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Abstract

We study semiclassical states of nonlinear Schrödinger equations with anisotropic type potentials which may exhibit a combi-
nation of vanishing and singularity while allowing decays and unboundedness at infinity. We give existence of spike type standing
waves concentrating at the singularities of the potentials.

Résumé

Nous étudions les états semi-classiques des équations de Schrödinger non linéaires avec potentiels de type anisotropiques qui
peuvent tendre vers zéro à l’infini, pour lesquels des phénomènes d’évanescence et de singularité sont possibles. Nous donnons
l’existence d’ondes stationnaires se concentrant aux singularités des potentiels.

Keywords: Nonlinear Schrödinger equations; Singularities of potentials; Decaying and unbounded potentials

1. Introduction

This paper is concerned with standing waves for nonlinear Schrödinger equations

ih̄
∂ψ

∂t
+ h̄2

2
�ψ − V (x)ψ + K(x)|ψ |p−1ψ = 0,
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where h̄ denotes the Planck constant, i is the imaginary unit. The equation arises in many fields of physics, in particu-
lar, when we describe Bose–Einstein condensates (refer [18,19]) and the propagation of light in some nonlinear optical
materials (refer [20]). In this paper we are concerned with the existence of standing waves of the nonlinear Schrödinger
equation for small h̄. For small h̄ > 0, these standing wave solutions are refereed as semiclassical states. Here a so-
lution of the form ψ(x, t) = exp(−iEt/h̄)v(x) is called a standing wave. Then, a function ψ(x, t) ≡ exp(−iEt/h̄)

v(x) is a standing wave solution if and only if the function v satisfies

h̄2

2
�v − (

V (x) − E
)
v + K(x)|v|p−1v = 0, x ∈ R

n.

With a simple re-scaling and renaming the potential V − E to be V we work on the following version of the equation
in this paper{−ε2�v + V (x)v = K(x)vp, v > 0, x ∈ R

n,

v ∈ W 1,2(Rn), lim|x|→∞ v(x) = 0.
(1)

Here ε is a small parameter, V,K are nonnegative potentials, and p is subcritical 1 < p < n+2
n−2 with 2∗ = 2n

n−2 the
critical exponent for n � 3. In recent years intensive works have been done in understanding solutions structure of
Eq. (1) as ε → 0. One of the most characteristic feature is that the semiclassical bound states exhibit concentration
behaviors as ε → 0 (see the classical work [15] by Floer and Weinstein, [21,13,17,14,3,7] and the recent monograph
[2] and references therein). In particular, some recent works have been devoted to the cases where the potentials
may have vanishing points and may be decaying to zero at infinity [1,4–6,8–11,22]. In [1] ground state solutions in
the associated weighted Sobolev spaces are obtained for positive potentials with decay at infinity. In [4,5] decaying
potentials are also considered and spike solutions which concentrate at points of positive potential values are given.
Then in [6] ground state solutions concentrating near zeroes of potentials were constructed in the weighted Sobolev
spaces.

In this paper we consider concentration solutions which both concentrate near zeroes of the potential V and sin-
gularities of the potentials V and K for Eq. (1). The potentials V may decay at infinity and K may be unbounded at
infinity. One feature of our results is that the solutions we construct have small magnitudes comparing with the spike
solutions concentrating at points of positive potential values. Another feature is that these solutions may have very
different limiting equations under quite different scalings.

We assume that V satisfies

(V) V ∈ L1
loc(R

n) ∩ C(Rn \ S0, [0,∞)) for a bounded Lebesgue measure zero set S0, Z ∩ S0 = ∅ where Z =
{x ∈ R

n \ S0 | V (x) = 0}; lim infdist(x,S0)→0 V (x) ∈ (0,∞]; lim inf|x|→∞ |x|2V (x) � 4λ > 0 for some λ > 0.

We assume that K satisfies

(K) K ∈ L
q0
loc(R

n) for some q0 > 2n
2n−(p+1)(n−2)

, n � 3; K ∈ C(Rn \ S, [0,∞)) for a bounded and Lebesgue measure

zero set S ; lim sup|x|→∞ K(x)|x|−γ∞ < ∞ for some γ∞ > 0.

If S is a singleton, for example S = {0}, the first condition of (K) holds if lim sup|x|→0 |x|γ K(x) < ∞ for some

γ <
2n−(p+1)(n−2)

2 .

Our main existence result is the following one.

Theorem 1. Let n � 3. Suppose that (V) and (K) hold. Let A ⊂ Z ∪ S be an isolated compact subset of Z ∪ S such
that A ∩ S0 ∩ S0 \ A = ∅ and

lim
0<dist(x,A)→0

V
2n−(p+1)(n−2)

2 (x)/K2(x) = 0.

Then for ε sufficiently small, (1) has a positive solution wε ∈ W 1,2(Rn) ∩ L∞(Rn) such that

lim ‖wε‖∞ = 0 and lim inf ε
−2
p+1 ‖wε‖∞ > 0. (2)
ε→0 ε→0
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Moreover, for each δ > 0, there are constants C,c > 0 such that

wε(x) � C exp

(
−c

ε

)(
1 + dist

(
x,Aδ

))−√
λ/ε

, x /∈ Aδ, (3)

where Aδ ≡ {x ∈ R
n | dist(x,A) � δ}.

We also study the asymptotic profile of the concentrating solutions given above. It turns out the asymptotic behavior
depends on the local behavior of the potentials V and K near the concentrating set A. We give some detained results
in Section 3.

Our scheme for a proof of the existence of localized solutions in Theorem 1 is as follow. Since there are singular
points of K , and V may converges to 0 at infinity, we consider a truncated equation on a bounded ball B(0,μ) with a
truncated Kμ instead of K and a homogeneous Dirichlet boundary condition. For the truncated problem, we consider a
minimization problem with two constraints, where we should delve an appropriate weight and an appropriate exponent
for a constraint. The existence of a minimizer u

μ
ε follows from our well chosen setting. Then, we get an upper bound

estimate and a lower bound estimate for the minimum. One crucial step in our argument is to obtain an exponential
decay, uniform for large μ, of u

μ
ε on a certain set. The decay estimate is derived by combining Moser iterations,

standard elliptic estimates, Caffarelli–Kohn–Nirenberg inequalities and comparison principles. Then, we show that a
scaled minimizer w

μ
ε is a solution of the truncated problem for small ε > 0 and large μ > 0, and that a weak limit wε

of {wμ
ε }μ is a desired solution of our original problem.

We close up the introduction with some discussions of known results and comparison with our new results. During
the last twenty years there have been intensive work on semiclassical states of standing waves for the nonlinear
Schrödinger equations with potentials. Spike solutions concentrating at points of positive potentials values for V and
K have been given in the pioneer work [15] and subsequent works e.g., [1,4,5,21,22]. These solutions are shown to
have nice asymptotic behavior in the sense that if wε(x) is a solution of (1) and x0 is the concentration point then
Wε(x) = wε(ε(x − x0)) converges uniformly to a least energy solution of the following limiting equation �U +
V (x0)U = K(x0)U

p , U > 0, x ∈ R
n. Thus U is the limiting profile of semiclassical limits in this case. In [9–11]

the authors have studied the critical frequency case for which at the concentration point x0 the potential V is zero,
i.e., V (x0) = 0. We have found that for this case the limiting equations are abundant and appear in different families
and that under different scalings the limiting profile of the semiclassical states have small magnitudes, i.e., ‖wε‖L∞
tends to zero as ε → 0. The new phenomenon we present in the current paper here is that the concentration for spike
solutions can be at zeroes and singularities of the potentials for both V and K . It depends on the zero set of a weighted
potential involving both V and K . Comparing with the results in [9,10] we construct small solutions even when V (x0)

is positive. On the other hand our new results here allow us to construct solutions concentrating at singular points of
V and K . We also investigate the limiting profile of these localized solutions. Under more precise information on
the local behaviors of V and K near the concentration points we derive a variety of limiting equations. One simple
example covered by our results is when V (x) = |x|τ for |x| small, V (x) � |x|−2 for |x| large and K(x) = |x|−γ for
|x| small, K(x) � |x|γ∞ for |x| large for some γ∞ > 0. Then for τ > −2, γ ∈ (−τ(2n − (p + 1)(n − 2))/4, (2n −
(p + 1)(n − 2))/2), our result applies to give the existence of a localized solution wε which under a suitable scaling
converges to a least energy solution of Eq. (27) (see the statement of Theorem 11).

The proof of Theorem 1 is given in Sections 2 and 3 is devoted to asymptotic analysis of the localized solutions as
ε → 0.

2. Proof of Theorem 1

For a proof of our main results we further elaborate the minimization techniques in [9,11] to construct the spike
solutions concentrating near zeroes and singularities of the potentials.

Let A ⊂ Z ∪ S be the isolated set assumed in the theorem. We choose δ ∈ (0,1) such that A8δ ∩ ((Z ∪ S) \ A) =
A8δ ∩ (S0 \A) = ∅, where for d > 0, Ad = {x ∈ R

n|dist(x,A) � d}. We denote in the following Ad
ε = {x ∈ R

n | εx ∈
Ad} for ε, d > 0. Let Eε be the completion of C∞

0 (Rn) with respect to the norm

‖u‖ε =
(∫

ε2|∇u|2 + V (x)u2
)1/2

.
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We define a truncated function for μ > 0

Kμ(x) =
{

min{K(x),μ} if x ∈ R
n \ A4δ ,

K(x) if x ∈ A4δ.

We consider the following problem for μ > 0{
ε2�v − V (x)v + Kμ(x)vp = 0, v > 0, x ∈ B(0,μ),

v(x) = 0 on ∂B(0,μ).
(4)

Define E
μ
ε ≡ (C∞

0 (B(0,μ)),‖ · ‖ε) and choose R0 > 0 so that Z ∪ S0 ∪ S ⊂ B(0,R0/2). Note that

n

2
<

2n

2n − (n − 2)(p + 1)
,

n

2
<

p + 1

p − 1
.

From now, we fix a number β > 0 satisfying

n

2
� β < min

{
2n

2n − (n − 2)(p + 1)
,
p + 1

p − 1

}
. (5)

For a sufficiently large α > 0 which will be specified later, we define χε by

χμ
ε (x) =

⎧⎪⎪⎨
⎪⎪⎩

ε−α if |x| � R0 and x /∈ (Z ∪ S)4δ ,

ε−α(max{1,Kμ(x)})β if x ∈ ((Z ∪ S) \ A)4δ ,

ε−2α|x|α if |x| � R0,

0 if x ∈ A4δ.

We define β̃ ≡ max{β(p − 1),2}. Defining

Φμ
ε (u) ≡

∫
Rn

Kμ|u|p+1 dx and Ψ μ
ε (u) ≡

∫
Rn

χμ
ε |u|β̃ dx,

we consider the following minimization problem

Mμ
ε = inf

{‖u‖2
ε

∣∣ Φμ
ε (u) = 1, Ψ μ

ε (u) � 1, u ∈ Eμ
ε

}
. (6)

Since (K) holds and χ
μ
ε = 0 in A4δ, we see that Φ

μ
ε , Ψ

μ
ε ∈ C1(E

μ
ε ).

Lemma 2. limε→0 ε
−n

p−1
p+1 M

μ
ε = 0 uniformly for large μ > 0.

Proof. Note that

Mμ
ε � inf

u∈C∞
0 (A4δ)

∫
ε2|∇u|2 + V (x)u2 dx

(
∫

K(x)|u|p+1 dx)
2

p+1

.

Letting v(x) = u(εx) we have

Mμ
ε � ε

n(p−1)
p+1 inf

v∈C∞
0 (A4δ

ε )

∫ |∇v|2 + V (εx)v2 dx

(
∫

K(εx)|v|p+1 dx)
2

p+1

.

For any x0 ∈ A4δ \ A, we can take r > 0 with B(x0, r) ⊂ A4δ \ A such that V (x) � 2V (x0) for x ∈ B(x0, r), and
K(x) � 1

2K(x0) for x ∈ B(x0, r). Then, we see easily that

Mμ
ε � ε

n(p−1)
p+1 inf

v∈C∞
0 (B(x0/ε,r/ε)

∫ |∇v|2 + V (εx)v2 dx

(
∫

K(εx)|v|p+1 dx)
2

p+1

� ε
n(p−1)
p+1 inf

v∈C∞
0 (B(0,r/ε))

∫ |∇v|2 + 2V (x0)v
2 dx

(
∫ 1

2K(x0)|v|p+1 dx)
2

p+1

= ε
n(p−1)
p+1

(
2V (x0)

) 2n−(p+1)(n−2)
2(p+1)

(
K(x0)/2

)− 2
p+1 inf

{ ∫ |∇v|2 + v2 dx

(
∫ |v|p+1 dx)

2
p+1

∣∣∣ v ∈ C∞
0

(
B

(
0,

√
2V (x0)r/ε

))}
.
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Thus, it follows that there exists C > 0 such that for any x0 ∈ A4δ \ A sufficiently close to A,

lim
ε→0

ε
−n

p−1
p+1 Mμ

ε � CV
2n−(p+1)(n−2)

2(p+1) (x0)/K
2

p+1 (x0).

Then, the estimate follows. �
Lemma 3. The minimization M

μ
ε is achieved by a nonnegative u

μ
ε ∈ E

μ
ε which satisfies for some η

μ
ε > 0 � ξ

μ
ε

−ε2�uμ
ε + V (x)uμ

ε = ημ
ε Kμ(x)

(
uμ

ε

)p + ξμ
ε χμ

ε (x)
(
uμ

ε

)β̃−1
in B(0,μ). (7)

Proof. From the choice of β and the definition Kμ and χ
μ
ε , we see that M

μ
ε is achieved by a minimizer u

μ
ε ∈ E

μ
ε

which can be assumed to be nonnegative and satisfies Eq. (7) with Lagrange multipliers α
μ
ε and β

μ
ε . Following an

argument from [9] we have η
μ
ε > 0 � ξ

μ
ε . �

Lemma 4.

lim
ε→0

ε
−n

p−1
p+1 ημ

ε = 0 uniformly for large μ > 0.

Proof. By contradiction we assume there exist η0 > 0, μm → ∞, εm → 0 such that lim infm→∞ ε
−n

p−1
p+1

m η
μm
m �

η0 > 0. Let um = u
μm
εm and ηm = η

μm
εm . For small b > 0, we define a cut-off function φb(x) which is 1 for x satis-

fying dist(x,R
n \ A4δ) > b and 0 for x /∈ A4δ , and |∇φ| � 2/b. Multiplying Eq. (7) by φbum and integrating over the

space, and using the fact that inf{x∈A4δ |d(x,Rn\A4δ)�b} V (x) � c0 > 0 (independent of small b), we get that for some
C > 0,

ε
−n

p−1
p+1

m ηm

∫
{x|d(x,Rn\A4δ)>b}

Kμmu
p+1
m � Cε

−n
p−1
p+1

n

∫ (
ε2
m|∇um|2 + V (x)u2

m

)
.

We see from Lemma 2 that the right-hand side in above inequality converges to 0 as n → ∞. Then we see that

lim
m→∞

∫
{x|d(x,Rn\A4δ)>b}

Kμmu
p+1
m = 0. (8)

On the other hand, let ψ be another cut-off function satisfying that ψ(x) = 1 for x ∈ A4δ \ A3δ and ψ(x) = 0 for
x ∈ A2δ or x /∈ A5δ , and |∇ψ | � 2/δ. Note that β̃ < p + 1. Then, using (8), the fact Ψ

μm
εm (um) � 1 and Hölder

inequality, we see that
∫

Rn Kμm(ψum)p+1 → 1 as m → ∞. Consider wm(x) = ε
n

p+1
m ψ(εmx)um(εmx) and by using

Lemma 2 we have wm → 0 in H 1(Rn). By embedding theorems and the fact infx∈A5δ\A2δ V (x) > 0, it follows that∫
Kμm(εmx)w

p+1
m → 0. This contradicts that

∫
Kμn(εmx)w

p+1
m = ∫

Kμm(x)(ψ(x)um(x))p+1 → 1 as m → ∞. �
Lemma 5. If α > 0 is sufficiently large,

lim inf
ε→0

ε−2ημ
ε > 0 uniformly for large μ > 0.

Proof. Arguing indirectly, we assume for a subsequence (still denoted by ε) ε−2η
μ
ε → 0. Choose a cut-off function φ

satisfying φ(x) = 1 for x ∈ A4δ and φ(x) = 0 for x /∈ A5δ . Then for some constant C > 0 independent of small ε > 0
and large μ > 0, it follows that∫ ∣∣∇(

φuμ
ε

)∣∣2
dx � 2

∫
φ2

∣∣∇uμ
ε

∣∣2 + |∇φ|2(uμ
ε

)2
dx

� C

∫ ∣∣∇uμ
ε

∣∣2 + ε−2V
(
uμ

ε

)2
dx = Cε−2Mμ

ε

� Cε−2ημ
ε → 0 as ε → 0.
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Then, by Hölder’s inequality and Sobolev embedding, we see that∫
A4δ

Kμ

(
uμ

ε

)p+1 =
∫
Rn

K
(
φuμ

ε

)p+1 → 0 as ε → 0.

By the constraint Ψ
μ
ε (u

μ
ε ) � 1, we see that∫

{x /∈(Z ∪S)4δ ||x|�R0}

(
uμ

ε

)β̃
dx � εα, (9)

∫
{x∈(Z ∪S\A)4δ}

Kβ
μ

(
uμ

ε

)β̃
dx � εα (10)

and ∫
{|x|�R0}

|x|α(
uμ

ε

)β̃
dx � ε2α. (11)

Note that β̃ < p + 1. Then, using Hölder’s inequality, we see that for some C > 0, independent of μ,ε > 0,∫
{x∈(Z ∪S\A)4δ}

Kμ

(
uμ

ε

)p+1
dx

�
( ∫

{x∈(Z ∪S\A)4δ}
(Kμ)β

(
uμ

ε

)β(p−1)
dx

)1/β( ∫
{x∈(Z ∪S\A)4δ}

(
uμ

ε

)2β/(β−1)
)(β−1)/β

� C

( ∫
{x∈(Z ∪S\A)4δ}

(Kμ)β
(
uμ

ε

)β(p−1)
dx

)1/β( ∫
{x∈(Z ∪S\A)4δ}

(
uμ

ε

)2∗
)2/2∗

.

Thus, if β̃ = β(p − 1), it follows that

lim
ε→0

∫
{x∈(Z ∪S\A)4δ}

Kμ

(
uμ

ε

)p+1
dx = 0.

When β̃ = 2, we deduce from conditions (5) and (10) that for some C > 0,∫
{x∈(Z ∪S\A)4δ}

(Kμ)β
(
uμ

ε

)β(p−1)
dx

�
∫

{x∈(Z ∪S\A)4δ |uμ
ε (x)�εα/2}

(Kμ)β
(
uμ

ε

)β(p−1)
dx +

∫
{x∈(Z ∪S\A)4δ |uμ

ε (x)�εα/2}
(Kμ)β

(
uμ

ε

)β(p−1)
dx

� εαβ(p−1)/2
∫

{x∈(Z ∪S\A)4δ}
(Kμ)β dx + εαβ(p−1)/2

∫
{x∈(Z ∪S\A)4δ |u(x)

μ
ε �εα/2}

(Kμ)β
(
uμ

ε /εα/2)β(p−1)
dx

� εαβ(p−1)/2C + εαβ(p−1)/2−α

∫
{x∈(Z ∪S\A)4δ}

(Kμ)β
(
uμ

ε

)2
dx

� εαβ(p−1)/2C + εαβ(p−1)/2.

Thus, we see that

lim
ε→0

∫
4δ

Kμ

(
uμ

ε

)p+1
dx = 0
{x∈(Z ∪S\A) }
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uniformly for μ > 0. Using Hölder’s inequality, condition (K), (9) and (11), we see that if α > 0 is sufficiently large,

lim
ε→0

∫
{x /∈(Z ∪S)4δ ||x|�R0}

Kμ

(
uμ

ε

)p+1
dx = 0

and

lim
ε→0

∫
{|x|�R0}

Kμ

(
uμ

ε

)p+1
dx = 0

uniformly for large μ > 0. Then, we get

lim
ε→0

∫
Kμ

(
uμ

ε

)p+1
dx = 0,

which contradicts the constraint
∫

Kμ(u
μ
ε )p+1 dx = 1. This completes the proof. �

We denote w
μ
ε ≡ (η

μ
ε )

1
p−1 u

μ
ε . Then, we see that

−ε2�wμ
ε + V wμ

ε � Kμ

(
wμ

ε

)p in B(0,μ). (12)

From Lemmas 2 and 4, we see that

lim
ε→0

ε−n

∫
Rn

ε2
∣∣∇wμ

ε

∣∣2 + V
(
wμ

ε

)2 = 0 uniformly for large μ > 0. (13)

Then, it follows from Sobolev embedding and the fact Ψ
μ
ε (u

μ
ε ) � 1 that for any q ∈ [β̃,2∗) and r ∈ (0, δ),

lim
ε→0

ε−n

∫
Rn\Ar

(
wμ

ε

)q = 0 uniformly for large μ > 0, (14)

where 2∗ = 2n/(n − 2) for n � 3.

Lemma 6. For any r ∈ (0, δ), there exist c,C > 0, independent of large μ > 0, such that for small ε > 0,

wμ
ε (x) � C exp(−c/ε) for |x| � R0 and dist(x, Z ∪ S) > r.

Proof. Note that in the set B(0,R0)\{x | dist(x, Z ∪ S) > r}, V has a positive lower bound and K is continuous (thus
has a upper bound). We may use (13) and (14) together with elliptic estimates (refer [16]) and a maximum principle
argument similar to [9] (Lemma 2.6, 2.7 there) to deduce the estimate. �
Lemma 7. There exist c,C > 0, independent of large μ > 0, such that for small ε > 0,

wμ
ε (x) � C exp(−c/ε) for x ∈ (

(Z ∪ S) \ A
)δ

.

Proof. Denoting w
μ
ε ≡ (η

μ
ε )

1
p−1 u

μ
ε , we see that

−ε2�wμ
ε + V (x)wμ

ε � Kμ

(
wμ

ε

)p in B(0,μ). (15)

Let φ ∈ C∞
0 ((Z ∪ S \A)2δ) be a cut-off function such that φ(x) = 1 for x ∈ (Z ∪ S \A)δ and |∇φ| � 4/δ. Multiplying

both sides of (15) through by (w
μ
ε )2l+1φ2 with l � 0, we see that

ε2

l + 1

∫
Rn

∣∣∇(
wμ

ε

)l+1
φ
∣∣2

dx � ε2

l + 1

∫
Rn

(
wμ

ε

)2l+2|∇φ|2 dx +
∫
Rn

Kμ

(
wμ

ε

)p−1(
wμ

ε

)2l+2
φ2 dx.

Then, by the Sobolev inequality and Hölder’s inequality, it follows that for some c > 0, independent of φ, l, ε,μ
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cε2

l + 1

∥∥(
wμ

ε

)2l+2
φ2

∥∥
Ln/(n−2) � ε2

l + 1

∫
Rn

(
wμ

ε

)2l+2|∇φ|2 dx

+
( ∫

supp(φ)

(Kμ)β
(
wμ

ε

)β(p−1)
dx

)1/β∥∥(
wμ

ε

)2l+2
φ2

∥∥
Lβ/(β−1) . (16)

If β(p − 1) � 2, it follows that∫
supp(φ)

(Kμ)β
(
wμ

ε

)β(p−1)
dx � εα.

When β(p − 1) < 2, it follows that for some C > 0, independent of small ε > 0 and large μ > 0,∫
supp(φ)

(Kμ)β
(
wμ

ε

)β(p−1)
dx

=
∫

{x∈supp(φ)|wμ
ε (x)�εα/2}

(Kμ)β
(
wμ

ε

)β(p−1)
dx +

∫
{x∈supp(φ)|wμ

ε (x)>εα/2}
(Kμ)β

(
wμ

ε

)β(p−1)
dx

� Cεαβ(p−1)/2 + εαβ(p−1)/2
∫

{x∈supp(φ)|wμ
ε (x)>εα/2}

(Kμ)β
(
wμ

ε /εα/2)β(p−1)
dx

� Cεαβ(p−1)/2 + εαβ(p−1)/2
∫

supp(φ)

(Kμ)β
(
wμ

ε /εα/2)2
dx

� Cεαβ(p−1)/2 + εαβ(p−1)/2(ημ
ε

)2/(p−1) � (C + 1)εαβ(p−1)/2,

where we used the fact Ψ
μ
ε (u

μ
ε ) � 1. Then we deduce that there exists C,c > 0, independent of l, ε,μ, satisfying

∥∥(
wμ

ε

)2l+2
φ2

∥∥
Ln/(n−2) � C exp(−c/ε) + C(l + 1)ε

α min{1,β(p−1)/2}
β

−2∥∥(
wμ

ε

)2l+2
φ2

∥∥
Lβ/(β−1) . (17)

Note that β
β−1 < n

n−2 . Then, by Hölder inequality again there is a constant C1 only depending on n,β and δ such that

∥∥(
wμ

ε

)2l+2
φ2

∥∥
Ln/(n−2) � C exp(−c/ε) + C1(l + 1)ε

α min{1,β(p−1)/2}
β

−2∥∥(
wμ

ε

)2l+2
φ2

∥∥
Ln/(n−2) . (18)

We take large α > 0 so that α min{1,β(p−1)/2}
β

> 2. This implies that for any large q > 0, there exists C,c > 0 such that
for small ε, independent of μ > 0,∫

(Z ∪S\A)δ

(
wμ

ε

)q
dx � C exp(−c/ε).

Applying an elliptic estimate [16] to (15), we see that for any s > 2 and t > n/2, there exists a constant C > 0,

independent of ε,μ > 0, satisfying

∥∥wμ
ε

∥∥
L∞((Z ∪S\A)δ)

�
∥∥wμ

ε

∥∥
Ls((Z ∪S\A)2δ)

+
( ∫

(Z ∪S\A)2δ

(
Kμ

)t(
wμ

ε

)pt
dx

)1/t

.

Note that Kμ � K and K ∈ L
q0
loc for some q0 > 2n

2n−(p+1)(n−2)
> n

2 . We take t ∈ (n/2, q0). This implies that Kt ∈ Ls
loc

for some s > 1. Thus, we see from Hölder inequality that for some C, independent of large μ and small ε > 0,∥∥wμ
ε

∥∥
L∞((Z ∪S\A)δ)

� C exp(−c/ε).

Thus, for some C,c > 0, independent of large μ > 0 and small ε > 0, we see that

wμ
ε (x) � C exp(−c/ε) for x ∈ (

(Z ∪ S) \ A
)δ

. �
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The last two lemmas show the following estimate

Lemma 8. For any r ∈ (0, δ), there exist c,C > 0, independent of large μ > 0, such that for small ε > 0,

wμ
ε (x) � C exp(−c/ε) for |x| � R0 and dist(x,A) > r.

Lemma 9. There exist c,C > 0, independent of large μ > 0, such that for small ε > 0,

wμ
ε (x) � C exp(−c/ε)|x/R0|−

√
λ/ε for R0 � |x| � μ.

Proof. First we see from condition (K) that there is a constant C > 0, independent of large μ > 0, satisfying

−ε2�wμ
ε (x) + V (x)wμ

ε (x) � C|x|γ∞(
wμ

ε (x)
)p on B(0,μ) \ B(0,R0). (19)

For any ϕ ∈ C∞
0 (Rn \ B(0,R0), [0,1]), a > 0 and b � 0, we multiply both sides of (19) through by |x|a(wμ

ε )2b+1ϕ2

and integrate by parts. Then, we deduce that

ε2
∫

|x|a∣∣∇(
wμ

ε

)b+1
ϕ
∣∣2

dx � ε2
∫

|x|a(wμ
ε

)2b+2|∇ϕ|2 + a|x|a−1
∣∣∇(

wμ
ε

)b+1∣∣(wμ
ε

)b+1
ϕ2 dx

+ C1(b + 1)

∫
|x|a+γ∞(

wμ
ε

)p+2b+1
ϕ2 dx

� ε2
∫

|x|a(wμ
ε

)2b+2|∇ϕ|2 + aε2
∫

|x|a−1(wμ
ε

)2b+2|∇ϕ|ϕ dx

+ aε2
∫

|x|a/2
∣∣∇(

wμ
ε

)b+1
ϕ
∣∣|x|a/2−1(wμ

ε

)b+1
ϕ dx

+ C1(b + 1)

∫
|x|a+γ∞(

wμ
ε

)p+2b+1
ϕ2 dx

� ε2
∫

|x|a(wμ
ε

)2b+2|∇ϕ|2 + aε2
∫

|x|a−1(wμ
ε

)2b+2|∇ϕ|ϕ dx

+ aε2
(

1

2a

∫
|x|a∣∣∇(

wμ
ε

)b+1
ϕ
∣∣2 + a

2

∫
|x|a−2(wμ

ε

)2b+2
ϕ2 dx

)

+ C1(b + 1)

∫
|x|a+γ∞(

wμ
ε

)p+2b+1
ϕ2 dx.

This implies that

ε2
∫

|x|a∣∣∇(
wμ

ε

)b+1
ϕ
∣∣2

dx � 2ε2
∫

|x|a(wμ
ε

)2b+2|∇ϕ|2 + 2aε2
∫

|x|a−1(wμ
ε

)2b+2|∇ϕ|ϕ dx

+ a2ε2
∫

|x|a−2(wμ
ε

)2b+2
ϕ2 dx + 2C1(b + 1)

∫
|x|a+γ∞(

wμ
ε

)p+2b+1
ϕ2 dx.

Then, we see from Caffarelli–Kohn–Nirenberg inequality [12] that for some C2 > 0, depend only on n,a and b,

( ∫
|x|2an/(n−2)

∣∣(wμ
ε

)b+1
ϕ
∣∣2n/(n−2)

dx

)(n−2)/2

� C2

∫
|x|a(wμ

ε

)2b+2|∇ϕ|2 + a|x|a−1(wμ
ε

)2b+2|∇ϕ|ϕ dx

+ C2a
2
∫

|x|a−2(wμ
ε

)2b+2
ϕ2 dx + C2

b + 1

ε2

∫
|x|a+γ∞(

wμ
ε

)p+2b+1
ϕ2 dx. (20)

Suppose that supp(ϕ) ⊂ B(y,1) ⊂ R
n \ B(0,R0). From Lemma 4 and the constraint∫

n

χμ
ε

(
wμ

ε

)β̃
dx �

(
ημ

ε

) p+1
p−1 ,
R
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we see that for small ε > 0,∫
{|x|�R0}

|x|α(
wμ

ε

)β̃
dx � ε2α.

Note that if β(p − 1) � 2, there exist some C > 0, independent of small ε > 0 and large μ > 0, satisfying∫
|x|a+γ∞(

wμ
ε

)p+2b+1
ϕ2 dx

�
( ∫

supp(ϕ)

|x|βa+βγ∞(
wμ

ε

)β(p−1)
dx

)1/β( ∫ ((
wμ

ε

)2b+2
ϕ2)β/(β−1) dx

)(β−1)/β

� R
a+γ∞−α/β

0

( ∫
supp(ϕ)

|x|α(
wμ

ε

)β(p−1)
dx

)1/β

CR−2a
0

( ∫
|x|2an/(n−2)

((
wμ

ε

)2b+2
ϕ2)n/(n−2)

dx

)(n−2)/n

� Cε2α/βR
γ∞−a−α/β

0

( ∫
|x|2an/(n−2)

((
wμ

ε

)2b+2
ϕ2)n/(n−2)

dx

)(n−2)/n

.

Note also that if β(p − 1) < 2, there exist some C > 0, independent of small ε > 0 and large μ > 0, satisfying∫
|x|a+γ∞(

wμ
ε

)p+2b+1
ϕ2 dx

�
( ∫

supp(ϕ)

|x|βa+βγ∞(
wμ

ε

)β(p−1)
dx

)1/β( ∫ ((
wμ

ε

)2b+2
ϕ2)β/(β−1) dx

)(β−1)/β

� C

( ∫
supp(ϕ)

|x| 2(a+γ∞)
p−1

(
wμ

ε

)2
dx

)(p−1)/2( ∫ ((
wμ

ε

)2b+2
ϕ2)β/(β−1) dx

)(β−1)/β

� CR
a+γ∞−α(p−1)/2
0

( ∫
supp(ϕ)

|x|α(
wμ

ε

)2
dx

)(p−1)/2

CR−2a
0

( ∫
|x| 2an

n−2
((

wμ
ε

)2b+2
ϕ2) n

n−2 dx

)(n−2)/n

� C2εα(p−1)R
γ∞−aα(p−1)/2
0

( ∫
|x| 2an

n−2
((

wμ
ε

)2b+2
ϕ2) n

n−2 dx

)(n−2)/n

.

Taking a large α > 0, we see from (20) that for some constant C > 0, independent of small ε > 0 and large μ > 0,( ∫
|x|2an/(n−2)

∣∣(wμ
ε

)b+1
ϕ
∣∣2n/(n−2)

dx

)(n−2)/2

� C

∫
|x|a(wμ

ε

)2b+2|∇ϕ|2 + a|x|a−1(wμ
ε

)2b+2|∇ϕ|ϕ dx

+ Ca2
∫

|x|a−2(wμ
ε

)2b+2
ϕ2 dx. (21)

Now we note that for any c, d, e > 0,∫
supp(ϕ)

|x|d(
wμ

ε

)2b+2
dx �

(|y| − 1
)−c

∫
supp(ϕ)

|x|d+c
(
wμ

ε

)2b+2
dx.

From the inequality∫
{|x|�R0}

|x|α(
wμ

ε

)β̃
dx � ε2α,

we deduce via a finite number of iterations of (21) that for any a, b, c > 0, we can choose a large α > 0 so that∫
|x|a(wμ

ε

)2b+2
dx � εc|y|−c. (22)
{x||y−x|<1/2}
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Then, applying [16, Theorem 9.20] to (19), we can choose a large α > 0 so that for a constant C > 0,

wμ
ε (x) � C

(
ε

|x|
)(γ∞+2)/(p−1)

for any |x| � R0.

We may assume from condition (V) that V (x) � 3λ|x|−2 for |x| � R0. Then, setting ψε(r) = (r/ε)−
√

λ/ε, we deduce
from condition (V) that for small ε > 0,

−ε2�ψε + V ψε � λ

r2
ψε, r � R0.

Then, it follows that for small ε > 0,

−ε2�ψε + V ψε � Kμ(x)
(
wμ

ε

)p−1
ψε in R

n \ B(0,R0).

Note that for some C,c > 0, maxx∈∂B(0,R0) wε(x) � C exp(− c
ε
). Then, by the maximum principle, we get that for

some C,c > 0, independent of small ε > 0 and large μ > 0,

wε(x) � C exp

(
−c

ε

)(
R0

ε

)√
λ/ε

ψε(x) for x ∈ B(0,μ) \ B(0,R0). (23)

This completes the proof. �
Now we complete a proof for our main theorem.

Completion of Proof of Theorem 1. Note that u
μ
ε (x) = (η

μ
ε )−1/(p−1)w

μ
ε (x). From Lemma 5, we see that for some

C > 0, independent of small ε > 0 and large μ > 0, u
μ
ε (x) � Cε−2/(p−1)w

μ
ε (x), x ∈ B(0,μ). Then, by Lemmas 8

and 9, we see the estimate (3). This implies that
∫

Rn χε(u
μ
ε )p+1 dx < 1 for sufficiently small ε > 0, independent of

large μ > 0. Then, we see that w
μ
ε satisfies Eq. (4). It is easy to see from condition (K) and the decay property in

Lemma 9 that for fixed ε > 0, {‖wμ
ε ‖L∞ | μ > 0 large} is bounded away from 0.

Next we claim that limε→0 ‖wμ
ε ‖L∞ = 0 uniformly for large μ > 0. Indeed, note that for small ε > 0, independent

of large μ > 0,

ε2�wμ
ε − V wμ

ε + Kμ
(
wμ

ε

)p = 0 in B(0,μ).

We define W
μ
ε (x) ≡ w

μ
ε (εx). Then, we see that

�Wμ
ε − V (εx)Wμ

ε + Kμ(εx)
(
Wμ

ε

)p = 0 in B(0,μ/ε). (24)

We see from Lemma 3 that

lim
ε→0

∫
B(0,μ/ε)

Kμ(εx)
(
Wμ

ε

)p+1
dx = 0.

This implies that

lim
ε→0

∫ ∣∣∇Wμ
ε

∣∣2 + V (εx)
(
Wμ

ε

)2
dx = lim

ε→0

∫
Kμ(εx)

(
Wμ

ε

)p+1
dx = 0.

This implies that limε→0
∫
(W

μ
ε )2n/(n−2) dx = 0. For R > 0 and x0 ∈ R

n, we take φ ∈ C∞
0 (B(x0,R)) such that

φ(x) = 1 for |x − x0| � R − 1. Multiplying both sides of (24) through by max{(Wμ
ε )2s+1, l}φ2, and taking l → ∞,

we obtain that∫ ∣∣∇(
Wμ

ε

)s+1
φ
∣∣2

dx �
∫ (

Wμ
ε

)2s+2|∇φ|2 dx + (s + 1)

∫
Kμ(εx)

(
Wμ

ε

)p+1+2s
φ2 dx. (25)

Since limε→0
∫
(W

μ
ε )2n/(n−2) dx = 0, it follows from condition (K) that if s = s1(p, q0) > 0 is small,

lim
∫ ∣∣∇(

Wμ
ε

)s1+1
φ
∣∣2

dx = 0

ε→0
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uniformly for large μ > 0. Then,it follows from Sobolev embedding that

lim
ε→0

∫
B(x0,R−1)

(
Wμ

ε

)2n(1+s1)/(n−2)
dx = 0 uniformly for large μ > 0.

Then, using this and (25) again, we deduce that if s = s2(s1,p, q0) > s1,

lim
ε→0

∫
B(x0,R−2)

(
Wμ

ε

)2n(1+s2)/(n−2)
dx = 0 uniformly for large μ > 0.

We note that 0 � Kμ � K ∈ L
q0
loc and q0 > 2n/(2n − (p + 1)(n − 2)) > n/2. Let q ∈ (n/2, q0). Then, iterating above

process finite times, we conclude that for each r > 0 and x0 ∈ R
n,

lim
ε→0

∫
B(x0,r)

(
Kμ(εx)

(
Wμ

ε

)p)q
dx = 0 uniformly for large μ > 0.

By an elliptic estimate [16, Theorem 8.25], we see that

lim
ε→0

∥∥Wμ
ε

∥∥
L∞ = 0 uniformly for large μ > 0. (26)

We can assume that w
μ
ε converges weakly to some wε ∈ Eε as μ → ∞. Then, we get a solution wε > 0 satisfying

Eq. (1). From the uniform decay (26), we see that limε→0 ‖wε‖L∞ = 0.

The decaying property (3) follows from Lemmas 8 and 9. From the decaying property (3), we see that the solution
uε ∈ Eε belongs to L2(Rn). This implies that uε ∈ W 1,2(Rn).

The second property of (2) in the theorem is proved by the following argument. Let wε = ε2/(p−1)vε . Multiplying
the equation by vε and integrating over on R

n we obtain that
∫

|∇vε|2 + V

ε2
v2
ε dx � ‖vε‖(p−1)/2

L∞

∫
K(vε)

(p−1)/2(vε)
2 dx

� ‖vε‖(p−1)/2
L∞

( ∫
Kn/2(vε)

n(p−1)/4 dx

)n/2( ∫
(vε)

2n/(n−2) dx

)(n−2)/n

.

Since K ∈ L
n/2
loc and (K) hold, we see from the decay property (3), we see that lim supε→0

∫
Kn/2(vε)

n(p−1)/4 dx < ∞.

Thus, by Sobolev inequality, we see that

lim inf
ε→0

‖vε‖L∞ > 0.

This proves the second property of (2) in the theorem. �
3. Asymptotic behavior of localized solutions

We will study the asymptotic behavior of wε for small ε > 0. For a family of functions uε with ε > 0, we say the
family sub-converges as ε → 0 if for any sequence εm → 0 there is a subsequence of εm along which the sequence of
functions converge.

Suppose wε is the localized solution concentrating near A, given in Theorem 1. For any positive functions a(ε)

and b(ε) with ε > 0, we define

uε(x) ≡ (
a(ε)

) 2
p−1

(
b(ε)

)− 2
p−1 wε

(
a(ε)x

)
.

Then, it follows that

�uε − V
(
a(ε)x

)(a(ε)

ε

)2

uε + K
(
a(ε)x

)(b(ε)

ε

)2

(uε)
p = 0 in R

n.
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Without loss of generality we can assume that 0 ∈ A ⊂ Z ∪ S. For an integer k ∈ Z and t > 0, we define

lnk t ≡ ( |k|-times︷ ︸︸ ︷
ln◦ · · · ◦ ln(t)

)k/|k|
, k �= 0,

and ln0 t = 1 for any t > 0. We consider three typical cases:

(A1) the interior A is a bounded domain containing 0;
(A2) A = {0} is an isolated point, and for τ > −2, some k, l ∈ Z, and

γ ∈ (−τ
(
2n − (p + 1)(n − 2)

)
/4,

(
2n − (p + 1)(n − 2)

)
/2

)
it holds that lim|x|→0 V (x)/|x|τ lnk( 1

|x| ) = c > 0 and lim|x|→0 K(x)|x|γ lnl ( 1
|x| ) = d > 0;

(A3) A = {0} and for some l ∈ Z, τ > 0 and γ < (2n − (p + 1)(n − 2))/2, lim|x|→0 V (x)/ exp(−|x|−τ ) = c > 0 and
lim|x|→0 K(x)|x|γ lnl( 1

|x| ) = d > 0.

In case (A1), taking a(ε) = 1 and b(ε) = ε, we see that

V
(
a(ε)x

)(a(ε)

ε

)2

= 0 for x ∈ A

and that for any small d > 0,

lim
ε→0

V
(
a(ε)x

)(a(ε)

ε

)2

= ∞ uniformly on x ∈ A2d \ Ad.

In this case, we see also that

K
(
a(ε)x

)(b(ε)

ε

)2

= K(x).

In case (A2), we take

a(ε) = ε
2

τ+2
(
ln−k

(
ε−2/(τ+2)

))1/(τ+2) and b(ε) = εa(ε)
γ
2

(
lnl

(
1

a(ε)

))1/2

.

Then, we see that

lim
ε→0

V
(
a(ε)x

)(a(ε)

ε

)2

= c|x|τ and lim
ε→0

K
(
a(ε)x

)(b(ε)

ε

)2

= d|x|−γ

locally uniformly in R
n.

In case (A3), we take

a(ε) = (
ln ε−2)−1/τ and b(ε) = εa(ε)

γ
2

(
lnl

(
1

a(ε)

))1/2

.

Then, for any δ ∈ (0,1) and δ′ ∈ (1,2)

lim
ε→0

V
(
a(ε)x

)(a(ε)

ε

)2

= 0 uniformly on B(0, δ),

lim
ε→0

V
(
a(ε)x

)(a(ε)

ε

)2

= ∞ uniformly on B(0,2) \ B(0, δ′).

Moreover, it follows that limε→0 K(a(ε)x)(
b(ε)
ε

)2 = d|x|−γ locally uniformly in R
n.

Then, we see the following asymptotic result for each cases (A1)–(A3).

Theorem 10. Assume A = int(A) and A is a connected component of Z ∪ S . Let wε be a localized solution given in
Theorem 1. Then uε(x) = ε−2/(p−1)wε(x) sub-converges point-wisely to a least energy solution U of

�U + K(x)Up = 0, U > 0, x ∈ int(A); u = 0, x ∈ ∂A.
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Theorem 11. Assume A = {0} ∈ Z ∪ S . Assume that (A2) is satisfied by functions V and K near 0. Let wε be a
localized solution given in Theorem 1. Then uε(x) := (a(ε))2/(p−1)(b(ε))−2/(p−1)wε(a(ε)x) sub-converges uniformly
to a least energy solution U of

�U − c|x|τU + d|x|−γ Up = 0, x ∈ R
n. (27)

Here a(ε) = ε
2

τ+2 (ln−k(ε−2/(τ+2)))1/(τ+2) and b(ε) = ε a(ε)γ/2 (lnl( 1
a(ε)

))1/2.

Theorem 12. Assume A = {0} ∈ Z ∪ S . Assume that (A3) is satisfied by functions V and K near 0. Let wε be a
localized solution given in Theorem 1. Then uε(x) := (a(ε))2/(p−1)(b(ε))−2/(p−1)wε(a(ε)x) sub-converges uniformly
to a least energy solution U of

�U + d|x|−γ Up = 0, x ∈ B1(0), U = 0, x ∈ ∂B1(0). (28)

Here a(ε) = (ln ε−2)−1/τ and b(ε) = ε a(ε)γ/2 (lnl ( 1
a(ε)

))1/2.

For the proofs of the above theorems, the first can be proved by slight modifications of the arguments in [9], the
proof of the third is simpler than that of the second. In the following we give the proof of Theorem 11.

Proof of Theorem 11. Without loss of generality we assume c = d = 1. First we show that the limiting equation (27)
has a ground state solution U in the space

X :=
{
u ∈ H 1(

R
n
) ∣∣∣

∫ (|∇u|2 + |x|τ u2)dx < ∞
}
.

We consider the following minimization problem:

m = inf
u∈X\{0}

∫
Rn |∇u|2 + |x|τ u2

(
∫

Rn |x|−γ |u|p+1)2/(p+1)
.

It is standard to show that if τ � 0 and γ ∈ [0, (2n − (p + 1)(n − 2))/2), the embedding from X into the weighted
Lp+1(Rn; |x|−γ ) is compact. Thus the minimization problem is solved. For τ � 0 and γ ∈ (−τ(2n − (p + 1)(n −
2))/4,0) or τ ∈ (−2,0) we can argue as follows. For a = 2n − (p + 1)(n − 2)/2 and ϕ ∈ C∞

0 (Rn), it follows from
Hölder’s inequality and Sobolev inequality that for some C > 0,( ∫

|x|−γ ϕp+1 dx

)2/(p+1)

=
( ∫

|x|−γ ϕaϕp+1−a dx

)2/(p+1)

�
( ∫

|x|−2γ /aϕ2 dx

)a/(p+1)( ∫
ϕ2n/(n−2) dx

)(2−a)/(p+1)

� C

( ∫
|x|−2γ /aϕ2 dx

)a/(p+1)( ∫
|∇ϕ|2 dx

) n(2−a)
(n−2)(p+1)

� C
a

p + 1

∫
|x|−2γ /aϕ2 dx + C

n(2 − a)

(n − 2)(p + 1)

∫
|∇ϕ|2 dx.

Since −2γ /a < τ, the embedding from X into the weighted Lp+1(Rn; |x|−γ ) is compact. Thus the minimization
problem is solved.

Now there exists a minimizer u of the minimization attaining m. Then U = m
1

p−1 u is a least energy solution of
Eq. (27).

Next, since γ < (2n − (p + 1)(n − 2))/2, we observe that | · |−γ ∈ Ls
loc for some s � n/2 and |x|−γ Up ∈ Lt(Rn)

for some t > 1. By a bootstrap argument and an elliptic estimate [16, Theorem 8.25], we deduce that U ∈ L∞(Rn).
Note that −γ < τ(2n− (p + 1)(n− 2))/4 < τ. Then, by comparison principle there exist C,c > 0 such that for τ � 0

we have U(x) � C exp(−c|x|) for all x ∈ R
n, and for τ ∈ (−2,0) we have U(x) � C exp(−c|x| 2+τ

2 ) for all x ∈ R
n.

Now let wε(x) be a sequence of localized solutions concentrating at A = {0} as given in Theorem 1. Define

uε(x) := (
a(ε)

)2/(p−1)(
b(ε)

)−2/(p−1)
wε

(
a(ε)x

)
.
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Here a(ε) = ε2/(τ+2)(ln−k(ε−2/(τ+2)))1/(τ+2) and b(ε) = ε a(ε)γ/2 (lnl( 1
a(ε)

))1/2. Then we have

�uε − V
(
a(ε)x

)(a(ε)

ε

)2

uε + K
(
a(ε)x

)(b(ε)

ε

)2

(uε)
p = 0 in R

n.

Using the fact that uε corresponds to local minimizers of Mε and the exponential decay of U we have

lim sup
ε→0

∫
Rn

|∇uε|2 + V
(
a(ε)x

)(
a(ε)ε−1)2

uε(x)2 �
∫
Rn

|∇U |2 + |x|τU2.

By the decay property of wε , for any r1 > 0 there exists C1, c > 0 such that for |x| � r1/a(ε),

uε(x) � C1 exp(−c/ε)
(
a(ε)

)2/(p−1)(
b(ε)

)−2/(p−1)(1 + a(ε)|x|)−√
λ/ε

. (29)

There exists r2 > 0 such that for |x| � rε := r2/a(ε), V (a(ε)x)(a(ε)ε−1)2 � |x|τ /2. Thus ‖uε‖H 1(Brε ) are uniformly
bounded. By this, elliptic estimates and (29) we have ‖uε‖L∞ are uniformly bounded. Using the coercivity of the
potential |x|τ as |x| → ∞ and elliptic estimates we obtain lim|x|→∞ uε(x) = 0 uniformly for ε.

Next we claim that lim infε→0 ‖uε‖L∞ > 0. From ‖uε‖H 1(Brε ) being uniformly bounded there is C > 0 such that

‖uε‖2
L2∗

(Brε )
� C

∫
Rn

|∇uε|2 + V
(
a(ε)x

)(
a(ε)ε−1)2

uε(x)2.

Then by Hölder inequality and the fact −γ < τ, we deduce that for some C > 0, independent of ε > 0,∫
Brε

K
(
a(ε)x

)(
b(ε)ε−1)2

u2
ε(x) � C

∫
Rn

|∇uε|2 + V
(
a(ε)x

)(
a(ε)ε−1)2

uε(x)2.

Note that∫
Rn

|∇uε|2 + V
(
a(ε)x

)(a(ε)

ε

)2

uε(x)2 � ‖uε‖p−1
L∞

∫
Rn

K
(
a(ε)x

)(b(ε)

ε

)2

u2
ε(x).

If lim infn→∞ ‖un‖L∞ = 0, it follows from (29) that for some C,c > 0,

∫
Rn

|∇uε|2 + V
(
a(ε)x

)(
a(ε)ε−1)2

uε(x)2 � C exp

(
−c

ε

)
.

By elliptic estimates, we have limε→0 ε−q‖uε‖L∞ = 0 for any q > 0, which contradicts with property (2) in Theo-
rem 1.

Finally we see from elliptic estimates and the uniform decay at infinity that uε sub-converges to a least energy
solution of Eq. (27). �
Remark 13. We cover several typical cases of asymptotic behaviors. There are some more cases interesting enough
to be examined. We point out one case here. Suppose that V (x) = exp(−|x|−τ ), K(x) = exp(−|x|−ρ) for |x| � 1. If
τ > ρ > 0, it follows that

lim|x|→0
V

2n−(p+1)(n−2)
2 (x)/K2(x) = 0.

Thus our main result assures the existence of a localized concentrating solution. However it seems not easy to find
appropriate scaling functions a(ε) and b(ε) so that V (a(ε)x)(

a(ε)
ε

)2 and K(a(ε)x)(
b(ε)
ε

)2 converge in a suitable sense
and there is a nontrivial least energy solution of a certain limiting equation. It would be interesting to study the
asymptotic behavior of the localized solution uε in this case.
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