥eit�f eit�g
∥∥2

L2
x,t

= lim
ε→0

∫∫
ψ(εt)eit�f (x)eit�f (x)eit�g(x)eit�g(x) dx dt

:= lim
ε→0

Iε.

A straightforward calculus, using the Plancherel’s identity in x, yields

Iε = C

∫
t

ψ(εt)

∫
R3d

f̂ (ξ)
¯̂

f (η)ĝ(ζ ) ¯̂g(ξ + ζ − η)e−2it (〈ξ−η,ζ−η〉) dξ dη dζ dt

= C

∫
R3d

f̂ (ξ)
¯̂

f (η)ĝ(ζ ) ¯̂g(ξ + ζ − η)
1

ε
ψ̂

(
2

ε
〈ξ − η, ζ − η〉

)
dξ dη dζ.

Thus, we infer

|Iε| � C

ε

∫∫
Γ ε

ζ,η

∣∣f̂ (ξ)f̂ (η)ĝ(ζ )ĝ(ξ + ζ − η)
∣∣dξ dη dζ,

where

Γ ε
ζ,η := {

ξ ∈ Rd :
∣∣〈ξ − η, ζ − η〉∣∣ � ε

}
.

By Cauchy–Schwarz’s inequality in ξ we get

|Iε| � C

∫∫ [ ∫
Γ ε

ζ,η

1

ε

∣∣ĝ(ξ + ζ − η)f̂ (ξ)
∣∣2

dξ

] 1
2 1√

ε

∣∣Γ ε
ζ,η ∩ supp f̂

∣∣ 1
2
∣∣ĝ(ζ )f̂ (η)

∣∣dζ dη.

By the assumptions on supp f̂ and supp ĝ we get easily that for every η ∈ supp f̂ and every ζ ∈ supp ĝ we have
1
2 � |η − ζ | � 3. Therefore, in this case Γ ε

ζ,η is a 2ε
|η−ζ | thick layer (which is orthogonal to the vector η − ζ ) and then∣∣Γ ε

ζ,η ∩ supp f̂
∣∣ � CεMd−1.
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This implies

Iε � CM
d−1

2

∫∫ (
1

ε

∫
Γ ε

ζ,η

∣∣ĝ(ξ + ζ − η)f̂ (ξ)
∣∣2

dξ

) 1
2 ∣∣ĝ(ζ )f̂ (η)

∣∣dζ dη.

We apply Cauchy–Schwarz’s inequality in the variables ζ, η

Iε � CM
d−1

2

( ∫
η∈supp f̂

∫
1

ε

∫
Γ ε

ζ,η

∣∣ĝ(ξ + ζ − η)f̂ (ξ)
∣∣2

dξ dζ dη

) 1
2 ‖f ‖L2‖g‖L2 .

For fixed ξ, η, we change variables ζ → ξ + ζ − η = u. Note that, by the definition above, ξ ∈ Γ ε
ζ,η if and only if

η ∈ Γ ε
ξ+ζ−η,ξ = Γ ε

u,ξ . Therefore,

∫
η∈supp f̂

∫ ∫
Γ ε

ζ,η

∣∣ĝ(ξ + ζ − η)f̂ (ξ)
∣∣2

dξ dζ dη =
∫

η∈supp f̂

∫∫
u: η∈Γ ε

u,ξ

∣∣ĝ(u)f̂ (ξ)
∣∣2

dudξ dη.

Finally, changing the order of integration,∫
η∈supp f̂

∫ ∫
Γ ε

ζ,η

∣∣ĝ(ξ + ζ − η)f̂ (ξ)
∣∣2

dξ dζ dη =
∫∫ ∣∣ĝ(u)f̂ (ξ)

∣∣2∣∣Γ ε
u,ξ ∩ supp f̂

∣∣dξ du.

As before this leads to∫
η∈supp f̂

∫
1

ε

∫
Γ ε

ζ,η

∣∣ĝ(ξ + ζ − η)f̂ (ξ)
∣∣2

dξ dζ dη � CMd−1‖f ‖2
L2‖g‖2

L2 .

The outcome is∥∥eit�f eit�g
∥∥2

L2
x,t

= lim
ε→0

Iε

� CMd−1‖f ‖2
L2‖g‖2

L2 . �
• Case d = 1. Proposition 2.3, for d = 1, can be proved by interpolation between the following estimates.

Theorem 2.8. For every p � 2 there exists a constant C = C(p) such that the following estimate∥∥eit�f eit�g
∥∥

L
p
x,t (R

2)
� C‖f̂ ‖

L
p

p−1 (R)
‖ĝ‖

L
p

p−1 (R)
(4)

holds for all tempered distributions f and g such that their Fourier transforms f̂ and ĝ belong to L
p

p−1 (R) and are
supported in {ξ : |ξ | � 2}, with dist(supp f̂ , supp ĝ) ∼ 1.

This theorem follows from a classical argument by Fefferman and Stein (see [15]). For sake of completeness we
give the proof in Appendix A.

Proposition 2.9. Assume that f and g are functions defined on R such that supp f̂ ⊂ {ξ ∈ R: |ξ | � 2M} and supp ĝ ⊂
{ξ ∈ R: 1 � |ξ | � 2} for some M � 1/4. Then,∥∥eit�f eit�g

∥∥
L4

x,t
� CM3/8‖f ‖L2‖g‖L2 .

Moreover, the exponent 3/8 is sharp.
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Proof of Proposition 2.9. Without loss of generality, we can assume that ĝ ⊂ {ξ ∈ R: 1 � ξ � 2}. For the integers k,

M−1/2 − 1 � k � 2M−1/2, set Ik = [kM1/2, (k + 1)M1/2], and define functions gk by ĝk = ĝ1Ik
. Then, g = ∑

k gk

and, ∥∥eit�f eit�g
∥∥

L4
x,t

=
∥∥∥∥∑

k

eit�f eit�gk

∥∥∥∥
L4

x,t

.

We will use the following well-known orthogonality lemma

Lemma 2.10 (Orthogonality lemma).∥∥∥∥∑
k

eit�f eit�gk

∥∥∥∥
L4

x,t

� C

(∑
k

∥∥eit�f eit�gk

∥∥2
L4

x,t

)1/2

.

A similar orthogonality result was first observed by C. Fefferman [16] (see also A. Córdoba [11]). For the sake
of completeness we will give a proof in Appendix A. Let us now finish the proof of Proposition 2.9. Using the
orthogonality lemma, we are reduced to show that(∑

k

∥∥eit�f eit�gk

∥∥2
L4

x,t

)1/2

� CM3/8‖f ‖2‖g‖2. (5)

But, by (4) for p = 4, we have(∑
k

∥∥eit�f eit�gk

∥∥2
L4

x,t

)1/2

� C

(∑
k

‖f̂ ‖2
4/3‖ĝk‖2

4/3

)1/2

.

By Hölder’s inequality and using the size of the supports of f̂ and ĝk the last expression is bounded by

CM3/8
(∑

k

‖f ‖2
2‖gk‖2

2

)1/2

= CM3/8‖f ‖2

(∑
k

‖gk‖2
2

)1/2

= CM3/8‖f ‖2‖g‖2,

which gives (5). For the sharpness of the exponent 3/8 we can use the same example in Remark 2.5. �
Proposition 2.3 for d = 1 follows by interpolating between Theorem 2.8 and Proposition 2.9. �
Using Proposition 2.3, we now prove the following bilinear estimate.

Proposition 2.11. Set β = β(d) = 2
d+2 if d � 2 and β = 1

4 if d = 1. For every b ∈ ]0, β[, there is a constant Cb such
that, ∥∥eit�ψ1∇eit�ψ2

∥∥
L

d+2
d (Rd+1)

� Cb‖ψ1‖Hb(Rd )‖ψ2‖H 1−b(Rd ),

for every ψ1 ∈ Hb(Rd) and ψ2 ∈ H 1−b(Rd).

Proof. Using Bony’s decomposition and the fact that Pj commutes with the free propagator eit� we write

∥∥eit�ψ1e
it�∇ψ2

∥∥
L

d+2
d (Rd+1)

�
+∞∑
j=1

∥∥eit�Sj−1ψ1e
it�∇Pjψ2

∥∥
L

d+2
d (Rd+1)

+
+∞∑
j=1

∥∥eit�∇Sj−1ψ2e
it�Pjψ1

∥∥
L

d+2
d (Rd+1)

+
+∞∑

j=−1

∥∥eit�Pjψ1e
it�∇P̃jψ2

∥∥
L

d+2
d (Rd+1)

= I + II + III.
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• About II. By Cauchy–Schwarz and Strichartz’s inequalities,

II �
+∞∑
j=1

j−2∑
k=−1

2k‖Pkψ2‖L2‖Pjψ1‖L2(Rd )

�
+∞∑
j=1

j−2∑
k=−1

2b(k−j)2(1−b)k‖Pkψ2‖L22jb‖Pjψ1‖L2

�
∣∣〈2−b· � 2(1−b)·‖P·ψ2‖L2,2·b‖P·ψ1‖L2

〉
�2

∣∣,
where � denotes the convolution in �2.

If we apply successively Cauchy–Schwarz and Young’s estimates we get

II � ‖ψ2‖H 1−b(Rd )‖ψ1‖Hb(Rd ).

• About III. By Hölder, Strichartz and Bernstein’s inequalities

III =
+∞∑

j=−1

∥∥eit�(Pjψ1)e
it�(∇P̃jψ2)

∥∥
L

d+2
d (Rd+1)

�
+∞∑

j=−1

2j‖Pjψ1‖L2(Rd )‖P̃jψ2‖L2(Rd )

�
+∞∑

j=−1

2jb‖Pjψ1‖L2(Rd )2
j (1−b)‖P̃jψ2‖L2(Rd )

� C‖ψ1‖Hb(Rd )‖ψ2‖H 1−b(Rd ).

In the last line we have used the Cauchy–Schwartz inequality.
• About I . This is the nontrivial part of the proof. Let α ∈ ]b,β(d)[ fixed. By Proposition 2.3 we have

I �
+∞∑
j=1

j−2∑
k=−1

∥∥eit�Pkψ1e
it�∇Pjψ2

∥∥
L

d+2
d (Rd+1)

�
+∞∑
j=1

j−2∑
k=−1

2(k−j)α‖Pkψ1‖L2(Rd )2
j‖Pjψ2‖L2(Rd ).

We write it in an appropriate way,

=
+∞∑
j=1

j−2∑
k=1

2(j−k)(b−α)2kb‖Pkψ1‖L22j (1−b)‖Pjψ2‖L2(Rd )

= ∣∣〈2−(b−α)· � 2b·‖P·ψ1‖L2,2·(1−b)‖P·ψ2‖L2

〉
�2

∣∣
� ‖ψ1‖Hb(Rd )‖ψ2‖H 1−b(Rd ),

where we have applied successively Cauchy–Schwarz and Young’s inequalities. �
Now, we are ready to prove Proposition 2.2(E). Write

ui(x, t) =
∫∫

ei(xξ+tτ )ũi (ξ, τ ) dξ dτ =
∫∫

ei(xξ+t |ξ |2)eit (τ−|ξ |2)ũi (ξ, τ ) dξ dτ.

Change variables, λ = τ − |ξ |2,

=
∫∫

ei(xξ+t |ξ |2)eitλũi

(
ξ,λ + |ξ |2)dξ dλ.
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By Fubini,

=
∫

eitλ

∫
ei(xξ+t |ξ |2)ũi

(
ξ,λ + |ξ |2)dξ dλ.

Define ui,λ by ûi,λ(ξ) = ũi (ξ, λ + |ξ |2), where ˆ denotes the Fourier transform in the x-variable. Then,

ui(x, t) =
∫

eitλeit�ui,λ(x) dλ.

Therefore,

‖u1∇u2‖
L

d+2
d

=
∥∥∥∥

∫
eitλ

∫
eitreit�u1,λ(x)eit�∇u2,r (x) dλdr

∥∥∥∥
L

d+2
d

x,t

.

By Minkowski’s inequality,

�
∫∫ ∥∥eit�u1,λ(x)eit�∇u2,r (x)

∥∥
L

d+2
d

x,t

dλdr.

By Proposition 2.11, this is bounded by

C

∫∫
‖u1,λ‖Hb‖u2,r‖H 1−b dλdr, (6)

for all b < β(d). Notice that∫
‖ui,λ‖Hα dλ =

∫ [ ∫ ∣∣ûi,λ(ξ)
∣∣2(1 + |ξ |2α

)
dξ

] 1
2

dλ.

Using Cauchy–Schwarz’s inequality, for all ε > 0,

�
( ∫∫ ∣∣ûi,λ(ξ)

∣∣2(1 + |ξ |2α
)
dξ

(
1 + |λ|)1+ε

dλ

) 1
2
( ∫ (

1 + |λ|)−1−ε
dλ

) 1
2

� Cε

( ∫∫ ∣∣ũi

(
ξ,λ + |ξ |2)∣∣(1 + |ξ |2α

)(
1 + |λ|)1+ε

dλdξ

) 1
2

= Cε

( ∫∫ ∣∣ũi (ξ, τ )
∣∣(1 + |ξ |2α

)(
1 + ∣∣τ − |ξ |2∣∣)1+ε

dτ dξ

) 1
2

= Cε‖ui‖
Xα, 1

2 +ε
.

Thus, we estimate (6) by

Cε‖u1‖
Xb, 1

2 +ε
‖u2‖

X1−b, 1
2 +ε

,

for all ε > 0. The outcome is

‖u1∇u2‖
L

d+2
d

� Cε‖u1‖
Xa, 1

2 +ε
‖u2‖

Xa, 1
2 +ε

,

for all ε > 0 and a � max(b,1 − b) with b < β(d). This is Proposition 2.2(E).

2.2. Proof of Proposition 2.2(F)

Set q = d+2
d

. Using Cauchy–Schwarz and Strichartz’s inequalities, and using (6) as above, we see that, for all
ε > 0,

‖u‖
L

2q
x,t

� Cε‖u‖
X0, 1

2 +ε
.

Rename v = ũ. Then, the last inequality can be written as

‖ṽ‖
L

2q
x,t

� Cε

[ ∫∫ ∣∣v(ξ, τ )
∣∣2(1 + ∣∣τ + |ξ |2∣∣)1+ε

dτ dξ

] 1
2

,
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for all ε > 0. On the other hand

‖ṽ‖L2 =
[ ∫∫ ∣∣v(ξ, τ )

∣∣2
dτ dξ

] 1
2

.

We can now use the theorem of interpolation with change of measure (see [2] Theorem 5.4.1) to obtain for 2 � p � 2q

and for θ defined by 1
p

= 1−θ
2 + θ

2q
,

‖ṽ‖Lp(I×R2) � Cε

[ ∫∫ ∣∣v(ξ, τ )
∣∣2(1 + ∣∣τ + |ξ |2∣∣)θ(1+ε)

dτ dξ

] 1
2

,

for all ε > 0. For v = ũ, we obtain

‖u‖Lp(I×R2) � Cε‖u‖
X0,θ( 1

2 +ε)
,

for all ε > 0. This gives Proposition 2.2(F).

2.3. Proof of Proposition 2.2(G)

As above, by interpolation with change of measure with the estimate (F) for p = 2q, it suffices to show that

‖w‖L∞
x,t

� Ca,b‖w‖Xa,b ,

for all a > d
2 and b > 1

2 . This follows form Proposition 2.2(A) and the Sobolev embedding.

3. Proof of Theorem 1.1

Using Proposition 2.2 we are going to prove Theorem 1.1. We will prove that for every t0 ∈ [0, T ∗[ there exists a

small interval I containing t0, such that w ∈ X1, 1
2 +ε[I ], for some ε > 0. This implies that w ∈ X1, 1

2 +ε[J ] for every
compact interval J ⊂ [0, T ∗[, which is, in view of Proposition 2.2(A), a stronger result than the first assertion in
Theorem 1.1. Note also that, via a time translation, it is sufficient to consider t0 = 0.

According to the integral formulation of the initial value problem (1) we have

w(t, x) = iκ

t∫
0

ei(t−t ′)�[∣∣u(t ′, x)
∣∣ 4

d u(t ′, x)
]
dt ′.

Let φ ∈ C∞
0 (R), such that

φ(t) = 1 if |t | < 1, φ(t) = 0 if |t | > 2.

For T > 0 we denote φT (t) = φ( t
T

). On [0, T ] the function w is equal to

w(t, x) = iκφT (t)

t∫
0

ei(t−t ′)�[∣∣φT (t ′)u(t ′, x)
∣∣ 4

d φT (t ′)u(t ′, x)
]
dt ′.

Thus, by replacing u by φT u we can assume that u is globally defined (and compactly supported) in time. Meanwhile
we keep the same notation u.

Note also that the value of T is not relevant for us in this part of proof. So, the dependence on T of the constants is
not explicited.

Let s > sd fixed and ε = ε(d, s) a sufficiently small positive number (it satisfies a finite number of smallness
conditions). Applying Proposition 2.2(D) (with b = 1

2 + ε and b′ = − 1
2 + ε), one can estimate

‖∇w‖
X0, 1

2 +ε
� C

∥∥∇(|u| 4
d u

)∥∥
X0,− 1

2 +ε
. (7)

Here and throughout this section the constants C = Cε,s,d . For sake of shortness we drop the indices.
The main ingredient of our proof is the following nonlinear estimate.
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Proposition 3.1. For every s > sd there exists ε > 0, such that for all b > 1
2 we have∥∥∇(|u| 4

d u
)∥∥

X0,− 1
2 +ε

� Cs,d,b‖u‖
4
d
+1

Xs,b ,

for all u ∈ Xs,b .

Proof of Proposition 3.1. By duality (Proposition 2.2(B)) we have∥∥∇(|u| 4
d u

)∥∥
X0,− 1

2 +ε
= sup

‖ψ‖
X

0, 1
2 −ε

�1

∣∣〈ψ,∇(|u| 4
d u

)〉∣∣. (8)

The remainder of the proof depends on the dimension d .
• Case d = 1,2,3. Obviously, Hölder’s inequality yields∣∣〈ψ,∇(|u| 4

d u
)〉∣∣ � C

∥∥ψ |u| 4
d
−1

∥∥
L

d+2
2

x,t

‖u∇u‖
L

d+2
d

x,t

� C‖ψ‖
L

p1
x,t

‖u‖
4
d
−1

L
p2
x,t

‖u∇u‖
L

d+2
d

x,t

with
1

p1
= d

2(d + 2)
+ ε and

1

p2
= d

2(d + 2)
− dε

4 − d
.

According to Proposition 2.2(F) we have

‖ψ‖
L

p1
x,t

� C‖ψ‖X0,γ

for all γ > d+2
2 ( 1

2 − d
2(d+2)

− ε) = 1
2 − d+2

2 ε. In particular,

‖ψ‖
L

p1
x,t

� C‖ψ‖
X0, 1

2 −ε
.

On the other hand Proposition 2.2(G) yields

‖u‖
L

p2
x,t

� C‖u‖Xa,b

for every a >
d(d+2)

4−d
ε, and b > 1

2 . For ε small we have s >
d(d+2)

4−d
ε, and then

‖u‖
L

p2
x,t

� ‖u‖Xs,b ,

for all b > 1
2 . Finally, since s > sd , Proposition 2.2(E) yields

‖u∇u‖
L

d+2
d

x,t

� ‖u‖2
Xs,b .

The outcome is∣∣〈ψ,∇(|u| 4
d u

)〉∣∣ � C‖ψ‖
X0, 1

2 −ε
‖u‖

4
d
+1

Xs,b � C‖u‖
4
d
+1

Xs,b ,

for all b > 1
2 .

• Case d = 4. Coming back to (8), by Hölder’s inequality,∣∣〈ψ,∇(|u|u)〉∣∣ � C‖ψ‖Lp1 ‖u∇u‖Lp2

with
1

p1
= 1

3
+ ε,

1

p2
= 2

3
− ε.

Proposition 2.2(F) (for d = 4) yields

‖ψ‖Lp1 � C‖ψ‖
X0, 1

2 −ε
.

To estimate ‖u∇u‖Lp2 we interpolate between Proposition 2.2(E) and the trivial fact

‖u∇v‖L∞ � ‖u‖L∞‖∇v‖L∞ � C‖u‖Xa,b‖v‖X1+a,b ,
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for b > 1
2 , a > 2, which follows from Proposition 2.2(G). This yields,

‖u∇u‖Lp2 � C‖u‖2

X
2
3 +δ(ε),b

with δ(ε) → 0 as ε → 0. Thus, we obtain (for ε small enough)

‖u∇u‖Lp2 � C‖u‖2
Xs,b ,

for s > s4 = 2
3 , b > 1

2 .

• Case d � 5. We go back to (8). Obviously, we have∣∣〈ψ,∇(|u| 4
d u

)〉∣∣ � C
∣∣〈|ψ |, |u| 4

d |∇u|〉∣∣.
Write u = ∑+∞

k=−1 uk where uk = Pku. Then, by the triangular and Hölder’s inequalities,

∣∣〈ψ,∇(|u| 4
d u

)〉∣∣ � C
∑

k

‖ψ‖Lp1 ‖u∇uk‖
4
d

Lp2 ‖∇uk‖1− 4
d

Lp3

with

1

p1
= d

2(d + 2)
+ ε,

1

p2
= d

d + 2
and

1

p3
= d

2(d + 2)
− d

d − 4
ε.

According to Proposition 2.2(F), we have

‖ψ‖
L

p1
x,t

� C‖ψ‖X0,γ

for all γ > d+2
2 ( 1

2 − d
2(d+2)

− ε) = 1
2 − d+2

2 ε. In particular,

‖ψ‖
L

p1
x,t

� C‖ψ‖
X0, 1

2 −ε
.

On the other hand, Proposition 2.2(E) yields, for all ε > 0, b > 1
2 ,

‖u∇uk‖Lp2 � C‖u‖
X

d
d+2 +ε,b

‖uk‖
X

d
d+2 +ε,b

.

Finally, Proposition 2.2(G) gives

‖∇uk‖Lp3 � C‖∇uk‖Xa,b � C‖uk‖X1+a,b

for every a >
d(d+2)
d−4 ε and b > 1

2 .

Now, since ‖vk‖Xs,b ∼ 2ks‖vk‖X0,b , we get∑
k

‖u∇uk‖
4
d

Lp2 ‖∇uk‖1− 4
d

Lp3 � C‖u‖
4
d

X
d

d+2 +ε,b

∑
k

‖uk‖X0,b2k(1− 8
d(d+2)

+δ(ε))
,

where δ(ε) → 0 as ε → 0. Given s > sd = 1 − 8
d(d+2)

, we choose ε > 0, so that s > 1 − 8
d(d+2)

+ δ(ε) + ε. Then, we
estimate

+∞∑
k=−1

‖uk‖X0,b2k(1− 8
d(d+2)

+δ) � C

+∞∑
k=−1

‖uk‖X0,b2ks2−kε

� C

+∞∑
k=−1

‖uk‖Xs,b2−kε

� C‖u‖Xs,b

∑
k

2−kε

� C‖u‖Xs,b .

(We have controlled ‖uk‖ s, 1 +ε
by ‖u‖

s, 1 +ε
uniformly in k � −1.) Thus, for all b > 1

2 ,

X 2 X 2
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∑
k

‖u∇uk‖
4
d

Lp2 ‖∇uk‖1− 4
d

Lp3 � C ‖u‖
4
d

X
d

d+2 +ε,b
‖u‖Xs,b

� C ‖u‖
4
d
+1

Xs,b ,

where we have used the fact that s > d
d+2 + ε, for ε small enough.

Proposition 3.1 and (7) imply that

‖∇w‖
X0, 1

2 +ε
� C‖u‖

4
d
+1

Xs,b ,

for all b > 1
2 . A similar reasoning shows that for all b > 1

2 ,

∥∥|u| 4
d u

∥∥
X0,− 1

2 +ε
� C‖u‖

4
d
+1

Xδ,b , (9)

for some δ = δ(ε) → 0 as ε → 0. Hence,

‖w‖
X0, 1

2 +ε
� C‖u‖

4
d
+1

Xδ,b .

The outcome is

‖w‖
X1, 1

2 +ε
� C‖u‖

4
d
+1

Xs,b ,

for all b > 1
2 . Hence, in order to prove the first part of Theorem 1.1 we are reduced to show that u ∈ Xs, 1

2 +ε for some
small ε > 0. Below we restate and prove (using the previous calculations) the local existence result for NLS equations
in the Bourgain spaces which are relevant for us (i.e. for s > sd ).

Proposition 3.2. Given s > sd, there exists ε > 0, such that, for every u0 ∈ Hs , the Cauchy problem (1) has unique

local solution in u ∈ Xs, 1
2 +ε[I ] for some interval I = [0, T ].

Proof. Let φ ∈ C∞
0 (R), such that

φ(t) = 1 if |t | < 1, φ(t) = 0 if |t | > 2.

Fix 0 < T � 1. On [0, T ] the initial value problem (1) is equivalent to the following integral equation

u(t, x) = φ(t)eit�u0(x) + iκφ

(
t

T

) t∫
0

ei(t−s)�|u| 4
d u(s, x) ds, ∀t ∈ [0, T ].

We use the classical fixed point argument. Define, the functional A as

Au(t, x) = φ(t)eit�u0(x) + iκφ

(
t

T

) t∫
0

ei(t−s)�|u| 4
d u(s, x) ds.

According to Proposition 2.2(C), (D), one has, for ε′ � ε,

‖Au‖
Xs, 1

2 +ε
� C‖u0‖Hs + CT ε′−ε

∥∥|u| 4
d u

∥∥
Xs,− 1

2 +ε′ .

Let us now estimate the nonlinear term. If ε′ is small enough,∥∥|u|4/du
∥∥

Xs,− 1
2 +ε′ �

∥∥|u|4/du
∥∥

X1,− 1
2 +ε′ � C‖u‖4/d+1

Xs, 1
2 +ε

,

by Proposition 3.1 and (9).
The outcome is

‖Au‖
s, 1 +ε

� ‖u0‖Hs + T ε′−ε‖u‖4/d+1
s, 1 +ε

,

X 2 X 2
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for some ε′ > ε, small enough (depending on s).
In the same way we prove

‖Au − Av‖
Xs, 1

2 +ε
� ‖u − v‖

Xs, 1
2 +ε

T ε′−ε
(‖u‖

Xs, 1
2 +ε

+ ‖v‖
Xs, 1

2 +ε

)4/d
.

These estimates are sufficient to prove the existence of a local solution in Xs, 1
2 +ε . �

Let us now prove the lower bound (2). A well-known scaling argument yields the following lower bound on the
blowup rate∥∥u(t)

∥∥
Ḣ s � C

|T ∗ − t |s/2
, t ∈ [0, T ∗[.

Since the Hs norm of the linear part is conserved then∥∥w(t)
∥∥

Ḣ s � C

|T ∗ − t |s/2
.

However, by interpolation, we can write∥∥w(t)
∥∥

Hs �
∥∥w(t)

∥∥1−s

L2

∥∥w(t)
∥∥s

H 1 .

Since the L2 norm of u is conserved as t varies, we infer∥∥w(t)
∥∥

L2 � 2‖u0‖L2 .

This yields∥∥w(t)
∥∥

Ḣ 1 � C

|T ∗ − t | 1
2

, t ∈ [0, T ∗[,

as claimed. �
Appendix A

A.1. Proof of the claim in Remark 1.5

Take u0 ∈ Hs such that the corresponding solution u of (1) blows up in finite time T ∗ > 0 and tn ↑ T ∗ as n → +∞.
We set

vn(x) = (λn)
d
2 w(tn, λnx), λn = 1/

∥∥∇w(tn, .)
∥∥

L2,

where w is as in Theorem 1.1. Using conservation of the L2 norm for the linear and nonlinear Schrödinger equations,
we get trivially that {vn}∞n=1 is a bounded sequence in L2. Also, assuming the conjecture,

E(vn) = E(w(tn, ·))
‖∇w(tn, ·)‖2

L2

−→ 0, as tn → T ∗.

Since ‖∇vn‖L2 = 1 this gives, in particular, ‖vn‖
4
d
+2

L
4
d

+2
→ d+2

d
.

The sequence {vn}∞n=1 satisfies the assumptions of Theorem 1.1 in [18] with M = 1 and m
4
d
+2 = d+2

d
. Thus, there

exists {xn}∞n=1 ⊂ Rd such that, up to a subsequence,

(λn)
d
2 w(tn, λn · +xn) ⇀ V,

with ‖V ‖L2 � ‖Q‖L2 .

On the other hand, since the linear part is continuous in time with values in L2 then (λn)
d
2 (eitn�u0)(λn ·+xn) ⇀ 0,

which implies that

(λn)
d
2 u(tn, λn · +xn) ⇀ V. (A.1)
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This yields, thanks to the conservation of the L2 norm,

‖u0‖L2 = lim inf
n→+∞

∥∥u(tn, ·)
∥∥

L2 � ‖V ‖L2 � ‖Q‖L2 .

This implies that ‖Q‖L2 is the critical mass for the formation of singularities, that is, if u0 ∈ Hs , s > sd , with

‖u0‖L2 < ‖Q‖L2

then the corresponding solution is global.3 Finally, notice that by using the asymptotic (A.1) and (2) we can easily
prove that a concentration phenomenon in L2 occurs at the blow up time. More precisely, for every solution u of (1)
which blows up at finite time T ∗ > 0 we have

lim inf
t→T ∗ sup

y∈Rd

∫
|x−y|�λ(t)

√
T ∗−t

∣∣u(t, x)
∣∣2

dx �
∫

Q2,

for any function λ(t) > 0 , such that λ(t) → +∞ as t ↑ T ∗. (See, for instance, [20] Theorem 1.10 for a similar
reasoning.)

A.2. Proof of Theorem 2.8

Write

eit�f (t, x)eit�g(t, x) =
∫

ei(xξ+t |ξ |2)f̂ (ξ) dξ

∫
ei(xη+t |η|2)ĝ(η) dη

=
∫∫

ei(x(ξ+η)+t (|ξ |2+|η|2))f̂ (ξ)ĝ(η) dξ dη.

Then, we change variables (u, v) = (ξ + η, |ξ |2 + |η|2) to get

eit�f (t, x)eit�g(t, x) =
∫∫

ei(xu+tv)H(u, v) dudv,

where H(u,v) = f̂ (ξ)ĝ(η)
2|ξ−η| (ξ = ξ(u, v), η = η(u, v)) . Hence,

eit�f (t, x)eit�g(t, x) = Ĥ (t, x)

is the Fourier transform of H. Therefore, by Hausdorff–Young inequality, for all p � 2,∥∥eit�f eit�g
∥∥

L
p
x,t

= ‖Ĥ‖L
p
x,t

� ‖H‖
L

p′
u,v

.

To compute the Lp′
norm of H, we undo the change of variables. Notice that, since inf{dist(ξ, η): ξ ∈ supp f̂ ,

η ∈ supp ĝ} ∼ 1, the factor |ξ − η| is harmless, and therefore

‖H‖
L

p′
u,v

∼ ‖f̂ ‖
Lp′

(R)
‖ĝ‖

Lp′
(R)

,

which finishes the proof of the theorem.

A.3. Proof of Lemma 2.10

Write∥∥∥∥∑
k

eit�f eit�gk

∥∥∥∥2

L4
x,t

=
∥∥∥∥
(∑

k

eit�f eit�gk

)2∥∥∥∥
L2

x,t

=
∥∥∥∥∑

k

eit�f eit�gk

∑
j

eit�f eit�gj

∥∥∥∥
L2

x,t

.

3 Notice that to get this result we need only (3) to be true for a time sequence tn ↑ T ∗.
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By Plancherel

=
∥∥∥∥∑

k

∑
j

ẽit�f ∗ ẽit�f ∗ ẽit�gk ∗ ẽit�gj

∥∥∥∥
L2

x,t

.

Denote by Ek,j the support of the function ẽit�f ∗ ẽit�f ∗ ẽit�gk ∗ ẽit�gj . We will use

Claim. The sets Ek,j are essentially disjoints, i.e. there is a universal constant, independent of M, such that,∑
k

∑
j

1Ek,j
� C.

Using this claim,

�
∥∥∥∥∑

k

∑
j

ẽit�f ∗ ẽit�f ∗ ẽit�gk ∗ ẽit�gj

∥∥∥∥
L2

x,t

� C

(∑
k

∑
j

∥∥ẽit�f ∗ ẽit�f ∗ ẽit�gk ∗ ẽit�gj

∥∥2
L2

x,t

)1/2

.

By Plancherel

= C

(∑
k

∑
j

∥∥eit�f eit�gke
it�f eit�gj

∥∥2
L2

x,t

)1/2

= C

( ∫ ∑
k

∑
j

∣∣eit�f eit�gke
it�f eit�gj

∣∣2
)1/2

= C

( ∫ (∑
k

∣∣eit�f eit�gk

∣∣2
)2)1/2

= C

∥∥∥∥∑
k

∣∣eit�f eit�gk

∣∣2
∥∥∥∥

L2
.

By the triangular inequality,

� C
∑

k

∥∥∣∣eit�f eit�gk

∣∣2∥∥
L2

= C
∑

k

∥∥eit�f eit�gk

∥∥2
L4 .

To prove the claim, notice that the support of ẽit�gk is contained in the set Ek = {(τ, ξ): |ξ − kM1/2| � M1/2,

τ = |ξ |2}, and the support of ẽit�f is contained in the set {(τ, ξ): |ξ | � 2M , τ = |ξ |2}. Hence, if (δ, η) ⊂ Ej,k, then,
there are ξ , ξ ′, (|ξ |2, ξ) ∈ Ek, (|ξ ′|2, ξ ′) ∈ Ej , such that, |δ − (|ξ |2 + |ξ ′|2)| � 4M, and |η − (ξ + ξ ′)| � 4M.

Since |ξ + ξ ′|2 + |ξ − ξ ′|2 = 2(|ξ |2 + |ξ ′|2), and M � M1/2, then, if k � j, we see that Ej,k ⊂ Hj,k, where

Hj,k = {
(δ, η):

∣∣η − (k + j)M1/2
∣∣ � 3M1/2, |k − j − 4|2M �

∣∣2δ − |η|2∣∣ � |k − j + 4|2M}
.

Now, from this expression, it is easy to see that if (δ, η) ∈ Hj,k ∩Hi,l �= ∅, k � j, l � i, then, −6 � (k+j)−(i+ l) � 6
and −8 � (k − j) − (i − l) � 8. From this, −14 � k − i � 14 and −14 � j − l � 14, which proves the claim.
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