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Abstract

In this paper we consider positive boundary blow-up solutions to the problem �u = uq(x) in a smooth bounded domain Ω ⊂ R
n.

The exponent q(x) is allowed to be a variable positive Hölder continuous function. The issues of existence, asymptotic behavior
near the boundary and uniqueness of positive solutions are considered. Furthermore, since q(x) is also allowed to take values less
than one, it is shown that the blow up of solutions on ∂Ω is compatible with the occurrence of dead cores, i.e., nonempty interior
regions where solutions vanish.

Keywords: Large solutions; Existence and uniqueness; Variable exponents

1. Introduction

Boundary blow-up problems for elliptic equations have been widely considered in the last few years. In general,
they take the form{

�u(x) = f (x,u(x)) in Ω,

u(x) = +∞ on ∂Ω,
(1.1)

where Ω is a smooth bounded domain of R
N (say C2,η) and f (x,u) is a given function. By a solution of (1.1)

we understand a function u ∈ C2(Ω) verifying the equation in the classical sense and u(x) → ∞ as x → ∂Ω . The
solutions to problem (1.1) are known as “large” solutions. We refer to the pioneering papers [4,17] and [25], and to
[14,23] and [26] for a large list of references.

In most of the previous works, the dependence on x of f was not really significative. Three types of nonlinearities
have been frequently treated: f = f (u), f (x,u) = a(x)g(u) or f (x,u) controlled in terms of a function g(u) which
does not depend on x.
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For the particular case where f is increasing and does not depend on x, f = f (u), it is well known that the
so-called Keller–Osserman condition is necessary and sufficient for existence of solutions to (1.1):

∞∫
x0

ds√
F(s)

< +∞ (1.2)

for some x0 ∈ R, where F(u) = ∫ u

0 f (s) ds is a primitive of f (see [17] and [25]). Note that it has been recently
shown that the monotonicity of f is not necessary, even for large u as shown in [13] (see also [10], where an existence
result was obtained with a nonmonotonic f which is however increasing for large u).

When the dependence of f on x is of the form f (x,u) = a(x)g(u), and the weight a(x) is bounded, the Keller–
Osserman condition on g is also necessary and sufficient for existence so that the presence of a(x) is not really
important. When a(x) is not bounded on ∂Ω the situation is slightly different: if the growth of a near ∂Ω is not too
strong then solutions to (1.1) exist when g satisfies (1.2) (see [5,6] and [28] for the case g(t) = tp , p > 1). However,
solutions may exist with a g not satisfying (1.2), provided a is singular enough on ∂Ω . We refer the reader to [5]
and [24].

Thus, at this point it is natural to ask what happens for a function f (x,u) that depends on x in such a way that
condition (1.2) (where F(u) is replaced by F(x,u) = ∫ u

0 f (x, s) ds) is satisfied at some points of Ω and not at other
points. If we assume f (x,u) to be continuous in Ω × R (so the presence of an unbounded weight is ruled out), is it
really needed that (1.2) is satisfied at all points of Ω to obtain existence of a solution to (1.1)?

In this direction, the problem (1.1) with f (x,u) = −λu + a(x)uq(x) with a > 0 in Ω and q > 1 in Ω , q = 1
on ∂Ω , was considered in the pioneering paper [21], and the existence of a maximal and a minimal positive solution
was obtained (see also [9] and [22] for works dealing with nonlinearities with a variable exponent and homogeneous
Dirichlet boundary conditions). Notice that condition (1.2) (with F(x,u) = ∫ u

0 f (x, s) ds) holds at points where
q(x) > 1, while it ceases to be true when q(x) � 1. In this respect, the results in [21] show that (1.2) may fail on the
boundary ∂Ω , and the existence of positive solutions is still possible.

In the present paper we are considering the problem:{
�u = uq(x) in Ω,

u = +∞ on ∂Ω,
(1.3)

where the exponent q(x) will be a positive Hölder continuous function. We note that a distinctive feature in this work
with respect to the hypotheses in [21] is that q < 1 is permitted at some points in Ω . In this respect, one of the
contributions of the present work is to show that condition (1.2) is only needed in a neighborhood of the boundary in
order to have a positive solution, while it may fail not only on the boundary, but also at interior points.

We mention in passing that the case where q is constant is well understood, see [2,3,7,11,12,15,16,18,20,27], but, at
the best of our knowledge, the only previous work where large solutions with nonlinearities with a variable exponent
were considered is [21].

In addition to existence of positive solutions to (1.3), we also consider uniqueness and the determination of the
blow-up rate of solutions near the boundary of the domain. Our techniques are mainly based on comparison, using as
a reference problem (1.3) with a q constant.

Now we state our results. We first show that positive solutions to (1.3) are only possible if q � 1 on ∂Ω . When q

is constant, this is known to hold (see Theorem 2 in [19] and Theorem 2.2 in [8]).

Theorem 1. Let q ∈ Cη(Ω) be a nonnegative function, and assume there exists x0 ∈ ∂Ω such that q(x0) < 1. Then
problem (1.3) has no positive solutions. Moreover, the same conclusion holds if q � 1 in a whole neighborhood of
x0 ∈ ∂Ω relative to Ω .

Remark 1. As kindly pointed out to the authors by the referee of this paper, a nonexistence result for the variable
exponent related problem{

�u = −λu + a(x)uq(x) in Ω,

u = +∞ on ∂Ω,

can be obtained by means of Theorem 7.1 in [21] provided the set {q(x) > 1} is strictly contained in Ω , q = 1 in a
whole neighborhood of ∂Ω and λ is conveniently large.
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Thanks to Theorem 1 we always need q � 1 on ∂Ω in order to have positive solutions. We will make the assumption
that q > 1 in a neighborhood of ∂Ω , although q may be 1 on ∂Ω . We also remark that q � 1 is permitted at interior
points, and still we get a solution.

Theorem 2. Let q ∈ Cη(Ω) be a positive function and assume q > 1 in the strip Uδ = {x ∈ Ω: dist(x, ∂Ω) < δ} for
some δ > 0. Then problem (1.3) admits at least a positive solution.

It is natural to ask under which conditions the solution provided by Theorem 2 is unique. It turns out that q > 1 on
∂Ω is sufficient as long as q � 1 in the whole Ω .

Theorem 3. Assume q ∈ Cη(Ω) verifies q � 1 in Ω and q > 1 on ∂Ω . Then problem (1.3) admits a unique positive
solution.

The approach for proving Theorem 3 is to obtain the boundary behavior of all positive solutions. We remark that
this is a local issue, and hence the obtained behavior is similar to that in the case where q is constant, at least at points
where q > 1. In the rest of the paper, d(x) will stand for the function dist(x, ∂Ω).

Theorem 4. Assume q ∈ Cη(Ω) and let x0 ∈ ∂Ω with q(x0) > 1. If u is a positive solution to (1.3), then

lim
x→x0

d(x)α(x)u(x) = (
α(x0)

(
α(x0) + 1

)) 1
q(x0)−1 , (1.4)

where α(x) = 2/(q(x) − 1).

Remark 2. As a byproduct of the proof of Theorem 4, the exact rate of the normal derivative of u can also be obtained.
More precisely we have

lim
x→x0

d(x)α(x)+1∇u(x) · ν(x̄) = α(x0)
(
α(x0)

(
α(x0) + 1

)) 1
q(x0)−1 ,

where ν is the outward unit normal and x̄ is the closest point to x lying on ∂Ω .

Now, another natural question arises: is it essential that q � 1 in the whole Ω to have uniqueness? As we are
showing next, the answer is no. Uniqueness of positive solutions to (1.3) also holds if q < 1 at interior points if we
assume q is large enough on ∂Ω . As a technical hypothesis, we also need q to be smooth in a neighborhood of ∂Ω .

Theorem 5. Assume q ∈ Cη(Ω) ∩ C2(Uδ) for some δ > 0 where Uδ = {x ∈ Ω: dist(x, ∂Ω) < δ}, q > 0 in Ω and
q > 3 on ∂Ω . Then there exists a unique solution to (1.3), which in addition verifies

u(x) = (
α(x)

(
α(x) + 1

)) 1
q(x)−1 d(x)−α(x) + O

(
d(x)β

)
(1.5)

for every β ∈ (0,
q0−3
q0−1 ), where α(x) = 2/(q(x) − 1) and q0 = min∂Ω q .

It should be noticed that in the case q constant it was shown in [18] that u = Ad−α + O(1) as d → 0, α as
above, A = α(α + 1)1/(q−1), provided that q � 3 (such feature was more precisely described in [16] where a two-term
asymptotic expansion for u near ∂Ω was obtained). Theorem 5 provides in particular a substantial extension of the
previous results covering the case where q is variable.

On the other hand and as a counterpart to the uniqueness question studied in Theorem 5, the fact that q achieves
values less than one in Ω allows the existence of solutions u of (1.3) that exhibit simultaneously a singular behavior
on ∂Ω together with the presence of a dead core, i.e., a nonempty interior region O in Ω where u vanishes. Our
next result asserts that dead cores arise provided the subdomain Q of Ω where q < 1 is large enough. We provide a
statement with hypotheses that are not optimal for the sake of clarity.
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Theorem 6. Suppose that q ∈ Cη(Ω) is a positive functions satisfying q > 1 on ∂Ω while Q := {x ∈ Ω: q(x) < 1}
constitutes a smooth subdomain of Ω . For λ > 0 let Ωλ = {λx: x ∈ Ω} and let qλ ∈ Cη(Ωλ) be given by qλ(x) =
q(x/λ). Then, there exists λ0 > 0 such that for λ � λ0 all positive solutions uλ to{

�u = uqλ(x) in Ωλ,

u = +∞ on ∂Ωλ,
(1.6)

possess a nonempty dead core Oλ := {x ∈ Ωλ: uλ = 0}. Moreover, Oλ progressively fills Qλ as λ → ∞.

Remark 3. It is possible to exhibit examples showing that dead cores are absent in problem (1.3) if the region {q < 1}
does not exceed a critical size.

Finally, we briefly consider the issue of boundary behavior of positive solutions to (1.3) in the case where q = 1
somewhere on ∂Ω . Since the problem becomes linear there it is to be expected that the exact rate of divergence of the
solutions u cannot be obtained, as happens in [5]. It is possible however to obtain the exact behavior of the logarithm
of u, provided q − 1 behaves like a nonnegative power of the distance.

Theorem 7. Assume q ∈ Cη(Ω) and let x0 ∈ ∂Ω be a point with q(x0) = 1. If there exist positive constants γ and Q

such that

lim
x→x0

q(x) − 1

d(x)γ
= Q

then for every positive solution to (1.3):

lim
x→x0

d(x)γ logu(x)

− logd(x)
= 2γ + 2

Q
. (1.7)

Of course it would be desirable to obtain uniqueness of solutions to (1.3), at least in the very special case q(x) =
1 + Qd(x)γ . According to (1.7), it would be natural to deal with the equation satisfied by v = logu, that is,{

�v + |∇v|2 = eQd(x)γ v in Ω,

v = +∞ on ∂Ω.
(1.8)

However, the operator in the left-hand side of (1.8) does not have the right monotonicity, and it could even happen
that uniqueness does not hold. We leave this question as an open problem.

The paper is organized as follows: in Section 2 we prove Theorems 1 and 2. Section 3 will be dedicated to prove
the boundary estimates, Theorems 4 and 7. The uniqueness results, Theorems 3 and 5 will be collected in Section 3
while the issue of dead cores (Theorem 6) will be analyzed in Section 4.

2. Existence

In this section, we deal with the issues of existence and nonexistence of positive solutions to problem (1.3). We
first show that there are no solutions if q < 1 somewhere on ∂Ω (alternatively, q � 1 in a neighborhood of a boundary
point). Throughout the paper, we denote by B(x, r) the ball of center x and radius r .

Proof of Theorem 1. Let r > 0 such that q < 1 in B(x0,3r)∩Ω , and choose a smooth subdomain D of B(x0,3r)∩Ω

such that ∂D ∩ ∂Ω contains B(x0,2r)∩ ∂Ω . Let ψ be a smooth function supported on ∂D which verifies 0 � ψ � 1,
ψ = 1 on B(x0, r) ∩ ∂Ω and ψ = 0 on ∂D \ (B(x0,2r) ∩ ∂Ω). It can be checked that the problem{

�z = zq(x) in D,

z = nψ on ∂D,

has a unique positive solution zn for every positive integer n (see the proof of Theorem 2 for a similar argument).
Moreover, if (1.3) has a positive solution, it follows by comparison that

u � zn in D, (2.1)

since u � nψ on ∂D for every n.
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On the other hand, we have zn = nwn, where wn solves{
�w = nq(x)−1wq(x) in D,

w = ψ on ∂D.

Now 0 � wn � 1 and q(x) < 1, so it is standard to conclude (for a subsequence if necessary) that wn → w0 as n → ∞,
where w0 is the harmonic function in D which equals ψ on ∂D. Since w0 > 0 in D, we obtain that zn → +∞
uniformly in compact subsets of D ∪ (B(x0, r)∩ ∂Ω). But then (2.1) implies u = +∞ in D ∪ (B(x0, r)∩ ∂Ω), which
is not possible. Hence no positive solution to (1.3) exists.

Finally, observe that the previous argument continues to be valid – with only minor changes – if q � 1 in a
neighborhood of a point x0 ∈ ∂Ω . Thus the proof is concluded. �

Now we prove our existence result. The approach is the standard one: we construct solutions with finite datum on
∂Ω and then show that they are locally uniformly bounded.

Proof of Theorem 2. Let n be a positive integer. Then the problem{
�u = uq(x) in Ω,

u = n on ∂Ω,
(2.2)

has a unique positive solution. Indeed, u = 0 is a subsolution and ū = n is a supersolution, and then, by a well-known
approach (see [1]) the existence of a classical solution u ∈ C2,η(Ω) follows. To prove uniqueness, let u, v be positive
solutions and consider the set Ω0 = {x ∈ Ω : u < v}. If Ω0 is nonempty, since �u � �v in Ω0 and u = v on ∂Ω0, it
follows from the maximum principle that u > v in Ω0, which is impossible. Thus u � v and the symmetric argument
shows u = v, giving uniqueness. The solution to (2.2) will be denoted by un.

Thanks to uniqueness, the solutions un is increasing in n. Indeed, un+1 is a supersolution to (2.2) and by uniqueness
un+1 � un.

Let us prove next that un is bounded in compact subsets of Ω . Taking δ small, we can assume un > 1 in a strip
Uδ = {x: dist(x, ∂Ω) < δ} for all n. Fix ε with 0 < ε < δ and a point x0 such that d(x0) = ε/2. Since q > 1 in Uδ , we
have that q � q0 > 1 in B(x0, ε/4) and thus �un � u

q0
n in B(x0, ε/4). Hence un � U , the unique solution to{

�U = Uq0 in B(x0, ε/4),

U = +∞ on ∂B(x0, ε/4).

This shows that un is uniformly bounded in B(x0, ε/8). A compactness argument proves that un is uniformly
bounded in the set {x ∈ Ω: d(x) = ε/2}, and since every un is subharmonic, we obtain uniform bounds in the whole
{x ∈ Ω: d(x) > ε/2}. Since ε was arbitrarily small, the sequence {un} is locally uniformly bounded in Ω .

Finally, it is standard to obtain that {un} is precompact in C2
loc(Ω), and thus, passing to a subsequence, un →

u in C2
loc(Ω), where u verifies �u = uq(x) in Ω . Notice that, since un is increasing in n, it also follows that the

whole sequence converges to u. Moreover, u = +∞ on ∂Ω , and is thus a positive solution to (1.3). This finishes the
proof. �
3. Boundary estimates

This section is devoted to prove the assertions concerning the boundary behavior of the solutions to (1.3). To prove
Theorem 4 we use ideas from [6]. To this aim, it is important to obtain first a rough estimate for the solutions. This is
the content of the next lemma.

Lemma 8. Assume x0 ∈ ∂Ω is such that q(x0) > 1, and let u be a positive solution to (1.3). Then there exist a
neighborhood V of x0 (relative to Ω) and positive constants C1,C2 such that

C1d(x)−α(x) � u(x) � C2d(x)−α(x) in V , (3.1)

where α(x) = 2/(q(x) − 1).
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Proof. Choose a neighborhood V ′ of x0 such that q > 1 in V ′ (we can take for instance a ball centered at x0 intersected
with Ω). By diminishing the radius of V ′, we can select a smaller neighborhood V such that B(x, d(x)/2) ⊂ V ′ for
x ∈ V . Take x ∈ V and define the scaled function

v(y) = d(x)α(x)u

(
x + d(x)

2
y

)
,

for y ∈ B := B(0,1). It can be checked that the function v solves the equation

�v = 1

4
d(x)α(x){q(x)−q(x+(d(x)/2)y)}vq(x+(d(x)/2)y) in B.

Since q is η-Hölder, there exists a constant such that∣∣∣∣q(x) − q

(
x + d(x)

2
y

)∣∣∣∣ � Cd(x)η,

and hence

�v � Cvq(x+(d(x)/2)y) in B

for some positive constant C (we are using throughout the paper the letter C to denote constants, that may change
from one line to another but are independent of the relevant quantities). That is, v is a subsolution to the equation
�v = Cvq(x+(d(x)/2)y) in B . Now we will construct a supersolution to the same equation which blows up on the
boundary of B .

Let φ be the solution to −�φ = 1 in B with φ = 0 on ∂B . For a large positive A0 and some β > 0 to be chosen,
we define v̄ = A0φ

−β . Then v̄ will be a supersolution to �v = Cvq(x+(d(x)/2)y) in B provided that

β(β + 1)|∇φ|2 + βφ � CA
{q(x+(d(x)/2)y)−1}
0 φ{β+2−βq(x+(d(x)/2)y)}

for all y ∈ B . This inequality can be obtained choosing β large in order to have

β + 2 − βq

(
x + d(x)

2

)
< 0,

and then A0 large enough. By comparison, we arrive at v � v̄ in B , and setting y = 0 we obtain

u(x) � A0φ(0)−βd(x)−α(x)

for x ∈ V . This shows the upper inequality in (3.1).
To prove the lower inequality we take a point x ∈ V ′ and denote by x̄ the closest point to x on ∂Ω . Modulus an

extra reduction of V ′ if necessary it can be assumed that d(x̄ + d(x)ν(x̄)) = d(x) for every x ∈ V ′ where ν stands for
the outward unit normal and d(x) designates the distance from x to ∂Ω . Denoting by A the annulus

A = {
y ∈ R

N : 1 < |y| < 2 + τ
}
,

where τ > 0, we introduce Ax = x̄ + d(x)ν(x̄) + d(x)A and Qx = Ax ∩ Ω (observe that x ∈ Qx , while the annulus
Ax is tangent to ∂Ω at x̄). We remark that the outer radius can be any fixed number greater than 2, but for its later use
in the proof of Theorem 7 we let it depend on the parameter τ , which is of no importance in the present proof.

We can assume, by diminishing the radius of V , that Qx ⊂ V ′ for every x ∈ V . Now define the normalized function

w(y) = d(x)α(x)u
(
x̄ + d(x)ν(x̄) + d(x)y

)
,

for y ∈ Q̃x , where Q̃x = A ∩ {y ∈ R
N : x̄ + d(x)ν(x̄) + d(x)y ∈ Ω}. Then w satisfies

�w = d(x)α(x){q(x)−q(x̄+d(x)ν(x̄)+d(x)y)}wq(x̄+d(x)ν(x̄)+d(x)y)

in Q̃x . Thanks to the Hölder condition verified by q it follows as before that

�w � Cwq(x̄+d(x)ν(x̄)+d(x)y) in Q̃x,

for a certain positive constant C.
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On the other hand, it can be seen as before that the problem⎧⎨
⎩

�z = Czq(x̄+d(x)ν(x̄)+d(x)y) in A,

z = 1 on |y| = 1,

z = 0 on |y| = 2 + τ,

has a unique positive solution z. Since w � z on ∂Q̃x , it follows by comparison that w � z in Q̃x . Setting y = −2ν(x̄),
we arrive at

u(x) � z
(−2ν(x̄)

)
d(x)−α(x),

and the proof of (3.1) concludes by noticing that since z is bounded from below in |y| = 2 we obtain z(−2ν(x̄)) �
C > 0, where C is independent of x. �
Proof of Theorem 4. Choose an open neighborhood W of x0 such that ∂Ω admits C2,η local coordinates ξ =
(ξ1, . . . , ξN ), ξ : W → R

N , with x ∈ W ∩ Ω if and only if ξ1(x) > 0. With no loss of generality we can assume
ξ(x0) = 0. Setting u(x) = ū(ξ(x)), q(x) = q̄(ξ(x)), then ū verifies an equation

N∑
i,j=1

aij (ξ)
∂2ū

∂ξi∂ξj

+
N∑

i=1

bi(ξ)
∂ū

∂ξi

= ūq̄(ξ)

in ξ(W ∩ Ω) whose coefficients aij , bi are Cη functions and aij (0) = δij . We can assume further that W ∩ Ω ⊂ V ,
where V is the neighborhood given by Lemma 8.

Let {xn} be an arbitrary sequence converging to x0, and denote by tn the projection of ξ(xn) onto ξ(W ∩ ∂Ω) (a
subset of the hyperplane ξ1 = 0). We introduce the functions

vn(y) = dαn
n u(tn + dny)

where dn = d(xn), αn = α(xn). Then vn verifies the equation

N∑
i,j=1

aij (tn + dny)
∂2v

∂yi∂yj

+ dn

N∑
i=1

bi(tn + dny)
∂v

∂yi

= d
{αn(q̄(ξ(xn))−q̄(tn+dny))}
n vq̄(tn+dny).

We now use the estimates (3.1) provided by Lemma 8. They imply that for every compact set of the half-space
D := {y ∈ R

N : y1 > 0} there exist positive constants C1, C2 such that

C1d
{αn−ᾱ(tn+dny)}
n y

−ᾱ(tn+dny)

1 � vn(y) � C2d
{αn−ᾱ(tn+dny)}
n y

−ᾱ(tn+dny)

1 (3.2)

where α(x) = ᾱ(ξ(x)). As in the proof of Lemma 8, we use the Hölder condition on q to obtain that

d
αn−ᾱ(tn+dny)
n → 1

uniformly for y in compacts of D as n → ∞. Thus (3.2) gives bounds for the sequence {vn}, and it is now standard to
obtain that for a subsequence we have vn → v in C2

loc(D), where v verifies{
�v = vq(x0)

C1y
−α(x0)
1 � v(y) � C2y

−α(x0)
1

in D. (3.3)

Theorem 3.4 and Remark 3.6 (b) in [6] imply that problem (3.3) has a unique solution, which can be checked to be

v(y) = {
α(x0)

(
α(x0) + 1

)} 1
q(x0)−1 y

−α(x0)
1 .

Then (1.4) is proved just by setting y = e1. �
Now we prove Theorem 7. The proof is based on that of Lemma 8, but taking into account that the exponents there

may be variable, and the involved constants have to be precisely estimated.

Proof of Theorem 7. Let ε > 0 and choose a neighborhood W of x0 such that q(y) � 1 + (Q − ε)d(y)γ for y ∈ W .
For x close to x0, and 0 < τ < 1, we have d(y) � (1 − τ)d(x) if y ∈ B(x, τd(x)) and hence

q(y) � 1 + (Q − ε)(1 − τ)γ d(x)γ
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in B(x, τd(x)), provided B(x, τd(x)) ⊂ W , which is certainly true if x is close enough to x0. Denote for simplicity

σ = σε,τ,x = (Q − ε)(1 − τ)γ d(x)γ .

If x is close enough to x0 we may further assume that u > 1 in B(x, τd(x)). Hence

�u � u1+σ in B
(
x, τd(x)

)
.

We now introduce the function

v(y) = (
τd(x)

) 2
σ u

(
x + τd(x)y

)
y ∈ B = B(0,1),

which satisfies

�v � v1+σ

in B . On the other hand, we may look for a supersolution to the equation �v = v1+σ of the form

v = Aφ−β

where β = 2/σ , A > 0 and φ is the solution to −�φ = 1 in B with φ = 0 on ∂B . Then v is a supersolution provided
that

2

σ

(
2

σ
+ 1

)
|∇φ|2 + 2

σ
φ � Aσ .

Since σ = (Q − ε)(1 − τ)γ d(x)γ , it is enough to take

A = {
Cd(x)

} −2γ

(Q−ε)(1−τ )γ d(x)γ ,

for some positive, large enough constant C. By comparison,

v(y) � v(y)

if y ∈ B . Setting in particular y = 0 we obtain

u(x) �
{
Cd(x)

} −2γ

(Q−ε)(1−τ )γ d(x)γ
{
τd(x)φ(0)

} −2
(Q−ε)(1−τ )γ d(x)γ .

It follows from the last estimate that

lim sup
x→x0

d(x)γ logu(x)

− logd(x)
� 2γ + 2

(Q − ε)(1 − τ)γ
.

Letting ε → 0 and then τ → 0, we obtain

lim sup
x→x0

d(x)γ logu(x)

− logd(x)
� 2γ + 2

Q
. (3.4)

Next we prove the lower estimate. As in the first part of the proof, we may assume a neighborhood W of x0 has been
chosen so that

q(y) � 1 + (Q + ε)d(y)γ

for y ∈ W . For x close to x0, we consider the sets A, Ax , Qx , Q̃x introduced in the proof of Lemma 8. In Qx we have

q(y) � 1 + (Q + ε)(1 + τ)γ d(x)γ

and then if u > 1 we have

�u � u1+θ in Qx,

where we now set θ = (Q + ε)(1 + τ)γ d(x)γ . Introduce the function

w(y) = d(x)
2
θ u

(
x̄ + d(x)ν(x̄) + d(x)y

)
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for y ∈ Q̃x . Then �w � w1+θ in Q̃x , and it follows by comparison that w � U in Q̃x , where U is the unique positive
solution to⎧⎨

⎩
�U = U1+θ in A,

U = ∞ on |y| = 1,

U = 0 on |y| = 2 + τ.

Thus our next aim will be to estimate from below the solution U when θ → 0. Since U is radial, it verifies U = U(r),
where r = |y| and⎧⎨

⎩
U ′′ + N−1

r
U ′ = U1+θ , 1 < r < 2 + τ,

U(1) = ∞,

U(2 + τ) = 0.

We introduce the change of variables

ρ =
{ 1

N
(1 − 1

rN ), if N � 3,

log r, if N = 2,

and denote V (ρ) = U(r). Then V verifies⎧⎨
⎩

V ′′ = g(ρ)V 1+θ , 0 < ρ < L,

V (0) = ∞,

V (L) = 0,

with g(ρ) = r2(N−1) and L is given by L = 1/N(1 − 1/(2 + τ)N) if N � 3, L = log(2 + τ) for N = 2.
Notice that V is convex, and hence thanks to the mean value theorem:

V (ρ) = −V ′(ξ)(L − ρ) � −V ′(L)(L − ρ) (3.5)

where ξ ∈ (ρ,L) and 0 < ρ < L. This shows that it is enough to obtain a lower estimate for −V ′(L).
Since V ′ < 0 and g(ρ) � (2 + τ)2(N−1) =: c, we get

V ′V ′′ � cV 1+θV ′.

An integration in (ρ,L) gives

−V ′(ρ)√
V ′(L)2 + (2c/(2 + θ))V (ρ)2+θ

� 1.

Integrating with respect to ρ in (0,L) and setting t = V (ρ), we obtain

∞∫
0

(
V ′(L)2 + 2c

2 + θ
t2+θ

)−1/2

dt � L. (3.6)

We take t = ((2 + θ)V ′(L)2/2c)
1

2+θ σ and denote

I (θ) =
∞∫

0

dσ√
1 + σ 2+θ

.

Then, it follows from (3.6) that

−V ′(L) �
(

2 + θ

2c

) 1
θ
(

1

L
I (θ)

) 2+θ
θ

. (3.7)

On the other hand, if we perform in the integral defining I the change of variable 1 + σ 2+θ = t−1, we obtain
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I (θ) = 1

2 + θ

1∫
0

(1 − t)
1

2+θ
−1t−

1
2 − 1

2+θ dt

= 1

2 + θ
B

(
1

2 + θ
,

1

2
− 1

2 + θ

)
= 1

2 + θ

�( 1
2+θ

)�( 1
2 − 1

2+θ
)

�( 1
2 )

,

where B and � stand for Euler Beta and Gamma functions, respectively. Since �(z) ∼ 1/z as z → 0, it follows that
I (θ) ∼ 2/θ as θ → 0, and hence I (θ) � 1/θ for small θ . This implies, thanks to (3.7), that

−V ′(L) �
(

2 + θ

2c

) 1
θ
(

1

Lθ

) 2+θ
θ

,

and then (3.5) gives

logV (ρ) � 1

θ
log

(
2 + θ

2c

)
+ 2 + θ

θ
log

(
1

Lθ

)
+ log(L − ρ).

Going back to the original variables, we arrive at

logU(y) � 1

θ
log

(
2 + θ

2c

)
+ 2 + θ

θ
log

(
1

Lθ

)
+ H

(|y|),
where H is a function which does not depend on θ . Taking into account that w(y) � U(y), and setting y = −2ν(x̄),
we get

log
(
d(x)

2
θ u(x)

)
� 1

θ
log

(
2 + θ

2c

)
+ 2 + θ

θ
log

(
1

Lθ

)
+ H(2),

and then, since θ = (Q + ε)(1 + τ)γ d(x), it follows that

lim inf
x→x0

d(x)γ logu(x)

− logd(x)
� 2γ + 2

(Q + ε)(1 + τ)γ
.

Finally, letting ε → 0 and τ → 0 we have

lim inf
x→x0

d(x)γ logu(x)

− logd(x)
� 2γ + 2

Q

which together with (3.4) proves (1.7). �
4. Uniqueness

This section will be devoted to obtain the uniqueness results Theorems 3 and 5. We begin with the case in which
q � 1 in Ω and q > 1 on ∂Ω .

Proof of Theorem 3. Let u, v be positive solutions to (1.3). Since q > 1 on ∂Ω , we have, thanks to Theorem 4, that

lim
x→x0

u(x)

v(x)
= 1

for every x0 ∈ ∂Ω . By the compactness of Ω , this limit holds uniformly, and so for small enough ε > 0 there exists
δ > 0 such that

(1 − ε)v � u � (1 + ε)v

for all x ∈ Ω such that d(x) � δ. Consider the problem{
�z = zq(x) in Ωδ,

z = u on ∂Ωδ,
(4.1)

with Ωδ = {x ∈ Ω: dist(x, ∂Ω) > δ}. Problem (4.1) has a unique positive solution, which is precisely u. Now it can
be checked that (1 − ε)v and (1 + ε)v are a sub and a supersolution respectively to (4.1), since q � 1 in Ω . It follows
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from the uniqueness of u that (1 − ε)v � u � (1 + ε)v in Ωδ . Thus this inequality is valid throughout Ω , and letting
ε → 0 we arrive at u = v, which shows the desired result. �

Now we consider the case where q may be less or equal than one somewhere in Ω , but it is strictly greater than 3
on ∂Ω and smooth in a neighborhood of ∂Ω .

Proof of Theorem 5. We first show that (1.5) holds for all β ∈ (0,
q0−3
q0−1 ). For this aim we construct sub and superso-

lutions near the boundary. We claim that for β ∈ (0,
q0−3
q0−1 ) and large enough B , the function

ū = A(x)d(x)−α(x) + Bd(x)β

is a supersolution in Uρ := {x ∈ Ω: dist(x, ∂Ω) < δ} if δ > 0 is small enough, where

A = (
α(α + 1)

) 1
q−1

and

α = 2/(q − 1).

We choose δ small to have d ∈ C2(Uδ) and q > 3 in Uδ . Notice that in the present situation α,A ∈ C2(Uδ). Thus a
direct computation gives:

�ū = d−α�A − 2αd−α−1∇A∇d − 2d−α logd∇A∇α − 2Ad−α−1∇α∇d + Aα(α + 1)d−α−2

+ 2Aαd−α−1 logd∇α∇d − Aαd−α−1�d − Ad−α logd�α + Ad−α(logd)2|∇α|2
+ Bβ(β − 1)dβ−2 + Bβdβ−1�d,

where the fact that the distance d(x) verifies |∇d| = 1 in Uδ has been used. Some further computations show that ū is
a supersolution provided that the following inequality holds,

d2�A − 2αd∇A∇d − 2d2 logd∇A∇α − 2Ad∇α∇d + 2Aαd logd∇α∇d − Aαd�d − Ad2 logd�α

+ Ad2(logd)2|∇α|2 + Bβ(β − 1)dα+β + Bβdα+β+1�d

�
(
A + Bdα+β

)q(x) − Aq(x),

where we have used that Aq(x)−1 = α(α + 1).
On the other hand, we also have by convexity that (x + y)q � xq + qxq−1y for all real positive numbers x, y and

thus ū will be a supersolution if

d2�A − 2αd∇A∇d − 2d2 logd∇A∇α − 2Ad∇α∇d + 2Aαd logd∇α∇d − Aαd�d

− Ad2 logd�α + Ad2(logd)2|∇α|2 + Bβ(β − 1)dα+β + Bβdα+β+1�d

� qBAq−1dα+β. (4.2)

Now, since 0 < β <
q0−3
q0−1 , we have 0 < β < 1 − α on ∂Ω , so that we can diminish δ further to have this inequality

in Uδ . Thus (4.2) can be written as

−Bβdα+β
(
(1 − β) − d�d

) + o
(
dα+β

)
� qAq−1Bdα+β (4.3)

in Uδ , where the o-term does not depend on B . Notice that the first term in the left-hand side of (4.3) is positive for
small δ, and thus if B > 1 (4.3) is implied by the inequality

−β
(
(1 − β) − d�d

) + o
(
dα+β

)
� qAq−1

in Uδ , which can be achieved by taking δ smaller if necessary, since β < 1. The election of δ is thus independent of B

as long as B > 1, and we have shown that u is a supersolution in Uδ if B > 1.
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Analogously it can be proved that

w = A(x)d(x)−α(x) − Bd(x)β

is a subsolution in the subset of Uδ where it is positive, and hence u = max{w,0} is a subsolution in the whole Ω .
Now let u be any solution to (1.3). We choose B large so that u � u � ū in d = δ, and then it follows by comparison

and Theorem 3 that u � u � ū in Uδ . This proves (1.5).
Finally, we show uniqueness. Let u, v be solutions to (1.3). Then, according to (1.5):

u(x) − v(x) = O
(
d(x)β

)
for every β ∈ (0,

q0−3
q0−1 ). Let Ω0 = {x ∈ Ω: u(x) < v(x)}. If Ω0 
= ∅, we would have u = v on ∂Ω0 (since u − v = 0

on ∂Ω) and �u � �v in Ω0. The maximum principle would imply u > v in Ω0, which is impossible. Thus Ω0 = ∅,
that is, u � v. The symmetric argument gives u = v, and uniqueness is shown. This concludes the proof. �
5. Dead core formation

In this final section we analyze the existence of dead cores for problem (1.3).

Proof of Theorem 6. The proof rests on the construction of a suitable weak supersolution to (1.3). For this aim,
consider Ω̃ = {x ∈ Ω: d(x) > δ} for a fixed small δ (we only require on δ that q > 1 in a neighborhood of ∂Ω̃). Set
Ω̃λ = λΩ̃ . We will construct a supersolution u = uλ ∈ C(Ω̃λ) ∩ H 1

loc(Ω̃λ) exhibiting the following features: uλ = ∞
on ∂Ω̃λ, uλ possesses a dead core O′

λ which uniformly fills Qλ as λ → ∞. Thus, once uλ has been obtained, we will
obtain by comparison that u � uλ in Ω̃λ for every positive solution u to (1.3), since u < +∞ on ∂Ω̃λ while uλ = +∞
on ∂Ω̃λ, and the assertions of the theorem will follow.

The supersolution uλ will be constructed separately in the sets Qλ and Ω̃λ \ Qλ. Let us proceed first in Qλ and for
a fixed number m0 > 0 let u = ũλ ∈ C2,η(Qλ) ∩ C(Qλ) be the solution to{

�u = uqλ(x) in Qλ,

u = m0 on ∂Qλ.

Then, v = vλ(x) ∈ C2,η(Q) ∩ C(Q) defined as

vλ(x) = ũλ(λx),

solves{
�v = λ2vq(x) in Q,

v = m0 on ∂Q.

For large λ, vλ develops a dead core Õλ = {x ∈ Q: vλ(x) = 0} such that Õλ ⊃ {x ∈ Q: dist(x, ∂Q) � d(λ)} with
d(λ) → 0 as λ → ∞. In fact, choose d0 > 0 small and set Qd0 = {x ∈ Q: dist(x, ∂Q) > d0}. Then ∂Qd0 can be
covered with a finite number of balls B ⊂ B ⊂ Q with the same radius, d0/2. In each of such balls B consider the
auxiliary problem{

�w = λ2f (w), x ∈ B,

w = m0, x ∈ ∂B,
(5.1)

where for u � 0, f (u) = min{uq0, uq1}, 0 < q0 � q1 < 1 being, respectively, the minimum and the maximum of q

extended to the region {x ∈ Q: dist(x, ∂Qd0) � d0/2}.
Due to the fact that vλ is subharmonic in Q we can assert that

vλ(x) � wλ(x), x ∈ B,

where wλ stands for the unique positive solution to (5.1). We now claim the existence of a critical λc, only depending
on d0, such that for λ � λc there exists a positive r(λ) so that wλ = 0 in the ball with the same center as B and
radius r(λ). From this fact and the subharmonicity of vλ it follows that vλ = 0 in Qd0 for all λ � λc. Therefore, the
dead cores properties stated above hold true (both for vλ and ũλ).
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Let us now proceed with the construction of uλ in Ω̃λ \ Qλ and to this goal set u = ûλ ∈ C2,η((Ω̃λ \ Qλ) ∪ ∂Qλ)

the unique solution to⎧⎨
⎩

�u = uqλ(x), x ∈ Ω̃λ \ Qλ,

u = ∞, x ∈ ∂Ω̃λ,

u = m0, x ∈ ∂Qλ.

(5.2)

Define:

uλ(x) =
{

ũλ(x), x ∈ Qλ,

ûλ(x), x ∈ Ω̃λ \ Qλ.

Then uλ is a weak supersolution to (1.3) provided m0 > 0 is large enough. In fact it is enough to show that

∂ûλ

∂ν
> 0 (5.3)

on ∂Qλ where ν stands for the outer unit normal to Ω̃λ \ Qλ on the component ∂Qλ of its boundary. To prove that
fact, let

W = {
x ∈ Ω̃λ \ Qλ: dist(x, ∂Qλ) < d1

}
for certain small positive d1. Observe that ûλ → û in C2,η(Ω̃λ \ Qλ) as m0 → ∞ where û is the minimal solution
to (5.2) with m0 = ∞. This means that ûλ remains finite on ∂W \ ∂Qλ while it increases with m0 on ∂Qλ. By
subharmonicity, ûλ < m0 in W provided m0 is large and (5.3) follows from the maximum principle. This finishes the
construction of the supersolution uλ with the desired properties.

To complete the proof let us next show the claim concerning problem (5.1). Consider the normalized case of the
ball B = B(0,R). In order to demonstrate the dead core features of (5.1) it is enough to handle the slight variation of
the problem in the annulus A = {x: ε0 < |x| < R} ⊂ B , 0 < ε0 < R, consisting in setting w = 0 on |x| = ε0. By radial
symmetry such problem in A can be written as⎧⎨

⎩
w′′ = λ2g(ρ)f (w), 0 < ρ < L,

w(0) = 0,

w(L) = m0,

(5.4)

where for ε0 < r < R the suitable modification of the change of variables ρ = ρ(r) introduced in the proof of Theo-
rem 7 has been performed. As in that proof, g(ρ) = r2(N−1) while now

L = log(R/ε0), and L = 1

N

(
1

εN
0

− 1

RN

)
,

in the cases N = 2 and N � 3, respectively.
In virtue of the uniqueness in the solvability of (5.4) it follows that its solution wλ satisfies

wλ(ρ) � ṽλ(ρ)

0 < ρ < L, where v = ṽλ(ρ) is the unique solution to⎧⎪⎨
⎪⎩

v′′ = λ2ε
2(N−1)
0 f (v), 0 < ρ < L,

v(0) = 0,

w(L) = m0.

(5.5)

Thus the proof of the claim reduces to perform a dead core analysis in problem (5.5). In such case, direct integration
shows that for λ greater than some critical λc, ṽλ(ρ) vanishes in the interval (0, ρ(λ)) where ρ(λ) is expressed as

ρ(λ) = L − 1

εN−1
0 λ

m0∫
0

ds√
F(s)

, (5.6)

where F(u) = ∫ u

0 f (s) ds. More precisely, λc is given by the unique value of λ > 0 which makes zero the difference
in (5.6). This concludes the proof of Theorem 6. �



902 J. García-Melián et al. / Ann. I. H. Poincaré – AN 26 (2009) 889–902
Acknowledgements

Supported by MEC and FEDER under grant MTM2005-06480 and UBA X066 and ANPCyT PICT No. 03-05009.
J.D. Rossi is a member of CONICET (Argentina).

We thank the referee for bringing into our attention some relevant references.

References

[1] H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971/72) 125–146.
[2] C. Bandle, M. Marcus, Sur les solutions maximales de problèmes elliptiques non linéaires : bornes isopérimetriques et comportement asymp-

totique, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990) 91–93.
[3] C. Bandle, M. Marcus, ‘Large’ solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behaviour, J. Anal. Math. 58

(1992) 9–24.
[4] L. Bieberbach, �u = eu und die automorphen Funktionen, Math. Ann. 77 (1916) 173–212.
[5] M. Chuaqui, C. Cortázar, M. Elgueta, C. Flores, J. García-Melián, R. Letelier, On an elliptic problem with boundary blow-up and a singular

weight: the radial case, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 1283–1297.
[6] M. Chuaqui, C. Cortázar, M. Elgueta, J. García-Melián, Uniqueness and boundary behaviour of large solutions to elliptic problems with

singular weights, Comm. Pure Appl. Anal. 3 (2004) 653–662.
[7] M. Del Pino, R. Letelier, The influence of domain geometry in boundary blow-up elliptic problems, Nonlinear Anal. 48 (6) (2002) 897–904.
[8] M. Delgado, J. Lopez-Gomez, A. Suárez, Characterizing the existence of large solutions for a class of sublinear problems with nonlinear

diffusion, Adv. Differential Equations 7 (2002) 1235–1256.
[9] M. Delgado, J. Lopez-Gomez, A. Suárez, Combining linear and nonlinear diffusion, Adv. Nonlinear Stud. 4 (2004) 273–287.

[10] M. Delgado, J. Lopez-Gomez, A. Suárez, Singular boundary value problems of a porous media logistic equation, Hiroshima Math. J. 34 (2004)
57–80.

[11] G. Díaz, R. Letelier, Explosive solutions of quasilinear elliptic equations: Existence and uniqueness, Nonlinear Anal. 20 (1993) 97–125.
[12] Y. Du, Q. Huang, Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math. Anal. 31 (1999) 1–18.
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