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Abstract

We prove the existence and uniqueness in Rn,1 of entire spacelike hypersurfaces contained in the future of the origin O and
asymptotic to the light-cone, with scalar curvature prescribed at their generic point M as a negative function of the unit vector
pointing in the direction of

−−→
OM , divided by the square of the norm of

−−→
OM (a dilation invariant problem). The solutions are

seeked as graphs over the future unit-hyperboloid emanating from O (the hyperbolic space); radial upper and lower solutions are
constructed which, relying on a previous result in the Cartesian setting, imply their existence.

Résumé

On prouve l’existence et l’unicité dans Rn,1 d’hypersurfaces entières de genre espace contenues dans le futur de l’origine O et
asymptotes au cône de lumière, dont la courbure scalaire est prescrite au point générique M comme fonction négative du vecteur
unité pointant en direction de

−−→
OM , divisée par le carré de la norme du vecteur

−−→
OM (un problème invariant par homothétie).

Les solutions sont cherchées comme graphes sur l’hyperboloïde-unité futur émanant de O (l’espace hyperbolique) ; des solutions
supérieure et inférieure radiales sont construites qui, d’après un résultat antérieur en cartésien, impliquent l’existence de telles
solutions.
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0. Introduction

The Minkowski space Rn,1 is the affine Lorentzian manifold Rn × R endowed with the metric

ds2 = dX′2 − dX2
n+1, where dX′2 = dX2

1 + · · · + dX2
n,
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setting X = (X′,Xn+1) ∈ Rn × R, and time-oriented by dXn+1 > 0. Distinguishing the origin O of Rn,1, let

H = {
x ∈ Rn,1, |−−→Ox|2 = |x′|2 − xn+1

2 = −1, xn+1 > 0
}
,

be the future unit-hyperboloid, model of the hyperbolic space in Rn,1. If ϕ is a real function defined on H, we define
the radial graph of ϕ by

graphH ϕ = {
X ∈ Rn,1,

−−→
OX = eϕ(x)−−→Ox, x ∈ H

}
.

This is a hypersurface contained in the future open solid cone

C+ = {
X ∈ Rn,1, Xn+1 > |X′|}.

We say that ϕ is spacelike if its graph is a spacelike hypersurface, which means that the metric induced on it is
Riemannian. Conversely, a spacelike and connected hypersurface in C+ is the radial graph of a uniquely deter-
mined function ϕ : H → R. Of course, such a graph may also be considered as the Cartesian graph of some function
u : Rn → R

graphRn u = {(
x′, u(x′)

)
, x′ ∈ Rn

}
,

and the correspondence between the two representations is bijective passing from the Cartesian chart X = (X′,Xn+1)

restricted to C+, to the polar chart (x,ρ) ∈ H × (0,∞) of C+ defined by:

ρ =
√

−|−−→
OX|2, −−→

Ox = 1

ρ

−−→
OX.

Recall that the principal curvatures (κ1, . . . , κn) at a point of a spacelike hypersurface are the eigenvalues of its shape
endomorphism dN, where N is the future oriented unit normal field, and the mth mean curvature (denoted by Hm)
is the mth elementary symmetric function of its principal curvatures: Hm = σm(κ1, . . . , κn). For each real λ > 0, the
cone C+ is globally invariant under the ambient dilation X �→ λX of Rn,1 and the above mth mean curvature is (−m)-
homogeneous; specifically, it transforms like Hm(λX) = λ−mHm(X). It is thus natural to pose, as in [6, Theorem 1],
the following inverse problem for Hm: given a positive function h > 0 on H tending to 1 at infinity, find a spacelike
hypersurface Σ in C+, asymptotic to ∂C+ at infinity, such that, for each point X ∈ Σ , the mth mean curvature of Σ

at X is given by:

H̃m := 1(
n
m

)Hm(X) = 1

(−|−−→
OX|2)m

2

[
h(x)

]m
, with

−−→
Ox =

−−→
OX√−|−−→
OX|2 . (1)

By construction, this problem is dilation invariant; moreover, as explained below, the positivity of h makes it elliptic.
Actually, introducing the positivity cone [9] of σm:

Γm = {
κ ∈ Rn, ∀i = 1, . . . ,m, σi(κ) > 0

}
,

and recalling McLaurin’s inequalities (satisfied on Γm):

0 < (H̃m)
1
m � (H̃m−1)

1
m−1 � · · · � H̃2

1
2 � H̃1,

we note that, if a hypersurface Σ = graphRn u solves (1) with the asymptotic condition, then the time-function u must
assume a minimum on Σ and, as readily checked (using e.g. [3, p. 245]), the principal curvatures of Σ at such a min-
imum point of u must lie in Γm. Now Eq. (1) combined with McLaurin’s inequalities forces the principal curvatures
of Σ to stay in Γm everywhere. Let us call any spacelike hypersurface of C+ having this property, m-admissible;
accordingly, a function ϕ : H → R (resp. u : Rn → R) is called m-admissible, provided graphH ϕ (resp. graphRn u)
is so. The condition of m-admissibility is local (and open); one may thus speak of a function ϕ : H → R being m-
admissible at a point (hence nearby) whenever graphH ϕ is so at that point. We will seek the solution hypersurface
Σ as the radial graph of some m-admissible function ϕ : H → R vanishing at infinity (to comply with the asymptotic
condition). Eq. (1) then reads

Fm(ϕ) = h, (2)

with the radial operator Fm defined by:

Fm(ϕ) = eϕ
[
H̃m(X)

] 1
m , X ∈ graphH ϕ.
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For briefness, we will not compute here explicitly the general expression of the operator Fm (keeping it for a further
study)—its restriction to radial functions will suffice (see Section 3.3 below). We will rely instead on the well-known
corresponding Cartesian expression (see e.g. [2]) combined with a few basic properties of Fm recorded in the next
section (and proved with elementary arguments).

Furthermore, we will essentially restrict to the case m = 2 (and freely say ‘admissible’, for short, instead of
‘2-admissible’). Since H2 is related to the scalar curvature S by S = −2H2, our present study is really about the
prescription of the scalar curvature, at a generic point X of a radial graph, as a negative function of x ∈ H (with x

given as in (1)) divided by the square of the norm of
−−→
OX. Aside from the origin O of the ambient space Rn,1, we will

distinguish a point o in H and set r = r(x) for the hyperbolic distance from o to x ∈ H; accordingly, a function on H

will be called radial whenever it factors through a function of r only. Our main result is the following:

Theorem 1. For α ∈ (0,1), let h : H → (0,∞) be a function of class C2,α with

lim
r(x)→+∞h(x) = 1.

Assume that the functions h− and h+ defined on R+ by

h−(r) = sup
r(x)=r

h(x) and h+(r) = inf
r(x)=r

h(x)

satisfy

+∞∫
0

(
h− − 1

)
+dr < +∞,

+∞∫
0

(
1 − h+)

+dr < +∞,

where (h− − 1)+ (resp. (1 − h+)+) means the positive part of h− − 1 (resp. 1 − h+). Then the equation

F2(ϕ) = h (3)

has a unique admissible solution of class C4,α such that limr(x)→+∞ ϕ(x) = 0.

Remark 1. From Lemma 4 below, anytime the function h is radial, the integral convergence conditions of Theorem 1
appears necessary for the existence of bounded solutions.

An analogous problem in the Euclidean setting is solved for the Gauss curvature in [6, Théorème 1], and in [13,5]
some related problems are studied. In the Lorentzian setting, the prescription of the mean curvature for entire graphs
is studied in [1] and that of the Gauss curvature in [11,8,4]. In [3], the scalar curvature is prescribed in Cartesian
coordinates xn+1 = u(x1, . . . , xn).

The outline of the paper is as follows. In Section 1, we prove that there exists at most one solution vanishing at
infinity for Eq. (2) with m ∈ {1, . . . , n}. In Section 2, relying on [3], we prove the existence of a solution when m = 2,
provided upper and lower barriers are known. The latter are constructed, as radial functions, in Section 3.

1. Uniqueness

We first require a few basic properties of the operator Fm. It is a non-linear second order scalar differential operator
defined on m-admissible real functions on H. The dilation invariance of (1) implies the identity:

Fm(ψ + c) ≡ Fm(ψ), (4)

for every m-admissible function ψ : H → R and constant c; linearizing at ψ yields

dFm(ψ)(1) ≡ 0.

Furthermore, we have:

Lemma 1. For each m-admissible function ψ , the linear differential operator dFm(ψ) is elliptic everywhere on H,
with positive-definite symbol.
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Summarizing for later use, the expression of dFm(ψ), in the chart x′ ∈ Rn of H, at a fixed m-admissible function ψ

reads like:

δψ �→ dFm(ψ)(δψ) =
∑

1�i,j�n

Bij

∂2

∂x′
i∂x′

j

(δψ) +
n∑

i=1

Bi

∂

∂x′
i

(δψ), (5)

with the n × n matrix (Bij ) symmetric positive definite (depending on ψ , of course, like the Bi ’s). We now proceed
to proving Lemma 1.

Proof. We require the Cartesian operator v �→ Gm(v) := Fm(ψ) defined on m-admissible functions v : Rn → R by:

graphRn v = graphH ψ. (6)

The ellipticity of dGm(v) and the positive-definiteness of its symbol are well-known [10,14,2]. Its expression thus
starts out like

dGm(v)(δv) =
∑

1�i,j�n

Aij

∂2

∂X′
i∂X′

j

(δv) + lower order terms,

with the matrix (Aij ) symmetric positive definite. The m-admissible function ψ on H such that (6) holds, is related
to v, in the chart x′ = (x1, . . . , xn) ∈ Rn, by:

v(X′) =
√

1 + |x′|2 exp
[
ψ(x′)

]
, with

−−−→
OX′ = eψ(x′)−−→

Ox′.

Varying ψ by δψ thus yields for the corresponding variation δv of v the following expression: δv(X′) = w(X′)δψ(x′),
with

w(X′) =
[
v −

n∑
i=1

X′
i

∂v

∂X′
i

]
(X′).

Since the graph lies in C+ and it is spacelike, we have v(X′) > |X′| and (using Schwarz inequality)
n∑

i=1

X′
i

∂v

∂X′
i

< |X′|,

therefore w > 0. Moreover, up to lower order terms, we have:

∂2

∂X′
i∂X′

j

(δv)(X′) = w(X′)
∑

1�i,j�n

∂2

∂x′
k∂x′

l

(δψ)(x′)
∂x′

k

∂X′
i

∂x′
l

∂X′
j

with x′
k = X′

k√
v2(X′)−|X′|2 . We thus find in (5):

Bkl = w(X′)
∑

1�i,j�n

Aij

∂x′
k

∂X′
i

∂x′
l

∂X′
j

and the ellipticity of δψ �→ dFm(ψ)(δψ) follows. �
We need also a more specific (ellipticity) property of the operator Fm, namely:

Lemma 2. For each couple (ϕ0, ϕ1) of m-admissible real functions on H and each point x0 ∈ H where ϕ = ϕ1 − ϕ0
assumes a local extremum, the whole segment t ∈ [0,1] → ϕt = ϕ0 + tϕ consists of m-admissible functions at the
point x0.

Proof. The analogue of Lemma 2 is fairly standard in the Cartesian setting, using the expression of the operator Gm

introduced in the proof of Lemma 1 (see [2]) together with the well-known fact: ∀κ ∈ Γm, ∀i ∈ {1, . . . , n}, ∂σm

∂κi
(κ) > 0.

Here, we will simply reduce the proof to that setting (and let the reader complete the argument). Let us first normalize
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the situation at an extremum point x0 ∈ H of ϕ. From (4), we may assume ϕ(x0) = 0. Moreover, we may assume that
ϕ has a local minimum at x0 (if not, exchange ϕ0 and ϕ1). Finally, setting graphH ϕa = graphRn ua for a = 0,1, and
performing if necessary a suitable Lorentz transform (hyperbolic rotation), we may take x0 = (0,1) ∈ Rn × R thus
with ua(0) = 1. For t ∈ [0,1] and near x0, set Σt = graphRn ut for the hypersurface graphH ϕt . We must prove that
Σt is m-admissible at x0. For Xt ∈ Rn,1 lying in Σt , we have:

−−−→
OXt = etϕ(x)−−−→

OX0 with
−−→
Ox = −−−→

OX0/
√−|−−−→

OX0|2. In
the Cartesian setting, we thus have (sticking to the Rn-valued charts used in the preceding proof):

ut

(
X′

t

) = etϕ(x′)u0
[
e−tϕ(x′)X′

t

]
,

here with x′ = X′
0/

√
u2

0(X
′
0) − |X′

0|2, X′
t = etϕ(x′)X′

0, and (X′
0, u0(X

′
0)) ∈ graphRn u0; moreover, the lemma boils

down to proving that ut is m-admissible at X′
t = 0. A routine calculation yields at X′

t = 0 the equalities:

∂ut

∂X′
t i

(0) = ∂u0

∂X′
0i

(0),
∂2ut

∂X′
t i∂X′

tj

(0) = ∂2u0

∂X′
0i∂X′

0j

(0) + t
∂2ϕ

∂x′
i∂x′

j

(0),

where, in the second one, the matrix [∂2ϕ/∂x′
i∂x′

j (0)]1�i,j�n is non-negative. We readily infer [2] that, for each
t ∈ [0,1], the principal curvatures κ1t � · · · � κnt of the hypersurface Σt at x0 (each repeated according to its multi-
plicity) satisfy: ∀i ∈ {1, . . . , n}, κit � κi0. The latter implies that the n-tuple (κ1t , . . . , κnt ) lies in the cone Γm, since
(κ10, . . . , κn0) ∈ Γm. �
Theorem 2. The operator Fm is one-to-one on m-admissible functions of class C2 vanishing at infinity.

Proof. Let us argue by contradiction. Let ϕ0, ϕ1 be two m-admissible C2 functions vanishing at infinity and having
the same image by Fm. For t ∈ [0,1], set ϕt = ϕ0 + tϕ with ϕ = ϕ1 − ϕ0. Since ϕ vanishes at infinity, if ϕ �≡ 0, it
assumes a non-zero local extremum (a maximum, say, with no loss of generality) at some point x0 ∈ H. By Lemma 2,
the whole segment t ∈ [0,1] → ϕt is m-admissible in a neighborhood Ω of x0 where ϕ thus satisfies the second
order linear equation Lϕ = 0 with L1 = 0 and the operator L given by L = ∫ 1

0 dFm(ϕt ) dt . Combining Lemma 1
above with Hopf’s strong Maximum Principle (see [7]), we get ϕ ≡ ϕ(x0) throughout Ω . By connectedness, we infer
ϕ ≡ ϕ(x0) �= 0 on the whole of H, contradicting limr(x)→+∞ ϕ = 0. So, indeed, we must have ϕ ≡ 0, in other words
Fm is one-to-one. �
2. Existence of a solution reduced to that of upper and lower solutions

Theorem 3. Let h : H → R be a function of class C2,α, for some α ∈ (0,1), such that there exists ϕ− ∈ C4,α(H) with
graphH ϕ− strictly convex and spacelike, and ϕ+ ∈ C2(H) with graphH ϕ+ spacelike, satisfying

F2(ϕ
−) � h, F2(ϕ

+) � h and lim
r(x)→+∞ϕ± = 0.

Then the equation

F2(ϕ) = h

has a unique admissible solution of class C4,α such that limr(x)→+∞ ϕ(x) = 0. Moreover ϕ satisfies the pinching:

ϕ− � ϕ � ϕ+.

Remark 2. Since ϕ is a bounded function, the hypersurface M = graphH(ϕ) is entire. More precisely, denoting by
ϕmin and ϕmax two constants such that ϕmin � ϕ � ϕmax, the function u : Rn → R such that graphRn(u) = graphH(ϕ)

satisfies umin � u � umax where umin (resp. umax) is such that graphRn(umin) = graphH(ϕmin) (resp. graphRn(umax) =
graphH(ϕmax)). Noting that the graphs of umin and umax are hyperboloids, we see that the inequality u � umin implies
that M is entire, and the inequality u � umax implies that M is asymptotic to the lightcone.
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Proof. The asserted uniqueness follows from Theorem 2; so let us focus on the existence part. A straightfor-
ward comparison principle, using (5) and Lemma 2, implies ϕ− � ϕ+ on H. Let u−, u+ : Rn → R be such that
graphRn(u±) = graphH(ϕ±). Set H for the function on Rn,1 defined by:

H(X) = (n2)

|Xn+1|2 − |X′|2
[
h

(
X√|Xn+1|2 − |X′|2

)]2

. (7)

The spacelike functions u− and u+ satisfy:

H2[u−] � H(·, u−), H2[u+] � H(·, u+), u− � u+ and lim
|x′|→∞

[
u±(x′) − |x′|] = 0,

where H2[u±] stands for the second mean curvature of the graph of u±. Theorem 1.1 in [3] asserts the existence of
a function u : Rn → R, belonging to C4,α, spacelike, such that H2[u] = H(·, u) in Rn, lim|x′|→+∞ u(x′) − |x′| = 0,

and u− � u � u+. The function ϕ : H → R such that graphH(ϕ) = graphRn(u) is a solution of our original prob-
lem. �
3. Construction of radial upper and lower solutions

In the sequel of the paper, we first solve the Dirichlet problem on a bounded set in H (Section 3.1) then proceed
to proving the existence and uniqueness of an entire solution in the radial case and study its properties (Sections 3.2
and 3.3); finally, we construct the required radial barriers (Section 3.4).

3.1. The Dirichlet problem

Theorem 4. Given α ∈ (0,1), let Ω be a uniformly convex bounded open subset of H with C2,α boundary, h : Ω → R

be a positive function of class C2,α, and ϕ0 : Ω → R be a spacelike function of class C2,α whose radial graph is
strictly convex. Then the Dirichlet problem

F2(ϕ) = h in Ω, ϕ = ϕ0 on ∂Ω, (8)

has a unique admissible solution of class C4,α.

Proof. We first prove uniqueness, by contradiction: let ϕ0, ϕ1 be two admissible solutions of (8), and, for t ∈ [0,1], set
ϕt = ϕ0 + tϕ with ϕ = ϕ1 − ϕ0. Since ϕ vanishes on ∂Ω, if ϕ �≡ 0, it assumes a non-zero local extremum. Following
the arguments of the proof of Theorem 2 we obtain a contradiction with the Hopf’s strong Maximum Principle. Let
us focus now on the existence part. Setting x = (x′,

√
1 + |x′|2) ∈ Rn × R, and

Ω ′ = {
eϕ0(x)x′, x ∈ Ω

}
, u0

(
eϕ0(x)x′) = eϕ0(x)

√
1 + |x′|2,

problem (8) is equivalent to the Dirichlet problem:

H2[u] = H(·, u) in Ω ′, u = u0 on ∂Ω ′, (9)

where H2 is the scalar curvature operator acting on spacelike graphs defined on Ω ′ ⊂ Rn, and H is defined on Ω ′ ×R

by (7).
Let us consider the Banach space

E = {
v ∈ C2,α(Ω ′), v = 0 on ∂Ω ′},

and the open convex subset of E

U =
{
v ∈ E, sup

Ω ′

∣∣D(v + u0)
∣∣ < 1

}
.

We first note that for every v ∈ U , graphRn(v+u0) belongs to the dependence set K of graphRn u0. Here, by definition,
X ∈ Rn,1 belongs to K if for every ξ ∈ Rn,1 with 〈ξ, ξ 〉 � 0 and ξ �= 0, the ray X + R.ξ meets graphRn u0. The set K

is a compact subset of the open cone C+.



P. Bayard, P. Delanoë / Ann. I. H. Poincaré – AN 26 (2009) 903–915 909
For each (v, t) ∈ U × [0,1], we know from [2,15] that the Dirichlet problem

H2[u] = tH(·, v + u0) + (1 − t)H2[u0] in Ω ′, u = u0 on ∂Ω ′ (10)

has a unique admissible solution (belonging to C4,α). We define the map

T : [0,1] × U → E,

(t, v) �→ u

where u is such that u = u + u0 is the admissible solution of (10).
For each t ∈ [0,1] the fixed points of T (t, ·) are under control: indeed, suppose T (t, u) = u, then the function

u = u + u0 solves the Dirichlet problem

H2[u] = H̃ (·, u) in Ω ′, u = u0 on ∂Ω ′ (11)

where

H̃ (·, u) = tH(·, u) + (1 − t)H2[u0]. (12)

The following a priori estimates are carried out in [3, p.251]: there exist ϑ ∈ (0,1) and C > 0 such that

sup
Ω ′

|Du| < 1 − ϑ and ‖u‖2,α,Ω ′ < C. (13)

The constants ϑ,C only depend on diam(Ω ′), infK H̃ , ‖H̃‖2,K, ‖u0‖4,Ω ′ , and on a positive lower bound on the min-

imum eigenvalue of D2u0 on Ω ′. The expression of H̃ implies that they are independent of the parameter t ∈ [0,1].
In order to prove that T (1, ·) has a fixed point, we now consider the (nonempty) convex subset of the Banach

space E:

Uϑ,C = {
v ∈ U,

∣∣D(v + u0)
∣∣ < 1 − ϑ and ‖v + u0‖2,α,Ω ′ < C

}
,

and the map T : [0,1] × Uϑ,C → E. Then the following properties hold:

(i) T is continuous with compact image due to the above estimates on the solutions of the Dirichlet problem (10);
(ii) T (0, ·) ≡ 0 by definition;

(iii) for every t ∈ [0,1], T (t, ·) does not have any fixed point on ∂Uϑ,C, since each fixed point of T (t, ·) belongs to
Uϑ,C by the definitions of ϑ and C.

An elementary version of the Leray–Schauder theorem (due to Browder and Potter [12]) implies that T (1, ·) has a
fixed point, which proves that (8) has a solution. �
3.2. Existence and uniqueness of entire radial solutions

The aim of this section is to prove the following result:

Theorem 5. For α ∈ (0,1), let h : R+ → R be a positive function of class C2,α constant on some neighborhood of 0
and let ϕ0 be a real number. Recall r = r(x) denotes the hyperbolic distance of x ∈ H from a fixed origin o ∈ H. The
problem:

F2(ϕ)(x) = h(r) for all x ∈ H, ϕ(o) = ϕ0, (14)

admits a unique admissible radial solution ϕ : H → R of class C4,α.

Proof. Existence: let Bi denote the ball in H with center o and radius i ∈ N∗, and ϕi be the admissible solution of the
Dirichlet problem:

F2(ϕ) = h, ϕ|∂Bi
= 0, (15)
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given by Theorem 4. By radial symmetry and uniqueness, ϕi is a radial function: ϕi(x) = fi(r) for some function
fi : [0, i] → R. By uniqueness again, for j > i, the function ϕj − ϕi must be constant on Bi . Therefore f ′

j (r) ≡ f ′
i (r)

for r ∈ [0, i]. We may thus define g on R+ by g = f ′
i on each [0, i]. Now the function ϕ defined by

ϕ(x) = ϕ0 +
r∫

0

g(u)du

is a radial solution of (14).
Uniqueness: assume that ϕ1 and ϕ2 are admissible radial solutions of (14): ϕ1(x) = f1(r), ϕ2(x) = f2(r) where

f1, f2 are functions R+ → R. For each real R > 0, set

ϕ1,R(x) = −
R∫

r

f1
′(u) du and ϕ2,R(x) = −

R∫
r

f2
′(u) du.

The functions ϕ1,R and ϕ2,R are both admissible solutions of the Dirichlet problem (15) on BR. As such, they must
coincide on BR, hence f1

′ = f2
′ on [0,R], which implies the desired result. �

3.3. Properties of the radial solutions

The following lemma describes the monotonicity of a solution ϕ of Eq. (14) depending on the sign of h − 1:

Lemma 3. Let h : R+ → R and ϕ : H → R be as in Theorem 5, and let f : R+ → R be such that ϕ(x) = f [r(x)],
∀x ∈ H.

(i) If h � 1, then f is non-increasing; in particular, if ϕ0 = 0, the function ϕ is non-positive.
(ii) If h � 1, then f is non-decreasing; in particular, if ϕ0 = 0, the function ϕ is non-negative.

Proof. Here, we need to calculate explicitly the expression of Eq. (14) in the radial case. Set e1, . . . , en+1, for the
standard orthonormal basis of the vector space Rn,1. Fix x ∈ H and take, with no loss of generality,

o = en+1 = (0, . . . ,0,1), x = (sinh r,0, . . . ,0, cosh r)

with r , the hyperbolic distance between o and x. Consider the orthonormal basis of TxH defined by:

∂r = cosh re1 + sinh ren+1, and ∂ϑ = eϑ , ϑ = 2, . . . , n,

and the vectors, tangent to M = graphH ϕ at eϕ(x)x, induced by the embedding x ∈ H → eϕ(x)x ∈ M , given by:

ur = ef (f ′x + ∂r ), uϑ = ef ∂ϑ , ϑ = 2, . . . , n.

The future oriented unit normal to M at eϕ(x)x is the vector:

N(r) = f ′√
1 − f ′2

∂r + 1√
1 − f ′2

x. (16)

Let S be the shape endomorphism of M at eϕ(x)x, with respect to the future unit normal N(r). Using the formulas

D∂r ∂r (x) = x, D∂ϑ ∂r(x) = 1

tanh r
∂ϑ

where D denotes the canonical flat connection of Rn,1 and ∂r the unit radial vector field of H with respect to the point
o, we readily get:

S(ur) = dN(∂r) = e−f√
1 − f ′2

(
f ′′

1 − f ′2 + 1

)
ur,
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and, for ϑ = 2, . . . , n,

S(uϑ) = dN(∂ϑ) = e−f√
1 − f ′2

(
f ′

tanh r
+ 1

)
uϑ .

The principal curvatures of M at r > 0 are thus equal to:

e−f√
1 − f ′2

(
f ′′

1 − f ′2 + 1

)
(simple),

e−f√
1 − f ′2

(
f ′

tanh r
+ 1

)
(multiplicity n − 1).

Setting s = s(r) for the hyperbolic distance from o to N(r), we infer from (16):

s(r) = r + Argth(f ′). (17)

In terms of the new radial unknown s(r), for r > 0, the principal curvatures read(
e−f cosh(r − s)s′, e−f sinh s

sinh r
, . . . , e−f sinh s

sinh r

)
, (18)

and the equation F2(ϕ) = h reads

2s′ cosh(r − s) sinh r sinh s = nh2 sinh2 r − (n − 2) sinh2 s. (19)

We now prove the first statement of the lemma. Since f ′ = tanh(s − r), we must prove: s � r on [0,+∞). Suppose
first h < 1. Since s(0) = 0 and s ′(0) = h(0) < 1 (from (19)), there exists r0 > 0 such that s � r on [0, r0]. Moreover,
we get from (19):

s′ � 1

2 cosh(r − s)

(
n

sinh r

sinh s
− (n − 2)

sinh s

sinh r

)
.

We observe that the function s(r) = r is a solution of the ODE:

s′ = 1

2 cosh(r − s)

(
n

sinh r

sinh s
− (n − 2)

sinh s

sinh r

)
on [r0,+∞). So the comparison theorem for solutions of ordinary differential equations implies s � r on [r0,+∞).

Suppose only h � 1, fix A > 0 and consider hδ = h − δ, where δ is some small positive constant such that hδ > 0
on [0,A]. Denoting by ϕδ and sδ the corresponding solutions of (14) and (19) on the ball of radius A, the function
sδ − r is non-positive; we now prove that sδ − r converges uniformly to s − r as δ tends to zero, which will yield the
desired result. Set BA for the ball of radius A in H centered at o and U = {ψ ∈ C2,α(BA), ψ +ϕ is admissible in BA,
ψ|∂BA

= 0}; consider the auxiliary map:

Φ : ψ ∈ U → Φ(ψ) := F2(ψ + ϕ) ∈ Cα(BA).

Since Φ(0) = h and since, classically [7] (recalling (5)), the linearized map dΦ(0) is an isomorphism from
{ξ ∈ C2,α(BA), ξ|∂BA

= 0} to Cα(BA), the inverse function theorem implies: ∀ε > 0,∃δ0 > 0,∀δ ∈ (0, δ0), the
solution ψδ ∈ U of F2(ψδ + ϕ) = hδ satisfies |ψδ|2,α � ε. Since ϕδ = ψδ + ϕ − ψδ(o), we obtain |ϕδ − ϕ|2,α � 2ε,

which implies the convergence of ϕδ to ϕ in C1 and thus the uniform convergence of sδ to s.

The proof of statement (ii) is analogous and thus omitted. �
Our next lemma provides a simple necessary and sufficient condition for an entire radial solution to be bounded.

Lemma 4. Let h : R+ → R and ϕ : H → R be as in Theorem 5.

(i) Assume h � 1, and limr→∞ h = 1. Then

lim
r(x)→+∞ϕ(x) > −∞ if and only if

+∞∫
0

(1 − h)dr converges.
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(ii) Assume h � 1, and limr→∞ h = 1. Then

lim
r(x)→+∞ϕ(x) < +∞ if and only if

+∞∫
0

(h − 1) dr converges.

Proof. Let us prove statement (i), thus assuming h � 1, with limr→∞ h = 1. We stick to the notations used in the
proof of Lemma 3. From (17), we get at once:

ϕ(x) = ϕ0 −
r(x)∫
0

tanh
(
u − s(u)

)
du. (20)

Statement (i) amounts to proving that
∫ +∞

0 tanh(u − s(u)) du converges if and only if so does
∫ +∞

0 (1 − h)dr . We
split the proof of this fact into five steps.

Step 1. The solution s of (19) is an increasing function.
Let us consider in the (r, s) plane the curve C with equation:

nh2 sinh2 r = (n − 2) sinh2 s, r, s � 0.

The slope of its tangent at (0,0) is
√

n
n−2h(0). Since the solution s satisfies s(0) = 0 and s′(0) = h(0), we infer that

the graph of s stays under the curve C near 0. Noting that the following vector field, associated to the differential
equation (19):

(r, s) �→ (
2 cosh(r − s) sinh r sinh s, nh2 sinh2 r − (n − 2) sinh2 s

)
,

is horizontal on C , and that the height s of the curve C is increasing with r , we conclude that the solution s of (19)
remains trapped below C. In other words nh2 sinh2 r � (n − 2) sinh2 s for all r, and (19) implies: s′ � 0.

Step 2. r − s has a limit at +∞.

By contradiction, assume lim inf(r − s) < lim sup(r − s) = δ. Thus there exists a sequence rk → +∞ such that
rk − s(rk) → δ and s′(rk) = 1. Denoting s(rk) by sk, we get from Eq. (19):

1 = 1

2 cosh(rk − sk)

[
nh2(rk)

sinh rk

sinh sk
− (n − 2)

sinh sk

sinh rk

]
. (21)

We distinguish two cases:

First case: δ < +∞. We then have sk → +∞,
sinh rk
sinh sk

∼ erk−sk ∼ eδ and sinh sk
sinh rk

∼ esk−rk ∼ e−δ as k tends to infinity
(here and below, the equivalence ∼ between two quantities means that their quotient has limit 1). So (21) yields

1 = 1

2 cosh δ

[
neδ − (n − 2)e−δ

]
.

Using eδ � e−δ we get 1 � eδ

cosh δ
, which is absurd.

Second case: δ = +∞. First assuming that sk is not bounded, and since s is an increasing function (Step 1), we have:
sk → +∞,

sinh rk
sinh sk

∼ erk−sk → +∞ and sinh sk
sinh rk

∼ esk−rk → 0 as k tends to infinity. Eq. (21) yields

1 ∼ n

2 cosh(rk − sk)
erk−sk ,

which is absurd since cosh(rk − sk) ∼ erk−sk

2 . If we now assume sk bounded, since s is an increasing function with

s′(0) > 0, we get that sk converges to l > 0, and, since sinh sk
sinh rk

→ 0, we obtain from (21):

1 ∼ n

2 cosh(rk − sk)

sinh rk

sinh l
,

with sinh rk ∼ erk
, cosh(rk − sk) ∼ erk−sk ∼ e−l

erk ; so 1 = n el

, which is absurd.
2 2 2 2 sinh l
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Step 3. r − s tends to 0 at infinity.
Having proved that r − s converges, let us set δ = limr→+∞ r − s and prove by contradiction that δ = 0. There are

two cases:

First case: 0 < δ < +∞. We get s → +∞, hence sinh r
sinh s

∼ er−s ∼ eδ, sinh s
sinh r

∼ es−r ∼ e−δ as r tends to infinity, and
thus, from (19):

s′ → 1

2 cosh δ

[
neδ − (n − 2)e−δ

]
.

The latter expression is larger than 1, which contradicts r � s.

Second case: δ = +∞. We first note that sinh s
sinh r

→ 0 (if s is bounded this is trivial; if s is not bounded, s → +∞ since
s is increasing, and we have sinh s

sinh r
∼ es−r → 0 since r − s → +∞). Moreover we have lim infnh2 sinh r

sinh s
� n since

r � s. We thus infer from Eq. (19):

s′ ∼ n

2 cosh(r − s)

sinh r

sinh s
.

Assuming s → +∞, we get sinh r
sinh s

∼ er−s and cosh(r − s) ∼ er−s

2 , hence s′ ∼ n, which is impossible since s � r.

Finally, assuming s bounded yields s → l > 0; since r − s → +∞, we infer cosh(r − s) ∼ er−s

2 and sinh r ∼ er

2 ,

hence from (19), e−ss′ ∼ n
2

1
sinh l

and thus s′ ∼ n
2

el

sinh l
, which contradicts the boundedness assumption on s.

Step 4. limr(x)→+∞ ϕ(x) > −∞ if and only if ε(r) := r − s is integrable on [0,+∞).

This is straightforward from (20) combined with tanh(u − s(u)) ∼ ε(u) which holds as u → +∞ due to Step 3.

Step 5. ε is integrable on [0,+∞) if and only if β := 1 − h2 is integrable on [0,+∞).

First observation: limr→∞ s′ = 1. Indeed, at infinity, we have r − s → 0, so s → +∞, hence:

sinh r

sinh s
∼ er−s ∼ 1,

sinh s

sinh r
∼ es−r ∼ 1,

and (19) yields s′ → 1.

Using Step 3, the assumptions on h and the preceding observation, we get

ε(r) → 0, β(r) → 0, and ε′(r) = 1 − s′(r) → 0

as r tends to infinity. Plugging the definitions of ε and β in (19) and using the expansions

cosh ε = 1 + o(ε), sinh(r − ε) = sinh r
(
1 − ε + o(ε)

)
,

yields

(n − 1)ε + ε′ + o(ε) = n

2
β. (22)

Fixing a real δ > 0, there readily exists rδ > 0 such that, for all r � rδ,

ε′ + (n − 1 − δ)ε � n

2
β, (23)

and

ε′ + (n − 1 + δ)ε � n

2
β. (24)

Integrating (23), we get, for r � rδ,

ε(r) � e−(n−1−δ)r

[
C(rδ) + n

2

r∫
rδ

β(u)e(n−1−δ)u du

]
.

Integrating again and using Fubini Theorem yields, with δ such that n − 1 − δ > 0,
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+∞∫
rδ

ε(r) dr � C′(rδ) + n

2

+∞∫
rδ

β(u)e(n−1−δ)u

( +∞∫
u

e−(n−1−δ)rdr

)
du,

� C′(rδ) + n

2(n − 1 − δ)

+∞∫
rδ

β(u)du.

We conclude that ε is integrable provided β = 1 − h2 is integrable.
Analogously, using (24), we get

ε(r) � e−(n−1+δ)r

[
C(rδ) + n

2

r∫
rδ

β(u)e(n−1+δ)u du

]
,

and
+∞∫
rδ

ε(r) dr � C′(rδ) + n

2

+∞∫
rδ

β(u)e(n−1+δ)u

( +∞∫
u

e−(n−1+δ)rdr

)
du,

� C′(rδ) + n

2(n − 1 + δ)

+∞∫
rδ

β(u)du.

Taking δ > 0 arbitrary, we find that β is integrable if ε is integrable.
The proof of statement (ii) is analogous and thus omitted. �

3.4. Construction of radial barriers

Lemma 5. Let h : H → R be a positive and continuous function on the hyperbolic space such that

lim
r(x)→+∞h(x) = 1

and such that the functions h− and h+ defined on R+ by

h−(r) = sup
r(x)=r

h(x) and h+(r) = inf
r(x)=r

h(x)

satisfy
+∞∫
0

(h− − 1)+dr < +∞,

+∞∫
0

(1 − h+)+dr < +∞,

where (h−−1)+ (resp. (1−h+)+) means the positive part of h−−1 (resp. 1−h+). Then there exist ϕ−, ϕ+ ∈ C∞(H),
with strictly convex spacelike graphs, satisfying:

F2(ϕ
−) � h, F2(ϕ

+) � h and lim
r→+∞ϕ± = 0.

Proof. First, considering 1 + (h− − 1)+ instead of h− and 1 − (1 − h+)+ instead of h+, we may suppose without
loss of generality that h− and h+ are two continuous functions such that: ∀x ∈ H, with r = r(x),

h−(r) � h(x) � h+(r) > 0, (25)

h− � 1 � h+, lim
r→+∞h−(r) = lim

r→+∞h+(r) = 1, (26)

and
+∞∫

(h− − 1) dr < +∞,

+∞∫
(1 − h+) dr < +∞. (27)
0 0
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If we now consider

h− + ε0

r2
if r � 1, h− + ε0 if r � 1

instead of h−, and

h+ − ε0

r2
if r � 1, h+ − ε0 if r � 1

instead of h+, where ε0 is chosen sufficiently small such that infh+ > ε0, we may moreover assume the following:

h− � max(1, h) + ε0

r2
and h+ � min(1, h) − ε0

r2
if r � 1.

We now prove that we can approximate h± by smooth functions g± such that∣∣h± − g±∣∣ � min

(
ε0

r2
, ε0

)
. (28)

For each i ∈ N, let us denote by g−
i a smooth function on [0, i + 1] such that |h− − g−

i | � ε0
(i+1)2 on [0, i + 1]. Let

ϑ ∈ C∞
c (R) such that 0 � ϑ � 1, ϑ(x) = 1 if |x| � 1

4 and ϑ(x) = 0 if |x| � 3
4 . We define g− on [i, i + 1] by

g− = ϑig
−
i + (1 − ϑi)g

−
i+1,

where ϑi = ϑ(. − i). By construction, we have g− = g−
i on a neighborhood of i. The function g− is thus smooth on

[0,+∞), and satisfies on [i, i + 1]:∣∣g− − h−∣∣ � ϑi

∣∣g−
i − h−∣∣ + (1 − ϑi)

∣∣g−
i+1 − h−∣∣ � ε0

(i + 1)2
,

which implies the estimate (28). We may thus assume that (25), (26) and (27) hold, where h± are two smooth functions
on R+. Considering ϑ supR+ h− + (1 − ϑ)h− instead of h−, and ϑ infR+ h+ + (1 − ϑ)h+ instead of h+, we may
also assume that the functions h± are constant on some neighborhood of 0. Let ϕ− and ϕ+ be smooth radial functions
given by Theorem 5 (with some arbitrary initial condition ϕ0) such that F2(ϕ

±) = h±. From Lemma 4, subtracting
constants if necessary, we obtain limr→+∞ ϕ±(r) = 0. �

Now, we can complete the proof of Theorem 1 as follows. Lemma 5 provides two barriers which tend to 0 at
infinity; by Theorem 3, we get an entire solution of Eq. (3) pinched between these barriers, and thus tending to 0 at
infinity, so the existence part of Theorem 1 is proved. Uniqueness was proved in Theorem 2.
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