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Abstract

We study semiclassical states of nonlinear Schrodinger equations with anisotropic type potentials which may exhibit a combi-
nation of vanishing and singularity while allowing decays and unboundedness at infinity. We give existence of spike type standing
waves concentrating at the singularities of the potentials.
© 2008 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Nous étudions les états semi-classiques des équations de Schrodinger non linéaires avec potentiels de type anisotropiques qui
peuvent tendre vers zéro a I’infini, pour lesquels des phénomenes d’évanescence et de singularité sont possibles. Nous donnons

I’existence d’ondes stationnaires se concentrant aux singularités des potentiels.
© 2008 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Keywords: Nonlinear Schrodinger equations; Singularities of potentials; Decaying and unbounded potentials

1. Introduction

This paper is concerned with standing waves for nonlinear Schrodinger equations
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where 7 denotes the Planck constant, i is the imaginary unit. The equation arises in many fields of physics, in particu-
lar, when we describe Bose—Einstein condensates (refer [18,19]) and the propagation of light in some nonlinear optical
materials (refer [20]). In this paper we are concerned with the existence of standing waves of the nonlinear Schrodinger
equation for small 7. For small # > 0, these standing wave solutions are refereed as semiclassical states. Here a so-
lution of the form ¥ (x, t) = exp(—i Et/h)v(x) is called a standing wave. Then, a function ¥ (x, t) = exp(—iEt/h)
v(x) is a standing wave solution if and only if the function v satisfies

hZ
S A= (V) —E)v+ K@/’ 'v=0, xeR"

With a simple re-scaling and renaming the potential V — E to be V we work on the following version of the equation
in this paper

—2Av+V(x)v=K(@x)vP, v>0, xR, )
ve WHERY),  limjy oo v(x) = 0.
Here ¢ is a small parameter, V, K are nonnegative potentials, and p is subcritical 1 < p < % with 2* = nzTnz the

critical exponent for n > 3. In recent years intensive works have been done in understanding solutions structure of
Eq. (1) as ¢ — 0. One of the most characteristic feature is that the semiclassical bound states exhibit concentration
behaviors as ¢ — 0 (see the classical work [15] by Floer and Weinstein, [21,13,17,14,3,7] and the recent monograph
[2] and references therein). In particular, some recent works have been devoted to the cases where the potentials
may have vanishing points and may be decaying to zero at infinity [1,4—6,8—11,22]. In [1] ground state solutions in
the associated weighted Sobolev spaces are obtained for positive potentials with decay at infinity. In [4,5] decaying
potentials are also considered and spike solutions which concentrate at points of positive potential values are given.
Then in [6] ground state solutions concentrating near zeroes of potentials were constructed in the weighted Sobolev
spaces.

In this paper we consider concentration solutions which both concentrate near zeroes of the potential V and sin-
gularities of the potentials V and K for Eq. (1). The potentials V may decay at infinity and K may be unbounded at
infinity. One feature of our results is that the solutions we construct have small magnitudes comparing with the spike
solutions concentrating at points of positive potential values. Another feature is that these solutions may have very
different limiting equations under quite different scalings.

We assume that V satisfies

(V) VeLl R)NCR"\ S, [0,00)) for a bounded Lebesgue measure zero set So, Z N So = @ where Z =

loc

{x e R*"\ Sy | V(x) = 0}; liminfgis(x, 55)—0 V (x) € (0, 00]; liminfjy | |x|2V (x) > 4A > 0 for some A > 0.
We assume that K satisfies

(K) K € L{ (R") for some go >

. W, n>3; KeC@R"\S,I0,00)) for abounded and Lebesgue measure

zero set S; limsup) |, o K (x)[x|77> < oo for some yoo > 0.

If S is a singleton, for example S = {0}, the first condition of (K) holds if lim SUp|y o x|V K(x) < oo for some
y < 2n—(p+1)(n—2)
.

Our main existence result is the following one.

Theorem 1. Let n > 3. Suppose that (V) and (K) hold. Let A C Z U S be an isolated compact subset of Z U S such
that ANSy NSy \ A =0 and

2n—(p+1)(n-=2)
2

lim V (x)/K?(x)=0.

O<dist(x,A)—0

Then for ¢ sufficiently small, (1) has a positive solution wy € W1-2(R") N L (R") such that

-2
lim ||welloo =0 and liminfe ! ||wg| oo > 0. 2)
e—0 e—>0
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Moreover, for each § > 0, there are constants C, ¢ > 0 such that

,\/X/g

we (x) < Cexp<—§>(1 +dist(x, A?)) x ¢ A, 3)

where A% = {x e R" | dist(x, A) < 8}.

We also study the asymptotic profile of the concentrating solutions given above. It turns out the asymptotic behavior
depends on the local behavior of the potentials V and K near the concentrating set A. We give some detained results
in Section 3.

Our scheme for a proof of the existence of localized solutions in Theorem 1 is as follow. Since there are singular
points of K, and V may converges to 0 at infinity, we consider a truncated equation on a bounded ball B(0, ) with a
truncated K* instead of K and a homogeneous Dirichlet boundary condition. For the truncated problem, we consider a
minimization problem with two constraints, where we should delve an appropriate weight and an appropriate exponent
for a constraint. The existence of a minimizer u% follows from our well chosen setting. Then, we get an upper bound
estimate and a lower bound estimate for the minimum. One crucial step in our argument is to obtain an exponential
decay, uniform for large u, of ut on a certain set. The decay estimate is derived by combining Moser iterations,
standard elliptic estimates, Caffarelli-Kohn—Nirenberg inequalities and comparison principles. Then, we show that a
scaled minimizer w4 is a solution of the truncated problem for small & > 0 and large 1 > 0, and that a weak limit w,
of {wk'},, is a desired solution of our original problem.

We close up the introduction with some discussions of known results and comparison with our new results. During
the last twenty years there have been intensive work on semiclassical states of standing waves for the nonlinear
Schrodinger equations with potentials. Spike solutions concentrating at points of positive potentials values for V and
K have been given in the pioneer work [15] and subsequent works e.g., [1,4,5,21,22]. These solutions are shown to
have nice asymptotic behavior in the sense that if w,(x) is a solution of (1) and x¢ is the concentration point then
We(x) = we(e(x — x0)) converges uniformly to a least energy solution of the following limiting equation AU +
V(x0)U = K(xg)U?, U > 0, x € R". Thus U is the limiting profile of semiclassical limits in this case. In [9-11]
the authors have studied the critical frequency case for which at the concentration point xp the potential V is zero,
i.e., V(x9) = 0. We have found that for this case the limiting equations are abundant and appear in different families
and that under different scalings the limiting profile of the semiclassical states have small magnitudes, i.e., ||wg| Lo
tends to zero as ¢ — 0. The new phenomenon we present in the current paper here is that the concentration for spike
solutions can be at zeroes and singularities of the potentials for both V and K. It depends on the zero set of a weighted
potential involving both V and K. Comparing with the results in [9,10] we construct small solutions even when V (xo)
is positive. On the other hand our new results here allow us to construct solutions concentrating at singular points of
V and K. We also investigate the limiting profile of these localized solutions. Under more precise information on
the local behaviors of V and K near the concentration points we derive a variety of limiting equations. One simple
example covered by our results is when V (x) = |x|* for |x| small, V (x) > |x|~2 for |x| large and K (x) = |x|~" for
|x] small, K(x) < |x|"> for |x| large for some y» > 0. Then for t > =2,y € (—=t2n — (p+ 1)(n — 2))/4, 2n —
(p+ 1)(n — 2))/2), our result applies to give the existence of a localized solution w, which under a suitable scaling
converges to a least energy solution of Eq. (27) (see the statement of Theorem 11).

The proof of Theorem 1 is given in Sections 2 and 3 is devoted to asymptotic analysis of the localized solutions as
e—0.

2. Proof of Theorem 1

For a proof of our main results we further elaborate the minimization techniques in [9,11] to construct the spike
solutions concentrating near zeroes and singularities of the potentials.

Let A C Z US be the isolated set assumed in the theorem. We choose § € (0, 1) such that A% N ((ZUS) \A) =
AB N (Sp\ A) =0, where for d > 0, A? = {x € R"|dist(x, A) < d}. We denote in the following A¢ = {x € R" | ex €
Ad } for ¢,d > 0. Let E; be the completion of C(‘)>o (R™) with respect to the norm

172
lulle = (/ezlvulerV(x)uz) .
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We define a truncated function for & > 0
min{K (x), u} ifx e R"\ A%,
K (x) if x € A%,

We consider the following problem for © > 0

Kﬂ(x):{

{82Av—V(x)v+KM(x)v1’=O, v>0, x € B0, ), @
v(x) =0 ondB(0, u).
Define EX = (C5°(B(0, ), Il - lle) and choose Ry > 0 so that ZU Sp U S C B(0, Ro/2). Note that

n 2n n p+1

- < , - < —.

2 2n—m-=2)(p+1) 2 p—1
From now, we fix a number 8 > 0 satisfying

2 1

E<15'<min " ’p+ . (@)

2 2n—mn—-2)(p+1) p—1
For a sufficiently large o > O which will be specified later, we define x. by

e if x| < Rpand x ¢ (ZUS)%,
() = e~%(max{l, K, (x)})? ifxe(ZUS)\A)Y,
’ 672 x| if |x| > Ro,
0 ifx e A%,

We define B = max{B(p — 1), 2}. Defining

Dl (u) = / KululPt'dx and WH(u)= / XM ulP dx,

Rﬂ Rll

we consider the following minimization problem

MY =inf{|lull? | ®Fw) =1, ¥ W) <1, ue EF}. (6)

Since (K) holds and x£ = 0in A%, we see that ', ¥/ € C1(EL).

_pb—t
Lemma 2. lim, g " 771 M} = 0 uniformly for large 1 > 0.
Proof. Note that

Mh < inf [ &*Vul® + V(x)u?dx

€ 00 A45 2 -
HECT ) ([ K () ul ! dx) P

Letting v(x) = u(ex) we have

. 2 2
Mb <6 (p=t - [ IVv]* + V(ex)v*dx

00 2z
VECTAD) ([ K (ex)|v|PH! dx) PH

For any xg € A*\ A, we can take r > 0 with B(xg,r) C A* \ A such that V(x) < 2V (xo) for x € B(xo, r), and
Kx) > %K(xo) for x € B(xg, r). Then, we see easily that

. 2 2 . 2 2
M gg% o JIVv]* + V(ex)v dzx < (e . JIVv|* +2V (xp)v df
veC(B(xo/e.r/e) (f K (ex)|v|PH! dx) 7HT veCP(B(0.r/e)) (f %K(XO)|U|p+1 dx) 7+t
n(p—1) 2n—(p+1)(n—2) 2 V|2 24
= 7T (2V(xg)) 2D (K (xg)/2) 7 inf{w ECSO(B(O,\/ZV(xO)r/s))}.
([ lv|p+ldx) P+
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Thus, it follows that there exists C > 0 such that for any xo € A* \ A sufficiently close to A,

X _nﬂ 2n—(p+1)(n=2) 2
hn})s P MECV 2080 (x0) /K PHT (x0).
£—

Then, the estimate follows. O

Lemma 3. The minimization MY is achieved by a nonnegative ut € EY which satisfies for some nt > 0> g

' in B, w). (7)

—el Al V (ul =l K () () + 8Lt 0 (ut)”
Proof. From the choice of 8 and the definition K* and ‘', we see that M} is achieved by a minimizer ut e EFf
which can be assumed to be nonnegative and satisfies Eq. (7) with Lagrange multipliers «%" and 8. Following an
argument from [9] we have ni > 0> &Y. O

Lemma 4.

i
lirrbs "pF nk =0 uniformly for large . > 0.
e—

p—1

_ppl
Proof. By contradiction we assume there exist ng > 0, w, — 00, &, — 0 such that liminf, &, © ln,’f,”’ >
no > 0. Let u,, = ub™ and n, = ng;" For small b > 0, we define a cut-off function ¢ (x) which is 1 for x satis-

Em
fying dist(x, R" \ A*) > b and 0 for x ¢ A* and |V¢| < 2/b. Multiplying Eq. (7) by ¢pu,, and integrating over the
space, and using the fact that infy, c 44 4( mm\ a4)<py V (¥) = co > 0 (independent of small b), we get that for some
C >0,

p—1 p—1
1 —HoFT
em T m f Kpuuh ™ <Cey 77 [ (21 Vum* + V (x)ul).
{x\d(x,R”\A4‘3)>b}

We see from Lemma 2 that the right-hand side in above inequality converges to 0 as n — oco. Then we see that

lim f K, ub™ =0. (8)

m—00
{x|d (x,R"\ A%)> b}

On the other hand, let ¥ be another cut-off function satisfying that ¥ (x) =1 for x € A%\ A% and ¢ (x) =0 for
x € A% or x ¢ A3, and |[Vy| < 2/8. Note that B < p + 1. Then, using (8), the fact 11/5’:[” (u,) < 1 and Holder

inequality, we see that fRn K, (1//um)1’+1 — 1 as m — o0. Consider w,,(x) = efw(smx)um (emx) and by using

Lemma 2 we have w,, — 0 in H!(R"). By embedding theorems and the fact inf, asi a2 V(x) > 0, it follows that
[ Ky, (Emx)wh” ' 5 0. This contradicts that [ Ky, (emx)wht! = [ Ky, )W (0t ()P = Tasm — co. O

Lemma 5. If o > 0 is sufficiently large,

limi(r)lfs_2né‘ >0 uniformly for large . > 0.
e—

Proof. Arguing indirectly, we assume for a subsequence (still denoted by ¢) 8‘277? — 0. Choose a cut-off function ¢
satisfying ¢ (x) = 1 for x € A* and ¢ (x) = 0 for x ¢ A, Then for some constant C > 0 independent of small & > 0
and large o > 0, it follows that

[19@ue)Pax <2 [ 62(vu P+ 196P 0t ax
< C/‘Vué"z +e7 2V () dx = CeT2MP

SCsfzné‘aO as ¢ — 0.
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Then, by Holder’s inequality and Sobolev embedding, we see that
/ Ky (u)H = / K(pu)"™ >0 ase—o0.
A48 R

By the constraint ¥} (ut') < 1, we see that

/ (utt) dx < &%, ©)
{x¢(ZUS)® x| < Ro}
/ K (utt) dx < e (10)
(xe(ZUS\A)4}
and
x| ()’ dx < 2. (1)
{lx|=Ro}

Note that § < p + 1. Then, using Holder’s inequality, we see that for some C > 0, independent of 11, & > 0,

/ Ku(ug)pﬂdx

(xe(ZUS\A)%)
1/8 B-1)/8
—1 2 —1
<< / (K0P ()P )dx> ( / (ult)281 >>
{xe(ZUS\A)“} {xe(ZUS\A)M}
1/8 N\ 2/2F
<C< / (Kmﬁ(ué‘)ﬁ(p_l)dx) ( / (“5)2> '
(xe(ZUS\A)4) (xe(ZUS\A)4)

Thus, if 8 = B(p — 1), it follows that

li K, ()" ax =o0.
e / p(ul) X
(xe(ZUS\A)*)
When /5 =2, we deduce from conditions (5) and (10) that for some C > 0,
-1
(K0P ()P~ dx
{xe(ZUS\A)H)
—1 -1
< / (K)P ()P~ dax + / (K)P ()P dx
{(xe(ZUS\A)Y |u (x)<e®/?) {(xe(ZUS\AY® |uf (x) 2e%/2)
< 8(1;3(1771)/2 / (K;,L)ﬁ d.x + 80{,3([771)/2 / (Ku)ﬂ(ug/&‘a/z)ﬁ(p_l) d.x
(xe(ZUS\A)¥) {(xe(ZUS\ AW |u(x)H >e2/2)
< eBP-D2C 4 aB(p=D)/2-a / (K0P (ul')’ dx
(xe(ZUS\A)*}
< e®PP=D/2¢ 4 oB(p=1)/2

Thus, we see that

lim / K, ()" dx =0
e—

{(xe(ZUS\A)¥}
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uniformly for & > 0. Using Holder’s inequality, condition (K), (9) and (11), we see that if & > 0 is sufficiently large,

lim / Kﬂ(u“)pﬂdx:O

&
e—0

{x¢(Z2US)¥x|< Ro}

and

li K, () dx =0
Jim, wl(uf)" dx
{x1>Ro}

uniformly for large i > 0. Then, we get

lim [ K, (uf)"* dx =0,

which contradicts the constraint f K, (ug Eyp+l gy = 1. This completes the proof. O

1
We denote wt = (n%)7Tul. Then, we see that

—?Awl + Vw! <K, (w)’  in B(O, ). (12)
From Lemmas 2 and 4, we see that

lin})s*" / 82|ng|2 + V(wé‘)2 =0 uniformly for large u > 0. (13)

£—>

Rll
Then, it follows from Sobolev embedding and the fact ¥/ (ut) < 1 that for any g € [,5, 2*)and r € (0, 3),
lim ¢ ™" / (wé‘)q =0 uniformly for large u > 0, (14)
e—0
R\ A"
where 2* =2n/(n — 2) forn > 3.
Lemma 6. For any r € (0, §), there exist ¢, C > 0, independent of large . > 0, such that for small ¢ > 0,
wh(x) < Cexp(—c/e) for|x| <Ry and dist(x,ZUS) >r.
Proof. Note that in the set B(0, Ry) \ {x | dist(x, ZUS) > r}, V has a positive lower bound and K is continuous (thus

has a upper bound). We may use (13) and (14) together with elliptic estimates (refer [16]) and a maximum principle
argument similar to [9] (Lemma 2.6, 2.7 there) to deduce the estimate. O

Lemma 7. There exist ¢, C > 0, independent of large u > 0, such that for small ¢ > 0,

wh(x) < Cexp(—c/e) forx e (ZUS)\ A).

Proof. Denoting wt = (¥ )P Tut, we see that
—?Awl + V()w! < Ky (w?)”  in B, p). (15)

Let ¢ € C°((ZUS\ A)?) be a cut-off function such that ¢ (x) = 1 for x € (ZUS\ A)® and |V¢| < 4/8. Multiplying
both sides of (15) through by (wg )21+1¢2 with [ > 0, we see that

2
g)l+l¢|2dx< lil /( )21+2|V¢| dx +fK (wg)P—l(wéL)ﬂ—l-Z(pde.
R’l Rn Rn

I+1

Then, by the Sobolev inequality and Holder’s inequality, it follows that for some ¢ > 0, independent of ¢, [, &,
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2

ce? 242 € 242
z+1”(w5) i ¢2|Ln/(n—2) gH—l/( “) Vel dx
Rn
B (., mu\Bp—1) /e 242 2
+< / (K (wh) dx) [ (wE)""0% | Lovis- (16)
supp(¢)

If B(p — 1) > 2, it follows that

/ (K0P ()PP dx <

supp(¢)
When B(p — 1) < 2, it follows that for some C > 0, independent of small ¢ > 0 and large u > 0,

1
/ (K (w ﬂ(p ) dx

supp(¢)
-1 -1
_ f (K ()" dx + / (K, ()" dx
{xesupp(¢)|w (x)<e%/?) {xesupp(¢)|w (x)>£/2)
< Ceaﬂ(p—l)/Z +8a/3(p—1)/2 / (Kﬂ)ﬂ (w‘/;/gaﬂ)ﬁ(P—l) dx

{xesupp(¢)|we' (x)>e%/2)
< CeWBP=D/2 | gap(p=1)/2 / (K0P (wh /6%) dx

supp(¢)
< Ce®Br=D/2 4 eaﬂ(pfl)/Z(ng)z/(P*” <(C 4 1)e®Br=1/2,

where we used the fact ¥/ (u%) < 1. Then we deduce that there exists C, ¢ > 0, independent of /, €, u, satisfying

| (w )21+2 | (w )2[+2¢ | ere-n- (I7)

Note that F < 5. Then, by Hélder inequality again there is a constant C| only depending on n, # and § such that

” ( )2l+2 ” ( )21+2 Ln/(n=2)- (18)

We take large o > 0 so that > 2. This implies that for any large g > 0, there exists C, ¢ > 0 such that
for small ¢, independent of © > 0,

amin(l, ﬁ(p D2,

- < Cexp(—c/e) + C( + De

amin{l, ﬂ(p 1)/2} )

L) S < Cexp(—c/e)+C1(I + e

amin{l,8(p—1)/2}
B

/ (wé‘)q dx < Cexp(—c/e).
(ZUS\AY

Applying an elliptic estimate [16] to (15), we see that for any s > 2 and ¢ > n/2, there exists a constant C > 0,
independent of ¢, u > 0, satisfying

1/t
MLx((2us\A)za>+( / (K”)t(wé‘)ptdx)-

” wy' ||L°°((ZUS\A)5) < “ W |
(ZUS\A)2

Note that K* < K and K € L for some go > m > 7. We.taket € (n/2, qo). This implies that K" € L}
for some s > 1. Thus, we see from Holder inequality that for some C, independent of large p and small ¢ > 0,
(s ||L°°((ZUS\A)5) < Cexp(—c/e).

Thus, for some C, ¢ > 0, independent of large i > 0 and small ¢ > 0, we see that

wh(x) < Cexp(—c/e) forxe ((Z UsS)\ A)(S. ]
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The last two lemmas show the following estimate

Lemma 8. For any r € (0, 8), there exist ¢, C > 0, independent of large p > 0, such that for small ¢ > 0,

wh(x) < Cexp(—c/e) for|x| <Ry and dist(x,A) >r.

Lemma 9. There exist c, C > 0, independent of large (1 > 0, such that for small ¢ > 0,

wh(x) < CCXp(—C/8)|x/R0|_\/x/S for Ro < |x| <

Proof. First we see from condition (K) that there is a constant C > 0, independent of large u > 0, satisfying
—” A (x) + V() wk (x) < Clx ™ (wf (x))” on B(O, 12) \ B(0, Ro). (19)

For any ¢ € C°(R" \ B(0, Ry), [0, 11),a > 0 and b > 0, we multiply both sides of (19) through by |x |4 (w})**1p?
and integrate by parts. Then, we deduce that

e [ i[9 we) o dx <62 [ btV bt 9 () (ut) R
L Cib+ 1)/|x|a+ym(wg)p+2b+1(pzdx
/|x| 1 2190)% +ae /|x|" w2 Vplpdx
4 ae /lea/2|V(w”)b+l /2 (w )b+1<pdx
L Cib 1)/|x|a+yw(wg)p+2b+l(p2dx
£ / 1 (W) Ve 2 + ag? / e (W) Vg dx

( /|||V b+1|+ /IXI“2 1\2b+2 2dx)

+C1(b+ 1)f |47 (wh) P 2

This implies that
52/|x|“|v(w5)”“¢\2dx SZSZ/|x|“(wé‘)2b+2|V¢|2+2a£2/|x|“_l(wé‘)2b+2|V<p|<pdx
+a’e /|x|“ 2(wh)**? 2dx+2c1(b+1)/|x|“+yoo( o AR A

Then, we see from Caffarelli-Kohn—Nirenberg inequality [12] that for some C; > 0, depend only on n, a and b,

(n—=2)/2
</|x|2an/(n 2)‘ )b+1 |2n/(n—2)dx>

<Co [l () 190 + alel” (w) 9 lg dx
b+1
+ Caa? / |2 ()P PP dx + Czsiz / |7 (w) PP G2 . (20)
Suppose that supp(p) C B(y, 1) CR" \ B(0, Rp). From Lemma 4 and the constraint

1 (o) P Y=
Xt (wh)" dx < (nf) 7T,

Rn
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we see that for small ¢ > 0,

|x|* (wé‘)/3 dx <&,
{Ix|=Ro}

Note that if B(p — 1) > 2, there exist some C > 0, independent of small ¢ > 0 and large © > 0, satisfying

2b+1
[ e oy g

1/8 (B-1)/B
g( / |x|ﬂa+ﬂyoo(wéz)ﬁ(p—l)dx> (f((wg)2b+2(p2)ﬂ/(ﬁ—l)dX>

supp(p)

1/8
< ngm—a/ﬁ( / el (wt) PP dx) CR ( / e/ ) (1) 222 0=2) dx)

supp(¢)
(n=2)/n
<C820‘//3RV00 a a/ﬁ</| |2an/(n 2)(( )2b+2(p2)n/(n 2)d ) '

Note also that if S(p — 1) < 2, there exist some C > 0, independent of small ¢ > 0 and large ¢ > 0, satisfying

2b+1
/|x|a+]/oc P+ + Zd

178 (B-1)/B
([ ey as) ([ (e )

supp(p)

2atyeo) =172 B-1)
<C< / x| (wg)de) P/ (/((wg)Zb—&-Z(pz)ﬁ/(ﬂ—l)dx) F=Die

supp(¢)

+Yoo—a(p—1)/2 2 (p=D72 2an 24D o N (n=2)/n
coryrmer V([ peuan) " er ([ ) ax)

supp(¢)

—aa(p—=1)/2 2an 2b+2 ) =2)/n

(n=2)/n

Taking a large o > 0, we see from (20) that for some constant C > 0, independent of small ¢ > 0 and large © > 0,

(n—2)/2
(f|x|2an/(n 2)\ )b+1 |2n/(n_2)dx) §C/|x|”(wg)2b+2|V(p|2+a|x|a_1(wf;)2b+2|V(p|(pdx

+Ca /|x|” 2wy dx. Q1)

Now we note that for any ¢, d, e > 0,

/ x| ( )2b+2 <(yl-1)° / lxldﬂ(wg)zbﬂdx.

supp(¢) supp(¢)
From the inequality
|x|a (wé‘)ﬁ dx < 82'1,
{Ix|=Ro}

we deduce via a finite number of iterations of (21) that for any a, b, ¢ > 0, we can choose a large o > 0 so that

2b+2 _
| (wi) T dx < e ly| ¢ (22)
{x|ly—x|<1/2}
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Then, applying [16, Theorem 9.20] to (19), we can choose a large « > 0 so that for a constant C > 0,

e\ e t2)/(p=1)
—) for any |x| > Ro

x|

We may assume from condition (V) that V (x) > 3x|x|~2 for |x| > Ro. Then, setting ¥ (r) = (r/s)’*/x/ ¢, we deduce
from condition (V) that for small £ > 0,

wh(x) < C<

A
_82Aws + Vi 2> r_ZI/fe’ r = Ro.
Then, it follows that for small ¢ > 0,
—2 A + Ve = K () (wh)” 'y inR"\ B(O, Ry).

Note that for some C, ¢ > 0, maxyeyp(0,Ry) We (X) < C exp(—g). Then, by the maximum principle, we get that for
some C, ¢ > 0, independent of small ¢ > 0 and large u > 0,

/e
we(x) < Cexp(—;) (&) Ye(x) forx e B, )\ B(O, Ryp). 23)

&

This completes the proof. O
Now we complete a proof for our main theorem.

Completion of Proof of Theorem 1. Note that u% (x) = (n¥)~1/P=Dwk (x). From Lemma 5, we see that for some
C > 0, independent of small ¢ > 0 and large u > 0, ug Hx) < Ce= =Dy (x), x € B(O, w). Then, by Lemmas 8
and 9, we see the estimate (3). This implies that fR,, Xe(Ue Myp+lgx <1 for sufficiently small ¢ > 0, independent of
large n > 0. Then, we see that wg satisfies Eq. (4). It is easy to see from condition (K) and the decay property in
Lemma 9 that for fixed € > 0, {||wt ||~ | 4 > 0 large} is bounded away from 0.

Next we claim that lim, o || w? ||z~ = 0 uniformly for large x> 0. Indeed, note that for small & > 0, independent
of large i > 0,

g2 Awl — Vw! + K*(w*)’ =0 in B(0, w).
We define W/ (x) = wk (ex). Then, we see that
AWH —V(ex)WH + K (ex)(WH)” =0 in B(O, u/e). (24)
We see from Lemma 3 that
lim / K™ (ex)(WH)P dx =o.
B(0,11/¢)
This implies that

11m/|VW“| +V(£x)(W“) dx—hm/K“(ex)(W“)pHd =0.

This implies that lim._.o [(W)*/=2 dx = 0. For R > 0 and xo € R", we take ¢ € CJ°(B(xo, R)) such that
¢(x) =1 for |x — xo| < R — 1. Multiplying both sides of (24) through by max{(W/)>*!, [}¢?, and taking [ — oo,
we obtain that

f|v 1| dx f(Wg‘)z”zquFdx F(s+1) / K (ex) (WP g2 dx. (25)
Since lim, ¢ [ (WE)?"/ =2 dx = 0, it follows from condition (K) that if s = s1(p, go) > 0 is small,

lim /|V 1162 dx =0
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uniformly for large p > 0. Then,it follows from Sobolev embedding that

lirr%) / (W£)2n(l+sl)/(n_2) dx =0 uniformly for large u > 0.
£—>
B(xo,R—1)

Then, using this and (25) again, we deduce that if s = s2(s1, p, q0) > 51,

lir% / (WS")Z"(H_SZ)/(”_Z) dx =0 uniformly for large > 0.
E—>

B(xp,R—2)
We note that 0 < K* < K € Li’(fc and qo > 2n/2n— (p+ 1)(n —2)) >n/2. Let g € (n/2, qo). Then, iterating above
process finite times, we conclude that for each » > 0 and xo € R",

lir% (K”(ex)(Wg")p)q dx =0 uniformly for large p > 0.
E—>
B(xo.r)

By an elliptic estimate [16, Theorem 8.25], we see that

lim H wH H 100 =0 uniformly for large . > 0. (26)
e—0

We can assume that w’ converges weakly to some w, € E, as y — oo. Then, we get a solution w, > 0 satisfying
Eq. (1). From the uniform decay (26), we see that lim,_,¢ ||we|| Lo = 0.

The decaying property (3) follows from Lemmas 8 and 9. From the decaying property (3), we see that the solution
ug € E, belongs to L2(R"). This implies that u, € WL2(RM).

The second property of (2) in the theorem is proved by the following argument. Let w, = £2/(?=Dy, . Multiplying
the equation by v, and integrating over on R"” we obtain that

\4 12 _
/|va|2+8—2v€2dx< lvell /K(vs)(p D/2(p)2 dx

n/2 (n—=2)/n
< ||ve||(L”o.T”/2</K"/2(v8)n(p1>/4dx) </(v8)2n/(n2) dx) .
n/2

Since K € L, . and (K) hold, we see from the decay property (3), we see that limsup, f K2 (p )=/ gx < 0.
Thus, by Sobolev inequality, we see that

liminf || Ve ||Loo > 0.
e—0
This proves the second property of (2) in the theorem. O

3. Asymptotic behavior of localized solutions

We will study the asymptotic behavior of w, for small ¢ > 0. For a family of functions u, with ¢ > 0, we say the
family sub-converges as ¢ — 0 if for any sequence &,, — 0 there is a subsequence of ¢,, along which the sequence of
functions converge.

Suppose w; is the localized solution concentrating near A, given in Theorem 1. For any positive functions a(e)
and b(e) with € > 0, we define

2

ug(x) = (a(s)) p-1 (b(e))_l’%ws (a(e)x).

Then, it follows that

2 2
Aug — V(a(s)x)(?) Ug + K(a(s)x)(@) (ug)? =0 inR".
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Without loss of generality we can assume that 0 € A C Z U S. For an integer k € Z and ¢ > 0, we define
|k|-times

—_——~—
In“t = (Ino---oIn())"""!,

k0,

and In® = 1 for any r > 0. We consider three typical cases:

(A1) the interior A is a bounded domain containing 0;
(A2) A ={0} is an isolated point, and for T > —2, some k,/ € Z, and

ye(-t@n—(p+D(n—-2)/4,2n—(p+1(n—-2))/2)
it holds that lim|y|—¢ V (x)/|x|? 1n’<(|jc—‘) = ¢ > 0 and limjy|0 K (x)]x]” lnl(ﬁ) =d>0;

(A3) A={0}andforsomel/e€Z, v >0andy <(2n—(p+1)(n—2))/2, limy—o V(x)/exp(—|x|"") =c > 0and
limyy |0 K (x)|x|” hﬂﬁ) =d>0.

In case (A1), taking a(e) = 1 and b(e) = ¢, we see that
2
V(a(e)x) <@> =0 forxeA
£
and that for any small d > 0,
a(e)\’ 2\ ad
lin}) V(a(e)x) (—) =00 uniformly on x € A=\ A“.
£—> &
In this case, we see also that
b 2
K(a(s)x) <ﬂ) = K(x).
I3
In case (A2), we take
2 1/(z+2) Y 1 12
a(e) =e™2 (ln_k (8_2/(T+2))) and b(e) =ea(e)? <lnl (ﬁ)) )
a(e
Then, we see that
2 2
b
lim V(a(s)x) <@> =c|x|* and lim K(a(s)x) (£> =d|x|7"
e—0 & e—0 &

locally uniformly in R”.
In case (A3), we take

—1/7 Y 1 1z
a(e) = (Ine™2) and b(g) =ea(e)? <lnl (—)) .
a(e)
Then, for any 8 € (0, 1) and 8’ € (1,2)
. a(e)\? .
hn}) V(a(s)x) —— ) =0 uniformly on B(0, §),
&e— &

2
111% V(a(e)x) (@) =00 uniformly on B(0,2) \ B(0,§").

Moreover, it follows that lim, .o K (a(¢)x) (@)2 =d|x|7Y locally uniformly in R".
Then, we see the following asymptotic result for each cases (A1)—(A3).

Theorem 10. Assume A = int(A) and A is a connected component of Z U S. Let w, be a localized solution given in
Theorem 1. Then ug(x) = ¢ =2/ P~V w, (x) sub-converges point-wisely to a least energy solution U of

AU+ Kx)UP =0, U=>0, xcint(A); u=0, x €dA.
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Theorem 11. Assume A = {0} € Z U S. Assume that (A2) is satisfied by functions V and K near 0. Let w, be a
localized solution given in Theorem 1. Then uy(x) := (a @) P=D (b))~ P Dy, (a(e)x) sub-converges uniformly
to a least energy solution U of

AU —c|x|"U +d|x|7YUP =0, xeR". 27
Here a(e) = e (In" (e =2/ 2))1/+2) and b(e) = ¢ a(e)?/? (In! (7502
Theorem 12. Assume A = {0} € Z U S. Assume that (A3) is satisfied by functions V and K near 0. Let w, be a

localized solution given in Theorem 1. Then uy(x) := (a @) P=D (b))~ P Dy, (a(e)x) sub-converges uniformly
to a least energy solution U of

AU +d|x|YUP =0, xeB(0), U=0, x €dB;(0). (28)
Here a(e) = (Ine=2)~V/" and b(e) = ¢ a(e)?/? (1n1($))1/2.

For the proofs of the above theorems, the first can be proved by slight modifications of the arguments in [9], the
proof of the third is simpler than that of the second. In the following we give the proof of Theorem 11.

Proof of Theorem 11. Without loss of generality we assume ¢ = d = 1. First we show that the limiting equation (27)
has a ground state solution U in the space

X = {u e H'(R") ‘ /(|W|2 + |x["u?) dx < oo}.

We consider the following minimization problem:

Jpo |Vul? + Ix|7u?
m
ueX\(0} (fgu |77 lu|Pt1)2/(p+D"

It is standard to show that if t > 0 and y € [0, 2n — (p 4+ 1)(n — 2))/2), the embedding from X into the weighted
LPFI(R"; |x|77) is compact. Thus the minimization problem is solved. For t >0 and y € (—t(2n — (p + 1)(n —
2))/4,0) or T € (=2,0) we can argue as follows. For a =2n — (p + 1)(n — 2)/2 and ¢ € C;°(R"), it follows from
Holder’s inequality and Sobolev inequality that for some C > 0,

2/(p+D) 2/(p+D)
(/le‘wa’“ dX> = (/IXI_Vw“fp”“_“dX)
a/(p+1) 2=a)/(p+1)
g </|x|_2y/a(p2dx> </¢2n/(n—2)dx>
a/(p+1) THOAT
<C(/|x|27’/“ de> </|w| dx) '
c @

—2y/a 2 n2-— /
—1/|x| dx —l—C( _2)(p+1) [Vo|?dx.

Since —2y/a < t, the embedding from X into the weighted LP+!(R"; |x|~") is compact. Thus the minimization
problem is solved.

m =

;
Now there exists a minimizer u of the minimization attaining m. Then U = m r-1

Eq. (27).

Next, since y < (2n — (p + 1)(n —2))/2, we observe that | - |7V € L . for some s >n/2 and |x|77U? € L'(R™)
for some ¢ > 1. By a bootstrap argument and an elliptic estimate [16, Theorem 8.25], we deduce that U € L>*(R").
Note that —y < t(2n — (p+ 1)(n —2)) /4 < 1. Then, by comparison principle there exist C, ¢ > 0 such that for > 0
we have U (x) < Cexp(—c|x|) for all x € R", and for t € (—2, 0) we have U (x) < Cexp(—c|x|2+Tr) for all x € R".

Now let w, (x) be a sequence of localized solutions concentrating at A = {0} as given in Theorem 1. Define

ug(x) := (a(z—:))z/(p_l)(b(s))_z/(p_l)wg (a(s)x).

u is a least energy solution of
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Here a(e) = e2/ Tt (In~* (¢ =2/ DNV T+ and b(e) = £ a(e)?/? (lnl(ﬁ))l/z. Then we have

2
Aue—V(a(e)X)<?) ue + K (a(e)x )( ()) (ug)? =0 inR".

Using the fact that u, corresponds to local minimizers of M, and the exponential decay of U we have

hmsup/ |Vuel* + V(a(e)x)(a(e)e™ ) ug (x)? f IVU|*> + |x|TU>.
e—0 n
By the decay property of w,, for any r; > 0 there exists Cy, ¢ > 0 such that for |x| > ry/a(e),

—«/X/s

e (x) < Crexp(—c/e)(a@)” ? ™" (@) PV (1 + a(e)Ix) (29)

There exists r2 > 0 such that for |x| < re :=ra/a(e), V(a(e)x)(a(e)e™")? = x| /2. Thus [lue |l 51 5,,) are uniformly
bounded. By this, elliptic estimates and (29) we have ||u,| o~ are uniformly bounded. Using the coercivity of the

potential |x|* as |x| — oo and elliptic estimates we obtain lim|y|— o ¢ (x) = 0 uniformly for .
Next we claim that liminfy o [[ue|| oo > 0. From [[ue || g1 B.) being uniformly bounded there is C > 0 such that

”“8”L2*(B ) S /|Vu5| +V(a(8)x)(a(s)g—1) ug(x)2.

Then by Holder inequality and the fact —y < t, we deduce that for some C > 0, independent of ¢ > 0,

/K(a(s)x)(b(s)g—l)zug(x) < Cf IVuel> + V(a(e)x) (a(e)e ™) ue (x)2.
er

By,

Note that
/|Vu8|2+V(a(s)x)<“(;)) e (0)2 < ue |V fK (ale)x ( ”) W),
Rn R

If liminf,— o |ty || Lo = 0, it follows from (29) that for some C, ¢ > 0,

/ Vel + V(a(e;"))c)(a(e)esfl)zug()c)2 < Cexp<—§>_

R}’l

By elliptic estimates, we have limg_,0 &7 7 ||u. ||~ = 0 for any ¢ > 0, which contradicts with property (2) in Theo-
rem 1.

Finally we see from elliptic estimates and the uniform decay at infinity that u, sub-converges to a least energy
solution of Eq. (27). O

Remark 13. We cover several typical cases of asymptotic behaviors. There are some more cases interesting enough
to be examined. We point out one case here. Suppose that V (x) = exp(—|x|~7), K(x) =exp(—|x|~") for |x| < 1. If
T > p > 0, it follows that

lim VS () /K2 (x0) =0

|x|—
Thus our main result assures the existence of a localized concentrating solution. However it seems not easy to find
appropriate scaling functions a(¢) and b(¢) so that V(a(s)x)(@)2 and K (a(s)x)(@)2 converge in a suitable sense
and there is a nontrivial least energy solution of a certain limiting equation. It would be interesting to study the
asymptotic behavior of the localized solution u, in this case.
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