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Abstract

We study the asymptotic spreading of Kolmogorov–Petrovsky–Piskunov (KPP) fronts in space–time random incompressible
flows in dimension d > 1. We prove that if the flow field is stationary, ergodic, and obeys a suitable moment condition, the large
time front speeds (spreading rates) are deterministic in all directions for compactly supported initial data. The flow field can
become unbounded at large times. The front speeds are characterized by the convex rate function governing large deviations of the
associated diffusion in the random flow. Our proofs are based on the Harnack inequality, an application of the sub-additive ergodic
theorem, and the construction of comparison functions. Using the variational principles for the front speed, we obtain general lower
and upper bounds of front speeds in terms of flow statistics. The bounds show that front speed enhancement in incompressible flows
can grow at most linearly in the root mean square amplitude of the flows, and may have much slower growth due to rapid temporal
decorrelation of the flows.

Résumé

On étudie le comportement asymptotique des solutions des équations de réaction–diffusion du type Kolmogorov–Petrovsky–
Piskunov (KPP) avec convection stochastique en dimension d > 1. Dans le cas où l’écoulement est stationnaire et ergodique, nous
démontrons que la solution forme un front qui se propage avec une vitesse déterministe. Les vitesses de propagation satisfont une
formule variationnelle associée à un principe de grandes déviations pour un processus de diffusion en milieu aléatoire. Avec cette
formule, nous obtenons quelques estimations de la vitesse. Les preuves sont basées sur une inégalité de type Harnack, le principe
de maximum, et le théorème ergodique sous-additif.
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1. Introduction

Reaction–diffusion front propagation in incompressible space–time random flows is a fundamental subject in pre-
mixed turbulent combustion [6,34,28,20,32]. One challenging mathematical problem is to establish the propagation
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velocity of the front (large time asymptotic spreading rate) using the governing partial differential equations. An-
other mathematical problem is to characterize the propagation velocity in terms of flow statistics. Such a velocity is
called the turbulent flame speed in combustion [28], and it is an upscaled quantity that depends on statistics of the
random flows in a highly nontrivial manner. Due to the notorious closure problem in turbulence, the turbulent front
speed has been approximated by ad hoc and formal procedures in combustion literature, such as various closures and
renormalization group methods [27,34,7]. However, these methods are difficult to justify mathematically.

A pleasant surprise is that fronts governed by the Kolmogorov–Petrovsky–Piskunov (KPP) nonlinearity are in
some sense solvable, and the front speeds have a well-defined variational characterization in the large time limit. This
important mathematical property of KPP fronts has been analyzed for special temporally random flows (time random
shear flows) [20,24,33] and spatially random environments [12,10,19,29]. There have been several studies of KPP
fronts in periodic flows, for example see [10,4,21,11,8,3,26].

In this paper, we study KPP fronts propagating through space–time random incompressible flows. The flows can
be unbounded in time, as for a Gaussian process. We establish the almost sure existence of propagating fronts which
evolve from compactly supported initial data, and we derive a variational characterization for the front speeds. Using
this characterization, we derive some estimates of the fronts speed. One can also use this characterization to numeri-
cally approximate the front speed, as presented separately in [25].

The governing equation for KPP reactive fronts is the reaction–diffusion–advection equation:

∂tu = �u + V (x, t, ω̂) · ∇u + f (u)
�= Lu + f (u), (1.1)

with smooth, compactly supported, nonnegative initial data u(x,0, ω̂) = u0(x), 0 � u0 � 1. The reaction func-
tion f (u) is nonlinear and satisfies: f ∈ C1([0,1]), f (0) = f (1) = 0, f (u) > 0 for u ∈ (0,1), and f (u) � uf ′(0).
For example, f (u) = u(1−u). The value u = 1 corresponds to the hot or burned state in the combustion model, while
u = 0 corresponds to the cold or unburned state, which is unstable.

The vector field V (x, t, ω̂) is defined over a probability space (Ω̂, F̂ , P̂ ). We assume that:

(1) V is stationary with respect to shifts in x and t : there is a group of measure-preserving transformations τ(x,t) :
Ω̂ → Ω̂ such that V (x + h, t + r, ω̂) = V (x, t, τ(h,r)ω̂), and τ acts ergodically on Ω̂ .

(2) V is locally Hölder continuous, almost surely, in the sense that for each T > 0 there is α = α(ω̂, T ) such that∥∥V (·, ·, ω̂)
∥∥

Cα(Rd×[0,T ]) < ∞ (1.2)

holds for almost every ω̂ ∈ Ω̂ .
(3) V is divergence free, ∇ · V = 0, in the sense of distribution, almost surely with respect to P̂ .
(4) V satisfies the moment condition:

V̄2
�=E

P̂

[
sup

t∈[0,1]
x∈R

d

∣∣V (x, t)
∣∣2]< ∞. (1.3)

The condition (4) means that V (x, t, ω̂) is uniformly bounded in x for each fixed t and ω̂. However, we do not
require that V (x, t, ·) ∈ L∞(Ω̂), so that V may become unbounded as t → ∞. The Hölder regularity condition (2) is
satisfied by turbulent flows [20,32] and is a physical assumption for turbulent combustion problems [28,27,32].

For almost every ω̂, there exists a unique classical solution satisfying (1.1). Our main result is the following theorem
regarding the almost-sure asymptotic behavior of the solution u(x, t, ω̂) as t → ∞:

Theorem 1.1. There is a convex open set G ⊂ Rd and a set of full measure Ω̂0 ⊂ Ω̂ , P̂ (Ω̂0) = 1, such that the
following limits hold for all ω̂ ∈ Ω̂0:

lim
t→∞ sup

c∈F

u(ct, t) = 0 (1.4)

for any closed set F ⊂ Rd \ Ḡ, and

lim
t→∞ inf

c∈K
u(ct, t) = 1 (1.5)

for any compact set K ⊂ G.
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Thus, the set {ct ∈ Rd | c ∈ ∂G}, which is deterministic, represents the spreading interface in an asymptotic sense,
made precise by (1.4) and (1.5). The set G may be characterized in the following way. Let φ(x, t, ω̂) � 0 solve
the advection–diffusion equation ∂tφ = Lφ with initial condition φ(x,0, ω̂) = φ0(x) � 0, where φ0(x) is smooth,
deterministic, and compactly supported.

Theorem 1.2. The limit

μ(λ) = lim
t→∞

1

t
log

∫
Rd

eλ·xφ(x, t, ω̂) dx = lim
t→∞

1

t
logE

P̂

[
eλ·xφ(x, t, ω̂)

]
(1.6)

exists almost surely with respect to P̂ . Moreover, μ(λ) is a finite, convex function of λ ∈ Rd .

Now the characterization of G is given by the following theorem:

Theorem 1.3. The set G described in Theorem 1.1 is given by

G = {
c ∈ Rd

∣∣H(c) � f ′(0)
}

(1.7)

where H(c) = supλ∈Rd (λ · c − μ(λ)) and μ(λ) is defined as in Theorem 1.2. It follows that the asymptotic front
speed c∗ in direction e ∈ Rd is given by the variational formula:

c∗(e) = inf
λ·e>0

μ(λ) + f ′(0)

λ · e . (1.8)

For the KPP model, Theorems 1.1 and 1.3 address two open problems in turbulent combustion [28]: the existence
of a well-defined turbulent flame speed and the precise analytical characterization of the turbulent flame speed. In
Theorem 1.2, one may normalize φ so that φ is the density for a probability measure on Rd , for each fixed ω̂, and the
theorem characterizes the asymptotic behavior of the tails of the distribution (large deviations from the mean behavior)
almost surely with respect to the measure P̂ on the velocity field. The function H in Theorem 1.3 is the rate function
that governs these large deviations.

The quantity μ(λ) has another characterization. Consider the function ϕ∗(x, τ ; t, ω̂) which solves the terminal
value problem (τ ∈ (0, t)):

∂τϕ
∗ + �ϕ∗ − (

V (x, τ) − 2λ
) · ∇ϕ∗ + (|λ|2 − λ · V (x, τ)

)
ϕ∗ = 0, (1.9)

with linear terminal data ϕ∗(x, t; t, ω̂) ≡ 1, x ∈ Rd . We will show that ϕ∗(x,0; t, ω̂) grows exponentially in t with a
rate equal to μ(λ):

Theorem 1.4. If ϕ∗(x, τ ; t, ω̂) solves (1.9) with terminal data ϕ∗(x, t, ω̂) ≡ 1, then for any r > 0

lim
t→∞ sup

|x|�rt

∣∣∣∣1t logϕ∗(x,0; t, ω̂) − μ(λ)

∣∣∣∣= 0 (1.10)

holds almost surely with respect to the measure P̂ .

The function μ(λ) is related to the effective Hamiltonian that arises from the theory of homogenization of “viscous”
Hamilton–Jacobi equations in stationary ergodic media (see [16,17,19]). For V that depends only on x, Lions and
Souganidis [19] showed that the front is governed by an effective Hamilton–Jacobi equation (see Section 9 of [19]).
It turns out that μ(λ) in (1.6) is equal to an effective Hamiltonian H(λ). To see this clearly, define the function
η∗(x, τ ; t, ω̂) = eλ·yϕ∗(x, τ ; t, ω̂) which satisfies ∂τ η + L∗η∗ = 0 for τ < t and terminal data η∗(x, t; t, ω̂) = eλ·y .
Here L∗η∗ = �xη

∗ − ∇ · (V η∗) denotes the adjoint operator. For ε > 0 and T > 0, define

ζ ε(x, τ ;T , ω̂) = ε logη∗(ε−1x, ε−1τ ; ε−1T , ω̂
)
.

Then ζ ε solves the Hamilton–Jacobi equation

∂τ ζ
ε + ε�ζ ε + ∣∣∇ζ ε

∣∣2 − V

(
x

,
τ

, ω̂

)
· ∇ζ ε = 0, τ ∈ [0, T ) (1.11)
ε ε
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with terminal data ζ ε(x, T ;T , ω̂) = λ · x. For a velocity field V (x, τ, ω̂) which is uniformly bounded in τ (i.e. V ∈
L∞(Ω̂;L∞(Rd))), the result of Kosygina and Varadhan [17] implies that as ε → 0, the function ζ ε converges locally
uniformly to a function ζ 0(x, τ ; t) which solves an effective Hamilton–Jacobi equation ∂τ ζ

0(z, τ ; t) + H(∇ζ 0) = 0
with the same terminal data. The effective Hamiltonian H(λ) is a deterministic function. In particular, by choosing
T = 1, we see that

H(λ) = lim
ε→0

ζ ε(0,0;1, ω̂) = lim
ε→0

ε logη∗(0,0; ε−1, ω̂
)= μ(λ) (1.12)

holds almost surely with respect to P̂ . Theorem 1.4 extends this connection to the case of velocity fields V (x, t) which
are not uniformly bounded in t , a case not covered by the results in [16,17], and [19].

We develop a new Eulerian approach to prove the results. The first step is to use the Harnack-type inequality of
Krylov and Safonov to establish continuity estimates of the solution. One technical difficulty that arises is that the
constants appearing in the Harnack inequality may be arbitrarily bad. However, we show that the constants are well-
behaved “on average”. We use this observation and the subadditive ergodic theorem to establish almost sure behavior
of the tails of the linearized equation. To apply this to the solution of the nonlinear equation, we construct sub- and
super-solutions and use the comparison principle. Our proof uses only the Harnack inequality and the comparison
principle, and so applies readily to a large class of operators L. In fact, one can see that all of the proofs may be
modified slightly to treat the case that the diffusion is also variable. For example, a variant of Theorems 1.1–1.4 hold
in the case that u is governed by an equation of the form

∂tu = ∇ · (A(x, t, ω̂)∇u
)+ V (x, t, ω̂) · ∇u + f (u) (1.13)

where A(x, t, ω̂) = Aij (x, t, ω̂) is random, positive-definite matrix function and uniformly C1,α . For clarity we con-
centrate on the case that Aij is the identity.

Some previous analysis [12,10,24] of KPP fronts have been based on analysis of the associated Itô diffusion pro-
cesses that play the role of characteristics in the Feynman–Kac formula for solutions of the linearized equation. This
Lagrangian approach is particularly useful when there is either an explicit solution formula [24] or a hitting time
characterization of the Itô paths in one space dimension [12,10]. In the present Eulerian approach, quantities like μ(λ)

and H have a similar Lagrangian interpretation, and we utilize both the Eulerian and Lagrangian aspects to prove
bounds on the front speeds.

The paper is organized as follows. In Section 2, we employ the Krylov–Safonov–Harnack inequality and the subad-
ditive ergodic theorem to obtain the large deviation estimates for solutions to the linearized evolution and to identify
the function H(c). In Section 3, we construct sub- and super-solutions to show that the large deviation rate func-
tion H indeed defines the propagating interfaces in the large time limit. The proofs in this section are related to those
in previous works [10,24]; the new twist is to rely on comparison functions instead of the associated Itô paths and the
Feynman–Kac formula. In Section 4, we prove Theorems 1.2–1.4. We study the Lyapunov exponent μ, and establish
its connection to the function H . The variational principle for the front speeds is given in terms of μ, which is easier
to calculate and estimate than H . In Section 5, we prove upper and lower bounds on the front speeds. A Lagrangian
method and random change of measure are used in a Feynman–Kac representation to deduce an upper bound of μ in
terms of second order flows statistics. These bounds extend those on time random shear flows by the authors [24]. The
bounds show that front speed enhancement in incompressible flows can grow at most linearly in the root mean square
amplitude of the flows, and may have much slower growth due to rapid temporal decorrelations of flows. Conclusions
are in Section 6, and acknowledgments are in Section 7.

2. Preliminary estimates

2.1. Harnack inequality

To prove Theorem 1.1, we will make use of the Harnack-type inequality proved by Krylov–Safonov [18]. First,
we define Q(θ,R) = {(x, t) ∈ Rn+1 | maxi |xi | � R, t ∈ (0, θR2)}, and we state a well-known result of Krylov and
Safonov:
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Theorem 2.1. (See Krylov–Safonov [18].) Let θ > 1, R � 2, and 0 � ξ(x, t) � 1. Suppose η ∈ W
1,2
d+1(Q(θ,R)), η � 0,

and ∂tη − Lη + ξ(x, t)η = 0 in Q(θ,R). Suppose ‖V ‖L∞(Q(θ,R)) � 1. Then there exists a constant Ko > 0 depending
only on θ and the dimension such that

inf|x|�R/2
η
(
x, θR2)� Koη

(
0,R2).

Remark 2.1. Throughout this paper, the constant θ from Theorem 2.1 will appear. Our arguments do not depend on
the precise value of θ , and we will assume this constant is always fixed at θ = 2.

We wish to apply this estimate to the function u(x, t, ω̂) and to the function ϕ(x, t, ω̂) defined by (1.9). As we have
stated the theorem, the drift V and the source function ξ must be bounded uniformly in the region of interest. Although
we are working with a drift for which individual realizations are not uniformly bounded for all t > 0, we may obtain
a Harnack-type inequality for u by rescaling the solution and iteratively applying Theorem 2.1. The constants that
appear in the resulting inequality may become arbitrarily large since V may not be uniformly bounded in t . However,
in the next section we will show that the constants are well-behaved on average.

Suppose η(x, t) � 0 solves

∂tη = �η + V (x, t) · ∇η + ξ(x, t)η

for (x, t) ∈ Q(θ,R), while V and ξ are not necessarily globally bounded. Then for (x, t) ∈ Q(θ,R) and h � 0 to be
chosen, the function η̄(x, t) = e−htη(M−1x,M−2t) solves

∂t η̄(x, t) = �η̄(x, t) + VM(x, t) · ∇η̄(x, t) + ξM(x, t)η̄(x, t),

where VM(x, t) = M−1V (M−1x,M−2t) and ξM(x, t) = −h+M−2ξ(M−1x,M−2t). If we choose the constant M to
be

M = max
(

1, sup
(x,t)∈Q(θ,R)

∣∣V (x, t)
∣∣, sup

(x,t)∈Q(θ,R)

√
2
∣∣ξ(x, t)

∣∣ ) (2.1)

and set h = 1/2, then for any (x, t) ∈ Q(θ,R), we also have (M−1x,M−2t) ∈ Q(θ,R) and |VM(x, t)| � 1. Also,
−1 � ξM(x, t) � 0. Thus, Theorem 2.1 applies to η̄:

inf|x|�R/2
η̄
(
x, θR2)� Koη̄

(
0,R2).

Therefore, for the original η we have

inf|x|�R/2M
η

(
x, θ

R2

M2

)
� Koe

R2(θ−1)/2η

(
0,

R2

M2

)
� Koη

(
0,

R2

M2

)
. (2.2)

We now summarize these observations in a manner that will be convenient for our analysis. For x ∈ Rd and t � 1,
let us define the cylinder set

Q′(x, t, θ,R) =
{
(y, τ ) ∈ Rn+1

∣∣max
i

|yi − xi | � R, τ − t ∈ (−R2, (θ − 1)R2)}
and the constant

M(x, t,R, θ) = max
(

1, sup
(y,τ )∈Q′(x,t,θ,R)

∣∣V (y, τ)
∣∣, sup

(y,τ )∈Q′(x,t,θ,R)

√
2
∣∣ξ(y, τ )

∣∣ ), (2.3)

which is a local upper bound on |V | and |ξ | over the cylinder set Q′. Theorem 2.1 and the above scaling analysis
imply the following:

Corollary 2.1. Let θ > 1, R � 2. Let M(x, t,R, θ) be defined by (2.3). For any M � M(x, t,R, θ), let �t =
(θ − 1)R2/M2. Then

η(x + �x, t + �t) � Koη(x, t)

whenever |�x| � R , where Ko = Ko(θ) is the constant from Theorem 2.1.
2M
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Now we will use this estimate iteratively to relate η(x1, t1) to η(x2, t2) for two points x1, x2 and two different times
1 � t1 < t2 − 1. We will derive a lower bound on infy∈Bδ(x2) η(y, t2) in terms of supy∈Bδ(x1)

η(y, t1), where Bδ(x)

denotes the ball of radius δ > 0 centered at x ∈ Rd .
Let c ∈ Rd be defined by c = (x2 − x1)/(t2 − t1), and let γ (x1, t1;x2, t2) denote the set of points in Rd+1 formed

by the line segment with endpoints at (x1, t1) and (x2, t2). Define T ⊂ Rd+1 to be the set

T =
⋃

s∈[0,t2−t1]

(
Bδ(x1 + cs) × (t1 + s)

)
. (2.4)

This is a tubular region with the line segment γ as the central axis and radius δ. Now choose R � 1 small enough so
that

|c| + 2δ � 1

2R(θ − 1)
.

Then define the constant

Mx1,t1;x2,t2 = sup
(x,t)∈T

M(x, t,R, θ) (2.5)

with M(x, t,R, θ) given by (2.3). This constant bounds |V (x, t, ω̂)| and
√|ξ | over a neighborhood of the tube T .

Next, using M = Mx1,t1;x2,t2 , let �t be defined as in Corollary 2.1:

�t = (θ − 1)R2

(Mx1,t1;x2,t2)
2
.

Let k be the ratio k = (t2 − t1)/�t . By increasing M slightly, we may assume that k is an integer:

k = t2 − t1

�t
= (t2 − t1)(Mx1,t1;x2,t2)

2

(θ − 1)R2
. (2.6)

Now suppose that x′
1 ∈ Bδ(x1) and x′

2 ∈ Bδ(x2). Define yj ∈ Rd by

yj = x′
1 + x′

2 − x′
1

t2 − t1
(�t)j, j = 0,1,2, . . . , k.

The set of points {(yj , t1 + j�t)}kj=1 is contained in the tube T . Moreover, from our choice of R, we see that

|yj+1 − yj | � R
2M

for each j . Therefore, we can iteratively apply Corollary 2.1 k times to conclude that

η
(
yj+1, t1 + (j + 1)�t

)
� Koη(yj , t1 + j�t), j = 0, . . . , k − 1,

and thus

inf
y∈Bδ(x2)

η(y, t2) � Kk
o sup

y∈Bδ(x1)

η(y, t1).

The constant Ko is the same constant from Corollary 2.1, depending only on θ . The integer k, however, depends on
x1, x2, t1, and t2 through (2.5) and (2.6). By putting together the above analysis, we have the following lemma:

Lemma 2.1. Fix θ > 1. Let δ > 0, and x1, x2 ∈ Rd . Let t1, t2 satisfy 1 � t1 < t2 − 1. Then

inf
x∈Bδ(x2)

η(x, t2) � Kk
o sup

y∈Bδ(x1)

η(y, t1) (2.7)

where Ko is the constant from Theorem 2.1, depending only on θ , and k is an integer bounded by

k � 5θ2(t2 − t1)(Mx1,t1;x2,t2)
2
( |x2 − x1|

t2 − t1
+ 2δ

)2

.

Although the constant Ko is universal, the integer k and the constant Mx1,t1;x2,t2 depend on the x1, t1, x2, t2 and on
the realization of V . Where V is large, these constants also become large. However, when applying Lemma 2.1 we
will use the stationarity and ergodicity of V to show that, on the average, the constants are not too bad.
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2.2. Continuity estimates

In this section we derive a continuity estimate on the function logu(x, t) that holds asymptotically as t → ∞. By
the maximum principle, u > 0 for all (x, t), and we define ξ(x, t, ω̂) = f (u(x, t, ω̂))/u(x, t, ω̂). Therefore, Eq. (1.1)
may be written as

∂tu = �u + V (x, t, ω̂) · ∇u + ξ(x, t, ω̂)u (2.8)

where ξ(x, t, ·) ∈ L∞(Ω̂;L∞(Rd+1)) and ξ(x, t, ω̂) ∈ [0, f ′(0)], almost surely with respect to P̂ . In fact, the regu-
larity of u implies that ξ(x, t, ω̂) is locally C1, almost surely. For the following estimates, however, we assume only
that ξ(·, ·, ω̂) is almost surely continuous and that∣∣ξ(x, t, ω̂)

∣∣� C
(
1 + ∣∣V (x, t, ω̂)

∣∣) (2.9)

for some deterministic constant C, P̂ -almost surely, for all (x, t).

Proposition 2.1. Let u(x, t, ω̂) > 0 solve (2.8) such that ξ(x, t, ω̂) satisfies (2.9). There is a set of full mea-
sure Ω̂0 ⊂ Ω̂ , P̂ (Ω̂0) = 1, such that the following holds: if γ (t) � 0 is any nondecreasing function satisfying
lim supt→∞ γ (t)/t � ε, then for any c ∈ Rd

lim inf
t→∞

1

t

(
log inf|z|�γ (t)

u(ct + z, t) − log sup
y∈Bδ(c(t−γ (t)))

u
(
y, t − γ (t)

))
� −C

(
1 + |c| + δ

)2
ε(1 + V̄2)

and

lim sup
t→∞

1

t

(
log sup

|z|�γ (t)

u(ct + z, t) − log inf
y∈Bδ(c(t+γ (t)))

u
(
y, t + γ (t)

))
� C

(
1 + |c| + δ

)2
ε(1 + V̄2)

for all ω̂ ∈ Ω̂0. Here, V̄2 is defined by (1.3) and C = C(θ) is a constant.

To prove this continuity estimate we will make use of the following estimates on the growth of the vector field V

as t → ∞:

Lemma 2.2. Almost surely with respect to P̂ ,

lim
n→∞

1

n

n−1∑
j=0

sup
t∈[j,j+1]

x∈R
d

∣∣V (x, t, ω̂)
∣∣2 = E

P̂

[
sup

t∈[0,1]
x∈R

d

∣∣V (x, t, ω̂
∣∣2]= V̄2 < ∞. (2.10)

Proof. Due to the moment bound (1.3), this follows from the ergodic theorem and the assumption that V is stationary
and ergodic with respect to shifts in x and t . �
Corollary 2.2. There is a set of full measure Ω̂0 ⊂ Ω̂ , P̂ (Ω̂0) = 1, such that

lim sup
n→∞

1

n

n−1∑
j=kn

sup
t∈[j−1,j ]

x∈R
d

|V |2 � εV̄2 (2.11)

whenever ε ∈ [0,1) and {kn}∞n=1 is a nondecreasing sequence of positive integers satisfying kn � n for all n and
lim infn→∞ kn/n � (1 − ε).

Proof. This follows from Lemma 2.2 and the fact that the number of terms in the sum grows more slowly than O(εn).
Specifically,

1

n

n−1∑
j=kn

sup
t∈[j−1,j ]

d

|V |2 = 1

n

n−1∑
j=1

sup
t∈[j−1,j ]

d

|V |2 −
(

kn − 1

n

)(
1

kn − 1

) kn−1∑
j=1

sup
t∈[j−1,j ]

d

|V |2

x∈R x∈R x∈R
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Now the result follows from Lemma 2.2 and the fact that lim infn→∞(kn − 1)/n � (1 − ε). �
Proof of Proposition 2.1. We first prove the lower bound by a chaining argument. Let Ω̂0 ⊂ Ω̂ be the set described
in Corollary 2.2 with P̂ (Ω̂0) = 1. Fix c ∈ Rd and suppose that lim supt→∞ γ (t)/t � ε < 1. Let zt ∈ Rd satisfy
|zt | � γ (t). Without loss of generality, we assume that γ (t) takes values in Z. For t sufficiently large, t − γ (t) > 1.
Let t1 = t − γ (t), and x1 = ct1 = ct − cγ (t). For j = 2, . . . ,Nt = γ (t) define the points (xj , tj ) ∈ Rd+1 by

tj = t1 + j

and

xj =
(

1 − j

γ (t)

)
x1 + j

γ (t)
(zt + ct).

Notice that for Nt = γ (t), xN = zt + ct , and that (xj , tj ) is a sequence of equally spaced points in Rd+1 along the line
segment connecting (ct1, t1) to (zt + ct, t). Now we apply Lemma 2.1 for each pair of points (xj , tj ), (xj+1, tj+1).
Notice that∣∣∣∣xj+1 − xj

tj+1 − tj

∣∣∣∣=
∣∣∣∣ zt

γ (t)
+ c

∣∣∣∣� |c| + 1. (2.12)

By applying Lemma 2.1 iteratively, we find that

inf
y∈Bδ(zt+ct)

u(y, t) � Kk(t)
o sup

y∈Bδ(x1)

u(y, t1) (2.13)

where k(t) =∑Nt

j=1 kj and the numbers kj are random variables bounded by

kj � 5θ2(Mj )
2
(∣∣∣∣xj+1 − xj

tj+1 − tj

∣∣∣∣+ 2δ

)2

� 5θ2(Mj )
2(|c| + 1 + 2δ

)2 (2.14)

and the numbers Mj (also depending on ω̂) are

Mj = Mxj ,tj ;xj+1,tj+1 . (2.15)

Although the choice of points (xj , tj ) depends on zt , the term k = k(t) can be bounded, independently of the choice
of zt since

(Mxj ,tj ;xj+1,tj+1)
2 � C

(
1 + sup

t∈[tj −a,tj+1+a]
x∈R

d

∣∣V (x, t, ω̂)
∣∣2) (2.16)

for some integer a � 5θ2 (since R � 1). The right-hand side of (2.16) is now independent of the choice of zt , and we
can bound log(Kk

o ) by

log
(
Kk(t)

o

)
� −∣∣ log(Ko)

∣∣C1

Nt∑
j=1

(Mxj ,tj ;xj+1,tj+1)
2 (2.17)

� −∣∣ log(Ko)
∣∣C1C2

n−1∑
j=kn

(
1 + sup

t∈[j−1,j ]
x∈R

d

∣∣V (x, t, ω̂)
∣∣2)

where n � t + a + 1 and kn � t − γ (t) − a − 1 are integers satisfying lim infn→∞ kn/n � 1 − ε and kn � n. The
constant C1 may be bounded uniformly by C1 � (5θ2(|c| + 1 + 2δ)2), and the constant C2 depends only on the
integer a (which depends only on θ ). The right-hand side of (2.17) is independent of the choice of zt , as long as
|zt | � γ (t).

Inequalities (2.13) and (2.17) now imply that
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1

t

(
log inf|z|�γ (t)

u(ct + z, t) − log sup
y∈Bδ(ct1)

u(y, t1)
)

(2.18)

� −∣∣ log(Ko)
∣∣C1C2

1

n

n−1∑
j=kn

(
1 + sup

t∈[j−1,j ]
x∈R

d

∣∣V (x, t, ω̂)
∣∣2).

Now we apply Corollary 2.2 to the sum on the right-hand side to conclude that

1

t

(
log inf|z|�γ (t)

u(ct + z, t) − log sup
y∈Bδ(ct1)

u(y, t1)
)

� C3ε(1 + V̄2)

holds for any ω̂ ∈ Ω̂0, where Ω̂0 has full measure. The constant C3 now satisfies C3 � C4(|c|+1+ δ)2 for some other
constant C4 depending only on θ . This proves the lower bound.

The upper bound can be proved by following the same argument, except that Lemma 2.1 is applied forward in time
along points (xj , tj ) ∈ Rd+1 defined by

xj =
(

1 − j

γ (t)

)
(zt + ct) + j

γ (t)

(
ct + cγ (t)

)
, tj = t + j (2.19)

for j = 1, . . . ,Nt = γ (t). Thus, (x1, t1) = (zt + ct, t) and (xN , tN ) = (c(t + γ (t)), t + γ (t)). The remaining details
are the same as in the case of the lower bound. �
2.3. Large deviation estimates

For δ > 0, x ∈ Rd , and t � s � 0, let φ(y, t;x, s) = φ(y, t;x, s, ω̂) satisfy the advection–diffusion equation

∂tφ = �yφ + V · ∇φ (2.20)

for t > s with the initial condition

φ(y, s;x, s, ω̂) =
{

1 y ∈ Bδ(x),

0 otherwise
(2.21)

at time t = s, where δ > 0 is a fixed parameter. In this section we will derive tail estimates on φ that we will later use
to bound the solution u(x, t, ω̂). The main result of this section is the following:

Theorem 2.2. There is a set of full measure Ω̂0 ⊂ Ω̂ , P̂ (Ω̂0) = 1, and a convex function H(c) : Rd → [0,∞) such
that the following holds. For any open set G ⊂ Rd ,

lim inf
t→∞

1

t
log inf

z∈tG
φ(z, t;0,0, ω̂) � − inf

c∈Go
H(c) (2.22)

and for any closed set F ⊂ Rd ,

lim sup
t→∞

1

t
log sup

z∈tF

φ(z, t;0,0, ω̂) � − inf
c∈F̄

H(c) (2.23)

for all ω̂ ∈ Ω̂0.

The function H appearing here is the same H described in Theorem 1.3. Later in Section 4 we will show that this
function H is characterized as in Theorems 1.2 and 1.3.

Remark 2.2. The function φ(x, t;0,0) depends on the parameter δ. However, using the stationarity of the field V (x, t)

and the linearity of the equation for φ(x, t;0,0), one can show that the function H(c) is actually independent of δ and
that Theorem 2.2 holds for any such φ with nonnegative, compactly supported initial data.

The proof of Theorem 2.2 will rely on the following lemma:



824 J. Nolen, J. Xin / Ann. I. H. Poincaré – AN 26 (2009) 815–839
Lemma 2.3. There is a set of full measure Ω̂0 ⊂ Ω̂ , P̂ (Ω̂0) = 1, and a convex function H(c) : Rd → [0,∞) such that
the following holds: If γ (t) � 0 is any nondecreasing function satisfying lim supt→∞ γ (t)/t � ε, then for any c ∈ Qd

lim sup
t→∞

1

t
log sup

|z|�γ (t)

φ(ct + z, t;0,0) � C
(
1 + |c| + δ

)2
ε(1 + V̄2) − H(c), (2.24)

lim inf
t→∞

1

t
log inf|z|�γ (t)

φ(ct + z, t;0,0) � −C
(
1 + |c| + δ

)2
ε(1 + V̄2) − H(c) (2.25)

for all ω̂ ∈ Ω̂0. Here, V̄ is defined by (1.3) and C = C(θ) is a constant.

Proof of Lemma 2.3. Define the family of functions

φ−(y, t;x, s) = inf
y′∈Bδ(y)

φ(y′, t;x, s). (2.26)

(For clarity we will suppress the dependence of φ and φ− on ω̂.) By the maximum principle, it is easy to see that for
any x, y, z ∈ Rd and r < s < t ,

φ−(z, t;x, r) � φ−(y, s;x, r)φ−(z, t;y, s). (2.27)

For c ∈ Rd fixed, define the random process qm,n(ω̂) = logφ−(cm,m; cn,n, ω̂) indexed by m,n ∈ Z, 0 � m < n. We
observe that qm,n is stationary and superadditive:

qm,n � qm,k + qk,n, ∀m < k < n,

qm+r,n+r (ω̂) = qm,n

(
τ(cr,r)ω̂

)
. (2.28)

We will show in Lemma 2.4,

E
[|q0,n|

]
< ∞ (2.29)

for all n. Therefore, from the ergodic theorem (e.g. [1]) it now follows that the limit

−H(c)
�= lim

n→∞
1

n
q0,n = sup

n>0

1

n
q0,n � 0 (2.30)

exists almost surely and is nonrandom. The convexity of H follows from the subadditivity relationship (2.27), as
in [24].

Lemma 2.4. For any c ∈ Rd , δ > 0, and any integer n � 1, E[|qo,n|] < ∞.

Proof of Lemma 2.4. We will iteratively apply Lemma 2.1 to the function φ(y, t;0,0). First, we claim that

E
[∣∣ log inf

y∈Bδ(c)
φ(y,1;0,0, ω̂)

∣∣]< ∞. (2.31)

(Here t = 1.) To prove this, consider the function ρ(λ, t, ω̂) defined by

ρ(λ, t, ω̂) = t |λ|2 +
t∫

0

sup
x∈Rd

∣∣λ · V (x, s, ω̂)
∣∣ds. (2.32)

It is easy to verify that the function η = e−λ·x+ρ(λ,t) satisfies ∂tη � Lη for all t > 0. So, for any x,λ ∈ Rd , the
maximum principle implies that φ(x, t;0,0) � e|λ|δe−λ·x+ρ(λ,t). For t = 1, we may construct an upper bound on
φ(x, t;0,0) using multiple such λ with |λ| = 1. This implies that∫

φ(x,1/2;0,0) dx � Keρ̄(1/2)e−RRd−1
|x|�R
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where ρ̄(1/2) = 1/2 + ∫ 1/2
0 supx |V (x, s)|ds. Therefore, there is a constant K such that for R > K + 4ρ̄(1/2),

the right-hand side is bounded by 1/2
∫

φ0(x) dx > 0, where φ0(x) = φ(x,0;0,0). From the incompressibility of
V (x, t, ω̂), we see that the integral of φ is preserved for all t > 0. Thus∫

|x|�R

φ(x,1/2;0,0) dx � 1

2

∫
φ0(x) dx

and therefore, sup|x|�R φ(x,1/2;0,0) � CR−d 1
2

∫
φ0(x) dx. Lemma 2.1 now implies that

inf|x|�R
φ(x,1;0,0) � Kk

oCR−d 1

2

∫
φ0(x) (2.33)

where k is bounded by

k � C2

(
1 + sup

x∈R
d

t∈[0,3]

∣∣V (x, t)
∣∣)2

. (2.34)

Since the right-hand side of (2.34) is integrable with respect to P̂ , by assumption (1.3), the lower bound (2.33)
implies (2.31).

Next, for any integer j � 1, define xj = cj and tj = j , and let

Mj = Mxj ,tj ;xj+1,tj+1 (2.35)

where Mxj ,tj ;xj+1,tj+1 is given by (2.5). Now if we apply Lemma 2.1 iteratively, once at each of the n − 1 intervals
[j, j + 1], j = 1, . . . , n − 1, we see that

log inf
y∈Bδ(cn)

φ(y,n;0,0) � log sup
y∈Bδ(c(1))

φ(y,1;0,0) + log(Ko)

n∑
j=1

kj (2.36)

where the numbers kj are bounded by

kj � 5θ2(tj+1 − tj )(Mj )
2
(∣∣∣∣xj+1 − xj

tj+1 − tj

∣∣∣∣+ 2δ

)2

= 5θ2(Mj )
2(|c| + 2δ

)2
(tj+1 − tj ).

The kj are the exponents from estimate (2.7) when we replace (x1, t1;x2, t2) by (xj , tj ;xj+1, tj+1).
Since each Mj is square integrable by assumption (1.3), it follows that the sum

∑n
j=1 kj is integrable. This implies

that

E
[|qo,n|

]= E
[∣∣ log inf

y∈Bδ(cn)
φ(y,n;0,0)

∣∣]< ∞

if (2.31) holds. This proves Lemma 2.4. �
So far we have shown that for a given c ∈ Rd ,

lim
n→∞

1

n
q0,n = −H(c) (2.37)

holds almost surely with respect to P̂ , as n runs through the integers. Using (2.7), we see that for any t � 1

inf
y∈Bδ(c(t+r))

r∈[1,2]
φ(y, t + r;0,0) � Kk(t)

o sup
y∈Bδ(ct)

φ(y, t;0,0) (2.38)

for some number k(t) that can be bounded by k(t) � 10(θ2)(Mct,t;c(t+2),(t+2))
2(|c| + δ)2. However, this bound and

(2.37) imply that both

lim
t→∞

1
log inf φ(y, t;0,0) = −H(c), (2.39)
t y∈Bδ(ct)
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and

lim
t→∞

1

t
log sup

y∈Bδ(ct)

φ(y, t;0,0) = −H(c), (2.40)

holds along continuous time provided that lim supt→∞
k(t)
t

= 0. Since the random variable Mt = Mct,t;c(t+2),(t+2) is
square integrable and stationary with respect to shifts in t , the ergodic theorem implies that

lim
N→∞

1

N

N∑
n=1

(Mn)
2 = E

[
(M1)

2]< ∞.

Therefore,

lim sup
t→∞

k(t)

t
= lim

t→∞
(Mt)

2

t
= 0

almost surely.
This proves Lemma 2.3 for γ (t) ≡ δ and c ∈ Rd fixed. For the general case with lim supt→∞ γ (t)/t � ε and

|zt | � γ (t), we may prove (2.24) and (2.25) by applying the continuity estimates in Proposition 2.1 to the function
φ(y, t;0,0) (in this case, ξ(x, t, ω̂) ≡ 0). From the lower bound in Proposition 2.1, we see that there is a set Ω̂o of
full measure such that

lim inf
t→∞

1

t

(
log inf|z|�γ (t)

φ(ct + z, t;0,0) − log sup
y∈Bδ(c(t−γ (t)))

φ
(
y, t − γ (t);0,0

))

� −C
(
1 + |c| + δ

)2
ε(1 + V̄2) (2.41)

holds for all c ∈ Rd . From (2.40) and (2.41), it now follows that for any fixed c ∈ Rd

lim inf
t→∞

1

t
log inf|z|�γ (t)

φ(ct + z, t;0,0)

� −C
(
1 + |c| + δ

)2
ε(1 + V̄2) + lim inf

t→∞
(t − γ (t))

t

1

(t − γ (t))
log sup

y∈Bδ(c(t−γ (t)))

φ
(
y, t − γ (t);0,0

)
� −C

(
1 + |c| + δ

)2
ε(1 + V̄2) − H(c) (2.42)

holds almost surely with respect to P̂ . (Note that since H(c) � 0, we have discarded the extra εH(c) term that comes
from the factor γ (t)/t .) Similarly, the upper bound in Proposition 2.1 and (2.39) imply that for any fixed c ∈ Rd

lim sup
t→∞

1

t
log sup

|z|�γ (t)

φ(ct + z, t;0,0)

� C
(
1 + |c| + δ

)2
ε(1 + V̄2) + lim sup

t→∞
(t + γ (t))

t

1

(t + γ (t))
log inf

y∈Bδ(c(t+γ (t))
φ
(
y, t − γ (t);0,0

)
� C

(
1 + |c| + δ

)2
ε(1 + V̄2) − H(c). (2.43)

The subset of Ω̂ on which this convergence holds depends on c. However, by taking the countable union of all
such subsets for c ∈ Qd , we obtain a set Ω̂0, P̂ (Ω̂0) = 1, such that both (2.42) and (2.43) hold for all c ∈ Qd and all
ω̂ ∈ Ω̂0. This completes the proof of Lemma 2.3. �
Proof of Theorem 2.2. We first prove the upper bound (2.23). Suppose that F is compact. For any ε > 0, there is a
finite set {cj }Nj=1 ⊂ Qd , such that F ⊂⋃N

j=1 Bε(cj ). Therefore,

sup
z∈tF

φ(z, t;0,0) � sup
j=1,...,N

sup
|z|�εt

φ(cj t + z, t;0,0).

Since N is finite, and F is compact, (2.24) now implies that
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lim sup
t→∞

1

t
log sup

z∈tF

φ(z, t;0,0) � lim sup
t→∞

1

t
log sup

j=1,...,N

sup
|z|�εt

φ(cj t + z, t;0,0)

= −H(c) + O(ε).

So, for compact F , we obtain the upper bound (2.23) by letting ε → 0. The case of general closed F follows from
Lemma 4.1.

The proof of the lower bound (2.22) is similar to the preceding argument, except that we invoke (2.25) instead
of (2.24). This completes the proof of Theorem 2.2. �
3. Proof of Theorem 1.1

3.1. The upper bound (1.4)

The upper bound (1.4) of Theorem 1.1 follows easily form Theorem 2.2. Let δ > 0 be large enough so that the
support of u0 is contained in the ball Bδ(0). Then by the maximum principle,

u(y, t) � etf ′(0)φ(y, t;0,0) = et(f ′(0)+ 1
t

logφ(y,t;0,0)). (3.1)

Let F be a closed set satisfying F ⊂ Rd \ Ḡ where G is the bounded, convex set

G = {
c ∈ Rd

∣∣H(c) � f ′(0)
}
.

Now, by Theorem 2.2,

lim
t→∞

1

t
log sup

c∈F

φ(ct, t;0,0) < −f ′(0). (3.2)

Combining this with (3.1), we have limt→∞ supc∈F u(ct, t) = 0, which proves (1.4). �
3.2. The lower bound (1.5)

To prove the lower bound (1.5) we will use the following lower bound on the decay rate of the solution u(x, t, ω̂)

beyond the front interface. This bound is modeled after a similar estimate of Freidlin in the case of steady, spatially
periodic drift (see Lemma 3.3 of [10]), and it relies on the assumption that f ′(0) > 0, which holds for the KPP-type
nonlinearity.

Lemma 3.1. For any compact set K ⊂ {c ∈ Rd | H(c) − f ′(0) > 0},
lim inf
t→∞

1

t
log inf

c∈K
u(ct, t) � −max

c∈K

(
H(c) − f ′(0)

)
(3.3)

holds almost surely with respect to the measure P̂ .

We will postpone the proof of Lemma 3.1 and conclude the proof of the lower bound (1.5). In the following step,
we construct subsolutions and use a comparison argument to show that u ↗ 1 behind the interface. For each s � 0,
define the bounded convex set Γs ⊂ Rd by

Γs = {
c ∈ Rd

∣∣H(c) � s
}
. (3.4)

Let ε1 > 0 and set s1 = f ′(0) − ε1. For h ∈ (0,1), we will show that

lim
t→∞ inf

c∈Γs1

u(ct, t) � h (3.5)

since ε1 and h are arbitrarily chosen, this implies the lower bound (1.5).
Now we construct a subsolution to (2.8) to which we will compare u and obtain (3.5). Let h ∈ (0,1) be fixed. Let

us define the set

Jh(t) = {
x ∈ Rd

∣∣ u(x, t) < h
}

(3.6)
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for each t > 0. The boundary of Jh(t) (if there is a boundary) is the level set defined by u(·, t) = h, and this level set
must be bounded, by the established upper bound on u. For ε2 > 0, let s2 = f ′(0) + ε2. Let J 1(t) and J 2(t) denote
the sets

J 1(t) = Jh(t) ∩ tΓs1, J 2(t) = Jh(t) ∩ tΓs2 .

Notice that these sets are bounded at each t , and that J 1(t) ⊂ J 2(t) for all t whenever the sets are nonempty, since
Γs1 ⊂ Γs2 . Lemma 3.1 and the maximum principle imply that we can take ε2 sufficiently small and t0 > 0 sufficiently
large so that

inf
c∈Γs2

u(ct, t) � e−t2ε2 (3.7)

for all t � t0. Thus, infx∈J 2(t) u(x, t) � e−t2ε2 also holds for t � t0.
Let us define the positive number ξh = infu∈(0,h] f (u)/u. Thus, ξh → f ′(0) as h → 0. For given h ∈ (0,1), t0, and

a parameter κ ∈ (0,1) to be chosen, we will compare the solution u(x, t) with a function ψ(x, t; t0) of the form

ψ(x, t; t0) = hφ(x, t; t0) − g0e
−ξh(t−t0)u(x, t). (3.8)

We will compare u(x, t) and ψ(x, t; t0) for x ∈ J 2(t) and t ∈ [t0, (1 + κ)t0]. The family of functions φ(x, t; t0) will
be chosen to satisfy the following properties:

(i) ∂tφ � Lφ for all x ∈ Rd and t > t0.
(ii) φ(x, t; t0) � 1, for all (x, t).

(iii) φ(x, t; t0) � 0 for all x ∈ t∂Γs2 and t ∈ [t0, (1 + κ)t0].
(iv) lim

t0→∞ inf
c∈Γs1

φ
(
c(1 + κ)t0, (1 + κ)t0; t0

)= 1. (3.9)

The constant g0 will be positive. We choose the constant ε2 (appearing in (3.7)) sufficiently small so that 2ε2 < ξhκ .
Thus, ε2 and Γs2 depend on the choice of κ and h. Then we set g0 = he2ε2t0 .

A straightforward calculation using property (i) shows that ψ(x, t; t0) satisfies

∂tψ � Lψ + ξψ − ξhφ + ξhg0e
−ξh(t−t0)

= Lψ + ξψ − hφ(ξ − ξh) − ξhψ (3.10)

for t � t0. For any x ∈ Jh(t), ξ(x, t) � ξh > 0, by definition of ξh. Also, since u > 0 and g0 > 0, (3.8) implies that
φ(x, t) > 0 wherever ψ(x, t) � 0. So, if x ∈ Jh(t) and ψ(x, t) � 0, (3.10) implies that ψ must satisfy the inequality

∂tψ � Lψ + ξψ (3.11)

at the point (x, t). So, the function ψ is a subsolution to the equation solved by u in the region of interest.
The function ψ also takes values less than u(x, t) on the parabolic boundary of the region of interest. If the

boundary ∂Jh(t) is nonempty and x ∈ ∂Jh(t), then u(x, t) = h � hφ(x, t) � ψ(x, t). Since g0 > 0, ψ(x, t; t0) � 0 <

u(x, t) for all x ∈ t∂Γs2 and t > t0. Moreover, by the choice of g0 and φ(x, t; t0) � 1, ψ satisfies

ψ(x, t0; t0) � u(x, t0), ∀x ∈ J 2(t0), (3.12)

since u satisfies the lower bound (3.7).
Inequality (3.11) holds if x ∈ J 2(t) and ψ(x, t) � 0. Since u > 0 and ∂tu = Lu + ξu, the maximum principle

implies that u(x, t) � ψ(x, t; t0) for all x ∈ J 2(t) and t ∈ [t0, (1 + κ)t0]. From (3.9) and the definition of ψ we see
that

lim
t0→∞ inf

x∈J 1(t)
ψ
(
x, (1 + κ)t0; t0

)= h. (3.13)

Here we have used the fact that 2ε2 < ξhκ . Since u(x, t) � h for all x ∈ (Jh(t))
C , the limit (3.13) now implies that

lim
t0→∞ inf

c∈Γs1

u
(
c(1 + κ)t0, (1 + κ)t0

)
� h. (3.14)

This is equivalent to the desired bound (3.5).
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Fig. 1. The convex sets ∂Γs1 , ∂Γs2 , and ∂Γs3 . The points represent cj , j = 1, . . . ,Nc , and the lines represent the sets {c | λj · (c − cj ) = 0}. The
region bounded by these line segments represents

⋂
j {c | λj · (c − cj ) > 0}.

Therefore, to complete the proof, we must construct the function φ(x, t; t0) satisfying the desired properties. Set
ε3 = (ε1)/2 and s3 = f ′(0) − ε3, so that Γs1 ⊂ Γs3 ⊂ Γs2 . Since Γs1 , Γs2 and Γs3 are convex, we can choose finite sets
{cj }Nc

j=1 ⊂ Γs3 and λj ⊂ Rd such that both

Γs1 ⊂
Nc⋂
j=1

{
c ∈ Rd

∣∣ λj · (c − cj ) > 0
}

(3.15)

and

dist

(
∂Γs2 ,

⋂
j

{
c ∈ Rd

∣∣ λj · (c − cj ) > 0
})

> 0 (3.16)

are satisfied. Notice that properties (3.15) and (3.16) depend on the orientation of the λj but not on the magnitude
of the λj . Also, notice that the sets ∂Γs1 and ∂Γs2 are both bounded away from the set ∂Γs3 by a distance that is
independent of κ . The sets Γs1 and Γs3 (and the vectors {cj }, {λj }) do not depend on κ . The sets Γs1 , Γs2 , and Γs3 are
depicted in Fig. 1.

Now for fixed t0, let xj = cj t0, and consider the function φ(x, t; t0) defined by

φ(x, t; t0) = 1 −
Nc∑
j=1

e−λj ·(x−xj )−ρ̄(λj )t0+ρ(λj ,t) (3.17)

where the function ρ(λ, t, ω̂) is defined by (2.32), and

ρ̄(λj ) = |λj |2 + E
[

sup
x∈Rd

∣∣λj · V (x,0, ω̂)
∣∣]. (3.18)

It is easy to verify that ∂tφ � Lφ for all t > t0. Thus, property (i) holds. Clearly property (ii) is satisfied, as well.
Now we verify properties (iii) and (iv) for φ(x, t; t0). Since the sets ∂Γs1 and ∂Γs2 are both bounded away from the

set ∂Γs3 by a distance that is independence of κ , it follows from (3.15) and (3.16) that for κ sufficiently small there
exists δ1 > 0 such that

inf
j∈{1,...,Nc}

inf
c∈Γs1

λj ·
(

c − cj

(1 − κ)

)
> δ1 (3.19)

is satisfied and such that

inf
c∈Γs2

sup
j∈{1,...,Nc}

−λj ·
(

c − cj

(1 − κ)

)
> δ1 (3.20)

is also satisfied.
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From the ergodic theorem, we see that

lim
t→∞

1

t
ρ(λj , t) = ρ̄(λ)

holds almost surely with respect to P̂ . Define R(λ, t) = |ρ̄(λ) − 1
t
ρ(λ, t)|, so that |R(λ, t)| → 0 as t → ∞, P̂ -almost

surely.
Now by (3.19), we find that for each j = 1, . . . ,Nc,

sup
c∈Γs1

1

(1 + κ)t0
log e−λj ·(c(1+κ)−cj )t0−ρ̄(λj )t0+ρ(λj ,(1+κ)t0)

�
(

κ

1 + κ

)
ρ̄(λj ) + sup

c∈Γs1

−
(

λj ·
(

c − cj

(1 + κ)

))
+ ∣∣Rj

(
(1 + κ)t0

)∣∣
=
(

κ

1 + κ

)
ρ̄(λj ) − inf

c∈Γs1

(
λj ·

(
c − cj

(1 + κ)

))
+ ∣∣Rj

(
(1 + κ)t0

)∣∣
�
(

κ

1 + κ

)
ρ̄(λj ) − δ1 + ∣∣Rj

(
(1 + κ)t0

)∣∣. (3.21)

Thus, by taking κ smaller, the right-hand side of (3.21) can be made negative, for all j , for t0 sufficiently large.
Therefore, returning to (3.17) we see that

lim
t0→∞ inf

c∈Γs1

φ
(
c(1 + κ)t0, (1 + κ)t0; t0

)= 1.

This establishes (3.9).
Similarly, using (3.20) one can establish property (iii), as follows. We now find that

inf
β∈[0,κ] inf

c∈Γs2

sup
j

1

(1 + β)t0
log e−λj ·(c(1+β)−cj )t0−ρ̄(λj )t0+ρ(λj ,(1+β)t0)

� inf
β∈[0,κ] inf

c∈Γs2

sup
j

(
−λj ·

(
c − cj

(1 + β)

)
+ ρ̄(λj )

(
β

1 + β

))
− sup

β∈[0,κ]
sup
j

∣∣Rj

(
(1 + β)t0

)∣∣. (3.22)

Using (3.20) and the fact that

lim
t0→∞ sup

β∈[0,κ]
sup
j

∣∣R(λj , (1 + β)t0
)∣∣= 0,

we may take κ sufficiently small and t0 sufficiently large to make the right-hand side of (3.22) strictly positive. Then,
returning to (3.17) we see that

lim sup
t0→∞

sup
β∈[0,κ]

sup
c∈Γs1

φ
(
c(1 + β)t0, (1 + β)t0; t0

)= −∞. (3.23)

This establishes property (iii). Having verified all the necessary properties for the family of functions φ(x, t; t0), this
completes the proof of the lower bound (1.5). �
Proof of Lemma 3.1. For c ∈ Rd , t − 1 � s � 0 given, and b > 0 to be chosen, we define an auxiliary quantity
φ−

b (t; s, c) as follows. First, let z0 = c(t − s)/2. Now, we will fix b > c/2 sufficiently large so that the ball Bb(t−s)(z0)

contains both Bδ(cs) and Bδ(ct). For z ∈ Bb(t−s)(z0) and τ ∈ (s, t], let φ̃(z, τ ; s, t, c) satisfy

∂τ φ̃ = �zφ̃ + V (z, τ ) · ∇φ̃ (3.24)

with the initial condition

φ̃(z, s; s, t, c) =
{

1 z ∈ Bδ(cs),

0 otherwise
(3.25)

at time τ = s, and Dirichlet boundary condition φ̃(z, τ ; s, t, c) = 0 for z ∈ ∂Bb(t−s)(z0). Now define φ−
b (t; s, c) by

φ−
b (t; s, c) = inf φ̃(y, t; s, t, c). (3.26)
y∈Bδ(ct)
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Notice that the only difference between φ−
b (t; s, c) and φ−(ct, t; cs, s) (defined by (2.26)) is the Dirichlet boundary

condition used in the definition of φ−
b (t; s, c).

We will now make use of the following fact, which we prove later:

Theorem 3.1. There is a set of full measure Ω̂0 ⊂ Ω̂ , P̂ (Ω̂0) = 1, such that the following holds. For any c ∈ Qd there
is b > 0 sufficiently large so that for any κ ∈ (0,1],

lim inf
t→∞

1

κt
logφ−

b

(
t; (1 − κ)t, c

)= H(c) (3.27)

for all ω̂ ∈ Ω̂0. The function H(c) is the same as in Theorem 2.2 and Lemma 2.3.

Now we finish the proof Lemma 3.1. Pick c ∈ K ∩ Qd . Thus, H(c) > f ′(0). Now take b > 1 + |c| sufficiently
large, as required by Theorem 3.1. The upper bound (1.4) on u(x, t) implies that we may take κ ∈ (0,1) sufficiently
small and t sufficiently large so that

ξ(x, s) � ξh, ∀x ∈ Bbκt

((
1 − κ

2

)
ct

)
, s ∈ [(1 − κ)t, t

]
. (3.28)

The maximum principle implies that

inf
z∈Bδ(ct)

u(z, t) �
(
eκtξhφ−

b

(
t; (1 − κ)t, c

))
inf

y∈Bδ(c(1−κ)t)
u
(
y, (1 − κ)t

)
. (3.29)

We already know that

lim inf
t→∞

1

t
log inf

z∈Bδ(ct)
u(z, t) � lim inf

t→∞
1

t
log inf

z∈Bδ(ct)
φ(z, t;0,0),

which is finite since it is bounded below by −H(c). Therefore, (3.29) and Theorem 3.1 imply that

lim inf
t→∞

1

t
log inf

z∈Bδ(ct)
u(z, t) � ξh + lim inf

t→∞
1

t
logφ−

b

(
t; (1 − κ)t, c

)
= ξh − H(c).

Since the left-hand side is independent of h, we now let h → 0 so that ξh → f ′(0). Therefore,

lim inf
t→∞

1

t
log inf

z∈Bδ(ct)
u(z, t) � f ′(0) − H(c). (3.30)

To finish the proof, we apply the continuity estimate of Proposition 2.1. For γ (t) = εt , the lower bound of Propo-
sition 2.1 implies that

lim inf
t→∞

1

t
log inf|z|�εt

u(ct + z, t) � lim inf
t→∞

1

t
log inf

y∈Bδ(c(1−ε)t
u
(
y, (1 − ε)t

)− C
(
1 + |c| + δ

)2
ε
(
1 + ‖ξ‖∞ + V̄2

)
= f ′(0) − H(c) − O(ε). (3.31)

The last equality follows from (3.30).
Now we proceed as in the proof of Theorem 2.2. Since K is compact, we can pick ε > 0 and a finite set

{cj }Nj=1 ⊂ Qd , such that

K ⊂ K ′(ε) �=
N⋃

j=1

Bε(cj )

while ε is small enough so that H(c) < f ′(0) − ε/2 for all c ∈ K ′(ε). Therefore,

inf
z∈tK

u(z, t) � inf
j=1,...,N

inf|z|�εt
u(cj t + z, t).

Since N is finite, and K is compact, (3.31) now implies the result (3.3). �
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Proof of Theorem 3.1. The only difference between φ̃(z, τ ; s, t, c) and φ(z, τ ; cs, s) (defined by (2.20)) is the
Dirichlet boundary condition in the definition of φ̃. Therefore, the maximum principle implies that for τ ∈ [s, t]
and z ∈ Bb(z0) φ̃(z, τ ; s, t, c) � φ(z, τ ; cs, s). For given s < t , let π(z, τ ; s, t, c) be defined by

π(z, τ ; s, t, c) = φ(z, τ ; cs, s) − φ̃(z, τ ; s, t, c) (3.32)

for τ ∈ (s, t] and z ∈ Bb(z0), z0 = c(t − s)/2. Then π(z, τ ; s, t, c) satisfies ∂τπ = Lπ with

π(z, s; s, t, c) = 0, ∀z ∈ Bb(z0),

0 < π(z, τ ; s, t, c) < 1, ∀z ∈ ∂Bb(z0), τ ∈ (s, t]. (3.33)

Now we choose s = (1 − κ)t , and we claim that

lim
b→∞ lim sup

t→∞
1

κt
log sup

z∈Bδ(ct)

π
(
z, t; (1 − κ)t, t, c

)= −∞. (3.34)

However, we already know that

lim inf
t→∞

1

κt
log inf

z∈Bδ(ct)
φ
(
z, t; c(1 − κ)t, (1 − κ)t

)= −H(c) > −∞. (3.35)

Since π(z, τ ; (1 − κ)t, t, c) > 0 for all t , the combination of (3.34), (3.35) and the definition of π imply Theorem 3.1.
We prove the claim (3.34) for κ = 1. The proof in the case κ < 1 is similar. We compare π(z, τ ;0, t, c) with a

function η(z, τ ) of the form

η(z, τ ) =
N∑

j=1

e−λj ·(z−zj )+ρ(λj ,τ ) (3.36)

where ρ(λj , τ ) is defined by (3.17) (here, t0 = (1 − κ)t = 0). The function η(z, τ ) satisfies ∂τ η � Lη. Next, we
choose b, xj and λj and use the maximum principle to show that η(z, τ ) � π(z, τ ;0, t, c) for all τ > 0 whenever t

and b are sufficiently large. The constructed function η(z, τ ) depends on t , c, and b, but for clarity we suppress this
dependence in the notation.

We choose b > 10(1 + |c|). By choosing zj in the set ∂Bbt/2(z0), we have Bδ(ct) ⊂ Bbt/4(z0) so that

inf
j

inf
z∈Bδ(ct)

|z − zj |
t

� b/4. (3.37)

We choose the λj ∈ Rd independently of t so that |λj | = 1 and

inf
j

inf
z∈Bbt/4(z0)

λj · (z − zj )

|z − zj | > Cb (3.38)

and

inf
z∈∂Bbt (z0)

inf
j

−λj · (z − zj )

|z − zj | > Cb (3.39)

hold for all t > 1, for some constant C > 0.
Clearly η(z, τ ) > 0 for all z ∈ Rd , τ � 0. Moreover, for b sufficiently large and t sufficiently large, η(z, τ ) > 1 for

all z ∈ ∂Bbt (z0). This follows from (3.39) since

inf
z∈∂Bbt (z0)

inf
j

e−λj ·(z−zj )+ρ(λj ,τ ) � eCbt+ρ(λ,τ) � eCbt . (3.40)

So, we can take t sufficiently large so that the right-hand side of (3.40) is greater than 1 for all τ ∈ [0, t].
For any z ∈ Bδ(ct) ⊂ Bbt/4(z0), (3.38) implies that

1

t
logη(z, t) � N max

j=1,...,N
−λj · (z − zj )

t
+ ρ(λj , t)

t

� N max −Cb + ρ(λj , t)
.

j=1,...,N t
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Since limt→∞ ρ(λj , t)/t = ρ̄(λj ) is finite, this implies that

lim sup
b→∞

lim sup
t→∞

1

t
log sup

z∈Bδ(ct)

η(z, t) = −∞.

This implies the claim (3.34) since π(z, t) � η(z, t) for z ∈ Bδ(ct). This completes the proof of Theorem 3.1. �
4. The Lyapunov exponent

In this section we prove Theorems 1.2, 1.3, and 1.4. For λ ∈ Rd , let ϕ = ϕλ be defined by (1.9) with ϕλ(x,0) ≡ 1.
If ηλ(x, t) = e−λ·xϕλ(x, t) , then ηλ solves

∂t (ηλ) = �ηλ + V · ∇ηλ (4.1)

with initial data ηλ = e−λ·x . When the dependence of ηλ and ϕλ on λ is clear from the context, we will just write η

and ϕ respectively.

Lemma 4.1. For any c ∈ Rd ,

φ(ct, t;0,0, ω̂) � exp

(
−t

(V̄t (ω̂) − |c| + δ/t)2

4

)
(4.2)

for all t > 0, where V̄t (ω̂) = 1
t

∫ t

0 supy∈Rd |V (y, s, ω̂)|ds and limt→∞ V̄t = E[supx |V (x,0, ω̂)|] almost surely.

Proof. By the maximum principle, φ(x, t;0,0) � ηλ(x, t)e|λ|δ . Therefore,

φ(ct, t;0,0) �
(
ϕλ(ct, t)e

−λ·ct+|λ|δ). (4.3)

By Grownwall’s inequality, it is easy to see that

sup
x∈Rd

ϕλ(x, t) � exp

(
|λ|2t +

t∫
0

sup
y∈Rd

∣∣λ · V (y, s, ω̂)
∣∣ds

)
(4.4)

so that by choosing λ = r c
|c| , we have

φ(ct, t;0,0) � e
−λ·ct+|λ|2t+∫ t

0 sup
y∈Rd |λ·V (y,s,ω̂)|ds+|λ|δ

� et(r2+r(V̄t−|c|+δ/t)). (4.5)

The result follows by optimizing (4.5) over r . �
Proof of Theorem 1.3. We have already established that (1.7) holds. It remains to prove that H is characterized by

H(c) = sup
λ∈Rd

(
c · λ − μ(λ)

)
. (4.6)

Let φ(x, t) = φ(x, t;0,0), and consider the family of probability measures Pt on Rd (for fixed ω̂) defined by

Pt (A) = 1

Zt

∫
A

φ(ct, t) dc, (4.7)

where Zt is the normalizing constant Zt = ∫
Rd φ(ct, t) dc = 1

td

∫
Rd φ(x,0) dx. Using Theorem 2.2, one can show that

(almost surely with respect to P̂ ) the family of measures Pt satisfy a large deviation principle with rate function H(c).
Let F(c) = λ · c. Then using Lemma 4.1, one can show that

lim
L→∞ lim sup

t→∞
1

t
log

∫
etλ·cPt (dc) = −∞.
F(c)�L
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Now, by Varadhan’s Theorem (see [30], Section 3) the limit

lim
t→∞

1

t
logEPt

[
etF (c)

]= sup
c∈Rd

(
F(c) − H(c)

)
(4.8)

holds. Hence,

lim
t→∞

1

t
log

∫
Rd

etλ·cφ(ct, t) dc = lim
t→∞

1

t
log

∫
Rd

eλ·xφ(x, t) dx

= sup
c∈Rd

(
λ · c − H(c)

)
. (4.9)

The convexity and super-linearity of H(c) now imply that

H(c) = sup
λ∈Rd

(
c · λ − μ(λ)

)
(4.10)

where μ(λ) is defined by the almost sure limit

μ(λ) = lim
t→∞

1

t
log

∫
Rd

eλ·xφ(x, t) dx. �

Proof of Theorem 1.4. Observe that the function ϕλ = ηλ(x, t)eλ·x and the function φ(x, t)eλ·x solve the same
equation (1.9) with different initial data, since ηλ and φ solve the same equation.

Let η∗(y, s; t) solve the adjoint equation ∂sη
∗ + L∗η∗ = 0 for s ∈ (0, t) with terminal data η∗(y, t; t) = eλ·y . Let

ϕ∗
λ(y, s; t) = e−λ·yη∗

λ(y, s; t). The function ϕ∗(y, t; t) solves

∂sϕ
∗ + �yϕ

∗ − (
V (y, s) − 2λ

) · ∇yϕ
∗ + (|λ|2 − λ · V (y, s) − ∇ · V )ϕ∗ = 0 (4.11)

for s ∈ (0, t) with terminal data ϕ∗(y, t; t) ≡ 1. Using the fact that η∗(x, t; t) = eλ·x , the equations satisfied by φ and
η∗, and integration by parts, we see that for each t > 0,∫

Rd

φ(x, t)eλ·x dx =
∫
Rd

φ(x, t)η∗
λ(x, t; t) dx

=
∫
Rd

φ(y,0)η∗
λ(y,0; t) dy

=
∫
Rd

φ0(y)ϕ∗
λ(y,0; t)eλ·y dy. (4.12)

Since φ0(y) is compactly supported,

K1 inf
y∈Bδ(0)

ϕ∗
λ(y,0; t) �

∫
Rd

φ0(y)ϕ∗(y,0; t)eλ·y dy � K2 sup
y∈Bδ(0)

ϕ∗
λ(y,0; t)

for some constants K1,K2. This implies that

lim sup
t→∞

1

t
log inf

y∈Bδ(0)
ϕ∗(y,0; t) � μ(λ) � lim inf

t→∞
1

t
log sup

y∈Bδ(0)

ϕ∗(y,0; t). (4.13)

Then by applying Harnack estimates to the function ϕ∗
λ , as in Proposition 2.1, we can use (4.13) to show that

lim sup
t→∞

1

t
log inf

y∈Bδ(0)
ϕ∗(y,0; t) = μ(λ) = lim inf

t→∞
1

t
log sup

y∈Bδ(0)

ϕ∗(y,0; t).

This and the stationarity of V with respect to x implies that, for any x ∈ Rd ,

lim
t→∞ sup

∣∣∣∣1t logϕ∗(y,0; t) − μ(λ)

∣∣∣∣= 0 (4.14)

y∈Bδ(x)
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holds almost surely with respect to P̂ . Finally, the convergence stated in Theorem 1.4 follows from (4.14) by applying
Harnack type estimates (as in the proof of Lemma 2.3) to the function ϕ∗ and proceeding just as in the proof of
Theorem 2.2. �
5. Bounds on front speeds

In this section, we prove lower and upper bounds of c∗ in terms of statistics of V and the front speed c0 in the
absence of advection. We define c0 to be the front speed corresponding to V ≡ 0.

Proposition 5.1. Suppose V is divergence free and mean zero: E[V (j)] = 0 for j = 1, . . . , d . The front speed c∗
satisfies the upper bound:

(1) c∗(e) � c0 + E
P̂
[‖V ‖L∞

x
], implying at most linear growth in δ � 1 if V is scaled according to V �→ δV .

If V (x, t) is uniformly bounded, then c∗ also satisfies the lower bound

(2) c∗(e) � c0.

Proof. Consider the function ϕ∗(x, τ ; t, ω̂) which solves the terminal value problem (1.9). The maximum principle
implies that the function ϕ∗ is bounded by

ϕ∗(x,0; t, ω̂) � eρ(t,λ,ω̂) = et |λ|2+∫ t
0 supx |λ·V (x,s)|ds . (5.1)

Therefore,

μ(λ) = lim
t→∞

1

t
logϕ∗(x,0; t) � |λ|2 + lim

t→∞
1

t

t∫
0

sup
x

∣∣λ · V (x, s)
∣∣ds

= |λ|2 + E
[
sup
x

∣∣λ · V (x,0)
∣∣]

� |λ|2 + |λ|E[sup
x

∣∣ · V (x,0)
∣∣]. (5.2)

Letting λe = λ · e, we have:

c∗(e) � inf
λe>0

λ2
e + f ′(0) + λeEP̂

[‖V ‖L∞
x

]
λe

= c0 + E
P̂

[‖V ‖L∞
x

]
. (5.3)

For (2), consider the function ζ(x, τ ) = logϕ∗(x, τ ) − |λ|2(t − τ) which satisfies

∂τ ζ + �ζ + |∇ζ |2 − (
V (x, τ) − 2λ

) · ∇ζ − λ · V (x, τ) = 0, (5.4)

with terminal data ζ(x, t) ≡ 0. For R > 0, let g(x) be a smooth cutoff function satisfying 0 � g(x) � 1 for all x,
g(x) = 0 for |x| > R, g(x) = 1 for |x| � R − 1, and ‖∇g‖∞ + ‖�g‖∞ � K . Multiplying by g and integrating over
Rd and [0, t] we have

0 � 1

t |BR|
t∫

0

∫
BR

ζ�g dx dt + 1

t |BR|
t∫

0

∫
BR

ζ(V − 2λ) · ∇g dx dt

+ 1

t |BR|
t∫ ∫

λ · Vg dx dt + 1

t |BR|
∫

ζ(x,0)g dx. (5.5)
0BR BR
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Since V is uniformly bounded, it is easy to see that 0 � |ζ(x, τ ; t)| � K3(t − τ) for some constant K3 sufficiently
large. This and the fact that �g is supported in the set R − 1 � |x| � R imply that

1

t |BR|
t∫

0

∫
BR

|ζ ||�g|dx dt � K1t |BR \ BR−1|
|BR| � tK2

R
. (5.6)

Similarly,

1

t |BR|
t∫

0

∫
BR

|ζ |∣∣(V − 2λ)
∣∣|∇g|dx dt � K3t |BR \ BR−1|

2|BR| � K4t

R
. (5.7)

For ε > 0, let R = R(t) = 2K4t/ε, so that the right hand sides of (5.6) and (5.7) are bounded by O(ε) for t

sufficiently large. By Theorem 1.4,

lim
t→∞

∣∣∣∣ 1

t |BR|
∫
BR

ζ(x,0)g dx − μ(λ) + λ2
∣∣∣∣= 0. (5.8)

Moreover, the ergodic theorem implies that

lim
t→∞

1

t |BR|
t∫

0

∫
BR

λ · Vg dx dt = E[λ · V ] = 0. (5.9)

Therefore (5.5)–(5.8) and our choice of R imply that μ(λ) � |λ|2 − O(ε). Letting ε → 0 we have μ(λ) � |λ|2 and

c∗(e) � inf
λ·e>0

|λ2| + f ′(0)

λ · e = c0.

This proves (2). �
The above proposition extends similar bounds in the time random shear flows [24] as well as bounds for determin-

istic, periodic flows. For example, if the velocity field is periodic, mean-zero, and divergence-free, then it is known
that the KPP front speed can only be enhanced by the flow and that the enhancement can be at most linear with respect
to ‖V ‖∞ (see Refs. [4,8]). Numerical computation of c∗ in randomly perturbed cellular flows by the authors [25] sug-
gest that c∗ ∼ O(δp) at large δ may occur for any exponent p ∈ (0,1), when V is scaled according to V �→ δV . So the
above bounds are optimal in time random incompressible flows. The other type of bound on c∗ for δV with Gaussian
statistics in time is obtained in Theorem 5 of [24], namely c∗ � c0

√
1 + δ2p1, where p1 is the integral of correlation

function. We give an extension of such bound for nonshear space time random flows next.

Remark 5.1. The following computation is formal, but illustrative. A velocity field that is white-noise in time, could
be incorporated rigorously through a term of the form V · ∇u ◦ dW in the original equation (1.1), where ◦ denotes
the Stratonovich integral. Although this scenario does not fall within our assumptions on V given in the introduction,
the following computation illustrates the difficulty in estimating c∗ when the velocity V is correlated in time.

Proposition 5.2. Suppose in that V has the form

V (x, t, ω̂) =
∑

k

Xk(x)Fk(t, ω̂) (5.10)

where {Xk(x)} are periodic or almost-periodic, divergence free fields and {Fk} are white-noise processes in time, so
that the covariance matrix function is:

Γij = Γij (x1, x2, t1 − t2) = E
P̂

[
V (i)(x1, t1)V

(j)(x2, t2)
]
� p1δ0(t1 − t2)Aij (x1, x2),

where δ0 is the standard delta function centered at zero, p1 is a constant. Then c∗ � c0
√

1 + C2p1, where C2 depends
only on the dimension d and f ′(0).
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Proof. The Feynman–Kac formula for ϕ∗ of Eq. (1.9) gives:

ϕ∗(x,0) = E
[
e−λ·∫ t

0 V (Zλ,s) ds
]
e|λ|2t ,

where Zλ is the diffusion process obeying the Itô equation:

dZλ(s) = (
V
(
Zλ, s

)− 2λ
)
ds + √

2dW(s), s ∈ [0, t],
Zλ(0) = z, W(s) = {Wi(s)}di=1 a d-dimensional Wiener process. Changing measure by the Girsanov Theorem ([14],
Theorem 5.1) yields the following representation of ϕ∗:

E

[
exp

{
−λ

√
2 · W(t) + √

2
d∑

i=1

t∫
0

V (i)
(
Wz(r), r

)
dW(i)(r) − 1

2

t∫
0

∥∥V (Wz(s), s
)∥∥2

ds

}]
, (5.11)

where Wz(s) = z + W(s), E is expectation with respect to W . It follows that:

ϕ∗ � E

[
exp

{
−λ

√
2 · W(t) + √

2
d∑

i=1

t∫
0

V (i)
(
Wz(r), r

)
dW(i)(r)

}]
,

and

E
P̂
ϕ∗ � E

[
e−λ

√
2·W(t)E

P̂

[
exp

{√
2

d∑
i=1

t∫
0

V (i)
(
Wz(r), r

)
dW(i)(r)

}]]
. (5.12)

Notice that inside the inner expectation (with Wz(r) fixed), the sum of stochastic integrals is a linear combination
of Gaussian variables. In other words, the inner expectation is over a log-normal variable, and so:

E
P̂
ϕ∗ � E

[
exp

{
−λ

√
2 · W(t) +

t∫
0

t∫
0

∑
ij

Γij

(
W(s),W(τ), s, τ

)
dW(i)(s) dW(j)(τ )

}]
. (5.13)

As V is white in time, e.g. Γij = Aij (x1, x2)p1δ0(t1 − t2), the integral in (5.13) is bounded from above by
p1C1

∫ t

0 ‖dW(s)‖2. The right-hand side expectation of (5.13) is bounded from above by:

E

[
exp

{ t∫
0

p1C1
∥∥dW(s)

∥∥2 − √
2λ · dW(s)

}]
=

N∏
j=1

d∏
l=1

E
[
exp

{
p1C1

(
dW(l)(s)

)2 − √
2λ(l) dW(l)

}]
, (5.14)

where dW(l) is the Wiener increment over interval of length t/N . We have used independence of Wiener increments
in each component and among components. The last expression of (5.14) can be calculated explicitly, and equals upon
taking the limit N → ∞:

exp
{|λ|2t + p1dC1t

}
.

It follows that:

μ = lim
t→∞

1

t
E

P̂
logϕ∗

� lim
t→∞

1

t
logE

P̂
ϕ∗ � |λ|2 + C1dp1 (5.15)

or

c∗ � 2
√

f ′(0) + C1dp1 = c0
√

1 + C2p1. � (5.16)

Remark 5.2. If V is Gaussian but nonwhite in time, the p1δ0 in the upper bound of the covariance matrix function
is replaced by a nonnegative L1 function with integral equal to p1. The estimate of the right-hand side expectation
of (5.13) will be more complicated. One may write the double integral into discrete sums, and carry out a direct
evaluation. It is interesting to establish a similar result. Inequality (5.16) implies that rapid temporal decorrelation can
reduce speed enhancement, as known for temporally random shear flows [24] among other time dependent flows in
the literature [2,5,9,15,22].
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6. Conclusions

A new Eulerian method is developed to prove the large time asymptotic spreading of KPP reactive fronts in incom-
pressible space–time random flows in several space dimensions. The random flows are mean zero, stationary, ergodic,
and can be unbounded in time as long as the moment condition (1.3) is satisfied. The flow field is locally Hölder con-
tinuous, which is the case for turbulent flow fields [20,32]. The large time front speed is almost surely deterministic
and obeys a variational principle in terms of the Legendre dual of the large deviation rate function. This addresses the
existence of a turbulent flame speed for KPP fronts, a long standing open problem in turbulent combustion [28].

A variational principle for the front speeds lead to analytical bounds that reveal upper and lower limits of speed
enhancement in incompressible flows. In future work, it will be interesting to further relax the moment condition (1.3),
so the flow field can be unbounded in space as well. Another open question is to study non-KPP reactive fronts
in random flows [23], and to show that KPP front speeds qualitatively agree with non-KPP ones as seen in many
deterministic front problems [3,4,8,13,22,31,35].
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