

Available online at www.sciencedirect.com

Ann. I. H. Poincaré – AN 26 (2009) 903–915

www.elsevier.com/locate/anihpc

Entire spacelike radial graphs in the Minkowski space, asymptotic to the light-cone, with prescribed scalar curvature $*$

Pierre Bayard^a, Philippe Delanoë^{b,∗}

^a *Instituto de Física y Matemáticas, U.M.S.N.H. Ciudad Universitaria, CP. 58040 Morelia, Michoacán, Mexico*

^b *Université de Nice-Sophia Antipolis, Laboratoire J.-A. Dieudonné, Parc Valrose, 06108 Nice Cedex 2, France*

Received 4 July 2007; accepted 10 March 2008

Available online 27 April 2008

Abstract

We prove the existence and uniqueness in $\mathbb{R}^{n,1}$ of entire spacelike hypersurfaces contained in the future of the origin *O* and asymptotic to the light-cone, with scalar curvature prescribed at their generic point *M* as a negative function of the unit vector pointing in the direction of \overline{OM} , divided by the square of the norm of \overline{OM} (a dilation invariant problem). The solutions are seeked as graphs over the future unit-hyperboloid emanating from *O* (the hyperbolic space); radial upper and lower solutions are constructed which, relying on a previous result in the Cartesian setting, imply their existence.

© 2008 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

On prouve l'existence et l'unicité dans R*n,*¹ d'hypersurfaces entières de genre espace contenues dans le futur de l'origine *O* et asymptotes au cône de lumière, dont la courbure scalaire est prescrite au point générique *M* comme fonction négative du vecteur unité pointant en direction de \overrightarrow{OM} , divisée par le carré de la norme du vecteur \overrightarrow{OM} (un problème invariant par homothétie). Les solutions sont cherchées comme graphes sur l'hyperboloïde-unité futur émanant de *O* (l'espace hyperbolique) ; des solutions supérieure et inférieure radiales sont construites qui, d'après un résultat antérieur en cartésien, impliquent l'existence de telles solutions.

© 2008 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

MSC: 53C40; 35J65; 34C11

Keywords: Radial graphs; Spacelike; Entire solution; Prescribed scalar curvature; Upper and lower barriers

0. Introduction

The Minkowski space $\mathbb{R}^{n,1}$ is the affine Lorentzian manifold $\mathbb{R}^n \times \mathbb{R}$ endowed with the metric

$$
ds^2 = dX'^2 - dX_{n+1}^2
$$
, where $dX'^2 = dX_1^2 + \cdots + dX_n^2$,

Corresponding author.

E-mail addresses: bayard@ifm.umich.mx (P. Bayard), philippe.delanoe@unice.fr (P. Delanoë).

The first author was supported by the project DGAPA-UNAM IN 101507; the second author is supported by the CNRS.

^{0294-1449/\$ –} see front matter © 2008 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.anihpc.2008.03.008

setting $X = (X', X_{n+1}) \in \mathbb{R}^n \times \mathbb{R}$, and time-oriented by $dX_{n+1} > 0$. Distinguishing the origin O of $\mathbb{R}^{n,1}$, let $g X =$
 $\mathbb{H} = \{$ ${x \in \mathbb{R}^{n,1}, |\overrightarrow{Ox}|^2 = |x'|^2 - x_{n+1}^2 = -1, x_{n+1} > 0},$

be the future unit-hyperboloid, model of the hyperbolic space in $\mathbb{R}^{n,1}$. If φ is a real function defined on \mathbb{H} , we define the *radial graph* of *ϕ* by $\mathbb{H} = \{x \in \mathbb{R}^n :$ future unit-h
dial graph of
graph_H $\varphi = \{$

graph_{II}
$$
\varphi = \{X \in \mathbb{R}^{n,1}, \overrightarrow{OX} = e^{\varphi(x)} \overrightarrow{Ox}, x \in \mathbb{H}\}.
$$

\nas a hypersurface contained in the future open solic
\n $C^+ = \{X \in \mathbb{R}^{n,1}, X_{n+1} > |X'|\}.$

This is a hypersurface contained in the future open solid cone

$$
C^+ = \{ X \in \mathbb{R}^{n,1}, \ X_{n+1} > |X'| \}.
$$

We say that φ is spacelike if its graph is a spacelike hypersurface, which means that the metric induced on it is Riemannian. Conversely, a spacelike and connected hypersurface in C^+ is the radial graph of a uniquely determined function $\varphi : \mathbb{H} \to \mathbb{R}$. Of course, such a graph may also be considered as the Cartesian graph of mined function $\varphi : \mathbb{H} \to \mathbb{R}$. Of course, such a graph may also be considered as the Cartesian graph of some function $u:\mathbb{R}^n\to\mathbb{R}$

$$
\operatorname{graph}_{\mathbb{R}^n} u = \left\{ \left(x', u(x') \right), \ x' \in \mathbb{R}^n \right\},\
$$

and the correspondence between the two representations is bijective passing from the Cartesian chart $X = (X', X_{n+1})$ restricted to C^+ , to the polar chart $(x, \rho) \in \mathbb{H} \times (0, \infty)$ of C^+ defined by:

$$
\rho = \sqrt{-|\overrightarrow{OX}|^2}, \quad \overrightarrow{Ox} = \frac{1}{\rho}\overrightarrow{OX}.
$$

Recall that the principal curvatures $(\kappa_1, \ldots, \kappa_n)$ at a point of a spacelike hypersurface are the eigenvalues of its shape endomorphism dN , where N is the future oriented unit normal field, and the *m*th mean curvature (denoted by H_m) is the *m*th elementary symmetric function of its principal curvatures: $H_m = \sigma_m(\kappa_1, \ldots, \kappa_n)$. For each real $\lambda > 0$, the cone C^+ is globally invariant under the ambient dilation $X \mapsto \lambda X$ of $\mathbb{R}^{n,1}$ and the above *m*th mean curvature is $(-m)$ homogeneous; specifically, it transforms like $H_m(\lambda X) = \lambda^{-m} H_m(X)$. It is thus natural to pose, as in [6, Theorem 1], the following inverse problem for H_m : given a positive function $h > 0$ on \mathbb{H} tending to 1 at infinity, find a spacelike the following inverse problem for H_m : given a positive function $h > 0$ on \mathbb{H} tending to 1 at infinity, find a spacelike
hypersurface *Σ* in *C*⁺, asymptotic to ∂*C*⁺ at infinity, such that, for each point *X* at *X* is given by:

$$
\widetilde{H_m} := \frac{1}{\binom{n}{m}} H_m(X) = \frac{1}{(-|\overrightarrow{OX}|^2)^{\frac{m}{2}}} \left[h(x) \right]^m, \quad \text{with } \overrightarrow{Ox} = \frac{\overrightarrow{OX}}{\sqrt{-|\overrightarrow{OX}|^2}}.
$$
\n(1)

By construction, this problem is dilation invariant; moreover, as explained below, the positivity of *h* makes it elliptic. Actually, introducing the positivity cone [9] of σ_m : *m* mstructi
Ily, intr
 $\Gamma_m = \{$

$$
\Gamma_m = \{ \kappa \in \mathbb{R}^n, \ \forall i = 1, \ldots, m, \ \sigma_i(\kappa) > 0 \},
$$

and recalling McLaurin's inequalities (satisfied on *Γm*):

$$
0<(\widetilde{H_m})^{\frac{1}{m}}\leqslant (\widetilde{H_{m-1}})^{\frac{1}{m-1}}\leqslant \cdots \leqslant \widetilde{H}_2^{\frac{1}{2}}\leqslant \widetilde{H}_1,
$$

we note that, if a hypersurface $\Sigma = \text{graph}_{\mathbb{R}^n} u$ solves (1) with the asymptotic condition, then the time-function *u* must assume a minimum on Σ and, as readily checked (using e.g. [3, p. 245]), the principal curvatures of Σ at such a minimum point of *u* must lie in *Γm*. Now Eq. (1) combined with McLaurin's inequalities forces the principal curvatures of *Σ* to stay in *Γm everywhere*. Let us call any spacelike hypersurface of *C*⁺ having this property, *m*-admissible; accordingly, a function $\varphi : \mathbb{H} \to \mathbb{R}$ (resp. *u* : $\mathbb{R}^n \to \mathbb{R}$) is called *m*-admissible, provided graph_{$\mathbb{H} \varphi$ (resp. graph_{\mathbb{R}^n} *u*)} is so. The condition of *m*-admissibility is local (and open); one may thus speak of a function $\varphi : \mathbb{H} \to \mathbb{R}$ being *m*admissible *at a point* (hence nearby) whenever graph $\# \varphi$ is so at that point. We will seek the solution hypersurface *Σ* as the radial graph of some *m*-admissible function $\varphi : \mathbb{H} \to \mathbb{R}$ vanishing at infinity (to comply with the asymptotic condition). Eq. (1) then reads

$$
F_m(\varphi) = h,\tag{2}
$$

with the radial operator F_m defined by:

$$
F_m(\varphi) = h,
$$

he radial operator F_m defined by:

$$
F_m(\varphi) = e^{\varphi} \left[\widetilde{H_m}(X) \right]^{\frac{1}{m}}, \quad X \in \text{graph}_{\mathbb{H}} \varphi.
$$

For briefness, we will not compute here explicitly the general expression of the operator *Fm* (keeping it for a further study)—its restriction to radial functions will suffice (see Section 3.3 below). We will rely instead on the well-known corresponding Cartesian expression (see e.g. [2]) combined with a few basic properties of *Fm* recorded in the next section (and proved with elementary arguments).

Furthermore, we will essentially restrict to the case *m* = 2 (and freely say 'admissible', for short, instead of '2-admissible'). Since H_2 is related to the scalar curvature *S* by $S = -2H_2$, our present study is really about the prescription of the scalar curvature, at a generic point *X* of a radial graph, as a negative function of $x \in \mathbb{H}$ (with *x* given as in (1)) divided by the square of the norm of \overrightarrow{OX} . Aside from the origin *O* of the ambient space $\mathbb{R}^{n,1}$, we will distinguish a point *o* in H and set $r = r(x)$ for the hyperbolic distance from *o* to $x \in H$; accordingly, a function on H will be called *radial* whenever it factors through a function of *r* only. Our main result is the following:

Theorem 1. *For* $\alpha \in (0, 1)$ *, let* $h : \mathbb{H} \to (0, \infty)$ *be a function of class* $C^{2, \alpha}$ *with*

$$
\lim_{r(x)\to+\infty}h(x)=1.
$$

Assume that the functions h^- *and* h^+ *defined on* \mathbb{R}^+ *by*

$$
h^-(r) = \sup_{r(x)=r} h(x)
$$
 and $h^+(r) = \inf_{r(x)=r} h(x)$

satisfy

$$
r(x)=r
$$

$$
r(x)=r
$$

$$
\int_{0}^{+\infty} (h^{-} - 1)_{+} dr < +\infty, \qquad \int_{0}^{+\infty} (1 - h^{+})_{+} dr < +\infty,
$$

where $(h^{-} - 1)_{+}$ $(\text{resp. } (1 - h^{+})_{+})$ *means the positive part of* $h^{-} - 1$ $(\text{resp. } 1 - h^{+})$ *. Then the equation*

$$
F_2(\varphi) = h \tag{3}
$$

has a unique admissible solution of class $C^{4,\alpha}$ *such that* $\lim_{x \to \infty} \varphi(x) = 0$ *.*

Remark 1. From Lemma 4 below, anytime the function *h* is radial, the integral convergence conditions of Theorem 1 appears necessary for the existence of bounded solutions.

An analogous problem in the Euclidean setting is solved for the Gauss curvature in [6, Théorème 1], and in [13,5] some related problems are studied. In the Lorentzian setting, the prescription of the mean curvature for entire graphs is studied in [1] and that of the Gauss curvature in [11,8,4]. In [3], the scalar curvature is prescribed in Cartesian coordinates $x_{n+1} = u(x_1, ..., x_n)$.

The outline of the paper is as follows. In Section 1, we prove that there exists at most one solution vanishing at infinity for Eq. (2) with $m \in \{1, ..., n\}$. In Section 2, relying on [3], we prove the existence of a solution when $m = 2$, provided upper and lower barriers are known. The latter are constructed, as radial functions, in Section 3.

1. Uniqueness

We first require a few basic properties of the operator F_m . It is a non-linear second order scalar differential operator defined on m -admissible real functions on \mathbb{H} . The dilation invariance of (1) implies the identity:

$$
F_m(\psi + c) \equiv F_m(\psi),\tag{4}
$$

for every *m*-admissible function $\psi : \mathbb{H} \to \mathbb{R}$ and constant *c*; linearizing at ψ yields

$$
dF_m(\psi)(1) \equiv 0.
$$

Furthermore, we have:

Lemma 1. For each *m*-admissible function ψ , the linear differential operator $dF_m(\psi)$ is elliptic everywhere on \mathbb{H} , *with positive-definite symbol.*

Summarizing for later use, the expression of $dF_m(\psi)$, in the chart $x' \in \mathbb{R}^n$ of \mathbb{H} , at a fixed *m*-admissible function ψ
 ds like:
 $\delta \psi \mapsto dF_m(\psi)(\delta \psi) = \sum_{m} B_{ij} \frac{\partial^2}{\partial x' \partial x'} (\delta \psi) + \sum_{m} B_{i} \frac{\partial}{\partial x'} (\delta \psi$ reads like:

$$
\delta\psi \mapsto dF_m(\psi)(\delta\psi) = \sum_{1 \le i,j \le n} B_{ij} \frac{\partial^2}{\partial x'_i \partial x'_j} (\delta\psi) + \sum_{i=1}^n B_i \frac{\partial}{\partial x'_i} (\delta\psi), \tag{5}
$$

with the $n \times n$ matrix (B_{ii}) symmetric positive definite (depending on ψ , of course, like the B_i 's). We now proceed to proving Lemma 1.

Proof. We require the Cartesian operator $v \mapsto G_m(v) := F_m(\psi)$ defined on *m*-admissible functions $v : \mathbb{R}^n \to \mathbb{R}$ by:

$$
\text{graph}_{\mathbb{R}^n} \ v = \text{graph}_{\mathbb{H}} \ \psi. \tag{6}
$$

The ellipticity of $dG_m(v)$ and the positive-definiteness of its symbol are well-known [10,14,2]. Its expression thus starts out like graph_{R*m*} $v =$ graph_{Rl} v
Ilipticity of $dG_m(v)$
out like
 $dG_m(v)(\delta v) = \sum_{n=1}^{\infty}$

$$
dG_m(v)(\delta v) = \sum_{1 \le i, j \le n} A_{ij} \frac{\partial^2}{\partial X'_{i} \partial X'_{j}} (\delta v) + \text{ lower order terms},
$$

with the matrix (A_{ij}) symmetric positive definite. The *m*-admissible function ψ on H such that (6) holds, is related to *v*, in the chart $x' = (x_1, \ldots, x_n) \in \mathbb{R}^n$, by: $\begin{aligned} \n\lim_{z \to 0} \text{Im}(z) &= 1, \ldots, \\ \n\frac{1}{2} \exp\left[\n\begin{array}{cc} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\n\right] \n\end{aligned}$

$$
v(X') = \sqrt{1 + |x'|^2} \exp[\psi(x')], \quad \text{with } \overrightarrow{OX'} = e^{\psi(x')} \overrightarrow{Ox'}.
$$

Varying ψ by $\delta \psi$ thus yields for the corresponding variation δv of v the following expression: $\delta v(X') = w(X')\delta \psi(x')$, with thus yie
 $v - \sum_{n=0}^{\infty}$

$$
w(X') = \left[v - \sum_{i=1}^{n} X'_i \frac{\partial v}{\partial X'_i} \right] (X').
$$

Since the graph lies in C^+ and it is spacelike, we have $v(X') > |X'|$ and (using Schwarz inequality)

$$
\sum_{i=1}^n X_i' \frac{\partial v}{\partial X_i'} < |X'|,
$$

therefore $w > 0$. Moreover, up to lower order terms, we have:

$$
\sum_{i=1}^{N} \frac{\partial X_i'}{\partial X_i'} \delta X_i'
$$

ore $w > 0$. Moreover, up to lower order terms, we have:

$$
\frac{\partial^2}{\partial X_i' \partial X_j'} (\delta v)(X') = w(X') \sum_{1 \le i,j \le n} \frac{\partial^2}{\partial x_k' \partial x_l'} (\delta \psi)(x') \frac{\partial x_k'}{\partial X_i'} \frac{\partial x_l'}{\partial X_j'}
$$

with $x'_k = \frac{X'_k}{\sqrt{v^2(X') - |X'|^2}}$. We thus find in (5): $\frac{1}{(1-|X'|^2)}$
) \sum

$$
B_{kl} = w(X') \sum_{1 \le i,j \le n} A_{ij} \frac{\partial x'_k}{\partial X'_i} \frac{\partial x'_l}{\partial X'_j}
$$

and the ellipticity of $\delta \psi \mapsto dF_m(\psi)(\delta \psi)$ follows. \Box

We need also a more specific (ellipticity) property of the operator F_m , namely:

Lemma 2. For each couple (φ_0, φ_1) of *m*-admissible real functions on H and each point $x_0 \in H$ where $\varphi = \varphi_1 - \varphi_0$ *assumes a local extremum, the whole segment* $t \in [0, 1] \to \varphi_t = \varphi_0 + t\varphi$ *consists of m-admissible functions at the point x*0*.*

Proof. The analogue of Lemma 2 is fairly standard in the Cartesian setting, using the expression of the operator *Gm* introduced in the proof of Lemma 1 (see [2]) together with the well-known fact: $\forall \kappa \in \Gamma_m$, $\forall i \in \{1, ..., n\}$, $\frac{\partial \sigma_m}{\partial \kappa_i}(\kappa) > 0$. Here, we will simply reduce the proof to that setting (and let the reader complete the argument). Let us first normalize

the situation at an extremum point $x_0 \in \mathbb{H}$ of φ . From (4), we may assume $\varphi(x_0) = 0$. Moreover, we may assume that φ has a local minimum at x_0 (if not, exchange φ_0 and φ_1). Finally, setting graph_{*n}* φ_a = graph_{*p_n}* u_a for $a = 0, 1$, and</sub></sub> performing if necessary a suitable Lorentz transform (hyperbolic rotation), we may take $x_0 = (0, 1) \in \mathbb{R}^n \times \mathbb{R}$ thus with $u_a(0) = 1$. For $t \in [0, 1]$ and near x_0 , set $\Sigma_t = \text{graph}_{\mathbb{R}^n} u_t$ for the hypersurface graph_{$\mathbb{H} \varphi_t$. We must prove that} Σ_t is *m*-admissible at x_0 . For $X_t \in \mathbb{R}^{n,1}$ lying in Σ_t , we have: $\overrightarrow{OX_t} = e^{t\varphi(x)}\overrightarrow{OX_0}$ with $\overrightarrow{OX} = \overrightarrow{OX_0}/\sqrt{-|\overrightarrow{OX_0}|^2}$. In the Cartesian setting, we thus have (sticking to the R*n*-valued charts used in the preceding proof):

$$
u_t(X'_t) = e^{t\varphi(x')}u_0[e^{-t\varphi(x')}X'_t],
$$

here with $x' = X'_0 / \sqrt{u_0^2(X'_0) - |X'_0|^2}$, $X'_t = e^{t\varphi(x')} X'_0$, and $(X'_0, u_0(X'_0)) \in \text{graph}_{\mathbb{R}^n} u_0$; moreover, the lemma boils down to proving that u_t is *m*-admissible at $X'_t = 0$. A routine calculation yields at $X'_t = 0$ the equalities:

$$
\frac{\partial u_t}{\partial X'_{ti}}(0) = \frac{\partial u_0}{\partial X'_{0i}}(0), \qquad \frac{\partial^2 u_t}{\partial X'_{ti}\partial X'_{tj}}(0) = \frac{\partial^2 u_0}{\partial X'_{0i}\partial X'_{0j}}(0) + t \frac{\partial^2 \varphi}{\partial X'_i \partial X'_j}(0),
$$

where, in the second one, the matrix $[\frac{\partial^2 \varphi}{\partial x'_i}(\frac{\partial x'_j}{\partial x_j'}(0)]_{1\leq i,j\leq n}$ is non-negative. We readily infer [2] that, for each $t \in [0, 1]$, the principal curvatures $\kappa_{1t} \leq \cdots \leq \kappa_{nt}$ of the hypersurface Σ_t at x_0 (each repeated according to its multiplicity) satisfy: $\forall i \in \{1, \ldots, n\}, \ \kappa_{it} \geq \kappa_{i0}$. The latter implies that the *n*-tuple $(\kappa_{1t}, \ldots, \kappa_{nt})$ lies in the cone Γ_m , since $(\kappa_{10},\ldots,\kappa_{n0})\in\Gamma_m$. \Box

Theorem 2. *The operator* F_m *is one-to-one on m-admissible functions of class* C^2 *vanishing at infinity.*

Proof. Let us argue by contradiction. Let φ_0 , φ_1 be two *m*-admissible C^2 functions vanishing at infinity and having the same image by F_m . For $t \in [0, 1]$, set $\varphi_t = \varphi_0 + t\varphi$ with $\varphi = \varphi_1 - \varphi_0$. Since φ vanishes at infinity, if $\varphi \neq 0$, it assumes a non-zero local extremum (a maximum, say, with no loss of generality) at some point $x_0 \in \mathbb{H}$. By Lemma 2, the whole segment $t \in [0, 1] \rightarrow \varphi_t$ is *m*-admissible in a neighborhood Ω of x_0 where φ thus satisfies the second Troor. Let us argue by Contradiction: Let φ_0 , φ_1 be two *m*-admissible c Tunctions vanishing at infinity and naving the same image by *F_m*. For *t* ∈ [0, 1], set $\varphi_t = \varphi_0 + t\varphi$ with $\varphi = \varphi_1 - \varphi_0$. Sin above with Hopf's strong Maximum Principle (see [7]), we get $\varphi \equiv \varphi(x_0)$ throughout Ω . By connectedness, we infer $\varphi \equiv \varphi(x_0) \neq 0$ on the whole of H, contradicting lim_{*r*(x)→+∞} $\varphi = 0$. So, indeed, we must have $\varphi \equiv 0$, in other words F_m is one-to-one. \Box

2. Existence of a solution reduced to that of upper and lower solutions

Theorem 3. Let $h : \mathbb{H} \to \mathbb{R}$ be a function of class $C^{2,\alpha}$, for some $\alpha \in (0,1)$, such that there exists $\varphi^- \in C^{4,\alpha}(\mathbb{H})$ with graph_H φ^- *strictly convex and spacelike, and* $\varphi^+ \in C^2(\mathbb{H})$ *with* graph_H φ^+ *spacelike, satisfying*

$$
F_2(\varphi^-) \geq h
$$
, $F_2(\varphi^+) \leq h$ and $\lim_{r(x) \to +\infty} \varphi^{\pm} = 0$.

Then the equation

$$
F_2(\varphi) = h
$$

has a unique admissible solution of class $C^{4,\alpha}$ *such that* $\lim_{r(x)\to+\infty} \varphi(x) = 0$ *. Moreover* φ *satisfies the pinching*:

$$
\varphi^-\leqslant\varphi\leqslant\varphi^+.
$$

Remark 2. Since φ is a bounded function, the hypersurface $M = \text{graph}_{\mathbb{H}}(\varphi)$ is entire. More precisely, denoting by φ _{min} and φ _{max} two constants such that φ _{min} $\leq \varphi \leq \varphi$ _{max}, the function $u : \mathbb{R}^n \to \mathbb{R}$ such that graph_{$\mathbb{R}^n(u) = \text{graph}_{\mathbb{H}}(\varphi)$} satisfies $u_{\min} \le u \le u_{\max}$ where u_{\min} (resp. u_{\max}) is such that $\text{graph}_{\mathbb{R}^n}(u_{\min}) = \text{graph}_{\mathbb{H}}(\varphi_{\min})$ (resp. $\text{graph}_{\mathbb{R}^n}(u_{\max}) =$ graph_{*HI*}(ϕ_{max})). Noting that the graphs of u_{min} and u_{max} are hyperboloids, we see that the inequality $u \ge u_{\text{min}}$ implies that *M* is entire, and the inequality $u \leq u_{\text{max}}$ implies that *M* is asymptotic to the lightcone.

Proof. The asserted uniqueness follows from Theorem 2; so let us focus on the existence part. A straightforward comparison principle, using (5) and Lemma 2, implies $\varphi^- \leq \varphi^+$ on \mathbb{H} . Let $u^-, u^+ : \mathbb{R}^n \to \mathbb{R}$ be such that $graph_{\mathbb{R}^n}(u^{\pm}) = graph_{\mathbb{H}}(\varphi^{\pm})$. Set *H* for the function on $\mathbb{R}^{n,1}$ defined by:

$$
H(X) = \frac{\binom{n}{2}}{|X_{n+1}|^2 - |X'|^2} \left[h \left(\frac{X}{\sqrt{|X_{n+1}|^2 - |X'|^2}} \right) \right]^2. \tag{7}
$$

The spacelike functions u^- and u^+ satisfy:

$$
H_2[u^-] \ge H(\cdot, u^-), \quad H_2[u^+] \le H(\cdot, u^+), \quad u^- \le u^+ \quad \text{and} \quad \lim_{|x'| \to \infty} \left[u^{\pm}(x') - |x'| \right] = 0,
$$

where $H_2[u^{\pm}]$ stands for the second mean curvature of the graph of u^{\pm} . Theorem 1.1 in [3] asserts the existence of a function $u : \mathbb{R}^n \to \mathbb{R}$, belonging to $C^{4,\alpha}$, spacelike, such that $H_2[u] = H(\cdot, u)$ in \mathbb{R}^n , $\lim_{|x'| \to +\infty} u(x') - |x'| = 0$, and $u^- \leq u \leq u^+$. The function $\varphi : \mathbb{H} \to \mathbb{R}$ such that graph_{H(φ) = graph_{Rn}(u) is a solution of our original prob-} lem. \Box

3. Construction of radial upper and lower solutions

In the sequel of the paper, we first solve the Dirichlet problem on a bounded set in \mathbb{H} (Section 3.1) then proceed to proving the existence and uniqueness of an entire solution in the radial case and study its properties (Sections 3.2 and 3.3); finally, we construct the required radial barriers (Section 3.4).

3.1. The Dirichlet problem

Theorem 4. *Given* $\alpha \in (0, 1)$ *, let* Ω *be a uniformly convex bounded open subset of* \mathbb{H} *with* $C^{2,\alpha}$ *boundary,* $h : \Omega \to \mathbb{R}$ *be a positive function of class* $C^{2,\alpha}$, *and* $\varphi_0 : \overline{\Omega} \to \mathbb{R}$ *be a spacelike function of class* $C^{2,\alpha}$ *whose radial graph is strictly convex. Then the Dirichlet problem*

$$
F_2(\varphi) = h \quad \text{in } \Omega, \qquad \varphi = \varphi_0 \quad \text{on } \partial \Omega,\tag{8}
$$

*has a unique admissible solution of class C*⁴*,α.*

Proof. We first prove uniqueness, by contradiction: let φ_0 , φ_1 be two admissible solutions of (8), and, for $t \in [0, 1]$, set $\varphi_t = \varphi_0 + t\varphi$ with $\varphi = \varphi_1 - \varphi_0$. Since φ vanishes on $\partial \Omega$, if $\varphi \neq 0$, it assumes a non-zero local extremum. Following the arguments of the proof of Theorem 2 we obtain a contradiction with the Hopf's strong Maximum Principle. Let us focus now on the existence part. Setting $x = (x', \sqrt{1 + |x'|^2}) \in \mathbb{R}^n \times \mathbb{R}$, and φ = φ ₁ − φ ₀. Since φ vanishes on $\partial \Omega$, i
guments of the proof of Theorem 2 we obtain a control us now on the existence part. Setting $x = (x', \sqrt{1 + 1})$.
 $\Omega' = \{e^{\varphi_0(x)}x', x \in \Omega\}, \qquad u_0(e^{\varphi_0(x)}x') = e^{\var$

$$
\Omega' = \left\{ e^{\varphi_0(x)} x', \ x \in \Omega \right\}, \qquad u_0 \left(e^{\varphi_0(x)} x' \right) = e^{\varphi_0(x)} \sqrt{1 + |x'|^2},
$$

problem (8) is equivalent to the Dirichlet problem:

 $H_2[u] = H(\cdot, u)$ in Ω' , $u = u_0$ on $\partial \Omega'$ *,* (9)

where *H*₂ is the scalar curvature operator acting on spacelike graphs defined on *Ω'* ⊂ \mathbb{R}^n , and *H* is defined on *Ω'* × \mathbb{R} by (7).

Let us consider the Banach space
 $E = \{\bar{v} \in C^{2,\alpha}(\overline{\Omega'})$, $\bar{v} = 0$ by (7).

Let us consider the Banach space

$$
E = \{ \overline{v} \in C^{2,\alpha}(\overline{\Omega'}), \ \overline{v} = 0 \text{ on } \partial \Omega' \},
$$

and the open convex subset of *E*

$$
U = \left\{ \overline{v} \in E, \ \sup_{\overline{\Omega'}} |D(\overline{v} + u_0)| < 1 \right\}.
$$

We first note that for every $\overline{v} \in U$, graph_{$\mathbb{R}^n(\overline{v}+u_0)$ belongs to the dependence set *K* of graph \mathbb{R}^n *u*₀. Here, by definition,} $X \in \mathbb{R}^{n,1}$ belongs to *K* if for every $\xi \in \mathbb{R}^{n,1}$ with $\langle \xi, \xi \rangle \leq 0$ and $\xi \neq 0$, the ray $X + \mathbb{R}$. ξ meets graph_{R*n*} *u*₀. The set *K* is a compact subset of the open cone *C*+*.*

For each $(\bar{v}, t) \in U \times [0, 1]$, we know from [2,15] that the Dirichlet problem

$$
H_2[u] = tH(\cdot, \overline{v} + u_0) + (1 - t)H_2[u_0] \quad \text{in } \Omega', \qquad u = u_0 \quad \text{on } \partial\Omega'
$$
 (10)

has a unique admissible solution (belonging to $C^{4,\alpha}$). We define the map

$$
T:[0,1]\times U\to E,
$$

$$
(t,\,\overline{v})\mapsto\overline{u}
$$

where \bar{u} is such that $u = \bar{u} + u_0$ is the admissible solution of (10).

For each $t \in [0, 1]$ the fixed points of $T(t, \cdot)$ are under control: indeed, suppose $T(t, u) = u$, then the function $u = u + u_0$ solves the Dirichlet problem

$$
H_2[u] = \tilde{H}(\cdot, u) \quad \text{in } \Omega', \qquad u = u_0 \quad \text{on } \partial \Omega'
$$
 (11)

where

$$
\tilde{H}(\cdot, u) = t H(\cdot, u) + (1 - t) H_2[u_0].
$$
\n(12)

The following *a priori* estimates are carried out in [3, p.251]: there exist $\vartheta \in (0, 1)$ and $C > 0$ such that

$$
\sup_{\overline{\Omega'}} |Du| < 1 - \vartheta \quad \text{and} \quad \|u\|_{2,\alpha,\overline{\Omega'}} < C. \tag{13}
$$

The constants ϑ , C only depend on diam(Ω'), inf_K \tilde{H} , $\|\tilde{H}\|_{2,K}$, $\|u_0\|_{4,\overline{\Omega'}}$, and on a positive lower bound on the min-

imum eigenvalue of $D^2 u_0$ on $\overline{\Omega'}$. The expression of \tilde{H} implies that they are independent of the parameter $t \in [0, 1]$.
In order to prove that $T(1, \cdot)$ has a fixed point, we now consider the (nonempty) convex In order to prove that $T(1, \cdot)$ has a fixed point, we now consider the (nonempty) convex subset of the Banach space *E*:

$$
U_{\vartheta,C} = \left\{ \overline{v} \in U, \, \left| D(\overline{v} + u_0) \right| < 1 - \vartheta \text{ and } \|\overline{v} + u_0\|_{2,\alpha,\overline{\Omega'}} < C \right\},
$$

and the map $T : [0, 1] \times \overline{U}_{\vartheta, C} \to E$. Then the following properties hold:

- (i) *T* is continuous with compact image due to the above estimates on the solutions of the Dirichlet problem (10);
- (ii) $T(0, \cdot) \equiv 0$ by definition;
- (iii) for every $t \in [0, 1]$, $T(t, \cdot)$ does not have any fixed point on $\partial U_{\vartheta, C}$, since each fixed point of $T(t, \cdot)$ belongs to $U_{\vartheta, C}$ by the definitions of ϑ and *C*.

An elementary version of the Leray–Schauder theorem (due to Browder and Potter [12]) implies that $T(1, \cdot)$ has a fixed point, which proves that (8) has a solution. \Box

3.2. Existence and uniqueness of entire radial solutions

The aim of this section is to prove the following result:

Theorem 5. *For* $\alpha \in (0, 1)$ *, let* $h : \mathbb{R}^+ \to \mathbb{R}$ *be a positive function of class* $C^{2, \alpha}$ *constant on some neighborhood of* 0 *and let* φ_0 *be a real number. Recall* $r = r(x)$ *denotes the hyperbolic distance of* $x \in \mathbb{H}$ *from a fixed origin* $o \in \mathbb{H}$ *. The problem*:

$$
F_2(\varphi)(x) = h(r) \quad \text{for all } x \in \mathbb{H}, \qquad \varphi(o) = \varphi_0,\tag{14}
$$

admits a unique admissible radial solution $\varphi : \mathbb{H} \to \mathbb{R}$ *of class* $C^{4,\alpha}$.

Proof. *Existence*: let B_i denote the ball in H with center *o* and radius $i \in \mathbb{N}^*$, and φ_i be the admissible solution of the Dirichlet problem:

$$
F_2(\varphi) = h, \qquad \varphi_{|\partial B_i} = 0,\tag{15}
$$

given by Theorem 4. By radial symmetry and uniqueness, φ_i is a radial function: $\varphi_i(x) = f_i(r)$ for some function *f_i* : $[0, i] \rightarrow \mathbb{R}$. By uniqueness again, for *j* > *i*, the function $\varphi_j - \varphi_i$ must be constant on *B_i*. Therefore $f'_j(r) \equiv f'_i(r)$ for $r \in [0, i]$. We may thus define g on \mathbb{R}^+ by $g = f'_i$ on each $[0, i]$. Now the function φ defined by

$$
\varphi(x) = \varphi_0 + \int\limits_0^r g(u) \, du
$$

is a radial solution of (14).

Uniqueness: assume that φ_1 and φ_2 are admissible radial solutions of (14): $\varphi_1(x) = f_1(r)$, $\varphi_2(x) = f_2(r)$ where *f*₁*, f*₂ are functions $\mathbb{R}^+ \to \mathbb{R}$ *.* For each real *R* > 0, set

diag *induced* is a function of (14).
\n*iniqueness*: assume that
$$
\varphi_1
$$
 and φ_2 are admissible radial solu
\nare functions $\mathbb{R}^+ \to \mathbb{R}$. For each real $R > 0$, set
\n
$$
\varphi_{1,R}(x) = -\int_r^R f_1'(u) du \text{ and } \varphi_{2,R}(x) = -\int_r^R f_2'(u) du.
$$

The functions $\varphi_{1,R}$ and $\varphi_{2,R}$ are both admissible solutions of the Dirichlet problem (15) on B_R . As such, they must coincide on B_R , hence $f_1' = f_2'$ on [0, R], which implies the desired result. \Box

3.3. Properties of the radial solutions

The following lemma describes the monotonicity of a solution φ of Eq. (14) depending on the sign of *h* − 1:

Lemma 3. Let $h : \mathbb{R}^+ \to \mathbb{R}$ and $\varphi : \mathbb{H} \to \mathbb{R}$ be as in Theorem 5, and let $f : \mathbb{R}^+ \to \mathbb{R}$ be such that $\varphi(x) = f(r(x))$, ∀*x* ∈ H*.*

(i) If $h \leq 1$, then f is non-increasing; in particular, if $\varphi_0 = 0$, the function φ is non-positive.

(ii) If $h \geq 1$, then f is non-decreasing; in particular, if $\varphi_0 = 0$, the function φ is non-negative.

Proof. Here, we need to calculate explicitly the expression of Eq. (14) in the radial case. Set e_1, \ldots, e_{n+1} , for the standard orthonormal basis of the vector space $\mathbb{R}^{n,1}$. Fix $x \in \mathbb{H}$ and take, with no loss of generality,

$$
o = e_{n+1} = (0, ..., 0, 1), \qquad x = (\sinh r, 0, ..., 0, \cosh r)
$$

with *r*, the hyperbolic distance between *o* and *x*. Consider the orthonormal basis of T_xH defined by:

 $\partial_r = \cosh r e_1 + \sinh r e_{n+1}$, and $\partial_{\vartheta} = e_{\vartheta}$, $\vartheta = 2, \ldots, n$,

and the vectors, tangent to $M = \text{graph}_{\mathbb{H}} \varphi$ at $e^{\varphi(x)}x$, induced by the embedding $x \in \mathbb{H} \to e^{\varphi(x)}x \in M$, given by:

$$
u_r = e^f(f'x + \partial_r),
$$
 $u_{\vartheta} = e^f \partial_{\vartheta}, \quad \vartheta = 2, \ldots, n.$

The future oriented unit normal to *M* at $e^{\varphi(x)}x$ is the vector:

$$
N(r) = \frac{f'}{\sqrt{1 - {f'}^2}} \partial_r + \frac{1}{\sqrt{1 - {f'}^2}} x.
$$
\n(16)

Let *S* be the shape endomorphism of *M* at $e^{\varphi(x)}x$, with respect to the future unit normal $N(r)$. Using the formulas

$$
D_{\partial_r} \overline{\partial_r}(x) = x, \qquad D_{\partial_\vartheta} \overline{\partial_r}(x) = \frac{1}{\tanh r} \partial_\vartheta
$$

where *D* denotes the canonical flat connection of $\mathbb{R}^{n,1}$ and $\overline{\partial_r}$ the unit radial vector field of $\mathbb H$ with respect to the point *o,* we readily get:

$$
S(u_r) = dN(\partial_r) = \frac{e^{-f}}{\sqrt{1 - f'^2}} \left(\frac{f''}{1 - f'^2} + 1 \right) u_r,
$$

and, for $\vartheta = 2, \ldots, n$,

$$
S(u_{\vartheta}) = dN(\partial_{\vartheta}) = \frac{e^{-f}}{\sqrt{1 - f'^2}} \left(\frac{f'}{\tanh r} + 1 \right) u_{\vartheta}.
$$

The principal curvatures of M at $r > 0$ are thus equal to:

$$
\frac{e^{-f}}{\sqrt{1-f'^2}}\left(\frac{f''}{1-f'^2}+1\right)
$$
 (simple),
$$
\frac{e^{-f}}{\sqrt{1-f'^2}}\left(\frac{f'}{\tanh r}+1\right)
$$
 (multiplicity $n-1$).

Setting $s = s(r)$ for the hyperbolic distance from *o* to $N(r)$, we infer from (16):

$$
s(r) = r + \text{Argth}(f').\tag{17}
$$

In terms of the new radial unknown $s(r)$, for $r > 0$, the principal curvatures read

$$
\left(e^{-f}\cosh(r-s)s',e^{-f}\frac{\sinh s}{\sinh r},\ldots,e^{-f}\frac{\sinh s}{\sinh r}\right),\tag{18}
$$

and the equation $F_2(\varphi) = h$ reads

$$
2s'\cosh(r-s)\sinh r\sinh s = nh^2\sinh^2 r - (n-2)\sinh^2 s.
$$
\n(19)

We now prove the first statement of the lemma. Since $f' = \tanh(s - r)$, we must prove: $s \leq r$ on $[0, +\infty)$. Suppose first $h < 1$. Since $s(0) = 0$ and $s'(0) = h(0) < 1$ (from (19)), there exists $r_0 > 0$ such that $s \le r$ on [0, r_0]. Moreover, we get from (19): ove the first sta
Since $s(0) = 0$
n (19):
 $\frac{1}{2 \cosh(r - s)}$

$$
s' \leqslant \frac{1}{2\cosh(r-s)} \bigg(n \frac{\sinh r}{\sinh s} - (n-2) \frac{\sinh s}{\sinh r}\bigg).
$$

We observe that the function $s(r) = r$ is a solution of the ODE:

$$
s' \leq \frac{1}{2\cosh(r-s)} \left(n \frac{\sinh r}{\sinh s} - (n-2) \frac{\sinh s}{\sinh r} \right)
$$

sserve that the function $s(r) = r$ is a solution of

$$
s' = \frac{1}{2\cosh(r-s)} \left(n \frac{\sinh r}{\sinh s} - (n-2) \frac{\sinh s}{\sinh r} \right)
$$

on $[r_0, +\infty)$. So the comparison theorem for solutions of ordinary differential equations implies $s \leq r$ on $[r_0, +\infty)$. Suppose only $h \le 1$, fix $A > 0$ and consider $h_\delta = h - \delta$, where δ is some small positive constant such that $h_\delta > 0$ on [0, A]. Denoting by φ_{δ} and s_{δ} the corresponding solutions of (14) and (19) on the ball of radius A, the function $s_{\delta} - r$ is non-positive; we now prove that $s_{\delta} - r$ converges uniformly to $s - r$ as δ tends to zero, which will yield the desired result. Set B_A for the ball of radius *A* in H centered at *o* and $U = \{\psi \in C^{2,\alpha}(\overline{B_A})\}$, $\psi + \varphi$ is admissible in $\overline{B_A}$, $\psi_{|\partial B_A} = 0$ }; consider the auxiliary map:

$$
\Phi: \psi \in U \to \Phi(\psi) := F_2(\psi + \varphi) \in C^{\alpha}(\overline{B_A}).
$$

Since $\Phi(0) = h$ and since, classically [7] (recalling (5)), the linearized map $d\Phi(0)$ is an isomorphism from ${\xi \in C^{2,\alpha}(\overline{B_A})}$, ${\xi_{|\partial B_A} = 0}$ to $C^{\alpha}(\overline{B_A})$, the inverse function theorem implies: $\forall \varepsilon > 0, \exists \delta_0 > 0, \forall \delta \in (0, \delta_0)$, the solution $\psi_{\delta} \in U$ of $F_2(\psi_{\delta} + \varphi) = h_{\delta}$ satisfies $|\psi_{\delta}|_{2,\alpha} \leq \varepsilon$. Since $\varphi_{\delta} = \psi_{\delta} + \varphi - \psi_{\delta}(o)$, we obtain $|\varphi_{\delta} - \varphi|_{2,\alpha} \leq 2\varepsilon$, which implies the convergence of φ_{δ} to φ in C^1 and thus the uniform convergence of s_{δ} to *s*.

The proof of statement (ii) is analogous and thus omitted. \Box

Our next lemma provides a simple necessary and sufficient condition for an entire radial solution to be bounded.

Lemma 4. Let $h : \mathbb{R}^+ \to \mathbb{R}$ and $\varphi : \mathbb{H} \to \mathbb{R}$ be as in Theorem 5.

(i) *Assume* $h \leq 1$ *, and* $\lim_{r \to \infty} h = 1$ *. Then*

Let
$$
h: \mathbb{R}^n \to \mathbb{R}
$$
 and $\varphi: \mathbb{H} \to \mathbb{R}$ be as in Theorem 5.
\n $he \ h \leq 1$, and $\lim_{r \to \infty} h = 1$. Then
\n
$$
\lim_{r(x) \to +\infty} \varphi(x) > -\infty \quad \text{if and only if} \quad \int_{0}^{+\infty} (1-h) \, dr \, converges.
$$

(ii) *Assume* $h \ge 1$ *, and* $\lim_{r \to \infty} h = 1$ *. Then*

The function
$$
h \ge 1
$$
, and $\lim_{r \to \infty} h = 1$. Then
\n
$$
\lim_{r(x) \to +\infty} \varphi(x) < +\infty \quad \text{if and only if} \quad \int_{0}^{+\infty} (h-1) \, dr \text{ converges.}
$$

proof of Lemma 3. From (17), we get at once:

Proof. Let us prove statement (i), thus assuming
$$
h \le 1
$$
, with $\lim_{r \to \infty} h = 1$. We stick to the notations used in the proof of Lemma 3. From (17), we get at once:
\n
$$
\varphi(x) = \varphi_0 - \int_0^{r(x)} \tanh(u - s(u)) du.
$$
\n(20)
\nStatement (i) amounts to proving that $\int_0^{+\infty} \tanh(u - s(u)) du$ converges if and only if so does $\int_0^{+\infty} (1 - h) dr$. We

split the proof of this fact into five steps.

Step 1. The solution *s* of (19) is an increasing function.

Let us consider in the (r, s) plane the curve $\mathcal C$ with equation:

$$
nh^2\sinh^2 r = (n-2)\sinh^2 s, \quad r, s \geqslant 0.
$$

Step 1. The solution *s* of (19) is an increasing function.

Let us consider in the (r, s) plane the curve *C* with equation:
 $nh^2 \sinh^2 r = (n-2) \sinh^2 s$, $r, s \ge 0$.

The slope of its tangent at (0, 0) is $\sqrt{\frac{n}{n-2}}h(0)$. the graph of s stays under the curve C near 0. Noting that the following vector field, associated to the differential equation (19):

$$
(r, s) \mapsto (2\cosh(r - s)\sinh r \sinh s, nh^2 \sinh^2 r - (n - 2)\sinh^2 s),
$$

is horizontal on C , and that the height s of the curve C is increasing with r , we conclude that the solution s of (19) remains trapped below C. In other words $nh^2 \sinh^2 r \ge (n-2) \sinh^2 s$ for all *r*, and (19) implies: $s' \ge 0$.

Step 2. *r* − *s* has a limit at $+\infty$ *.*

By contradiction, assume $\liminf(r - s) < \limsup(r - s) = \delta$. Thus there exists a sequence $r_k \to +\infty$ such that $r_k - s(r_k) \rightarrow \delta$ and $s'(r_k) = 1$. Denoting $s(r_k)$ by s_k , we get from Eq. (19):

$$
1 = \frac{1}{2\cosh(r_k - s_k)} \left[nh^2(r_k) \frac{\sinh r_k}{\sinh s_k} - (n-2) \frac{\sinh s_k}{\sinh r_k} \right].
$$
\n(21)

We distinguish two cases:

First case: $\delta < +\infty$. We then have $s_k \to +\infty$, $\frac{\sinh r_k}{\sinh s_k} \sim e^{r_k - s_k} \sim e^{\delta}$ and $\frac{\sinh s_k}{\sinh r_k} \sim e^{s_k - r_k} \sim e^{-\delta}$ as k tends to infinity (here and below, the equivalence ∼ between two quantities means that their quotient has limit 1). So (21) yields *n* ∞ . We then have s_k
is equivalence \sim be
 $\left[ne^{\delta} - (n-2)e^{-\delta}\right]$

$$
1 = \frac{1}{2\cosh\delta} \Big[n e^{\delta} - (n-2)e^{-\delta} \Big].
$$

Using $e^{\delta} \ge e^{-\delta}$ we get $1 \ge \frac{e^{\delta}}{\cosh \delta}$, which is absurd.

Second case: $\delta = +\infty$. First assuming that s_k is not bounded, and since *s* is an increasing function (Step 1), we have: $s_k \to +\infty$, $\frac{\sinh r_k}{\sinh s_k} \sim e^{r_k - s_k} \to +\infty$ and $\frac{\sinh s_k}{\sinh r_k} \sim e^{s_k - r_k} \to 0$ as *k* tends to infinity. Eq. (21) yields

$$
1 \sim \frac{n}{2\cosh(r_k - s_k)} e^{r_k - s_k},
$$

which is absurd since $cosh(r_k - s_k) \sim \frac{e^{r_k - s_k}}{2}$. If we now assume s_k bounded, since *s* is an increasing function with $s'(0) > 0$, we get that s_k converges to $l > 0$, and, since $\frac{\sinh s_k}{\sinh r_k} \to 0$, we obtain from (21):

$$
1 \sim \frac{n}{2\cosh(r_k - s_k)} \frac{\sinh r_k}{\sinh l},
$$

with $\sinh r_k \sim \frac{e^{r_k}}{2}$, $\cosh(r_k - s_k) \sim \frac{e^{r_k - s_k}}{2} \sim \frac{e^{-l}}{2} e^{r_k}$; so $1 = \frac{n}{2} \frac{e^l}{\sinh l}$, which is absurd.

Step 3. $r - s$ tends to 0 at infinity.

Having proved that $r - s$ converges, let us set $\delta = \lim_{r \to +\infty} r - s$ and prove by contradiction that $\delta = 0$. There are two cases:

First case: $0 < \delta < +\infty$. We get $s \to +\infty$, hence $\frac{\sinh r}{\sinh s} \sim e^{r-s} \sim e^{\delta}$, $\frac{\sinh s}{\sinh r} \sim e^{s-r} \sim e^{-\delta}$ as r tends to infinity, and thus, from (19): *ne*^{δ} − *(n* − 2*)e*^{-*δ*}₁

$$
s' \to \frac{1}{2\cosh \delta} \big[n e^{\delta} - (n-2) e^{-\delta} \big].
$$

The latter expression is larger than 1, which contradicts $r \geq s$.

Second case: $\delta = +\infty$. We first note that $\frac{\sinh s}{\sinh r} \to 0$ (if *s* is bounded this is trivial; if *s* is not bounded, $s \to +\infty$ since *s* is increasing, and we have $\frac{\sinh s}{\sinh r} \sim e^{s-r} \to 0$ since $r - s \to +\infty$). Moreover we have $\liminf n h^2 \frac{\sinh r}{\sinh s} \ge n$ since $r \geqslant s$. We thus infer from Eq. (19):

$$
s' \sim \frac{n}{2\cosh(r-s)}\frac{\sinh r}{\sinh s}.
$$

Assuming $s \to +\infty$, we get $\frac{\sinh r}{\sinh s} \sim e^{r-s}$ and $\cosh(r-s) \sim \frac{e^{r-s}}{2}$, hence $s' \sim n$, which is impossible since $s \le r$.

Finally, assuming *s* bounded yields $s \to l > 0$; since $r - s \to +\infty$, we infer cosh $(r - s) \sim \frac{e^{r-s}}{2}$ and sinh $r \sim \frac{e^r}{2}$, hence from (19), $e^{-s}s' \sim \frac{n}{2} \frac{1}{\sinh l}$ and thus $s' \sim \frac{n}{2} \frac{e^{l}}{\sinh l}$, which contradicts the boundedness assumption on *s*.

Step 4. $\lim_{r(x) \to +\infty} \varphi(x) > -\infty$ if and only if $\varepsilon(r) := r - s$ is integrable on [0, + ∞). This is straightforward from (20) combined with $tanh(u - s(u)) \sim \varepsilon(u)$ which holds as $u \to +\infty$ due to Step 3.

Step 5. ε is integrable on [0, + ∞) if and only if $\beta := 1 - h^2$ is integrable on [0, + ∞).

First observation: $\lim_{r\to\infty} s' = 1$. Indeed, at infinity, we have $r - s \to 0$, so $s \to +\infty$, hence:

$$
\frac{\sinh r}{\sinh s} \sim e^{r-s} \sim 1, \qquad \frac{\sinh s}{\sinh r} \sim e^{s-r} \sim 1,
$$

and (19) yields $s' \rightarrow 1$.

Using Step 3, the assumptions on *h* and the preceding observation, we get

$$
\varepsilon(r) \to 0
$$
, $\beta(r) \to 0$, and $\varepsilon'(r) = 1 - s'(r) \to 0$

as *r* tends to infinity. Plugging the definitions of *ε* and *β* in (19) and using the expansions

 $\cosh \varepsilon = 1 + o(\varepsilon), \qquad \sinh(r - \varepsilon) = \sinh r (1 - \varepsilon + o(\varepsilon)),$ $s'(r) \to 0$
and β in (19)
 $1 - \varepsilon + o(\varepsilon)$)

yields

$$
(n-1)\varepsilon + \varepsilon' + o(\varepsilon) = \frac{n}{2}\beta.
$$
\n(22)

Fixing a real $\delta > 0$, there readily exists $r_{\delta} > 0$ such that, for all $r \ge r_{\delta}$,

$$
\varepsilon' + (n - 1 - \delta)\varepsilon \leqslant \frac{n}{2}\beta,\tag{23}
$$

and

$$
\varepsilon' + (n - 1 + \delta)\varepsilon \geqslant \frac{n}{2}\beta. \tag{24}
$$

Integrating (23), we get, for $r \ge r_\delta$,

$$
\varepsilon' + (n - 1 + \delta)\varepsilon \geq \frac{n}{2}\beta.
$$

ating (23), we get, for $r \geq r_\delta$,

$$
\varepsilon(r) \leq e^{-(n-1-\delta)r} \Bigg[C(r_\delta) + \frac{n}{2} \int_{r_\delta}^r \beta(u)e^{(n-1-\delta)u} du \Bigg].
$$

Integrating again and using Fubini Theorem yields, with δ such that $n - 1 - \delta > 0$,

$$
P. \text{ Bayard, } P. \text{ Delanoë } / \text{Ann. I. H. Poincaré} - \text{AN } 26 \text{ (2)}
$$
\n
$$
\int_{r_{\delta}}^{+\infty} \varepsilon(r) \, dr \leq C'(r_{\delta}) + \frac{n}{2} \int_{r_{\delta}}^{+\infty} \beta(u) e^{(n-1-\delta)u} \left(\int_{u}^{+\infty} e^{-(n-1-\delta)r} dr \right) du,
$$
\n
$$
\leq C'(r_{\delta}) + \frac{n}{2(n-1-\delta)} \int_{r_{\delta}}^{+\infty} \beta(u) \, du.
$$

We conclude that ε is integrable provided $\beta = 1 - h^2$ is integrable. Analogously, using (24), we get

include that
$$
\varepsilon
$$
 is integrable provided $\beta = 1 - h^2$ is into
\nhalogously, using (24), we get

\n
$$
\varepsilon(r) \geq e^{-(n-1+\delta)r} \left[C(r_\delta) + \frac{n}{2} \int_{r_\delta}^r \beta(u) e^{(n-1+\delta)u} \, du \right],
$$

and

$$
\mathcal{E}(r) \geq e^{\alpha}
$$
\n
$$
\mathcal{E}(r) \geq e^{\alpha}
$$

Taking $\delta > 0$ arbitrary, we find that β is integrable if ε is integrable.

The proof of statement (ii) is analogous and thus omitted. \Box

3.4. Construction of radial barriers

Lemma 5. Let $h : \mathbb{H} \to \mathbb{R}$ be a positive and continuous function on the hyperbolic space such that

$$
\lim_{r(x)\to+\infty} h(x) = 1
$$

and such that the functions h^- *and* h^+ *defined on* \mathbb{R}^+ *by*

$$
h^-(r) = \sup_{r(x)=r} h(x)
$$
 and $h^+(r) = \inf_{r(x)=r} h(x)$

satisfy

$$
\int_{0}^{+\infty} (h^{-} - 1)_{+} dr < +\infty, \qquad \int_{0}^{+\infty} (1 - h^{+})_{+} dr < +\infty,
$$

where $(h^- - 1)_+$ (resp. $(1 - h^+)_+$) means the positive part of $h^- - 1$ (resp. $1 - h^+$). Then there exist φ^- , $\varphi^+ \in C^\infty(\mathbb{H})$, *with strictly convex spacelike graphs, satisfying*:

$$
F_2(\varphi^-) \geq h
$$
, $F_2(\varphi^+) \leq h$ and $\lim_{r \to +\infty} \varphi^{\pm} = 0$.

Proof. First, considering $1 + (h^- - 1)_+$ instead of h^- and $1 - (1 - h^+)_+$ instead of h^+ , we may suppose without loss of generality that *h*[−] and *h*⁺ are two continuous functions such that: $\forall x \in \mathbb{H}$, with $r = r(x)$,

$$
h^-(r) \geqslant h(x) \geqslant h^+(r) > 0,\tag{25}
$$

$$
h^{-} \ge 1 \ge h^{+}, \qquad \lim_{r \to +\infty} h^{-}(r) = \lim_{r \to +\infty} h^{+}(r) = 1,
$$
 (26)

and

$$
\int_{0}^{+\infty} (h^{-} - 1) dr < +\infty, \qquad \int_{0}^{+\infty} (1 - h^{+}) dr < +\infty.
$$
 (27)

If we now consider

$$
h^- + \frac{\varepsilon_0}{r^2} \quad \text{if } r \geqslant 1, \qquad h^- + \varepsilon_0 \quad \text{if } r \leqslant 1
$$

instead of *h*−*,* and

$$
h^+ - \frac{\varepsilon_0}{r^2} \quad \text{if } r \ge 1, \qquad h^+ - \varepsilon_0 \quad \text{if } r \le 1
$$

instead of h^+ , where ε_0 is chosen sufficiently small such that inf $h^+ > \varepsilon_0$, we may moreover assume the following:

$$
h^{-} \ge \max(1, h) + \frac{\varepsilon_0}{r^2} \quad \text{and} \quad h^{+} \le \min(1, h) - \frac{\varepsilon_0}{r^2} \quad \text{if } r \ge 1.
$$

ow prove that we can approximate h^{\pm} by smooth functions g^{\pm}

$$
|h^{\pm} - g^{\pm}| \le \min\left(\frac{\varepsilon_0}{2}, \varepsilon_0\right).
$$

We now prove that we can approximate h^{\pm} by smooth functions g^{\pm} such that

$$
\left| h^{\pm} - g^{\pm} \right| \leqslant \min \left(\frac{\varepsilon_0}{r^2}, \varepsilon_0 \right). \tag{28}
$$

For each $i \in \mathbb{N}$, let us denote by g_i^- a smooth function on $[0, i + 1]$ such that $|h^- - g_i^-| \leq \frac{\varepsilon_0}{(i+1)^2}$ on $[0, i + 1]$. Let $\vartheta \in C_c^{\infty}(\mathbb{R})$ such that $0 \le \vartheta \le 1$, $\vartheta(x) = 1$ if $|x| \le \frac{1}{4}$ and $\vartheta(x) = 0$ if $|x| \ge \frac{3}{4}$. We define g^- on $[i, i + 1]$ by

$$
g^- = \vartheta_i g_i^- + (1 - \vartheta_i) g_{i+1}^-
$$

where $\vartheta_i = \vartheta(.) - i$. By construction, we have $g^- = g_i^-$ on a neighborhood of *i*. The function g^- is thus smooth on $[0, +\infty)$, and satisfies on $[i, i + 1]$:
 $|g^- - h^-| \le \vartheta_i |g_i^- - h^-| + (1 - \vartheta_i) |g_{i+1}^- - h^-| \le \frac{\varepsilon_0}{(i+1)^2}$, $[0, +\infty)$, and satisfies on $[i, i + 1]$:

$$
\left|g^{-} - h^{-}\right| \leq \vartheta_{i} \left|g_{i}^{-} - h^{-}\right| + (1 - \vartheta_{i})\left|g_{i+1}^{-} - h^{-}\right| \leq \frac{\varepsilon_{0}}{(i+1)^{2}},
$$

which implies the estimate (28). We may thus assume that (25), (26) and (27) hold, where h^{\pm} are two smooth functions on \mathbb{R}^+ . Considering ϑ sup_{\mathbb{R}^+} $h^- + (1 - \vartheta)h^-$ instead of h^- , and ϑ inf \mathbb{R}^+ $h^+ + (1 - \vartheta)h^+$ instead of h^+ , we may also assume that the functions h^{\pm} are constant on some neighborhood of 0. Let φ^- and φ^+ be smooth radial functions given by Theorem 5 (with some arbitrary initial condition φ_0) such that $F_2(\varphi^{\pm}) = h^{\pm}$. From Lemma 4, subtracting constants if necessary, we obtain $\lim_{r \to +\infty} \varphi^{\pm}(r) = 0$. \Box

Now, we can complete the proof of Theorem 1 as follows. Lemma 5 provides two barriers which tend to 0 at infinity; by Theorem 3, we get an entire solution of Eq. (3) pinched between these barriers, and thus tending to 0 at infinity, so the existence part of Theorem 1 is proved. Uniqueness was proved in Theorem 2.

References

- [1] R. Bartnik, Existence of maximal surfaces in asymptotically flat spacetimes, Commun. Math. Phys. 94 (1984) 155–175.
- [2] P. Bayard, Dirichlet problem for space-like hypersurfaces with prescribed scalar curvature in R*n,*1, Calc. Var. 18 (2003) 1–30.
- [3] P. Bayard, Entire spacelike hypersurfaces of prescribed scalar curvature in Minkowski space, Calc. Var. 26 (2) (2006) 245–264.
- [4] P. Bayard, O. Schnürer, Entire spacelike hypersurfaces of constant Gauss curvature in Minkowski space, preprint, 2006.
- [5] L. Caffarelli, L. Nirenberg, J. Spruck, Nonlinear second order elliptic equations IV. Starshaped compact Weingarten hypersurfaces, in: K. Kasahara, Y. Ohya, N. Shimakura (Eds.), Current Topics in Partial Differential Equations, Kinokunize Co., Tokyo, 1986, pp. 1–26.
- [6] Ph. Delanoë, Plongements radiaux S*ⁿ* → R*n*+¹ à courbure de Gauss positive prescrite, Ann. Sci. École Norm. Sup. (4) 18 (1985) 635–649.
- [7] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, second ed., Springer-Verlag, 1983.
- [8] B. Guan, H.-Y. Jian, R.M. Schoen, Entire spacelike hypersurfaces of prescribed Gauss curvature in Minkowski space, J. reine angew. Math. 595 (2006) 167–188.
- [9] N.M. Ivochkina, A description of the stability cones generated by differential operators of Monge–Ampère type, Math. USSR Sb. 50 (1) (1985) 259–268.
- [10] N.M. Ivochkina, Solution of the Dirichlet problem for curvature equations of order *m*, Math. USSR Sb. 67 (2) (1990) 317–339.
- [11] A.-M. Li, Spacelike hypersurfaces with constant Gauss–Kronecker curvature in the Minkowski space, Arch. Math. 64 (6) (1995) 534–551.
- [12] A.J.B. Potter, An elementary version of the Leray–Schauder theorem, J. London Math. Soc. 5 (2) (1972) 414–416.
- [13] A.E. Treibergs, S.W. Wei, Embedded hyperspheres with prescribed mean curvature, J. Differential Geom. 18 (1983) 513–521.
- [14] N.S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rat. Mech. Anal. 111 (1990) 99–112.
- [15] J. Urbas, The Dirichlet problem for the equation of prescribed scalar curvature in Minkowski space, Calc. Var. 18 (2003) 307–316.