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Abstract

We prove well-posedness results for the initial value problem of the periodic KdV equation as well as KAM type results in classes
of high regularity solutions. More precisely, we consider the problem in weighted Sobolev spaces, which comprise classical Sobolev
spaces, Gevrey spaces, and analytic spaces. We show that the initial value problem is well posed in all spaces with subexponential
decay of Fourier coefficients, and ‘almost well posed’ in spaces with exponential decay of Fourier coefficients.
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1. Results

We consider the initial value problem for the periodic KdV equation,

ut = −uxxx + 6uux, u|t=0 = u0, (1)

where all functions are considered to be defined on T = R/Z.
One of the first results in this direction is due to Bona and Smith [5], which is that this problem has a unique,

global solution for any initial value in one of the standard Sobolev space Hm = Hm(T,R) with m � 2. That is, for
each u0 ∈ Hm there exists a unique continuous curve

ϕ : R → Hm, t �→ ϕ(t, u0)

solving the initial value in the sense defined below. Moreover, taken together they define a continuous flow

R × Hm → Hm, (t, u0) �→ ϕ(t, u0).

Thus, the initial value problem is globally well-posed on Hm with m � 2 in the sense of Hadamard: solutions exist
for all time, are unique, and depend continuously on their initial values.
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1.1. Well-posedness and boundedness

Before we proceed we fix some notion. Let H r = Hr(T,R) be the usual Sobolev spaces for real r � 0. A continu-
ous curve ϕ : I → H r , with I an interval containing 0, is called a solution of the initial value problem (1), if it solves
(1) in the usual sense of distributions with ϕ(0) = u0. It is called global, if it exists for all time, that is, I = R.

We then say that the initial value problem (1) is globally well-posed in H r , if it has a global solution for each initial
value in H r , and the resulting flow

R × H r → H r , (t, u) �→ ϕ(t, u)

is continuous. A stronger notion is the following. We call (1) globally uniformly well-posed in an invariant subspace
H of H r , if it is globally well-posed, and for every compact time interval J the map

H → C0(J,H), u �→ ϕ(·, u)

is uniformly continuous on bounded subsets of H with respect to the usual sup-norm on the second space.
Well-posedness in the weighted Sobolev spaces Hw introduced later is defined analogously.
As it turns out, we actually have to restrict ourselves to invariant subspaces of functions of constant mean value

[u] :=
∫
T

udx,

which is invariant under the KdV flow. That is, we have to consider the subspaces

Hw
c = {

u ∈ Hw: [u] = c
}
, c ∈ R.

Such a restriction is necessary for the following statements to be correct – see the remark following the supplement
to Theorem 1.

Another interesting question in the study of initial value problems such as (1) is the long time behavior of solutions
– in particular, whether they stay bounded or even uniformly bounded for all time. Here we say that solutions of (1)
are uniformly bounded in a weighted Sobolev space Hw , if they are uniformly bounded within this space for all time.

1.2. Known results

Since the first results of Temam [34], Sjöberg [33] and Bona and Smith [5], the initial value problem for KdV and
its well-posedness have been studied intensively. An excellent overview with a detailed bibliography is provided by
the web site created by Colliander, Keel, Staffilani, Takaoka and Tao [11].

One focus has been on low regularity solutions, that is, solutions in the Sobolev spaces H r with real r � 0. We
just mention the works of Bourgain [6–9], Kenig, Ponce and Vega [23,24], Colliander, Keel, Staffilani, Takaoka and
Tao [10], and Kappeler and Topalov [22]. As a result, KdV is now known to be globally well-posed in H r for r � −1,
and globally uniformly well-posed in H r

c for r � −1/2. See [22] and [10], respectively. Incidentally, it is an interesting
phenomenon, that an equation can be globally well-posed, but not in a uniform way.

In this paper we focus on high regularity solutions. These are solutions in a general class of weighted Sobolev
spaces within H0, that encompass analytic and Gevrey spaces, among others, as well as the spaces Hm. Some results
in this direction on the real line are due to Bona, Grujić and Kalisch [4,17], for example. But in general, the questions
of existence and well-posedness of solutions of nonlinear pdes of high regularity have not been widely considered.
We argue that this is a topic which deserves to be studied in more depth, revealing important features of the nonlinear
equation considered.

1.3. Weighted Sobolev spaces

To state our results, we introduce weighted Sobolev spaces Hw within

H0 = L2(T,C) =
{
u =

∑
une2πinx :

∑
|un|2 < ∞

}

n∈Z n∈Z
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as follows [19,20]. First, a weight is any function w : Z → R, which is normalized, symmetric, and submultiplicative:

wn � 1, w−n = wn, wn+m � wnwm

for all n and m. The w-norm of a function u in H0 is then defined through

‖u‖2
w :=

∑
n∈Z

w2
n|un|2,

and

Hw := {
u ∈ H0: ‖u‖w < ∞}

is the Banach space of all such functions with finite w-norm. Note that H0 = Hw for the trivial weight w ≡ 1.
Here are some examples of relevant weights. Let 〈n〉 = 1 + |n|.
The Sobolev weights

〈n〉r , r � 0,

give rise to the usual Sobolev spaces H r of 1-periodic, real-valued functions. In particular, for nonnegative integers
m we obtain the standard spaces Hm.

The Abel weights1

〈n〉rea|n|, r � 0, a > 0,

define spaces H r,a of functions in H r referred to as Abel spaces, which are analytic on the complex strip |�z| < a/2π

and have traces in H r on the boundary lines.
The Gevrey weights

〈n〉rea|n|σ , r � 0, a > 0, 0 < σ < 1,

lie in between and give rise to the so called Gevrey spaces H r,a,σ . They are all subspaces of C∞(T,R). Obviously,

H r,a = H r,a,1 � H r,a,σ � H r,a,0 = H r ,

so the Gevrey spaces interpolate between the Abel and Sobolev spaces for the same r and a. The latter are obtained
for σ = 1 and σ = 0, respectively.

Since logwn is subadditive and nonnegative, the limit

χ(w) := lim
n→∞

logwn

n

exists and is nonnegative [30, no. 98]. Naturally, we call a weight w exponential, if

χ(w) > 0.

We call w subexponential, if χ(w) = 0 and in addition logwn/n converges to zero in an eventually monotone manner.
This is not a precise dichotomy, but we are not aware of any interesting weight that does not belong to either class.

Clearly, Abel weights are exponential, while Sobolev and Gevrey weights are subexponential. Yet another example
of a subexponential weight is given by

〈n〉r exp

(
a|n|

1 + logα〈n〉
)

, r � 0, a > 0, α > 0,

which is lighter than the Abel and heavier than the Gevrey weights. We remark that special weighted Sobolev spaces
have been considered earlier, see for instance [12–14,16,19,20,31,35].

Our results with respect to well-posedness are optimal for subexponential weights with respect to regularity. In the
exponential case, however, due to our method we have to allow for a slight loss of smoothness. Using other techniques
such as a priori estimates this can probably be avoided.

1 The term Abel weights is chosen to go along with Sobolev and Gevrey weights.
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1.4. Statements of the main theorems

Recall that Hw
c = {u ∈ Hw: [u] = c}. We first consider the case of subexponential weights, where our results are

optimal as far as the regularity properties are concerned.

Theorem 1. The periodic KdV equation is globally uniformly well-posed in every space Hw
c with a subexponential

weight w and a real c. That is, for each initial value u in one of these spaces Hw
c , the associated Cauchy problem has

a global solution t �→ ϕt (u) in Hw
c , giving rise to a continuous flow

R × Hw
c → Hw

c , (t, u) �→ ϕt (u), (2)

which is even uniformly continuous on bounded subsets of R × Hw
c . Moreover, for bounded subsets of initial values

all solution curves are uniformly bounded.

As our results are based on a fairly precise knowledge of the entire KdV flow, we obtain the following additional
results almost for free. Recall that a continuous curve γ : R → Hw is called almost-periodic, if for any ε > 0 there
exists an l > 0 such that any open interval of length l contains an ε-approximate period T :

sup
t

∥∥γ (t + T ) − γ (t)
∥∥

w
< ε.

Supplement to Theorem 1. The flow (2) has the following properties.

(i) Each solution is almost-periodic in time.
(ii) The Lyapunov exponents of any solution are zero.

(iii) Each time shift map ϕt is real analytic as a map Hw
c → Hw

c .

It is worth noting that solutions are not analytic in t . As their frequencies are unbounded, they do not even have
a proper tangent vector in the t -direction. For the same reason, they are also not analytic with respect to the mean
value c. If c is complex, then the imaginary parts of the frequencies form an unbounded sequence – see for example
Appendix A in [22].

In the case of exponential weights, our method of proof entails a slight loss of smoothness. On the other hand, it
assures that within these spaces of slightly less regular functions the solution curves remain bounded for all time.

Theorem 2. The periodic KdV equation is “almost” globally well-posed in every space Hw
c with an exponential

weight w and real c. That is, for each bounded subset B of Hw
c there exists 0 < ρ � 1 such that the Cauchy problem

for each initial value u ∈ B has a global solution t �→ ϕt (u) in Hwρ

c . These solutions are uniformly bounded and give
rise to a continuous flow

R × B → Hwρ

c , (t, u) �→ ϕt (u).

The Supplement also applies to this case, with each time shift map ϕt being analytic as a map Hw
c → Hwρ

c .

Here, wρ is the weight with (wρ)n = w
ρ
n , which is again normalized, symmetric and submultiplicative. Thus, for

initial values u in a bounded subset B of H0,a
c , say, (1) has a global solution in H

0,ρa
c with a fixed 0 < ρ � 1. It is an

open question, whether ρ can be chosen to be 1. For related results, see for example [1].
Our results are not restricted to the standard KdV equation, but apply simultaneously to all equations in the KdV

hierarchy, as defined for instance in [21]. The second KdV equation, for example, reads

ut = uxxxxx − 10uuxxx − 20uxuxx + 30u2ux.

Such a hierarchy may be defined in a variety of ways, but this is immaterial here and does not affect the statement of
the following theorem.

Theorem 3. Theorems 1 and 2 and their supplements also hold for every KdV equation in the KdV hierarchy, provided
that in the case of Sobolev spaces H r

c , r is sufficiently large.
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Using the preceding results we may extend the KAM theory of Hamiltonian perturbations of KdV equations devel-
oped by Kuksin [25–27] and expounded in [28,21]. Consider the perturbed KdV equation

∂u

∂t
= d

dx

(
∂H

∂u
+ ε

∂K

∂u

)
.

If K is real analytic in u with a gradient ∂K/∂u in some standard Sobolev space Hm
0 , m � 1, then KAM for KdV

asserts the persistence of quasi-periodic solutions for sufficiently small ε �= 0. This result may now be extended as
follows.

Theorem 4. Under sufficiently small Hamiltonian perturbations, the majority of the quasi-periodic solutions of the
KdV equation persists, their regularity being the same as the regularity of the perturbing term in the subexponential
case, or only slightly less in the exponential case.

A more detailed statement of this theorem is given in Section 4. Incidentally, it answers a question raised by Jürgen
Moser many years ago, and which was the main motivation behind this work.

1.5. Outline of proof

Our theorems are based on two observations. First, the periodic KdV equation is well known to be an infinite
dimensional, integrable Hamiltonian system. As such, it even admits global Birkhoff coordinates (xn, yn)n�1 defined
as the Cartesian counterpart to global action angle coordinates (In, θn)n�1. In these coordinates, the KdV Hamiltonian
takes the infinite dimensional classical form

H = H(I1, I2, . . .), 2In = x2
n + y2

n,

with classical equations of motion. They are trivial to integrate, making the well-posedness problem completely trans-
parent in the underlying sequence spaces.

The so-called Birkhoff map u �→ (xn, yn)n�1 defines a canonical diffeomorphism

Ω :H0
0 → h0



between

H0
0 =

{
u ∈ L2

0:
∫
T

udx = 0

}
,

and a space h0
 of weighted �2-sequences defined in (4) below. The second observation is that this map Ω has many

features of the Fourier transform. Indeed, the differential of Ω at the origin is a weighted Fourier transform. More
importantly, one can prove Paley–Wiener type theorems for Ω . For example, for any subexponential weight w, the
restriction of Ω to the weighted Sobolev space Hw

0 gives rise to a diffeomorphism

Ω :Hw
0 → hw

 .

These results rely on a precise correspondence between the regularity properties of a function u ∈ H0
0 and the

decay properties of its actions In. These two are linked by the spectral properties of the associated Hill operator used
in the Lax-pair formulation of KdV as follows.

For a potential u ∈ H0
0 consider the Hill operator

Lu = − d2

dx2
+ u

on the interval [0,2] with periodic boundary conditions. Its spectrum, spec(u), is pure point and consists of an un-
bounded sequence of periodic eigenvalues

λ0(u) < λ1(u) � λ2(u) < λ3(u) � · · · ,
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where the open intervals (λ2n−1(u), λn(u)) are referred to as the gaps of spec(u). Lax observed, by way of his famous
Lax pair argument, that the KdV flow defines an isospectral deformation on the space of potentials u in Hm

0 with
m � 3 arbitrary. That is,

spec
(
ϕt (u)

) = spec(u)

for any solution t �→ ϕt (u) of the KdV equation in Hm
0 .

The same applies then to the sequence γ (u) = (γn(u))n�1 consisting of the so called gap lengths γn(u) = λ2n(u)−
λ2n−1(u). So we also have

γ
(
ϕt (u)

) = γ (u).

It now turns out that on one hand,

γn(u) ∼ nIn(u)

uniformly on bounded subsets of Hm
0 . Hence, decay properties of the gap lengths translate into decay properties of

the actions in a precise way.
On the other hand, the decay properties of γ (u) are closely tied to the regularity of u. For example, a classical

result due to Marčenko and Ostrowskiı̆ [29] states that for any u ∈ L2
0,

u ∈ Hm
0 ⇔

∑
n�1

n2mγ 2m
n (u) < ∞

for any integer m � 0. Characterizations of this type have been studied extensively and extended to a variety of
subspaces Hw

0 of H0
0 for example by Kappeler and Mityagin [20] and Djakov and Mityagin [12]. Pöschel [31] finally

shows, by way of a new functional analytic approach, that u belongs to a space Hw
0 with any subexponential weight

w if and only if γ (u) belongs to an analogously defined sequence space �w defined below. We may thus traverse the
implications

u ∈ Hw
0 �⇒ γ (u) ∈ hw

�
ϕt (u) ∈ Hw

0 ⇐� γ
(
ϕt (u)

) ∈ hw


clockwise from top left to bottom left and arrive at the conclusion that a solution curve with initial value in Hw
0 stays

in Hw
0 .

In the exponential case, however, this last argument is no longer true, and we have to allow for some loss in
“exponentiality”. It is quite likely that this is an artefact of our methods.

The preceding discussion was restricted to functions of mean value zero. The general case, however, is easily
reduced to this case. Letting u = v + c with [v] = 0 and c = [u] the KdV Hamiltonian introduced in the next section
takes the form

H(u) = Hc(v) + c3

with

Hc(v) =
∫
T

(
1

2
v2
x + v3

)
dx + 6c

∫
T

1

2
v2 dx. (3)

The additive constant is irrelevant, and the second integral only amounts to a shift in the frequencies of the KdV flow,
which is also immaterial to our results. Therefore, it suffices to consider the case c = 0 to establish our results. Then
we write again H instead of H0.

The rest of the paper is organized as follows. In Section 2 we describe the Birkhoff coordinates for KdV which are
constructed in [21], and formulate two addenda, which will imply Theorems 1 and 2. In Section 3 we give a precise
description of the relationship between the regularity of a potential and its spectral asymptotics, which will imply the
addenda of Section 2. The proofs of the statements about this relationship, however, are somewhat lengthy and given
in a separate paper [31]. In the concluding Section 4 we briefly address Hamiltonian perturbations of KdV.
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2. Birkhoff coordinates

As is well known, the KdV equation can be written as an infinite dimensional Hamiltonian system

∂u

∂t
= d

dx

∂H

∂u
.

The Hamiltonian is

H(u) =
∫
T

(
1

2
u2

x + u3
)

dx,

and as the underlying phase space one may take one of the usual Sobolev spaces

Hm = Hm(T,R)

of real valued functions on T = R/Z, where m � 1 is an integer. The Poisson bracket proposed by Gardner,

{F,G} =
∫
T

∂F

∂u

d

dx

∂G

∂u
dx,

makes Hm a Poisson manifold, on which the KdV equation may also be represented in the form

ut = {u,H },
familiar from classical mechanics.

The Poisson structure {·,·} is degenerate, as it admits the mean value [·] as a Casimir function. That is, [·] commutes
with every other function on Hw . From now on we therefore restrict ourselves to the invariant subspaces Hw

0 , where
the Poisson structure is nondegenerate and gives rise to a symplectic structure as well.

Next, we introduce the weighted sequence spaces

hw = �w × �w

with elements (x, y), where

�w =
{
x = (xn)n�1: ‖x‖2

w =
∑
n�1

w2
n|xn|2 < ∞

}
.

We endow hw with the standard Poisson structure, for which {xn, ym} = δnm, while all other brackets vanish. To
simplify notations, we further introduce

hw
 = �w

 × �w
 , �w

 = {
x ∈ �w: (

√
nxn)n�1 ∈ �w

}
. (4)

The extra weight
√

n reflects the effect of the derivative d/dx in the Gardner bracket.
The following theorem was first proven in [2,3]. A quite different approach was first presented in [18], and a

comprehensive exposition is given in [21].

Theorem 5. There exists a diffeomorphism Ω :H0
0 → h0

 with the following properties.

(i) Ω is onto, bi-analytic and bounded, and it takes the standard Poisson bracket into the Gardner bracket.
(ii) The restriction of Ω to Hm

0 , m � 1, gives rise to a map Ω :Hm
0 → hm

 , which is again onto and bi-analytic.
(iii) Ω introduces global Birkhoff coordinates for the KdV Hamiltonian on H1

0 . That is, on h1
 the transformed KdV

Hamiltonian H � Ω−1 is a real analytic function of

In = 1

2

(
x2
n + y2

n

)
, n � 1.

(iv) The last statement also applies to every other Hamiltonian in the KdV hierarchy, if ‘1’ is replaced by ‘m’ with m

sufficiently large.



848 T. Kappeler, J. Pöschel / Ann. I. H. Poincaré – AN 26 (2009) 841–853
The construction of Birkhoff coordinates for a function u in H0
0 actually starts out with the definition of the actions

In and the associated angles θn. Those are defined in terms of certain path integrals on the two-sheeted Riemann
surface of infinite genus associated with the periodic spectrum spec(u) of u. No reference to the KdV equation is
required for this construction. Therefore, the In are defined on all of H0

0 , while each θn is defined on the dense open
subset where λ2n �= λ2n−1. For all the details we refer to [21].

Denoting the transformed KdV Hamiltonian by the same symbol we thus obtain a real analytic Hamiltonian

H = H(I1, I2, . . .)

on h1
 . Its equations of motion are the classical ones,

ẋn = Hyn, ẏn = −Hxn, n � 1,

since the Poisson structure on h1
 is the standard one. It is therefore evident, that every solution of the KdV equation

exists for all time, and is indeed almost periodic. More precisely, every solution winds around some underlying
invariant torus

TI =
∏
n�1

SIn, SIn = {
(xn, yn) ∈ R2: x2

n + y2
n = 2In

}
,

which is fixed by the actions of the initial positions. The speed on the n-th circle SIn is determined by the n-th
frequency

ωn = HIn(I1, I2, . . .),

and the entire flow is given by

ψt(x, y) = (xn cosωnt, yn sinωnt)n�1.

Obviously, ψt preserves all weighted norms and thus all weighted spaces hw
 .

To obtain our results about the well-posedness of the KdV equation, we now formulate two extensions of item (ii)
of Theorem 5, to be proven in the next section. First we consider subexponential weights.

Addendum 1 to Theorem 5. For each subexponential weight w, the restriction of Ω to Hw
0 gives rise to an onto,

bi-analytic and bounded diffeomorphism

Ω :Hw
0 → hw

 .

Proof of Theorem 1 and its Supplement. Due to its symplectic nature, Ω maps solution curves t �→ ϕt (u) in
function space into solution curves t �→ ψt(x, y) in sequence space, with (x, y) = Ω(u). Since Ω is also a bounded
diffeomorphism between Hw

0 and hw
 , and ψt preserves hw

 , the diagram

u ∈ Hw
0

ϕt

Ω (x, y) ∈ hw


ψt

ϕt (u) ∈ Hw
0 ψt(x, y) ∈ hw


Ω−1

commutes and proves the theorem.
The statements of the Supplement also follow by looking at the flow in sequence space. For instance, all solution

curves starting in a bounded subset stay uniformly bounded for all time. And the distance of two solution curves grows
at most linearly with time, whence their Lyapunov exponents are zero—see also [22]. �

The preceding reasoning applies in particular to the Sobolev spaces Hm
0 . Thus the well-posedness of KdV in Hm

0
follows directly with Theorem 5, and Addendum 1 is not needed. – Now we consider exponential weights.

Addendum 2 to Theorem 5. Let w be an exponential weight. Then for every bounded subset B of hw
 there exists

0 < ρ � 1 such that Ω−1(B) is a bounded subset of Hwρ
.
0
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Proof of Theorem 2. Let w be an exponential weight, and B a bounded subset of Hw
0 . Then B = Ω(B) is a bounded

subset of hw
 by Propositions 1 and 3 below. As the flow ψt preserves the hw

 -norm, the set

B− =
⋃
t∈R

ψt(B)

is contained in the same centered ball as B . Hence, by the second addendum there exists a 0 < ρ � 1 such that
B− = Ω−1(B−) is contained in Hwρ

0 . We obtain the commutative diagram

B ⊂ Hw
0

ϕt

Ω B ⊂ hw


ψt

B− ⊂ Hwρ

0 B− ⊂ hw


Ω−1

which proves the theorem. �
Proof of Theorem 3. The proofs of Theorem 1 and 2 and their supplements are based on the fact that the map Ω

trivializes the KdV flow in the Birkhoff coordinates. By item (iv) of Theorem 5, however, Ω simultaneously trivializes
any other KdV flow in the KdV hierarchy. The only difference is in the frequencies ωn associated with the circles SIn ,
and in the minimal regularity required for the KdV Hamiltonians to make sense. Hence the preceding proofs apply to
higher KdV equations as well. �
3. Regularity

The proofs of the addenda are based on two observations. First, the asymptotics of the Birkhoff coordinates of a
function u in H0

0 are closely related to the asymptotics of its spectral gaps. Second, these asymptotics are very closely
related to the regularity of u. The former relation is established in [21], and the latter in [12,31]. Here, we will quote
the relevant results and apply them to the map Ω .

Since the periodic spectrum of u plays a central role, we will often refer to u as a potential. The KdV equation, on
the other hand, is irrelevant here and not mentioned at all. We also write L2

0 instead of H0
0 .

In the following we also have to mention potentials in a small complex neighbourhood of L2
0. We forego a detailed

extension of the concept of eigenvalues and gaps to this situation and instead refer for example to [21].

Proposition 1. (See [21, p. 67].) There exists a complex neighbourhood W of L2
0 such that each quotient In/γ

2
n

extends analytically to W and satisfies

8πn
In

γ 2
n

= 1 + O

(
logn

n

)
, n � 1,

locally uniformly on W , as well as uniformly on bounded subsets of L2
0.

This proposition is proven in [21] except for the very last statement. But that follows from the explicit representation
of In/γ

2
n in [21] and the observation that on bounded subsets of L2

0 the spectral gaps are uniformly bounded away
from each other.

So we in particular have

n
(
x2
n + y2

n

) ∼ nIn ∼ γ 2
n

locally uniformly on W . But while this gives us control of x2
n + y2

n in terms of γ 2
n on the real space L2

0, where all
quantities are real, it does not so on the complex neighbourhood W , which we need to consider as well to establish
analyticity properties. Indeed, for a non-real potential u, a gap length γn and thus an action In may vanish, while the
Birkhoff coordinates xn, yn do not.

Additional data are necessary in this case. These are provided by the difference of the Dirichlet eigenvalues of Lu

on [0,1] and the spectral midpoints of u,

δn(u) = μn(u) − λ2n−1(u) + λ2n(u)
, n � 1.
2
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They are real analytic functions of u on some complex neighbourhood of L2
0. The quantities

Δn(u) = ∣∣γn(u)
∣∣ + ∣∣δn(u)

∣∣
then take the role of the gap length for complex potentials—see [13,20]. For real potentials, one has 0 � δn � γn and
hence γn ∼ Δn, since μn ∈ [λ2n−1, λ2n].

Proposition 2. (See [21, p. 85].) There exists a complex neighbourhood W of L2
0 such that

n
(∣∣x2

n(u)
∣∣ + ∣∣y2

n(u)
∣∣) = O

(
Δ2

n(u)
)
, n � 1,

locally uniformly on W and uniformly on bounded subsets of L2
0.

The asymptotic behavior of the Δn(u) is intimately connected with the regularity of the potential u.

Proposition 3. (See [20,31].) Let w be a submultiplicative weight. If u ∈ Hw
0,C, then

∑
n�1

w2
nΔ

2
n(u) < ∞.

Moreover, the sum is locally uniformly bounded on Hw
0,C

and uniformly bounded on bounded subsets of Hw
0 .

We now combine the last two propositions to show that Ω maps Hw
0 into hw

 for all weights under consideration.

Corollary 4. Let w be any submultiplicative weight. Then Ω is a bounded map from Hw
0 into hw

 .

Proof. By Propositions 2 and 3 we have∑
n�1

nw2
n

(∣∣x2
n(u)

∣∣ + ∣∣y2
n(u)

∣∣) � c
∑
n�1

w2
nΔ

2
n(u) < ∞

uniformly in some complex neighbourhood in Hw
0,C around any potential u ∈ Hw

0 , and uniformly on bounded subsets

of L2
0. Hence, Ω maps this neighbourhood into hw

 and is bounded. Moreover, as each coordinate function is real
analytic and the map as a whole is locally uniformly bounded, Ω is also real analytic as a map from Hw

0 into hw
 —

see [21, Theorem A.5] or [32, Theorem A.3].

The second step is to show that the map of Corollary 4 is also onto. This is a consequence of Proposition 1 with a
converse of Proposition 3, which, however, only applies to subexponential weights.

Proposition 5. (See [12,31].) Let w be a subexponential weight. If u ∈ L2
0 is such that

∑
n�1

w2
n

∣∣γ 2
n (u)

∣∣ < ∞,

then u ∈ Hw
0 .

Corollary 6. Let w be any subexponential weight. Then Ω maps the space Hw
0 onto hw

 .

Proof. Let (x, y) ∈ hw
 . As Ω maps L2

0 diffeomorphically onto the superset h0
 of hw

 , there is a u ∈ L2
0

with

Ω(u) = (x, y).

By Proposition 1,∣∣γ 2
n (u)

∣∣ � cn
∣∣In(u)

∣∣ � cn
(∣∣x2

n(u)
∣∣ + ∣∣y2

n(u)
∣∣), n � 1,
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locally uniformly on a complex neighbourhood of L2
0. Since (x, y) ∈ hw

 ,
∑
n�1

w2
n

∣∣γ 2
n (u)

∣∣ � c
∑
n�1

nw2
n

(∣∣x2
n(u)

∣∣ + ∣∣y2
n(u)

∣∣) < ∞.

Using Proposition 5 it follows that u indeed belongs to Hw
0 . Thus, Ω is onto. �

Corollaries 4 and 6 together prove that Ω is a diffeomorphism between Hw
0 and hw

 whenever w is a subexponential
weight. Thus, Addendum 1 is proven.

Proposition 5 does not apply to exponential weights. This is exemplified by finite gap potentials such as the Weier-
strass ℘-function, which are not entire functions. In this case, fixing any r > 0, we have

γ (u) ∈ hr,a


for all a > 0, but not u ∈ H r,a
0 for all a > 0, as u has poles. Gasymov [15] even observed that any complex potential

of the form

u =
∑
n�1

une2πinx =
∑
n�1

unz
n

∣∣∣∣
z=e2πix

is a 0-gap-potential. So in the complex case, the gap sequence need not contain any information about the regularity of
the potential. – In the real case, however, we have the following classical result by Trubowitz. The very last statement
is proven in [31].

Proposition 7. (See [36].) Let w be an exponential weight. If u ∈ L2
0 is such that∑

n�1

w2
n

∣∣γ 2
n (u)

∣∣ < ∞,

then u is real analytic. More precisely, u ∈ Hwρ

0 for some 0 < ρ � 1, which depends only on the L2-norm of u and a
bound on the above sum.

Corollary 8. If w is an exponential weight, then for any bounded subset B of hw
 there exists 0 < ρ � 1 so that

Ω−1(B) is a bounded subset of Hwρ

0 .

Proof. Let A = Ω−1(B). As B is bounded in h0
 as well, A is bounded in L2

0. By Proposition 1,∑
n�1

w2
n

∣∣γ 2
n (u)

∣∣ � c
∑
n�1

nw2
n

(∣∣x2
n(u)

∣∣ + ∣∣y2
n(u)

∣∣)

uniformly on A. The latter sum is uniformly bounded by

sup
(x,y)∈B

∥∥(x, y)
∥∥2

hw


< ∞,

since B is assumed to be bounded in hw
 . It follows with Proposition 7 that there exists 0 < ρ � 1 so that A ⊂ Hwρ

0 .
Moreover, A is bounded in this space again by Proposition 3. �
4. Perturbations of KdV

Consider the perturbed KdV equation on some standard Sobolev space Hm
0 , m � 1, with

∂u

∂t
= d

dx

(
∂Hc

∂u
+ ε

∂K

∂u

)
(5)

for some real c, where Hc is given by (3). If K is real analytic in u with a gradient ∂K/∂u in Hm
0 , then KAM theory

for KdV asserts the persistence of quasi-periodic solutions for sufficiently small ε �= 0.
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More precisely, given any c ∈ R, any finite index set A ⊂ N, and a compact subset Γ ⊂ RA+ of positive Lebesgue
measure, the majority of quasi-periodic solutions of (5) in Hw

0 within

TΓ =
⋃
I∈Γ

Ω−1(TI ) ⊂ Hm
0 , TI =

∏
n∈A

SIn × {0} ⊂ hm
 ,

persists for sufficiently small ε �= 0, being only slightly deformed. Consequently, the corresponding initial conditions
lead to quasi-periodic solutions that stay in Hm

0 for all time. This result may now be extended to weighted Sobolev
spaces as follows.

Theorem 4*. Let A ⊂ N be a finite index set and Γ ⊂ RA+ a compact subset of positive Lebesgue measure. Let w

be a subexponential weight such that Hw
0 ⊂ H1

0 , and let c ∈ R. Assume that the Hamiltonian K is real analytic in a
complex neighbourhood U of TΓ in Hw

0,C
and satisfies the regularity condition

∂K

∂u
:U → Hw

0,C, sup
u∈U

∥∥∥∥∂K

∂u

∥∥∥∥
w

� 1.

Then there exists ε0 > 0 depending only on A, w, c and the size of U such that for |ε| < ε0 the following holds. There
exist

(i) a nonempty Cantor set Γε ⊂ Γ with meas(Γ − Γε) → 0 as ε → 0,
(ii) a Lipschitz family of real analytic torus embeddings

Ξ : TA × Γε → U ∩ Hw
0 ,

(iii) a Lipschitz map ω :Γε → RA,

such that for each (θ, I ) ∈ TA × Γε , the curve u(t) = Ξ(θ + ω(I)t, I ) is a quasi-periodic solution of (5) winding
around the invariant torus Ξ(TA × {I }). Moreover, each such torus is linearly stable.

A similar statement holds for exponential weights w, the only difference being that here,

Ξ : TA × Γε → U ∩ Hwρ

0 ,

with 0 < ρ � 1 as in Proposition 7.
The proof of Theorem 4 is the same as in [21]. Essentially, one only has to replace the explicit weights ean by the

more general weights wn.
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