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Abstract

In this article we consider the Matukuma type equation

�u + K(r)up = 0 in R
N (0.1)

for positive radially symmetric solutions. We assume that N > 2, p > 1 and K(r) � 0, for all r � 0. When K satisfies some
appropriate monotonicity assumption, the set of positive solutions of (0.1) is well understood. In this work we propose a constructive
approach to start the analysis of the structure of the set of positive solutions when this monotonicity assumption fails. We construct
some functions K so that the equation exhibits a very complex structure. This function K depends on a set of four parameters: p,
N and the limits at zero and infinity of certain quotient describing the growth of K .

Keywords: Radial solutions; Matukuma equation; Critical and subcritical exponent

1. Introduction

We are concerned with the structure of positive radial solutions of the equation

�u + K(r)up = 0 in R
N, (1.1)

where N > 2, p > 1, and K(r) � 0 for all r � 0, which was proposed by Matukuma [15] as a model Celestial
Mechanics for the dynamics of a cluster of stars, where u is the gravitational potential and K(r)up is the density
of stars, see also Li [10]. This equation has been extensively studied in last decades, and through the work of many
authors some simple solution structures have been unraveled under certain monotonicity conditions on K . In this
article, we propose a novel constructive approach to show that, when these conditions are not satisfied, the set of
radial solutions of (1.1) can be extremely complex. This provides the first rigorous establishment of the complexity
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of the positive radial solution set of (1.1), and opens the door to the further investigation of this already well-studied
equation.

In the well studied case K ≡ 1, when (1.1) is known as Emden–Fowler equation, the solution set is characterized
by the Sobolev critical number 2∗ = (N + 2)/(N − 2):

(C) Subcritical case: If 1 < p < 2∗, then each positive radial solution u(r) of (1.1) is a crossing solution that vanishes
at some r ∈ (0,∞).

(S) Supercritical case: If p > 2∗, then each positive radial solution u(r) is a slowly decaying solution that remains
positive in [0,∞) and limr→∞ rN−2u(r) = ∞.

(F) Critical case: If p = 2∗, then each positive radial solution u(r) is a fast decaying solution that remains positive in
[0,∞) and limr→∞ rN−2u(r) = c, for certain c > 0.

When K is given by a pure power function K = r�, the conclusions of (C), (S) and (F) remain valid, provided that
the number 2∗ is shifted to the new “critical” value

2∗
� = N + 2 + 2�

N − 2
,

as proved by Ni and Nussbaum [17]. Note that for K = r�, the “growth rate function” of K defined by

P(r) = rK ′(r)
K(r)

equals the constant exponent �. If the growth rate function P(r) is not a constant, then the solution structure may
drastically change. It is expected that the degree of change of the structure must be related to the deviation of P from
a constant. This correlation is however very delicate and has only been understood under some strong conditions such
as

(H) P(r) is non-increasing and non-constant over (0,∞).

This condition is satisfied in particular by

K(r) = 1

1 + r2
,

first proposed by Matukuma [15] in his original paper. Assuming (H) and writing

σ = lim
r→0

P(r) and � = lim
r→∞P(r),

then the Sobolev critical number is shifted and then teared apart to an interval (p∞,p0) where

p0 = N + 2 + 2σ

N − 2
and p∞ = max

{
1,

N + 2 + 2�

N − 2

}
.

As demonstrated by Yanagida and Yotsutani [23], under the additional condition p0 > 1, the half line (1,∞) is divided
into three sub-intervals

(1,∞) = (1,p∞] ∪ (p∞,p0) ∪ [p0,∞). (1.2)

If p ∈ (1,p∞], then the conclusion of (C) applies. If p ∈ [p0,∞), then the conclusion of (S) applies. However, when
p ∈ (p∞,p0), the conclusion of (F) is no longer valid, but an emergent structure occurs. Denote by u(r;γ ) the unique
solution to the initial value problem

u′′ + N − 1

r
u′ + K(r)up = 0, (1.3)

u(0) = γ > 0, u′(0) = 0, (1.4)

It was proved in [23] that, when condition (H) holds and p ∈ (p∞,p0),
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(M) there exists a unique number γ1(p) ∈ (0,∞) such that u(r;γ ) is a slowly decaying solution for γ ∈ (0, γ1(p)),
u(r;γ ) is a fast decaying solution for γ = γ1(p), and u(r;γ ) is a crossing solution for γ ∈ (γ1(p),∞).

In a more recent work, studying of weighted p-Laplacian García-Huidobro, Manásevich and Yarur [8] formulated
the growth rate of K by means of a different function

m(r) = 2rNK(r)

(N − 2)
∫ r

0 sN−1K(s)ds
.

Assuming

(H̃) m(r) is non-increasing and non-constant over (0,∞),

the authors defined

ρ0 = lim
r→0

m(r) and ρ∞ = lim
r→∞m(r) (1.5)

and the critical numbers p0 = ρ0 − 1 and p∞ = max{1, ρ∞ − 1}, then it holds again that p0 > p∞ and it was
proved in [8] that the structure (M) appears in the interval (p0,p∞), while (C) and (S) holds in (1,p0] and [p∞,∞),
respectively. Asymptotically, the function m(r) relates to P(r) by

ρ0 = 2

N − 2
(N + σ) and ρ∞ = 2

N − 2
(N + �).

In [8] it was shown that the two conditions (H̃) and (H) are not mutually inclusive, and an example was given for
which condition (H̃) holds while (H) is not.

As a motivation for our current study and the delicacy of the main results, we present a formal discussion on how
the hypothesis (H) yields conclusion (M). It is known that when the equation has a subcritical growth, that is

1 < p <
N + 2 + 2P(r)

N − 2
, ∀r > 0, (1.6)

then all solutions of (1.3)–(1.4) are crossing solutions. Denoting by R(γ ) the first r > 0 where u(r, γ ) vanishes, it
results that R(γ ) is a strictly decreasing homeomorphism between (0,∞) and (0,∞). Now, if p ∈ (p∞,p0), then
there is a constant rs > 0 such that (1.6) holds for 0 < r < rs . If γ is chosen sufficiently large, then u(r, γ ) must vanish
somewhere within (0, rs) and thus u is a crossing solution. On the other hand, there is another constant rS � rs such
that

p >
N + 2 + 2P(r)

N − 2
∀r > rS. (1.7)

Now, if γ is sufficiently small, then u(r, γ ) will not vanish in (0, rS). For r > rS , because the equation has a supercrit-
ical growth, u must stay positive for all r > 0. Using an asymptotic analysis it can be shown that u is indeed a slowly
decaying solution.

The existence of a fast decaying solutions can be done by a simple topological argument, however the proof of
the uniqueness of the fast decaying solution is highly non-trivial. For the Matukuma equation, the uniqueness was
first proved by Yanagida in [20], marking a major breakthrough in the study of the Matukuma type equations. Many
authors have contributed to the understanding of this equation and the various properties of its solutions, we mention
the work by García-Huidobro, Kufner, Manásevich and Yarur [7], Kawano, Yanagida and Yotsutani [9], Li and Ni
[11–13], Ni and Yotsutani [18], and Yanagida and Yotsutani [21,22].

If p0 < p∞, then condition (H) cannot hold. In this case, it does not seem possible that the solution structure can be
characterized as simple as in (M). If p ∈ (p0,p∞), then there is a small rs > 0 such that (1.7) holds for all 0 < r < rs .
Therefore, each solution u(r, γ ) of (1.3)–(1.4) stays positive for all r ∈ (0, rs) and γ > 0. It is then a forbidden task to
determine whether or not u will vanish in (rs,∞), no matter what type of behavior the growth rate function P(r) has.

The situation occurring here is of reminiscent the problem

�u + up + uq = 0, p < 2∗ < q (1.8)
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first considered by Lin and Ni [14] and further investigated by Bamón, del Pino and Flores [1], Flores [6] and recently
Campos [2]. In this problem the behavior of the non-linearity is also super-critical for small r > 0 and sub-critical for
large r and the analogous of some of the solutions we obtain for (1.1) has been obtained for (1.8). However, some of
our results do not have known analogous in (1.8).

In this article we initiate the study of the structure of the set of positive solutions of Eq. (1.1) when either (H) or
(H̃) is not satisfied. Our purpose is to construct a family of functions K depending on various parameters

K(r) = K(ρ0, ρ∞,p,N; r),
such that the limits (1.5) exist but, ρ0 < ρ∞ or equivalently p0 < p∞ and so K does not satisfy hypothesis (H) or (H̃).
Depending on the values of the parameters we will find that the solution set of (1.3)–(1.4) with that specific K exhibits
a very complex structure in deep contrast with the case when (H) or (H̃) holds. At this point we would like to mention
the discussion given in [23], where the case of some functions K not satisfying (H) is considered through numerical
calculations. Further understanding of the problem was obtained in the more recent paper [16], potentially showing
the possibility of complex structure when the monotonicity condition fails.

Before stating our main theorem we specialize the meaning of slowly decaying solutions and we also specify the
case of singular solutions.

(SS) u(r;γ ) is a slowly decaying solution, if u(r;γ ) > 0 in [0,∞) and

lim
r→∞ rα∞u(r;γ ) = c,

(SF) u(r;γ ) is a singular-fast solution of (1.3) if it is positive, it satisfies (1.3) for all r > 0 and

lim
r→0

rα0u(r) = c and lim
r→∞ rN−2u(r) = c′.

Here c and c′ are positive constants and

αi = 2

p − 1

(N − 2)(ρi − 2)

4
, i = 0,∞.

We will see that under our assumption that we give later we will have that α∞ < N −2, justifying the name in (SS),
see Remark 3.1.

In the description of the complexity the set of solutions of (1.3)–(1.4) we use a function constructed out of K and
the solution u under analysis. We define

ϕ(u, r) = αu(r) +
∫ r

0

√
K(s) ds√
K(r)

u′(r), (1.9)

where α = 2/(p − 1). Given a positive solution u to Eqs. (1.3)–(1.4), we think the number of zeroes of ϕ as a measure
of its complexity, however the complete meaning of this function ϕ will be very clear later when we adequately
transform our problem into the phase plane.

Our first theorem is about the simultaneous existence of a singular-fast solution and a slowly decaying solution,
giving a simplified version of our main result.

Theorem 1.1. For every (k, �) ∈ N × N there exists a continuum C(k, �) ⊂ (2,∞)2 × (1,∞) so that for every
(ρ0, ρ∞,p) ∈ C(k, �) and

2(ρ0 − 1)

ρ0 − 2
> N > 2, (1.10)

there exists K = K(ρ0, ρ∞,p,N) satisfying (1.5) and for which Eqs. (1.3)–(1.4) possesses two solutions u1 and u2
such that

1. u1 is a slowly decaying solution with ϕ(u1, r) changing sign 2(� − 1) times for 0 < r < 1 and ϕ(u1, r) ≡ 0 for
1 < r .

2. u2 is a singular-fast solution with ϕ(u2, r) changing sign 2k − 1 times for r > 1 and ϕ(u2, r) ≡ 0 for 0 < r � 1.
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Actually, the functions K that we explicitly construct not only allows for the two solutions given above but for a
very rich structure of positive solutions. This is the main result of this article.

Theorem 1.2. For the family of functions K found in Theorem 1.1 the structure of the set of positive solutions of
Eqs. (1.3)–(1.4) is determined in terms of the initial conditions as follows:

1. There is an increasing sequence {γ 1
n } and a decreasing sequence {γ 2

n }, both converging to γ̄ such that the solutions
u(r;γ i

n) are fast decaying for every n ∈ N and i = 1,2, and u(r;γ i
n) converges to u(r; γ̄ ) = u1, uniformly in R+

as n → ∞. Here u1 denotes the slowly decaying solution given in Theorem 1.1.
2. There is an unbounded increasing sequence {γ ∗

n } such that u(r;γ ∗
n ) is a fast decaying solution, for all n ∈ N, and

u(r;γ ∗
n ) converges to u2, uniformly on intervals of the form [r0,∞) with r0 > 0. The function u2 is the singular

fast solution u2 given in Theorem 1.1.
3. For all other initial conditions γ > 0, u(r;γ ) is a crossing solution.

The situation described in Theorem 1.2 does not have an analogous in case of Eq. (1.8). In particular, we may
precisely ask for a combination of parameters p,q and N so that the three possibilities given above occur. In the same
line we may ask about results of this type for the equation

�u + f (u) = 0, in R
N, (1.11)

with f given by f (u) = up if 0 � u < 1 and f (u) = uq if u � 1, where 1 < p < (N + 2)/(N − 2) < q . When the
role of p and q are reversed the structure of positive solutions was completely described by Erbe and Tang in [4], see
also [19] and [3].

As we see from the explicit formula of the function K in Section 2, see Remark 2.3 and also (2.8), we can control
the asymptotic behavior of K , depending on the value of N . For example if we consider N = 2ρ0/(ρ0 − 2) then K(0)

is finite and limr→∞ K(r) = ∞.
The proof of our theorems relies on a change of variables that transforms Matukuma equation into another equation

with K = 1, but a variable dimension, see (2.1). By particularizing the variable dimension to a step function we obtain
a very simple problem with three parameters: two values for the step function, N0 and N∞, and p. For this simplified
problem we have to find two solutions that give rise to functions u1 and u2 in Theorem 1.1, and then we find the
various initial conditions described in Theorem 1.2.

Even though this step dimension problem looks very simple, there are still various difficulties to control the pa-
rameters involved in order to get the desired result. This existence part is solved by using degree arguments in a
three-dimensional set. The computation of the degree requires various estimations, some of them non-trivial in our
opinion.

Remark 1.1. For the function K we find that the growth rate function m has a simple behavior: it is increasing near
the origin and decreasing at infinity, having exactly one maximum point. It would be interesting to find K such that
the function m or P is increasing for all r > 0 and the complex structure described in our theorems persists.

Remark 1.2. C(�, k) is a continuum in R
3 that we suspect is a curve, but at this point we are not able to prove it. C(�, k)

is the intersection of two subset of R
3, that we call S� and S k corresponding to the solution set of single equations.

Even though we cannot prove it, we think that these sets are two-dimensional surfaces in R
3. See Proposition 6.1 and

discussion in Section 6.

Remark 1.3. The situation described in Theorems 1.1 and 1.2 corresponds to points in the space (ρ0, ρ∞,p) that
allow for the most complex behavior of solutions in terms of the initial conditions. There are several other simpler
cases, but also very interesting, that are discussed at the end of Section 5 and in Section 6.

Remark 1.4. In the original Matukuma model for Celestial Mechanics, see [15] and [10], the function u represents the
gravitational potential and

∫
R3 K(r)updx is the total mass. It is interesting to observe that all fast decaying solutions

constructed in Theorem 1.2 give finite total mass, as can be easily proved in view of Remark 2.3 and constraint (3.2).
In this sense all these solutions are physically meaningful.
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This paper is organized as follows. In Section 2 we transform our problem into the step dimension problem. We
give precise formulas for the change of variables and the function K in terms of the parameters of the step dimension
problem. We end the section recalling critical exponents and the behavior of the solutions for the problem with constant
dimension. In Section 3 we setup the equations that define the set C(k, �) and we discuss the constraint we impose in
the three-dimensional space. In Section 4 we use degree theory in order to solve the equations defining C(k, �) and
in Section 5 we complete the proof of Theorems 1.1 and 1.2 and we mention some open problems suggested by our
results. Finally, in Section 6 we discuss the construction of other functions K that allows the existence of other type
of solutions, namely positive solutions that simultaneously are singular at the origin and slowly decaying at infinity.

2. The equation and change of variables

In this section we define a change of variables that transforms the Matukuma equation into an equation with
‘variable dimension’. This change of variable is defined in terms of a differential equation, that we solve in a particular
case of interest, that is for a dimension function which is constant, except at a point where it jumps. Given this
dimension function we construct the function K we are interested in.

In general terms, let us assume that n(τ) is a given positive function and that v(τ) is a solution of the variable
dimension equation

v′′(τ ) + n(τ) − 1

τ
v′(τ ) + vp(τ) = 0. (2.1)

If g : [0,∞) → [0,∞) is a diffeomorphism and u is defined as u(r) = v(g(r)) then u satisfies

u′′(r) +
[
−g′′(r)

g′(r)
+ n(g(r)) − 1

g(r)
g′(r)

]
u′(r) + (

g′(r)
)2

up(r) = 0.

Thus, if the function g satisfies

−g′′(r)
g′(r)

+ n(g(r)) − 1

g(r)
g′(r) = N − 1

r
, (2.2)

then u is a solution to the differential equation of Matukuma type

u′′(r) + N − 1

r
u′(r) + K(r)up(r) = 0, (2.3)

where K is given by

K(r) = (
g′(r)

)2 and g(r) =
r∫

0

√
K(s) ds. (2.4)

In what follows we exhibit a solution to Eq. (2.2) when the dimension function is given by

n(τ) =
{

N0 if τ � 1,

N∞ if τ > 1,
(2.5)

for N0 > N∞ > 2. We prove the following lemma

Lemma 2.1. Given N > 2, there is a solution g of (2.2) with n(τ) as in (2.5), which is a diffeomorphism from [0,∞)

onto [0,∞). Furthermore, the function K given by (2.4) satisfies (1.5) with

ρ0 = 2N0

N0 − 2
and ρ∞ = 2N∞

N∞ − 2
.

Proof. Assuming that g(1) = 1 and for g′(1) = c to be chosen, we see that if g satisfies (2.2) then

g′(r)
N0−1

rN−1 = c, r ∈ (0,1] (2.6)

g(r)
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and

g′(r)
g(r)N∞−1

rN−1 = c, r ∈ [1,∞). (2.7)

Integrating (2.7) we find that

1

g(r)N∞−2
= c

N∞ − 2

N − 2

(
1

rN−2
− 1

)
+ 1.

In order that g is onto [0,∞) we have to impose c = (N − 2)/(N∞ − 2) and then the function g is determined by

1

g(r)
=

{
(

N0−2
N∞−2 ( 1

rN−2 − 1) + 1)1/(N0−2) if 0 < r � 1,
1

r(N−2)/(N∞−2) if r > 1,

and we define g(0) = 0. This function g satisfies Eq. (2.2) and it is a diffeomorphism from [0,∞) onto itself.
We can obtain an explicit expression for K(r) and for the function m(r) defined in the introduction. From (2.4),

(2.6) and (2.7) we have

rN−1K(r) =
⎧⎨
⎩ c d

dr
gN0 (r)

N0
if 0 � r < 1,

c d
dr

gN∞ (r)
N∞ if r > 1,

(2.8)

and then we obtain the function m(r) in terms of the parameters N0, N∞ and N : for 0 � r < 1 we have

m(r) = 2N0

N0 − 2 + (N∞ − N0)rN−2

and for r > 1 we have

m(r) = 2N∞
N∞ − 2

N0r
(N−2)N∞/(N∞−2)

N∞ − N0 + N0r(N−2)N∞/(N∞−2)
.

We observe that the function m satisfies (1.5), with ρ0 and ρ∞ as defined in the statement of the lemma. �
Remark 2.1. We observe that the function u(r) = v(g(r)) is actually of class C2, even though v and g are only C1.
At points away from the jump we have

u′′(r) = (
g′(r)

)2
v′′(g(r)

) + v′(g(r)
)
g′′(r)

and then, using the equation satisfied by v and the one satisfied by g we find that

u′′(r) = −(
g′(r)

)2
vp

(
g(r)

) − N − 1

r
v′(g(r)

)
g′(r).

Since the right hand side is continuous for all r , we obtain that u is of class C2.

Remark 2.2. Considering the asymptotic behavior of g at the origin we can easily see that the function u(r) = v(g(r))

satisfies u′(0) = 0 whenever N > (N0 + 2)/2, which is an hypothesis in Theorems 1.1 and 1.2.

Remark 2.3. Obviously we may write K explicitly in terms of the original parameters ρ0, ρ∞ and N . We obtain

K(r) = C∞r−ρ∞+(ρ∞−2)N/2 if r � 1 and (2.9)

K(r) = C∞r−ρ0+(ρ0−2)N/2
{

ρ∞ − 2

ρ0 − 2
+ rN−2

(
ρ∞ − ρ0

ρ0 − 2

)}−(ρ0+2)/2

(2.10)

if r � 1. Here the constant C∞ is given by C∞ = ((N − 2)(ρ∞ − 2))2/16.

From here we can make explicit the asymptotic behavior of K for different values of the parameters. There are two
interesting cases: If N = N0 we have K(0) finite and limr→∞ K(r) = ∞, while if N = N∞ we have limr→∞ K(r)

exists and limr→0 K(r) = ∞.
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We end this section recalling some basic facts about the equation with constant dimension

v′′(τ ) + ν − 1

τ
v′(τ ) + vp(τ) = 0, (2.11)

which takes place for 0 < r < 1 and r > 1 for the step-dimension problem. In studying this equation it is very useful
to make the Emden–Fowler transformation x(t) = ταv(τ), with τ = et and α = 2/(p −1). We obtain the autonomous
system

x′′ + ax′ − bx + xp = 0, (2.12)

where a = ν − 2 − 2α and b = α(ν − 2 − α). The basic critical exponents for this equation are in increasing order:
ν/(ν − 2), where b changes sign and consequently for p > ν/(ν − 2) a critical point P = (bα/2,0) appears. This
critical point is a repeller until p reaches the exponent (ν + 2)/(ν − 2), after which it becomes an attractor. In the
interval (ν/(ν − 2), (ν + 2)/(ν − 2)) we find another critical exponent, namely

ν + 2
√

ν − 1

ν − 4 + 2
√

ν − 1
,

that determines the value of p so that to the right the critical point P starts being a spiral. If 2 < ν � 10 this property
is kept for all p, while for ν > 10 the point P ceases of being a spiral for p larger than

ν − 2
√

ν − 1

ν − 4 − 2
√

ν − 1
.

When we apply the Emden–Fowler transformation to step-dimension problem (2.1), with n(r) as in (2.5), then we
obtain system

x′′ + ãx′ − b̃x + xp = 0, (2.13)

which is non-autonomous and behaves like (2.12) with ν = N0 if t < 0 and with ν = N∞ if t > 0. Here ã(t) =
n(τ) − 2 − 2α, b̃(t) = α(n(τ) − 2 − α) and τ = et .

In the forthcoming sections, we refer to system (2.12) with ν = N0 as S0, and with ν = N∞ as S∞ and their
coefficients as a∞ = N∞ − 2 − 2α, b∞ = α(N∞ − 2 − α), a0 = N0 − 2 − 2α and b0 = α(N0 − 2 − α).

The following lemma will be useful later

Lemma 2.2. Assume N0 �= N∞ and that x0 and x∞ are orbits of the systems S0 and S∞ respectively.

1) If these orbits cross at a point (x̄, ȳ) then the crossing is transversal or ȳ = 0 or ȳ = αx̄.
2) If x′

0(t0) = x′
0(t1) = 0, x′

0(t) �= 0 and x0(t) > 0 for t ∈ (t0, t1) then the orbit x∞ may cross x0 at most once in the
interval (t0, t1). Similar statement can be made for x∞.

Proof. 1) Assuming the orbits x0 and x∞ cross then, after time shift if necessary we have (x0(t̄ ), x′
0(t̄ )) =

(x∞(t̄ ), x′∞(t̄ )). If the crossing occurs with x′
0(t̄ ) �= 0 and is not transversal, we get x′′

0 (t̄ ) = x′′∞(t̄ ). Then we use
the equation for x0 and x∞ to obtain −x′

0(t̄ ) + αx0(t̄ ) = 0.
2) First we see that the orbit x0 does not cross y = αx for t ∈ (t0, t1). If this is the case it should cross it twice, but

it is easy to see that the crossing is always from left to right (ẍ > 0). If there are two or more crossing points with
t ∈ (t0, t1) then a continuity argument leads us to a tangent crossing contradicting 1. �
3. Setting up the equations for the existence of double connections for the Step-Dimension problem

In this section we define the domain of parameters and the equations that determine various types of connections
for the step-dimension problem in the phase plane. We want to find combinations between the parameters (p,N0,N∞)

so that system (2.13) has connections between the origin O = (0,0) and the critical points of the systems S0 and S∞.
It will be convenient to define β = 2 + 2α and work with β instead of p. Our first assumptions on the point

(β,N0,N∞) are

2 + ε1 � N∞ � β � N0, (3.1)
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where ε1 > 0 is a small number that will be determined later, see Lemma 4.5. Inequalities (3.1) guarantee that p is
supercritical for (2.13) when t < 0 and subcritical for t > 0. We further assume

N∞ + 2(
√

N∞ − 1 − 1) � β and (3.2)

N0 − 2(
√

N0 − 1 − 1) � β if N0 > 10. (3.3)

We see that these inequalities imply that systems S0 and S∞ have critical points P0 = (b
α/2
0 ,0) and P∞ = (b

α/2∞ ,0),

respectively, and both are spiral or center. In what follows we write P0 = b
α/2
0 and P∞ = b

α/2∞ .

Remark 3.1. We observe that after (3.2) we have b∞ > 0 and then α∞, defined in the introduction, satisfies
α∞ < N − 2.

Let us consider the orbit x0(t) of system S0 emanating from the origin. Under our assumptions on (β,N0) and
β < N0, the orbit x0 spirals towards P0. Given k ∈ N we denote by q0

k = q0
k (β,N0), the value at which the orbit x0

crosses the x-axis, in the interval (0,P0), for the k-th time. Thus

q0
1 < q0

2 < · · · < q0
k and lim

k→∞q0
k = P0.

On the other hand we consider the orbit x∞ entering towards the origin, for system S∞. Under our assumptions on
(β,N∞) and β > N∞ the orbit x∞ spirals back towards P∞. Given � ∈ N we denote by q∞

� = q∞
� (β,N∞), the value

at which the orbit x∞ crosses the x-axis, in the interval (P∞,∞), for the �-th time. We observe that

q∞
1 > q∞

2 > · · · > q∞
� and lim

�→∞q∞
� = P∞.

In order to get connections for system (2.13) from O to P∞ and simultaneously, from P∞ to O, we set up the following
equations

P∞ − q0
k = 0, P0 − q∞

� = 0,

for given (k, �) ∈ N
2. Next we introduce another assumption on (β,N0,N∞) which is very convenient in our anal-

ysis. If we consider system S∞ with the critical exponent p = (N∞ + 2)/(N∞ − 2) then the largest x-value of the
homoclinic orbit is

X∞ = (
(p + 1)b∞/2

)1/(p−1)
. (3.4)

We would like that for (β,N0,N∞) the inequality P0 < X∞ holds. We actually assume that for some small constant
ε2 > 0 to be determined later, we have

N0 − 1 − β

β − 2
(N∞ − 2) � ε2, (3.5)

which becomes P0 � X∞ when ε2 = 0. When β = N∞ we define q∞
� = X∞ for all � ∈ N, and we proceed analogously

for system S0.
Finally, we consider that (N0,N∞) satisfies

ε3 + 2 � N0 and N∞ � M, (3.6)

where ε3 > 0 is a small constant and M > 0 is a large constant to be determined later.
Now we set up the problem in terms of finding the zeroes of a function in an appropriate set. We define Ω as the

subset of R
3 given by

Ω = {
(β,N0,N∞)/(3.1)–(3.6) holds

}
.

In Ω we define the function Fk,� : Ω → R
2 in the following way. Given (β,N0,N∞) ∈ Ω then

Fk
1 (β,N0,N∞) = P∞ − q0

k , (3.7)

F�
2 (β,N0,N∞) = P0 − q∞

� . (3.8)
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Then the problem we want to study can be viewed as solving the equation

Fk,�(β,N0,N∞) = (0,0), (β,N0,N∞) ∈ Ω. (3.9)

Before continuing with the study of Eq. (3.9) we would like to describe the set Ω in a more efficient way, eliminating
redundant constraints. Then we also describe the sets using faces and a simple representation.

Lemma 3.1. Given ε1 > 0 there is ε2 > 0 such that constraints (3.2) and (3.3) are redundant, that is

Ω = {
(β,N0,N∞)/(3.1), (3.5) and (3.6) holds

}
.

Proof. First we see that (3.2) is redundant. Fixing N∞ we consider the function

β̂(N0) = 2(N∞ − 2)

N0 − N∞ + 1 − ε2
+ 2,

which represents equality in (3.5). We observe that for N0 > N∞ + 2(
√

N∞ − 1 − 1) the inequality

β̂
(
N∞ + 2(

√
N∞ − 1 − 1)

)
< N∞ + 2(

√
N∞ − 1 − 1), (3.10)

implies (3.2) is satisfied, since β̂ is decreasing. After some computation we see that (3.10) is equivalent to

−N∞(1 − ε2) − 4(1 + ε2) < 2(N∞ − 5 − ε2)
√

N∞ − 1.

If ε2 = 0 then this inequality is true for N∞ > 2, reaching equality at N∞ = 2. Thus, given ε1 we may choose ε2 so
that this inequality remains true. To complete the argument, we see that if 2 < N0 � N∞ + 2(

√
N∞ − 1 − 1) then

clearly (3.2) also holds, because of (3.1).
Next we see that (3.3) is redundant. We observe that this constraint is considered only when N0 > 10. According

to constraint (3.1) and (3.5), given N∞ we must have N0 ∈ (N∞,N∞ + 1 + ε2), consequently inequality (3.3) plays
a role only for N∞ > 9 − ε2. For this range of N∞ we then easily see that

N0 − 2(
√

N0 − 1 − 1) < N∞ if N0 ∈ (N∞,N∞ + 1 + ε2),

completing the proof, since by (3.1) N∞ � β holds. �
We still would like to describe the set Ω in a more explicit way. According to the lemma just proved, this set

is actually defined by 6 constraints, each of them giving rise to a ‘face’. It is convenient to think N∞ as a vertical
variable, then the top and the bottom corresponds to (f5) and (f0), associated to the constraints N∞ � M and N∞ �
2 + ε1, respectively. Then the faces (f1), (f2) and (f3) corresponding to the constraints (3.5), N∞ � β and β � N0,
respectively. And finally the face (f4) given by ε3 + 2 � N0. It is important to define also the edge opposite to (f1),
that is the set (e) given by the union of (f3) ∩ (f2) and (f4) ∩ (f2). Our goal is to prove the following

Theorem 3.1. For every (k, �) ∈ N
2, Eq. (3.9) in Ω has a continuum of solutions, that is a branch, of solutions

C(k, �) emanating out from the face (f2) and reaching again the boundary of Ω at the relative interior of the faces
{(f3) ∪ (f4)} \ (e).

4. Computing the degree of F and proof of main theorems

The proof of Theorem 3.1 is based on a degree theoretic argument. As a first step we analyze the sign of the
components of Fk,� on the faces of Ω . We start with the sign of F�

2 on the face (f1).

Lemma 4.1. If (β,N0,N∞) ∈ Ω and N0 − 1 − β
β−2 (N∞ − 2) = ε2 then

F�
2 (β,N0,N∞) > 0. (4.1)

Proof. We observe that when β = N∞ we have F�
2 (β,N∞ +1,N∞) = 0 and then, since ε2 > 0, we obtain the desired

inequality

F�
2 (N∞,N∞ + 1 + ε2,N∞) > 0.
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When β < N∞, we assume first ε2 = 0. We consider system S∞ whose energy

E∞ := ẋ2

2
− b∞

x2

2
+ xp+1

p + 1

increases along the trajectories since p is sub-critical for S∞. Then q∞
� < X∞, for all � ∈ N, where X∞ was defined

in (3.4). Thus, in order to obtain (4.1) it is sufficient to have that P0 � X∞, which, after a short computation is
equivalent to

N0 − 1 − β

β − 2
(N∞ − 2) � 0.

Thus, from the hypothesis, the result follows with ε2 > 0. �
Next we see the sign of F�

2 on the edge (e) opposite to (f1). Actually we have the following

Lemma 4.2. If (β,N0,N∞) ∈ Ω , β = N∞ and N0 < N∞ + 1, then

F�
2 (β,N0,N∞) < 0. (4.2)

In particular, this inequality holds on the edge (e).

Proof. As β = N∞ we have q∞
1 = X∞ and then we easily find that N0 < N∞ + 1. This implies P0 − q∞

1 < 0, from
where (4.2) follows. �

Our next lemma studies the sign of Fk
1 when N∞ is large, that is, we take care of face (f5). Precisely we have

Lemma 4.3. Given (k, �) ∈ N
2 there exists M > 0 so that for every (β,N0,N∞) ∈ Ω , with N∞ = M we have

Fk
1 (β,N0,N∞) > 0.

Proof. We consider system S0 and we make the change of variables y(t) = θ(mt) with m2b0 = 1 and θ = mα , where
x is a solution of S0. Then we have

ÿ = −a0mẏ + y − yp.

We observe that this system has a critical point at Pm = (1,0). We define y1 = y1(N0) as the first time the orbit y(t)

emanating from zero hits the x-axis in the segment joining the origin with Pm. We claim that

lim
N∞→∞y1 = 0, (4.3)

where we observe that N0 → ∞ as N∞ → ∞ by (3.1). To prove the claim we start using the Dulac integral to get

y2
1

2
− y

p+1
1

p + 1
= ma0A, (4.4)

where A is the area enclosed by this orbit from O to (0, y1) together with the segment, along the x-axis, joining (0, y1)

back to the origin O.
First we estimate the area A. Since the orbit y(t) is located inside the zero-energy region

E := ẏ2

2
− y2

2
+ yp+1

p + 1
= 0,

we may estimate A simply by the area of a rectangle containing this region

A � 2

(
p + 1

2

)1/(p−1)
√

p − 1

p + 1
.

We notice that, being inside Ω , if N∞ → ∞ then p → 1 and consequently

A �
√

p − 1
e1/2

√ (
1 + o(1)

)
. (4.5)
2
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Second we estimate ma0. We use constraints (3.1) and (3.2) to obtain

N0 − 2 − α � α − 2(
√

N∞ − 1 − 1) (4.6)

and constraints (3.1) and (3.5) to find that

N0 − 2 − 2α � p − 1

2
(2 + 2α).

Here we assume that N∞ is large enough so that p is close to 1, to absorb the constant ε2. We also see that

lim
N∞→∞

2

α
(
√

N∞ − 1 − 1) = 0 (4.7)

and consequently we have

ma0 � (p − 1)
1 + α

α

(
1 + o(1)

)
. (4.8)

Finally, since y1 < 1, we see that

y2
1

2
− y

p+1
1

p + 1
�

y2
1

2

(
p − 1

p + 1

)
. (4.9)

Putting together (4.5)–(4.9) we then see that for a constant c > 0

y2
1 � c

√
p − 1

from where claim (4.3) follows.
Having in mind (4.3), in order to complete the proof of the lemma in case k = 1, that is P∞ − q0

1 > 0, we just
need to show that θP∞ is bounded away from zero. In order to prove this we use the definition of P∞ and θ , and that
N∞ � 2N0/(p + 1), as follows from (3.5) for ε2 small. We find that

(θP∞)p−1 � 1 − p − 1

p + 1

(
1 + 2 + α

N0 − 2 − α

)
. (4.10)

From here, (4.6) and (4.7) we find a constant c > 0 such that θP∞ � e−c, for N∞ large enough.
To complete the proof for all k, let yk be the point in the segment joining the origin with (1,0), where the orbit

emanating from the origin hits the x-axis for the k-th time. Then by the Dulac integral we find

y2
k

2
− y

p+1
k

p + 1
� kma0A, (4.11)

where A is the area of the first hit. The argument from here can be applied without change. �
We finally want to estimate the sign of Fk

1 on the face (f0). In order to do this we need an estimate, which was
proved in [5] in a more general context. We include the proof here for completeness.

Lemma 4.4. For system (2.12), in the super-critical case, the maximum value for x for the orbit emanating from the
origin satisfies

xp−1 � α(ν − 1). (4.12)

Proof. We consider the curve

x′ = αx − xp

ν − 1
, (4.13)

which divides the right half plane in an upper region R+ and lower region R−. We observe that this curve corresponds
to the points where u′′(r) = 0.
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Let (x(t), x′(t)) be the orbit emanating from (0,0). We first claim that there exists t0 such that the orbit remains in
R+ for all t � t0. In fact, if y(x) = x(t) and (x, y) is a point where the trajectory (x(t), x′(t)) crosses (4.13), we have
from (2.12) that

dy

dx
= (1 + 2α) − α(α + 1)

x

y
.

On the other hand, defining z = y/x and using (4.13), we have that the slope of (4.13) at that point is

m = α − pxp−1

ν − 1
= −2 + pz.

Then, at the point of intersection we have

Δ ≡ dy

dx
− m < 0 if and only if pz2 − (3 + 2α)z + α(α + 1) > 0.

Solving the quadratic equation we find that Δ < 0 if and only if z /∈ [α(α + 1)/(α + 2), α]. Using Eq. (4.13) we find
that if the trajectory crosses (4.13) with xp−1 < x

p−1
1 = α(ν − 1)/p then it crosses from R− to R+. From here we see

that the trajectory stays in R− for t � t̄ for some t̄ . Thus, in terms of the function u we find then that u′′(r) > 0 for r

close to 0, contradicting the fact that u′(r) < 0, while u(r) > 0. This proves the claim.
Using Eq. (4.13) again we find that the crossing occurs from R+ to R−, if it occurs when xp−1 � x

p−1
1 =

α(ν − 1)/p.
Now we prove the estimate (4.12). We just need to prove the inequality while the trajectory stays in the first

quadrant. Let us define the energy-like function

e(t) = (x′)2

2
+ αxp+1

2(ν − 1)
− (αx)2

2
.

Given (x(t), x′(t)) ∈ R+ we have that

e′(t) = x′
{
−ax′ + (

b − α2)x +
(

α(p + 1) − 2(ν − 1)

2(ν − 1)

)
xp

}
,

from where it follows that e′(t) < 0 when (x(t), x′(t)) ∈ R+. In fact, the curve

x′ = αx + α(p + 1) − 2(ν − 1)

2a(ν − 1)
xp,

which corresponds to e′ = 0, stays below the curve (4.13), because

α(p + 1) − 2(ν − 1)

2a(ν − 1)
= −(ν − 2 − α)

(ν − 1)a
<

−1

(ν − 1)
.

On the other hand, we have that the points (0,0) and (x,0), for x � x̄, have energy e greater than or equal to zero.
Thus the trajectory crosses (4.13), entering into R− in the first quadrant. The trajectory remains then in R− as we
showed above. This completes the proof of the lemma. �

Now we estimate Fk
1 on the face (f0).

Lemma 4.5. Given (k, �) ∈ N
2 and ε3 > 0 there exists ε1 > 0 so that for every (β,N0,N∞) ∈ Ω , with N0 � 2 + ε3,

we have

Fk
1 (β,N0,N∞) < 0 if N∞ = 2 + ε1.

Proof. It is enough to prove that P∞ < q0
1 , and for this we start with some energy estimates for system S0. We

consider the energy

E0 := ẋ2

− b0
x2

+ xp+1

,

2 2 p + 1
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which is decreasing along the trajectories, since p is super-critical for S0. Now let x̄ = (α(N0 − 1))1/(p−1) and q0
0 be

the point where the orbit crosses the x-axis for the first time. Then we have

q0
1 < P0 < q0

0 < x̄,

where the last inequality is a consequence of Lemma 4.4. We observe that P0 is the minimum value of the function

e(y) = −b0
y2

2
+ yp+1

p + 1

and that P∞ < P0. Then, using the energy decay along trajectories, we just need to show

e(P∞) > e(x̄). (4.14)

Computing e(x̄) and e(P∞) we see that (4.14) is equivalent to(
N∞ − 2 − α

N0 − 1

)2

<

(
(p + 1)(N0 − 2 − α) − 2(N0 − 1)

(p + 1)(N0 − 2 − α) − 2(N∞ − 2 − α)

)p−1

.

Recalling that if N∞ → 2 then α → 0 and p → ∞, we see that the left-hand side converges to 0, while we right-hand
side converges to e−2(N0−1)/(N0−2). In fact, if we denote by S the right-hand side, we find

S =
(

1 − 1

p − 1

2(N0 − 1) + o(1)

N0 − 2 + o(1)

p − 1

p + 1

)p−1

,

where limN∞→2 o(1) = 0. From here we obtain the desired limit. �
Now we are in a position of giving a proof to Theorem 3.1. The idea is to use degree theory, taking advantage of the

various estimates we have made for the sign of the components of Fk,� and the decomposition of Ω as given below.

Proof of Theorem 3.1. We start by decomposing the domain Ω in a convenient way, in order to a apply a homotopy
argument. We consider the set in R

3

B = {
(x, y, z) | 0 � z � 1, x � 0, y � 0, x + y � 1

}
and the subsets Bt = {(x, y, z) ∈ B | y cos(tπ/2) − x sin(tπ/2) = 0}, for t ∈ [0,1]. Clearly

⋃
t∈[0,1] Bt = B and

Bt ∩ Bs = E for all s �= t , where E = {(0,0, z) | 0 � z � 1}. The set E corresponds to one vertical edge in the set B

and it can be considered as a pivot in the decomposition of B in terms of the Bt , t ∈ [0,1].
The boundary of the set B can be seen as the union of five faces. The top and bottom faces (F5) and (F0) are

associated to the constraints 1 � z and 0 � z, respectively. The face (F1) is associated to the constraint x + y � 1,
while (F2) and (F3) correspond to the constraints x � 0 and y � 0, respectively. The edge (E) corresponds to the
intersection of the faces (F2) and (F3).

Then we consider a homeomorphism ϕ : Ω → B so that the following conditions on the faces hold:

ϕ
(
(fi)

) = (Fi), i = 0,1,2,5, ϕ
(
(f3) ∪ (f4)

) = (F3) and ϕ(e) = E.

If we define Ωt = ϕ−1(Bt ), for t ∈ [0,1], then we have the decomposition Ω = ⋃
t∈[0,1] Ωt , having as a pivot the

edge (e).
Now, for a given (k, �) ∈ N, we define the function Gk,� : B → R

2 as Gk,� = Fk,� ◦ ϕ. If we let G
k,�
t = Gk,�|Bt ,

the restriction of Gk,� to Bt , then the Brouwer degree of G
k,�
t with respect to (0,0) on the set Bt is well defined and

it holds

deg
(
G

k,�
t ,Bt , (0,0)

) �= 0, for all t ∈ [0,1].
In fact, according to Lemmas 4.3 and 4.5, the first component of G

k,�
t is positive at the top of Bt and negative on

the bottom. While, according to Lemmas 4.1 and 4.2, the second component of G
k,�
t is negative on the edge (E) and

positive on the opposite side.
From here, and the homotopy properties of the degree, the existence of the continuum C(k, �) follows. This set

emanates out from the face (f2), that corresponds to the case t = 0. As t ∈ [0,1] increases, the set of solutions C(k, �)

is defined. �
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Remark 4.1. In the proof of Theorem 3.1 we see that the branch C(k, �) cannot touch the boundary faces (f0), (f1),
(f5) nor the edge (e). It has to touch eventually the faces (f3) or (f4). We do not know which of these faces is reached,
but we suspect the branch goes towards (f4).

We observe that the face (f4) is associated to the small parameters ε1, ε2 and ε3, that are dominated by ε3 as seen
in Lemma 4.5 and Lemma 3.1. As these parameters go to zero, we believe that the corresponding branch C(k, �)

connects with the corner point (2,2,2).

5. Proof of the main results

The main results are consequences of Theorem 3.1 on the solution set for the equation Fk,l = (0,0) on Ω .

Proof Theorem 1.1. In Theorem 3.1, for every (k, �) ∈ N
2, we found a continuum C(k, �) such that

P∞ = q0
k and P0 = q∞

� . (5.1)

From the first equality, there exists an orbit x0 for system S0, that emanates from the origin and such that x0(0) = P∞.
Thus,

v1(τ ) :=
{

x0(log(τ ))τ−α if τ � 1,

P∞τ−α if τ > 1,

is a solution to (2.1) and then u1(r) = v1(g(r)) satisfies (1.3)–(1.4), with γ = limt→−∞ e−αtx0(t). Since u1(r) =
P∞g(r)−α for large r , using the asymptotic behavior of g(r) = r(N−2)/(N∞−2) we see that u1 is a slowly decaying
solution. Next we observe that for t < 0 we have x′

0(t) = αv1(τ )+ τv′
1(τ ) = ϕ(u1, r), taking into account the changes

of variables we have performed. Thus, by definition of q0
k , the function ϕ(u1, r) vanishes 2k − 1 times before t = 0

and ϕ(u1, r) ≡ 0 for t > 0.
From the second equality in (5.1), there exists an orbit x∞ for system S∞, that ends at the origin and such that

x∞(0) = P0. Thus,

v2(τ ) :=
{

P0τ
−α if τ � 1,

x∞(log(τ ))τ−α if τ > 1

is a solution of (2.1) and u2(r) = v2(g(r)) satisfies (1.3). Since, u2(r) = P0g(r)−α for small r , using the behavior
of g near the origin we see that u2 is singular solution. As above, we obtain that ϕ(u2, r) ≡ 0 for t < 0 and ϕ(u2, r)

vanishes 2(� − 1) for t > 0, using the definition of q∞
� . �

In the proof of Theorem 1.2 we repeatedly use the following construction. Let x0(t) be the positive orbit of
system S0, emanating from the origin. Given T ∈ R, we let x∞ be the orbit of system S∞ with initial condition
x∞(0) = x0(T ), x′∞(0) = x′

0(T ). Then we define

x̂(t) =
{

x0(t + T ) if t � 0,

x∞(t) if t > 0,

which is a solution of the step dimension problem in the phase plane (2.13). After our changes of variables we find
that

uT (r) = (
g(r)

)−α
x̂
(
log

(
g(r)

))
is a solution of (1.3)–(1.4) with initial condition γ = γ (T ). Moreover, the initial condition γ (T ) is strictly increasing
in T . In fact, if vT (τ ) = τ−αx̂(log(τ )) then T1 < T2 and τ small we have

vT1(τ ) = eα(T1−T2)vT2

(
τeT1−T2

)
, (5.2)

from where vT1(0) < vT2(0).

Proof Theorem 1.2. For parameters in C(k, �), let x0 be the orbit of S0 emanating from the origin and let x∞ be the
orbit of S∞ ending at the origin and spiraling back towards P∞. Since P∞ = q0

k , together with the fact that the orbits
of S0 and S∞ cross transversally outside the x-axis, as proved in Lemma 2.2, we have exactly two infinite sequences
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of intersection points. One of such sequences is characterized by sequences of numbers {t1
n} and {s1

n}, increasing and
decreasing respectively, so that

x0
(
t1
n

) = x∞
(
s1
n

)
and x′

0

(
t1
n

) = x′∞
(
s1
n

)
> 0,

for all n ∈ N. The other sequence of points is characterized by sequences of numbers {t2
n} and {s2

n}, both decreasing
and such that

x0
(
t2
n

) = x∞
(
s2
n

)
and x′

0

(
t2
n

) = x′∞
(
s2
n

)
< 0,

for all n ∈ N. We observe that s2
n < s1

n < s2
n+1, t1

n < t1
n+1 and t2

n > t2
n+1 for all n ∈ N. Furthermore limn→∞ t1

n =
limn→∞ t2

n = t̄ and limn→∞ s1
n = limn→∞ s2

n = −∞.
Using the construction given above we find the sequences of initial values γ 1

n = γ (t in), n ∈ N and i = 1,2, giving all
the solutions of (1.3)–(1.4) described in part 1 of Theorem 1.2. By linearizing the flow of S∞ near the origin we find
that the positive eigenvalue is α − (N∞ − 2) so that the solutions entering the origin decay like τ−(N∞−2). Therefore,
using the definition of g in our change of variables, we conclude that the solutions of part 1 given above, are all fast
decaying solutions.

The convergence of u(r;γ i
n) to u1 given in Theorem 1.1, will be established by proving that the sequences {xi

n}, in
the phase plane defined by

xn(t) :=
{

x0(t + t in) if t � 0,

x∞(t + si
n) if t > 0,

converge in compact subsets of R to x̄, the solution in the phase plane associated to u1. By the convergence properties
of the sequences {t in} and {si

n}, we see that x∞(t + si
n) converges to P∞ for t in compact subsets of {t > 0} and

x0(t + t in) converges to x0(t) for t in a compact set of {t � 0}. Thus xn → x̄ in compact subsets of R, from where the
uniform convergence of u(r;γ i

n) to u1 follows.
To obtain the second part, we start from equality P0 = q∞

� and proceed in an analogous way. �
Even though the conclusion of Theorem 1.2 describes in a very precise fashion the possible solutions of (1.3)–(1.4)

for the functions K we have constructed, there are still many open questions that one would like to answer.
Given γ > 0 such that u(r;γ ) is a crossing solution, we denote by R(γ ) the first r such that u(r;γ ) = 0. Under

the hypothesis and notation of Theorem 1.2, prove or disprove the following facts:
1) The function R : (γ 1

n , γ 1
n+1) → R possesses exactly one minimum point γ̄ 1

n and if R1
n = R(γ̄ 1

n ), the sequence
{R1

n} is increasing.
2) The function R : (γ 2

n+1, γ
2
n ) → R possesses exactly one minimum point γ̄ 2

n and if R2
n = R(γ̄ 2

n ), the sequence
{R2

n} is increasing.
3) The function R : (γ ∗

n , γ ∗
n+1) → R possesses exactly one minimum point γ̄ ∗

n and if R∗
n = R(γ̄ ∗

n ), the sequence
{R∗

n} is increasing.
Before continuing we briefly present the situation occurring when only one component of Fk,� = 0 vanishes. The

following proposition can be proved by the same analysis used to prove Theorems 3.1 and 1.2.

Proposition 5.1.

1. For every � ∈ N there is a set S� ⊂ Ω such that F�
2 (β,N0,N∞) = 0 if (β,N0,N∞) ∈ S�. In this case part 1 in

Theorem 1.2 occurs.
2. For every k ∈ N there is a set S k such that Fk

1 (β,N0,N∞) = 0 for all (β,N0,N∞) ∈ S k . In this case part 2 in
Theorem 1.2 occurs.

As mentioned in the introduction, we think that this sets S k and S� are two-dimensional surfaces.
We end this section discussing the case when F�

2 (β,N0,N∞) �= 0 for (β,N0,N∞) ∈ Ω . In this case there exists
infinitely many solutions of Eq. (1.3)–(1.4) with Dirichlet boundary condition on some R. In other words, Eq. (1.1)
with Dirichlet boundary condition on a fixed ball, has infinitely many solutions. More precisely, we have



P. Felmer et al. / Ann. I. H. Poincaré – AN 26 (2009) 869–887 885
Proposition 5.2. If the parameters (β,N0,N∞) ∈ Ω are such that F�
2 (β,N0,N∞) �= 0 for all � ∈ N, then for all

large initial condition γ the solution to Eqs. (1.3)–(1.4) is a crossing solution. Moreover, we find an unbounded
monotone sequence of initial condition {γn} such that the crossing point R(γn) satisfies R(γ2n+1) < R∗ < R(γ2n) and
limn→∞ R(γn) = R∗. Moreover, there are infinitely positive solutions of (1.3)–(1.4) in [0,R∗) such that u(R∗) = 0.

Proof. Consider the three orbits xi∞, i = 1,2,3, of system S∞ passing through (P0 − δ,0), (P0,0) and (P0 + δ,0),
respectively. By hypothesis, here we may choose δ > 0 small so that these three solutions cross the y-axis in finite
time. If (x2∞(0), (x2∞)′(0)) = (P0,0), we let t∗ be the first positive t such that x2∞(t∗) = 0.

Let x0 be the orbit of S0 emanating from the origin that spirals towards P0. Using the transversality of crossing
proved in Lemma 2.2, we find an increasing unbounded sequence {tn} such that

x0(tn) = x2∞(tn) and x′
0(tn) = (

x2∞
)′
(tn).

We observe that x′
0(tn) alternates sign, so by the construction given just before the proof of Theorem 1.2, we find

the sequence of initial conditions {γ (tn)} which is increasing and unbounded. Moreover limn→∞ R(γn) = R∗ and
R(γ (t2n+1)) < R∗ < R(γ (t2n)) for n large. By continuity of R(·) we establish the existence of infinitely many solu-
tions to (1.3)–(1.4) with u(R∗) = 0.

Finally, we observe that for large time (x0(t), x
′
0(t)) stays between the orbits x1∞ and x3∞. Thus, the orbit x̄∞ of

S∞ defined by the initial conditions

x0(t) = x̄∞(0), x′
0(t) = x̄′∞(0)

crosses the y-axis in finite time. This shows that for all γ large the solution to (1.3)–(1.4) is a crossing solution. �
Remark 5.1. If (β,N0,N∞) ∈ Ω are such that Fk

1 (β,N0,N∞) �= 0 and F�
2 (β,N0,N∞) �= 0 then Eqs. (1.3)–(1.4) has

at most finitely many fast decaying solutions and all other solutions are crossing.

It will be also interesting, and very challenging, to understand maximum and minimum points of the function R(γ )

in the case of Proposition 5.2, following the line of the open problems mentioned above.

6. Construction of other type of functions K

In this section we provide the construction of a different class of function K that allows to find another type of
solution of Eq. (1.1). This example further suggests that the structure of the solution set for (1.1) is hard to be described
from general properties of K .

(SiS) u(r) is a singular-slowly decaying solution, if u satisfies (1.3) for all r > 0 and

lim
r→0

rα0u(r) = c1 and lim
r→∞ rα∞u(r;γ ) = c2,

for certain ci > 0, i = 1,2 and with α0 and α∞ as defined in the introduction.

In what follows find a family of functions K so that there exists of a singular-slowly decaying solution u to Eq. (1.3).
Observe that for the families of K functions discussed in our main results equation (1.3) does not have singular-slowly
decaying solution because P0 �= P∞.

Proposition 6.1. There are families of functions K such that Eq. (1.3) possesses singular-slowly decaying solutions.

Proof. We construct the function K associated to the dimension function n(τ) given by

n(τ) =
{

N0 if 0 � τ � 1,

N1 if 1 < τ � τ1,

N∞ if τ > τ1.

Then, proceeding as in Section 2, we may find a diffeomorphism g : [0,∞) → [0,∞) and associated function K

defined as in (2.4) so that whenever v is a solution of the variable dimension equation (2.1) with n(τ) as above, the
function u(r) = v(g(r)) satisfies Eq. (2.3). Moreover, it can be proven that this K satisfies (1.5).
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Consider now N0 and N1 so that 2 < N1 < N0 < N1 + 1 and p = (N1 + 2)/(N1 − 2). Let x1 be the orbit of (2.12)
with ν = N1 such that x1(0) = P0, x′

1(0) = 0. Since N0 < N1 + 1 this is a positive periodic orbit. Let t1 be a first
positive t such that x′

1(t1) = 0 and define N∞ such that P∞ = x1(t1). Then we define the function

x̂(t) =
{

P0 if t � 0,

x1(t) if 0 < t � t1,

P∞ if t > t1,

that satisfies (2.1). Finally, we define u(r) = (g(r))−αx̂(log(g(r))), which is the singular-slowly decaying solution we
are looking for. �
Remark 6.1. If T is the period of the periodic orbit x1 given in the proof above, then we can take t1 + kT , k ∈ N,
instead of t1 in the above construction, to produce infinitely many singular-slowly decaying solution of (1.3).

Remark 6.2. If we take N1 close N0 in the above argument then P0 is close to P∞ and so we have that the critical
points P0 and P∞ are both spirals for systems S0 and S∞, respectively. In this situation it can be proved the existence
of an unbounded sequence of fast decaying solution to Eqs. (1.3)–(1.4).
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