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Abstract

We consider the semi-classical limit for the Gross–Pitaevskii equation. In order to consider non-trivial boundary conditions
at infinity, we work in Zhidkov spaces rather than in Sobolev spaces. For the usual cubic nonlinearity, we obtain a point-wise
description of the wave function as the Planck constant goes to zero, so long as no singularity appears in the limit system. For a
cubic-quintic nonlinearity, we show that working with analytic data may be necessary and sufficient to obtain a similar result.
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1. Introduction

We study the semi-classical limit h̄ → 0 for the Gross–Pitaevskii equation

ih̄∂tu + h̄2

2m
�u = V u + f

(|u|2)u,

where x ∈ R
n. In the case of Bose–Einstein condensation (BEC), the external potential V = V (t, x) models an external

trap, and the nonlinearity f describes the non-linear interactions of the particles (see e.g. [11,25,19]). We consider
two types of nonlinearity f (after renormalization):

• Cubic nonlinearity: f (|u|2)u = (|u|2 − 1)u.
• Cubic-quintic nonlinearity: f (|u|2)u = (|u|4 + λ|u|2)u, λ ∈ R.

The cubic nonlinearity is certainly the most commonly used model in BEC. The defocusing nonlinearity corresponds
to a positive scattering length, as in the case of 87Rb, 23Na and 1H. Note that this model is also used in superfluid
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theory. See e.g. [11,25,19] and references therein. The cubic-quintic nonlinearity, which is mostly used as an envelope
equation in optics, is also considered in BEC for alkalimetal gases (see e.g. [14,1,24]), in which case λ < 0. The cubic
term corresponds to a negative scattering length, and the quintic term to a repulsive three-body elastic interaction. We
also consider the case λ > 0 (positive scattering length).

1.1. Cubic nonlinearity

Up to rescaling the Planck constant, we consider the limit ε → 0 for:

iε∂tu
ε + ε2

2
�uε = V uε + (|uε|2 − 1

)
uε, x ∈ R

n, n � 1, (1.1)

uε(0, x) = aε
0(x)eiφ0(x)/ε. (1.2)

Our initial data do not necessarily decay to zero at infinity. Typically, we do not assume aε
0 ∈ L2(Rn) (see Theorem 1.3

below). Recently, the Cauchy problem [12,17] and the semi-classical limit [21] for (1.1) with V ≡ 0 have been studied
more systematically. When the external potential V is zero, V ≡ 0, the Hamiltonian structure yields, at least formally:

d

dt

(∥∥ε∇uε(t)
∥∥2

L2 + ∥∥∣∣uε(t)
∣∣2 − 1

∥∥2
L2

) = 0.

In this case, a natural space to study the Cauchy problem associated to (1.1) is the energy space (see e.g. [6,17] and
references therein)

E = {
u ∈ H 1

loc

(
R

n
); ∇u ∈ L2(

R
n
)
, |u|2 − 1 ∈ L2(

R
n
)}

.

For this quantity to be well defined, one cannot assume that uε is in L2(Rn); morally, the modulus of uε goes to one
at infinity. To study solutions which are bounded, but not in L2(Rn), P.E. Zhidkov introduced in the one-dimensional
case in [29] (see also [30]):

Xs
(
R

n
) = {

u ∈ L∞(
R

n
); ∇u ∈ Hs−1(

R
n
)}

, s > n/2. (1.3)

We also denote X∞ := ⋂
s>n/2 Xs . The study of these spaces was generalized in the multidimensional case by

C. Gallo [12]. They make it possible to consider solutions to (1.1) whose modulus has a non-zero limit as |x| → ∞,
but not necessarily satisfying |uε(t, ·)|2 − 1 ∈ L2(Rn). We shall also use these spaces.

Recently, P. Gérard [17] has solved the Cauchy problem for the Gross–Pitaevskii equation in the more natural
space E, in space dimensions two and three. The main novelty consists in working with distances instead of norms,
in order to apply a fixed point argument in E. In particular, the constraint |uε(t, ·)|2 − 1 ∈ L2(Rn) is satisfied.

To our knowledge, if the initial data do not vanish at infinity, the introduction of an (unbounded) external potential
in Gross–Pitaevskii equation has no physical motivation. Note also that if V is an harmonic potential, then the formal
Hamiltonian corresponding to (1.1) is necessarily infinite (see Section 2.3). On the other hand, introducing a quadratic
external potential or considering a quadratic initial phase φ0 makes no difference in our analysis. The model (1.1)–(1.2)
with V ≡ 0 and φ0 quadratic is certainly more physically relevant, and does not seem to enter into the framework of
the previous mathematical studies. Another motivation to introduce this external potential stems from the study of
the semi-classical limit of the Schrödinger–Poisson system, where |uε|2 − 1 is replaced with V ε

p given by �V ε
p =

q(|uε|2 − c). This models appears in the semi-conductor theory where the real number q models a charge, which we
may take equal to one here, and the function c = c(x) models a doping profile, which we may take to be c ≡ 1. As
in [2], we will prove that if V grows quadratically in space, then if |uε(t = 0, ·)|2 − 1 ∈ L2(Rn), one must not expect
|uε(t, ·)|2 − 1 ∈ L2(Rn) for t > 0.

Assumptions. We assume that the potential and the initial phase are of the form:

• V ∈ C∞(Rt × R
n
x), and V = Vquad + Vlin, where Vquad(t, x) = t xM(t)x is a quadratic form, with M(t) ∈ Sn(R)

a symmetric n × n matrix, depending smoothly on t , and ∇Vlin ∈ C∞(Rt ;Xs) for all s > n/2.
• φ0 ∈ C∞(Rn), and φ0 = φquad + φlin, where φquad(x) = t xQ0x is a quadratic form, with Q0 a symmetric matrix

in Mn×n(R), and ∇φlin ∈ X∞.
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Note that our assumptions include the case where Vlin and φlin are linear in x. In general, these functions are
sub-linear in x, since their gradient is bounded.

Lemma 1.1. There exist T > 0 and a unique solution φeik ∈ C∞([0, T ] × R
n) to:

∂tφeik + 1

2
|∇xφeik|2 + Vquad = 0; φeik|t=0 = φquad. (1.4)

Moreover, φeik is a quadratic form in x:

φeik(t, x) = t xQ(t)x, (1.5)

where Q(t) ∈ Sn(R) is a smooth function of t .

Proof. Existence and uniqueness follow from [9, Lemma 1]. To prove that φeik is quadratic in x, seek φeik of the
form (1.5). Then (1.4) is equivalent to the system of ordinary differential equations

Q̇(t) + 2Q(t)2 + M(t) = 0; Q(0) = Q0.

The lemma then follows from Cauchy–Lipschitz Theorem. �
Remark 1.2. As in [2], we shall use the following geometrical interpretation of the above lemma. The time T is such
that for t ∈ [0, T ], the map given by

∂tx(t, y) = ∇xφeik
(
t, x(t, y)

) = Q(t)x(t, y); x(0, y) = y,

defines a global diffeomorphism on R
n. Therefore, the characteristics associated to the operator ∂t + ∇φeik · ∇ do not

meet for t ∈ [0, T ], and this operator is a smooth transport operator:

(∂tf + ∇φeik · ∇f )
(
t, x(t, y)

) = ∂t

(
f

(
t, x(t, y)

))
.

Note that if Q(t) and its anti-derivative commute, then we have

x(t, y) = exp

( t∫
0

Q(τ)dτ

)
y.

Theorem 1.3. Suppose that there exist a0, a1 ∈ X∞ such that:

‖aε
0 − a0 − εa1‖Xs = o(ε), ∀s > n/2. (1.6)

There exist T∗ ∈ ]0, T ] independent of ε ∈ ]0,1], and a unique solution uε ∈ C∞ ∩ L∞([0, T∗] × R
n) to (1.1)–(1.2).

Moreover, there exist a,φ ∈ C∞([0, T∗] × R
n) with a,∇φ ∈ C([0, T∗];Xs) for all s > n/2, such that:

lim sup
ε→0

∥∥uε(t, ·) − a(t, ·)ei(φ(t,·)+φeik(t,·))/ε∥∥
L∞(Rn)

= O(t) as t → 0. (1.7)

The functions a and φ depend non-linearly on φ0 and a0 (see (3.1) below). There exists φ(1) ∈ L∞([0, T∗] × R
n),

real-valued, with ∇φ(1) ∈ C([0, T∗];Xs) for all s > n/2, such that:

lim sup
ε→0

∥∥uε − aeiφ(1)

ei(φ+φeik)/ε
∥∥

L∞([0,T∗]×Rn)
= 0. (1.8)

The modulation φ(1) is a non-linear function of φ0, a0 and a1 (see (3.2) below).

Remark 1.4. Several applications of this general results are given, in Sections 3, 4 and 5.

Remark 1.5. If we assume moreover

‖aε
0 − a0 − εa1‖Xs = O(ε2), ∀s > n/2,

then the above error estimate can be improved:∥∥uε − aeiφ(1)

ei(φ+φeik)/ε
∥∥

L∞([0,T∗]×Rn)
= O(ε).
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Remark 1.6. The above result and system (3.2) below show that in general, it is necessary to know the initial am-
plitude aε

0 up to the order o(ε) to describe the leading order behavior of the wave function uε . It is not necessary
to know aε

0 with such precision to study the convergence of quadratic observables. See Section 6. In particular, in
Theorem 6.1, we extend the result of [21] to the three-dimensional case (on a bounded domain, or outside a bounded
domain).

Remark 1.7. Most of the results that we present here remain valid in a space-periodic setting, that is if we as-
sume x ∈ T

n. In that case, compactness arguments show that the proof of Theorem 1.3 remains valid when
V ∈ C∞(Rt × T

n
x) and φ0 ∈ C∞(Tn). On the other hand, the discussions in Sections 2.3 and 5 become irrelevant

on the torus. Finally, note that it is equivalent to work in Sobolev spaces, since Xs(Tn) = Hs(Tn) for s > n/2.

The analysis detailed in Sections 2 and 3 shows that the formal part of [8] can be justified in the present framework.
We shall only state a typical consequence of this approach:

Corollary 1.8 (Instability). Let n � 1, a0, a1 ∈ C∞ ∩ X∞(Rn), with Re(ā0a1) �≡ 0, and φ0 ∈ C∞(Rn), with
∇φ0 ∈ X∞. Let uε and vε solve the initial value problems:

iε∂tu
ε + ε2

2
�uε = (|uε|2 − 1

)
uε; uε|t=0 = a0e

iφ0/ε,

iε∂tv
ε + ε2

2
�vε = (|vε|2 − 1

)
vε; vε|t=0 = (a0 + δεa1)e

iφ0/ε,

where δε → 0. Assume that there exists N ∈ N such that δε/ε1− 1
N → +∞. Then we can find tε → 0 such that

lim infε→0 ‖uε(tε) − vε(tε)‖L∞ > 0. In particular,

lim inf
ε→0

‖uε − vε‖L∞([0,tε]×Rn)

‖uε
|t=0 − vε

|t=0‖L∞(Rn)

= +∞.

Remark 1.9. Note that if φ0 ≡ 0, then we also have:

lim inf
ε→0

‖uε − vε‖L∞([0,tε]×Rn)

‖uε
|t=0 − vε

|t=0‖Xs
= +∞, ∀s > n/2.

This shows that the instability mechanism is not due to regularity issues. It is due to the fact that (1.1) is super-critical
as far as WKB analysis is concerned: the small initial perturbation (of order δε) yields a high-frequency perturbation
of the evolution (a multiplicative factor of the form e−2itδε Re(ā0a1)/ε).

1.2. Cubic-quintic nonlinearity

Denote fλ(y) = y2 + λy. We now consider⎧⎨⎩ iε∂tu
ε + ε2

2
�uε = fλ

(|uε|2)uε, x ∈ R
n, n � 1,

uε(0, x) = aε
0(x)eiφ0(x)/ε.

(1.9)

Note that in (1.9), we assume that there is no external potential, V = 0. We also assume that there is no initial quadratic
oscillation: φ0 ∈ C∞(Rn;R), with ∇φ0 ∈ X∞. The case λ > 0, V �= 0, with aε

0 ∈ H∞, is contained in [9]. We assume
Vquad = 0 here in order to consider non-zero boundary conditions at infinity. We also assume Vlin = 0 for simplicity
only.

Plugging an approximate solution of the form uε
≈ aeiφ/ε , with a and φ independent of ε, and passing to the limit

ε → 0 as in [15,21], we find formally that (ρ, v) := (|a|2,∇φ) solves:{
∂tρ + div(ρv) = 0,

∂ v + v · ∇v + ∇(
f (ρ)

) = 0.
(1.10)
t λ
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If λ > 0, then the problem is hyperbolic. Essentially, the result of Theorem 1.3 remains valid. When λ < 0, the above
problem is hyperbolic for ρ > |λ|/2 and elliptic for ρ < |λ|/2. This feature is reminiscent of Euler equations of gas
dynamics in Lagrangian coordinates:{

∂tu + ∂xv = 0,

∂t v + ∂x

(
p(u)

) = 0.
(1.11)

As recalled in [23], a typical mathematical example for van der Waals state laws is given by p(u) = (u2 − 1)u. The
problem is hyperbolic if u > 1/

√
3, and elliptic if u < 1/

√
3. Hadamard’s argument implies that the only reasonable

framework to study (1.10) or (1.11) is that of analytic functions (see [23]). In this case, we refer to the approach
of [16,28]. More details are given in Section 7. When the elliptic region for (1.10) is avoided, then essentially, Theo-
rem 1.3 remains valid:

Theorem 1.10. Suppose that there exist a0, a1 ∈ X∞ such that:∥∥aε
0 − a0 − εa1

∥∥
Xs = o(ε), ∀s > n/2.

Assume moreover that φ0 ∈ C∞(Rn;R) with ∇φ0 ∈ X∞, and:

• Either λ > 0,
• Or λ < 0 and there exists δ > 0 such that |a0(x)|2 � δ + |λ|

2 , ∀x ∈ R
n.

Then there exist ε∗, T∗ > 0, and a unique solution uε ∈ C∞ ∩ L∞([0, T∗] × R
n) to (1.9) for all ε ∈ ]0, ε∗]. Moreover,

there exist a,φ ∈ C∞([0, T∗] × R
n) with a,∇φ ∈ C([0, T∗];Xs) for all s > n/2, such that:

lim sup
ε→0

∥∥uε(t, ·) − a(t, ·)eiφ(t,·)/ε∥∥
L∞(Rn)

= O(t) as t → 0.

There exists φ(1) ∈ L∞([0, T∗] × R
n), real-valued, with ∇φ(1) ∈ C([0, T∗];Xs) for all s > n/2, such that:

lim sup
ε→0

∥∥uε − aeiφ(1)

eiφ/ε
∥∥

L∞([0,T∗]×Rn)
= 0.

1.3. Structure of the paper

In Section 2, we construct the solution uε as uε = aεeiΦε/ε , where aε is complex-valued and Φε is real-valued.
This yields the existence part of Theorems 1.3 and 1.10. The proof of these theorems is completed in Section 3, where
the limit of (aε,Φε) as ε goes to zero is studied. We give three examples of applications of Theorem 1.3 in Section 4,
in the case φeik = 0. In Section 5, we study the time evolution of a non-trivial boundary condition at infinity when
φeik �= 0. In Section 6, we investigate the limit of the position and current densities. Finally, we explain why working
in an analytic setting is often necessary (and always sufficient) in the case of the cubic-quintic nonlinearity.

2. Construction of the solution

2.1. Phase-amplitude representation: the case φeik = V = 0

When V and φ0 are identically zero, the existence and uniqueness part of Theorem 1.3 was established by
C. Gallo [12]. Note however that with our scaling, the fact that T∗ is independent of ε ∈ ]0,1] does not follow
from [12]. Since the approach in Zhidkov spaces is rather similar to the one in Sobolev spaces, we shall essentially
explain the new aspects of the proof. To treat both cubic and cubic-quintic nonlinearities, consider the general equation⎧⎨⎩ iε∂tu

ε + ε2

2
�uε = f

(|uε|2)uε, x ∈ R
n, n � 1,

uε(0, x) = aε(x)eiφ0(x)/ε,

(2.1)
0
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where f ∈ C∞(R+;R). We keep the hierarchy introduced by E. Grenier [18]: seek uε = aεeiΦε/ε , where aε is
complex-valued, and Φε is real-valued. We impose⎧⎪⎨⎪⎩

∂tΦ
ε + 1

2
|∇Φε|2 + f

(|aε|2) = 0; Φε|t=0 = φ0,

∂ta
ε + ∇Φε · ∇aε + 1

2
aε�Φε = i

ε

2
�aε; aε|t=0 = aε

0.

(2.2)

As an intermediary unknown function, introduce the “velocity” vε = ∇Φε . Separate real and imaginary parts of aε ,
aε = aε

1 + iaε
2, and introduce:

uε =

⎛⎜⎜⎜⎜⎜⎝
aε

1

aε
2

vε
1
...

vε
n

⎞⎟⎟⎟⎟⎟⎠ , uε
0 =

⎛⎜⎜⎜⎜⎜⎝
Re(aε

0)

Im(aε
0)

∂1φ0
...

∂nφ0

⎞⎟⎟⎟⎟⎟⎠ , L =
( 0 −� 0 . . . 0

� 0 0 . . . 0
0 0 0n×n

)
, and

A(u, ξ) =
n∑

j=1

Aj(u)ξj =
⎛⎝ v · ξ 0 a1

2
t ξ

0 v · ξ a2
2

t ξ

2f ′a1 ξ 2f ′a2 ξ v · ξIn

⎞⎠ ,

where f ′ stands for f ′(|a1|2 + |a2|2). We now have the system:

∂tuε +
n∑

j=1

Aj(uε)∂j uε = ε

2
Luε; uε

|t=0 = uε
0. (2.3)

The matrices Aj are symmetrized by the matrix

S =
(

I2 0

0 1
4f ′ In

)
,

which is symmetric positive if and only if f ′(|a1|2 + |a2|2) > 0: this includes the case of the decofusing cubic nonlin-
earity (1.1), of the cubic-quintic nonlinearity (1.9) with λ > 0, and of the cubic-quintic nonlinearity (1.9) with λ < 0,
provided that |a1|2 + |a2|2 > |λ|/2.

Proposition 2.1. Assume that uε
0 is bounded in Xs for all s > n/2, uniformly for ε ∈ [0,1], and that there exists ε∗ > 0

and δ > 0 such that

f ′(|aε
0|2

)
� δ > 0, ∀x ∈ R

n, ∀ε ∈ [0, ε∗].
Then for s > n/2 + 2, there exist T∗ > 0 and a unique solution uε ∈ C([0, T∗];Xs) to (2.3) for all ε ∈ [0, ε∗]. In
addition, this solution is in C([0, T∗];Xm) for all m > n/2, with bounds independent of ε ∈ [0, ε∗].

Proof. Let s > n/2 + 2. As usual, the main point consists in obtaining a priori estimates for the system (2.3), so we
shall focus our attention on this aspect. We have an a priori bound for uε in L∞:

∥∥uε(t)
∥∥

L∞ � ‖uε
0‖L∞ +

t∫
0

n∑
j=1

∥∥Aj(uε)∂j uε(τ )
∥∥

L∞ dτ +
t∫

0

∥∥�uε(τ )
∥∥

L∞ dτ

� ‖uε
0‖L∞ +

t∫
0

F
(∥∥uε(τ )

∥∥
L∞

)∥∥∇uε(τ )
∥∥

Hs−1 dτ + C

t∫
0

∥∥�uε(τ )
∥∥

Hs−2 dτ.

We infer:

∥∥uε(t)
∥∥

L∞ � ‖uε
0‖L∞ +

t∫
G

(∥∥uε(τ )
∥∥

Xs

)∥∥uε(τ )
∥∥

Xs dτ. (2.4)
0
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To have a closed system of estimates, introduce P = (I − �)(s−1)/2∇ , so that ‖f ‖Xs ≈ ‖f ‖L∞ + ‖Pf ‖L2 . Denote

〈f,g〉 =
∫
Rn

f (x)g(x) dx,

the scalar product in L2. Since S is symmetric, we have

d

dt

〈
SPuε(t),P uε(t)

〉 = 〈
∂tSPuε(t),P uε(t)

〉 + 2 Re
〈
S∂tP uε(t),P uε(t)

〉
.

So long as

f ′(|aε|2) � δ

2
> 0, (2.5)

we have the following set of estimates. First,〈
∂tSPuε(t),P uε(t)

〉
� ‖∂tS‖L∞

∥∥P uε(t)
∥∥2

L2

� Cδ

(∥∥uε(t)
∥∥

L∞
)∥∥∂tuε(t)

∥∥
L∞

∥∥uε(t)
∥∥2

Xs .

Directly from (2.3), we have:∥∥∂tuε(t)
∥∥

L∞ � C
(∥∥uε(t)

∥∥
L∞

)∥∥∇uε(t)
∥∥

L∞ + ∥∥�uε(t)
∥∥

L∞

� C
(∥∥uε(t)

∥∥
Xs

)∥∥uε(t)
∥∥

Xs .

Since SL is skew-symmetric, we have

Re
〈
SLP uε(t),P uε(t)

〉 = 0,

which prevents any loss of regularity in the estimates. For the quasi-linear term involving the matrices Aj , we note
that since SAj is symmetric, commutator estimates (see [20]) yield:

n∑
j=1

〈
SP

(
Aj

(
uε

)
∂j uε

)
,P uε(t)

〉
� C

(∥∥uε(t)
∥∥

L∞
)∥∥P uε(t)

∥∥2
L2

∥∥∇uε(t)
∥∥

L∞

� C
(∥∥uε(t)

∥∥
Xs

)∥∥P uε(t)
∥∥2

L2 .

Finally, we have:

d

dt

〈
SPuε(t),P uε(t)

〉
� C

(∥∥uε(t)
∥∥

Xs

)∥∥uε(t)
∥∥2

Xs .

This estimate, along with (2.4), shows that on a sufficiently small time interval [0, T∗], with T∗ > 0 independent of
ε ∈ [0, ε∗], (2.5) holds. This yields the first part of Proposition 2.1.

The fact that the local existence time does not depend on s > n/2+2 follows from the continuation principle based
on Moser’s calculus and tame estimates (see e.g. [22, Section 2.2] or [27, Section 16.1]). �

The existence part of Theorem 1.10 and of Theorem 1.3 when φeik = 0 follows. Indeed, define Φε by

Φε(t) = φ0 −
t∫

0

(
1

2

∣∣vε(τ )
∣∣2 + f

(∣∣aε(τ )
∣∣2))

dτ.

We check that ∂t (∇Φε − vε) = ∇∂tΦ
ε − ∂tv

ε = 0, so that ∇Φε = vε , and (Φε, aε) solves (2.2). Finally, uniqueness
for (2.1) follows from energy estimates. If uε, vε ∈ C∞ ∩ L∞([0, T∗] × R

n) solve (2.1), then wε := uε − vε satisfies:

iε∂tw
ε + ε2

�wε = f
(|uε|2)uε − f

(|vε|2)vε; wε
|t=0 = 0.
2
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We have, for t ∈ [0, T∗],
‖wε‖L∞(0,t;L2) � C

(‖uε‖L∞([0,T∗]×Rn),‖vε‖L∞([0,T∗]×Rn)

)‖wε‖L1(0,t;L2),

and Gronwall lemma yields wε ≡ 0.

2.2. Phase-amplitude representation: the case φeik �= 0

We now consider (1.1)–(1.2) only: the nonlinearity is exactly cubic. To take the presence of V and φquad into
account, we proceed as in [9]: we construct the solution as uε = aεei(φε+φeik)/ε . The analogue of (2.2) is:⎧⎪⎨⎪⎩

∂tΦ
ε + 1

2
|∇Φε|2 + V + |aε|2 − 1 = 0; Φε|t=0 = φ0,

∂ta
ε + ∇Φε · ∇aε + 1

2
aε�Φε = i

ε

2
�aε; aε|t=0 = aε

0.

Set Φε = φε + φeik. The introduction of φeik allows us to get rid of the terms Vquad and φquad, and work in Zhidkov
spaces. The above problem reads, in terms of (φε, aε):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tφ
ε + 1

2
|∇φε|2 + ∇φeik · ∇φε + Vlin + |aε|2 − 1 = 0,

∂ta
ε + ∇φε · ∇aε + ∇φeik · ∇aε + 1

2
aε�φε + 1

2
aε�φeik = i

ε

2
�aε,

φε|t=0 = φlin; aε|t=0 = aε
0.

(2.6)

Resume the notations of the previous paragraph, with now:

� =

⎛⎜⎜⎜⎜⎝
0
0

∂1Vlin
...

∂nVlin

⎞⎟⎟⎟⎟⎠ , and A(u, ξ) =
n∑

j=1

Aj(u)ξj

⎛⎝ v · ξ 0 a1
2

t ξ

0 v · ξ a2
2

t ξ

2a1ξ 2a2ξ v · ξIn

⎞⎠ .

The system (2.3) is replaced by:

∂tuε +
n∑

j=1

Aj

(
uε

)
∂j uε + ∇φeik · ∇uε + M̃uε + � = ε

2
Luε; uε

|t=0 = uε
0, (2.7)

where M̃ = M̃(t) is a matrix depending on time only, since φeik is exactly quadratic in x. This aspect seems necessary
in the proof of Proposition 2.2 below. This explains our assumptions, and why we do not content ourselves with
general sub-quadratic potential and initial phase as in [9]. The important aspect to notice is that since the nonlinearity
in (1.1) is exactly cubic, then the matrices Aj are symmetrized by a constant matrix, namely:

S =
(

I2 0

0 1
4In

)
.

In [9], nonlinearities which are cubic at the origin were considered (as in [18]), and the possibly quadratic phase φeik
made the assumption xaε

0 ∈ L2(Rn) apparently necessary, to control the time derivative of the symmetrizer. Of course,
we want to avoid this decay assumption for the Gross–Pitaevskii equation, so working with a constant symmetrizer is
important.

Proposition 2.2. Assume that uε
0 is bounded in Xs for all s > n/2, uniformly for ε ∈ [0,1]. Then for s > n/2 + 2,

there exist T∗ ∈ ]0, T ], independent of ε ∈ [0,1], and a unique solution uε ∈ C([0, T∗];Xs) to (2.7). In addition, this
solution is in C([0, T∗];Xm) for all m > n/2, with bounds independent of ε ∈ [0,1].

Sketch of the proof. The proof follows the same lines as the proof of Proposition 2.1, so we shall only point out the
differences.
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Let s > n/2 + 2. By construction, the operator ∂t + ∇φeik · ∇ is a transport operator along the characteristics
associated to φeik, which do not intersect for t ∈ [0, T ]. Therefore, we have an a priori bound for uε in L∞:

∥∥uε(t)
∥∥

L∞ �
∥∥uε

0

∥∥
L∞ +

t∫
0

n∑
j=1

∥∥Aj(u)∂ju(τ)
∥∥

L∞ dτ +
t∫

0

(
C

∥∥uε(τ )
∥∥

L∞ + ∥∥�(τ )
∥∥

L∞ + ∥∥�uε(τ )
∥∥

L∞
)
dτ

�
∥∥uε

0

∥∥
L∞ + C

t∫
0

(
1 + ∥∥uε(τ )

∥∥
Xs

)∥∥uε(τ )
∥∥

Xs dτ + C‖�‖L∞([0,T ];Xs). (2.8)

To have a closed system of estimates, resume the operator P = (I − �)(s−1)/2∇ , so that ‖f ‖Xs ≈ ‖f ‖L∞ + ‖Pf ‖L2 .
We have

d

dt

〈
SPuε(t),P uε(t)

〉 = 2 Re
〈
S∂tP uε(t),P uε(t)

〉
,

since S is constant symmetric. Since SL is skew-symmetric, we have

Re
〈
SLP uε(t),P uε(t)

〉 = 0.

For the quasi-linear term involving the matrices Aj , we note that since SAj is symmetric, commutator estimates yield:

n∑
j=1

〈
SP

(
Aj

(
uε

)
∂j uε

)
,P uε(t)

〉
� C

(∥∥uε(t)
∥∥

Xs

)∥∥P uε(t)
∥∥2

L2 .

Next, write〈
SP

(∇φeik · ∇uε(t)
)
,P uε(t)

〉 = 〈
S∇φeik · ∇P uε(t),P uε(t)

〉 + 〈
S[P,∇φeik · ∇]uε(t),P uε(t)

〉
.

The first term of the right-hand side is estimated thanks to an integration by parts:

2 Re
〈
S∇φeik · ∇P uε(t),P uε(t)

〉 = ∫
S∇φeik(t, x) · ∇∣∣P uε(t, x)

∣∣2
dx

= −
∫

S�φeik(t, x)
∣∣P uε(t, x)

∣∣2
dx.

For the second term, we notice that [P,∇φeik · ∇] = ψ∇ , where ψ = ψ(t,D) is a pseudo-differential operator in x,
of order s − 1, depending smoothly of t ∈ [0, T ]. Therefore,

2 Re
〈
SP

(∇φeik · ∇uε(t)
)
,P uε(t)

〉
�

∥∥uε(t)
∥∥2

Xs .

The fact that M̃ is independent of x is crucial here, to ensure that P(M̃uε) ∈ L2 for uε ∈ Xs . If M̃ depended on x,
that is if φeik was not a polynomial of order at most two, the low frequencies might be a problem at this step of the
proof. Finally, we have:

d

dt

〈
SPuε(t),P uε(t)

〉
� C

(∥∥uε(t)
∥∥

Xs

)‖∥∥uε(t)
∥∥2

Xs .

This estimate, along with (2.8), yields the first part of Proposition 2.2. We conclude like in the proof of Proposi-
tion 2.1. �

The existence part of Theorem 1.3 follows from the above result, by setting

φε(t) = φlin −
t∫

0

(
1

2

∣∣vε(τ )
∣∣2 + ∇φeik(τ ) · vε(τ ) + Vlin(τ ) + ∣∣aε(τ )

∣∣2 − 1

)
dτ.

Finally, uniqueness for (1.1)–(1.2) follows from energy estimates. If uε, vε ∈ C∞ ∩ L∞([0, T∗] × R
n) solve

(1.1)–(1.2), then wε := uε − vε satisfies:

iε∂tw
ε + ε2

�wε = (V − 1)wε + |uε|2uε − |vε|2vε; wε
|t=0 = 0.
2
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We have, for t ∈ [0, T∗],
‖wε‖L∞(0,t;L2) �

(‖uε‖2
L∞([0,T∗]×Rn) + ‖vε‖2

L∞([0,T∗]×Rn))‖wε‖L1(0,t;L2),

and Gronwall lemma yields wε ≡ 0.

2.3. On the Hamiltonian structure

When V = V (x) is time-independent, (1.1) formally has a Hamiltonian structure, with

H = 1

2

∥∥ε∇uε(t)
∥∥2

L2 +
∫
Rn

V (x)
∣∣uε(t, x)

∣∣2
dx + 1

2

∥∥∣∣uε(t)
∣∣2 − 1

∥∥2
L2 .

When V ≡ 0, this structure is used in [17] to prove the global existence of solutions in the energy space. On the other
hand, suppose that V is, say, harmonic:

V (x) =
n∑

j=1

λjx
2
j ,

where the constants λj � 0 are not all equal to zero. Then necessarily, H is infinite: suppose for instance that λ1 > 0.
Then if ∂x1u

ε(t, ·), x1u
ε(t, ·) ∈ L2(Rn), the uncertainty principle (a simple integration by parts, plus Cauchy–Schwarz

inequality in this case) yields:

uε(t, ·) ∈ L2(
R

n
)
.

Therefore, the constraint |uε(t, ·)|2 − 1 ∈ L2(Rn) cannot be satisfied, for otherwise, 1 = 1 − |uε(t, ·)|2 + |uε(t, ·)|2 ∈
L2(Rn) + L1(Rn).

Similarly, assume that V ≡ 0, but φquad �= 0: rapid quadratic oscillations are present in the initial data. We have

ε∇uε
|t=0 = (

ε∇aε
0 + iaε

0∇φ0
)
eiφ0/ε.

Therefore, the above quantity is in L2 provided that ∇aε
0, a

ε
0∇φquad ∈ L2(Rn). If for instance φquad(x) = cx2

1 with
c �= 0, the last assumption means that x1a

ε
0 ∈ L2(Rn), which brings us back to the previous discussion.

We shall see in Section 5 that if φeik �≡ 0, and if aε
0 ∈ X∞ is such that∣∣aε

0

∣∣2 − 1 ∈ L2(
R

n
)
,

then the last constraint present in H is not propagated in general. In small time at least, one has generically∣∣uε(t, ·)∣∣2 − 1 /∈ L2(
R

n
)
.

3. Semi-classical analysis

We now complete the proof of Theorem 1.3. The end of the proof of Theorem 1.10 follows essentially the same
lines, so we omit it. The main adaptation is due to the fact that when the nonlinearity is not exactly cubic, the sym-
metrizer S is not constant. We refer to [18] or [9], to see that the proof below is easily adapted.

Introduce (φ, a), solution to (2.6) with ε = 0, that is⎧⎪⎨⎪⎩
∂tφ + 1

2
|∇φ|2 + ∇φeik · ∇φ + Vlin + |a|2 − 1 = 0; φ|t=0 = φlin,

∂ta + ∇φ · ∇a + ∇φeik · ∇a + 1

2
a�φ + 1

2
a�φeik = 0; a|t=0 = a0.

(3.1)

It is a particular case of Proposition 2.2 that (3.1) has a unique solution, such that a,∇φ ∈ C([0, T∗];Xs) for all
s > n/2.

Proposition 3.1. Under the assumptions of Theorem 1.3, let (φε, aε) and (φ, a) be given by (2.6) and (3.1) respec-
tively. For all s > n/2, there exists Cs such that∥∥∇(φε − φ)

∥∥
L∞([0,T∗];Xs)

+ ‖aε − a‖L∞([0,T∗];Xs) � Csε.
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Sketch of the proof. We shall give the outline of the proof, since it is very similar to the case of Sobolev spaces [9].
The differences are those pointed out in the proof of Proposition 2.2. Resuming the notations of Section 2, set

u =

⎛⎜⎜⎜⎜⎝
Rea

Ima

∂1φ
...

∂nφ

⎞⎟⎟⎟⎟⎠ , wε
0 =

⎛⎜⎜⎜⎜⎜⎝
Re(aε

0 − a0)

Im(aε
0 − a0)

0
...

0

⎞⎟⎟⎟⎟⎟⎠ .

Denoting wε = uε − u, (2.7) yields:⎧⎪⎪⎨⎪⎪⎩
∂twε +

n∑
j=1

(
Aj(uε)∂j uε − Aj(u)∂j u

) + ∇φeik · ∇wε + M̃wε = ε

2
Lwε + ε

2
Lu,

wε
|t=0 = wε

0.

We know by Proposition 2.2 that uε and u are bounded in C([0, T∗];Xs) for all s > n/2. The source term � in (2.7)
is now replaced by ε

2Lu, which is of order O(ε) in C([0, T∗];Xs), and we have easily, for s > n/2 and t ∈ [0, T∗]:

‖wε‖L∞([0,t];Xs) �
∥∥wε

0

∥∥
Xs + O(ε) +

t∫
0

∥∥wε(τ )
∥∥

Xs dτ.

The proposition follows from Gronwall lemma. �
Remark 3.2. Note that for the time T∗ in Proposition 3.1 (as well as in Proposition 3.4 below), we can pick the
life-span of (φ, a), the solution of (3.1). Indeed, the error estimate and the standard continuity argument show that
(φε, aε) cannot blow-up as long as (φ, a) remains smooth, provided that ε is chosen sufficiently small. In particular,
if (φ, a) remains smooth globally in time, then for any τ > 0, we can find ε(τ ) > 0 such that Propositions 3.1 and 3.4
below remain valid on [0, τ ] for ε ∈ ]0, ε(τ )]. On the other hand, one must not expect T∗ = ∞ in general: the solution
to (6.1) may not remain smooth for all time. See [26].

Corollary 3.3. There exists C such that for all t ∈ [0, T∗],∥∥φε(t, ·) − φ(t, ·)∥∥
L∞ � Cεt.

Proof. Set wε
φ = φε − φ. It satisfies

(∂t + ∇φeik · ∇)wε
φ = 1

2

(|∇φ|2 − |∇φε|2) + |a|2 − |aε|2; wε
φ|t=0 = 0.

By Proposition 3.1, the right-hand side is O(ε) in L∞. Integration along the characteristics associated to ∂t +∇φeik ·∇
(see Remark 1.2) yields the result. �

The first estimate (1.7) of Theorem 1.3 follows easily:

uε − aeiφ/ε = aεeiφε/ε − aeiφ/ε = (aε − a)eiφε/ε + a(eiφε/ε − eiφ/ε)

= O(ε) + aei(φε+φ)/(2ε)2i sin

(
φε − φ

2ε

)
= O(ε) + O(t),

where the O(·)’s stand for estimates in L∞([0, T∗] × R
n).

To improve (1.7) to (1.8), we need the next term in the asymptotic expansion of (φε, aε) in terms of powers of ε.
Introduce the system:⎧⎨⎩

∂tφ
(1) + ∇(φeik + φ) · ∇φ(1) + 2 Re(aa(1)) = 0; φ

(1)
|t=0 = 0,

∂ta
(1) + ∇(φeik + φ) · ∇a(1) + ∇φ(1) · ∇a + 1

a(1)�(φeik + φ) + 1
a�φ(1) = i

�a; a
(1)
|t=0 = a1.

(3.2)
2 2 2
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It is easy to see that this linear system has a unique classical solution such that a(1),∇φ(1) ∈ C([0, T∗];Xs) for all
s > n/2. Reasoning as in the proof of Corollary 3.3, we see that we have also φ(1) ∈ C([0, T∗];Xs). Moreover,
mimicking the proofs of Proposition 3.1 and Corollary 3.3, we have the following result, whose proof is left out:

Proposition 3.4. Let (φε, aε), (φ, a) and (φ(1), a(1)) be given by (2.6), (3.1) and (3.2) respectively. Denote rε
0 =

aε
0 − a0 − εa1. For all s > n/2 + 2,∥∥∇(

φε − φ − εφ(1)
)∥∥

L∞([0,T∗];Xs)
+ ∥∥aε − a − εa(1)

∥∥
L∞([0,T∗];Xs)

� C̃s

(
ε2 + ∥∥rε

0

∥∥
Xs

)
.

In addition, there exists C̃ such that if s > n/2 + 2,∥∥φε − φ − εφ(1)
∥∥

L∞([0,T∗]×Rn)
� C̃

(
ε2 + ∥∥rε

0

∥∥
Xs

)
.

We can now complete the proof of Theorem 1.3:

uε − aeiφ(1)

eiφ/ε = aεeiφε/ε − aei(φ+εφ(1))/ε

= (
aε − a

)
eiφε/ε + a

(
eiφε/ε − ei(φ+εφ(1))/ε

)
= O(ε) + aei(φε+φ+εφ(1))/(2ε)2i sin

(
φε − φ − εφ(1)

2ε

)
= O(ε) + O

(‖rε
0‖Xs

ε

)
.

This yields (1.8), along with Remark 1.5.

Remark 3.5. Following the same lines, we see that if aε
0 is known up to order O(εN+1) in Xs for some s > n/2 + 2,

N ∈ N, then we can construct an approximate solution vε
N such that∥∥uε − vε

N

∥∥
L∞([0,T∗];Xs)

= O
(
εN

)
.

To conclude this paragraph, we note that if we know that the initial corrector a1 is not only in X∞, but in H∞,
then Theorem 1.3 becomes more precise.

Corollary 3.6. Under the same assumptions as in Theorem 1.3, suppose moreover that a1 ∈ H∞, and∥∥aε
0 − a0 − εa1

∥∥
Hs = O

(
δε

)
, ∀s > 0, with δε = o(ε).

Then (1.8) can be improved to:

sup
t∈[0,T∗]

∥∥uε(t, ·) − a(t, ·)eiφ(1)(t,·)ei(φ(t,·)+φeik(t,·))/ε∥∥
L∞∩L2 = O

(
ε + δε

ε

)
. (3.3)

Essentially, one just has to notice that the error estimates in Propositions 3.1 and 3.4 can then be measured in Hs

instead of Xs . Note also that in (3.3), it may happen that none of the two functions is in L2.

4. Examples when φeik ≡ 0

In this paragraph, we consider (1.1)–(1.2), and we assume φeik ≡ 0.

4.1. An example from [10]

As an application, we can recover and improve the result of [10], in the case of the whole space (the space variable
x lies in a bounded domain in [10]). Assume that

aε
0(x) = a0(x) = eiθ0(x), θ0 ∈ H∞(

R
n;R

); φ0 = V = 0.
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That is, we consider:

iε∂tu
ε + ε2

2
�uε = (|uε|2 − 1

)
uε; uε(0, x) = eiθ0(x).

Then aε
0 = a0 ∈ X∞, and we see that:

• φ ≡ 0 and a is independent of time: a(t, x) = a0(x) = eiθ0(x).
• φ(1) solves(

∂2
t − �

)
φ(1) = Im(ā�a),

so that θ(t, x) := φ(1)(t, x) + θ0(x) solves:(
∂2
t − �

)
θ = 0; θ(0, x) = θ0(x); ∂t θ(0, x) = 0.

Note that (φ, a) remains smooth for all time, so we can take T∗ arbitrarily large (see Remark 3.2). Since from Theo-
rem 1.3 and the above corollary,

sup
t∈[0,T∗]

∥∥uε(t, ·) − a(t, ·)eiφ(1)(t,·)∥∥
L∞∩L2 = sup

t∈[0,T∗]
∥∥uε(t, ·) − eiθ(t,·)∥∥

L∞∩L2 = O(ε),

where T∗ > 0 is arbitrary. We recover [10, Theorem 2] in the case of the whole space, with no restriction on the space
dimension, and a precised error estimate. Note also that in view of Remark 3.5, we can justify [10, Proposition 5]
(giving the ε-order corrector for uε), and get a complete asymptotic expansion for uε .

4.2. When |aε
0|2 − 1 ∈ L2

As in Corollary 3.6, assume that (1.6) is precised to∥∥aε
0 − a0 − εa1

∥∥
Hs = o(ε), ∀s > 0,

where a0 ∈ X∞ and a1 ∈ H∞. Assume moreover that

|a0|2 − 1 ∈ L2(
R

n
)
.

Then (2.2) yields:

d

dt

∥∥∣∣aε(t)
∣∣2 − 1

∥∥2
L2 = 4

∫
Rn

∣∣∣∣aε(t, x)
∣∣2 − 1

∣∣Re
(
āε(t, x)∂ta

ε(t, x)
)
dx

�
∥∥∣∣aε(t)

∣∣2 − 1
∥∥

L2‖aε‖L∞
(∥∥∇Φε · ∇aε

∥∥
L2 + ∥∥aε�Φε

∥∥
L2 + ‖�aε‖L2

)
�

∥∥∣∣aε(t)
∣∣2 − 1

∥∥
L2‖aε‖2

Xs

(∥∥∇Φε
∥∥

L∞ + ∥∥�Φε
∥∥

L2 + 1
)
,

where we consider s > n/2 + 2. Therefore, Proposition 2.1 shows that

|uε|2 − 1 ∈ C
([0, T∗];L2(

R
n
))

.

Note that this property holds even if V = Vlin �= 0.

4.3. When aε
0(x) ∼ 1 as |x| → ∞

In a spirit similar to [21] (where the authors choose θ0 ≡ 0), assume that V = 0, φ0(x) = v∞ ·x for some v∞ ∈ R
n,

and ∥∥aε
0 − eiθ0(x) − εa1

∥∥
Hs = O

(
δε

)
, ∀s > 0, where θ0 ∈ H∞ is real-valued.

Then as in Section 4.1, we compute:

φ(t, x) = v∞ · x − |v∞|2
t; a(t, x) = a0

(
x − v∞t

) = eiθ0(x−v∞t).

2



972 T. Alazard, R. Carles / Ann. I. H. Poincaré – AN 26 (2009) 959–977
We also note that T∗ > 0 can be taken arbitrarily large. In addition, we check that φ(1) is such that φ̃(1)(t, x) =
φ(1)(t, x + v∞t) solves:(

∂2
t − �

)
φ̃(1) = Im(ā0�a0) = �θ0; φ̃(1)(0, x) = 0; ∂t φ̃

(1)(0, x) = −2 Re(ā0a1).

Therefore, Corollary 3.6 yields

sup
t∈[0,T ]

∥∥uε(t, ·) − eiθ(t,·)eiφ(t,·)/ε∥∥
L∞∩L2 = O

(
ε + δε

ε

)
,

where θ is given by θ(t, x) = θ̃ (t, y)|y=x−v∞t , with:(
∂2
t − �

)
θ̃ = 0; θ̃|t=0 = θ0; ∂t θ̃|t=0 = −2 Re(ā0a1).

5. Time propagation of the condition at infinity: φeik �= 0

In this section, we assume that |aε
0|2 − 1 ∈ L2(Rn), and aim at understanding how this condition is propagated

on the time interval [0, T∗] when φeik �= 0. Essentially, we have |uε(t, ·)|2 − 1 ∈ L2(Rn) for t ∈ [0, T∗] if and only if
φeik ≡ 0. The function φeik is identically zero if and only if Vquad = φquad = 0: that case was developed in Section 4.2.
We compute

d

dt

∥∥∣∣uε(t)
∣∣2 − 1

∥∥2
L2 � 4

∥∥∣∣uε(t)
∣∣2 − 1

∥∥
L2

∥∥aε(t)
∥∥

L∞
∥∥∂ta

ε(t)
∥∥

L2 .

In the above estimate, we assumed that ∂ta
ε(t, ·) ∈ L2. Let us now examine this condition. In view of Proposition 2.2,

we know that all the terms in the second equation of (2.6) are in L2(Rn), except possibly ∂ta
ε , ∇φeik · ∇aε and

aε�φeik. Therefore if φeik ≡ 0, we infer that |uε(t, ·)|2 − 1 ∈ L2(Rn) for all t ∈ [0, T∗].
Assume now that φeik is not zero. To gather the terms ∂ta

ε and ∇φeik ·∇aε together, consider the change of variable
of Remark 1.2, and set

ãε(t, y) = aε
(
t, x(t, y)

)
.

Since the Jacobi determinant det∇yx(t, y) > 0 is bounded from above, and from below away from zero for t ∈
[0, T∗] ⊂ [0, T ], ∂ta

ε(t, ·) and ∂t ã
ε(t, ·) are simultaneously in L2(Rn). Given �φeik is a function of time only, we

have

∂t ã
ε = −1

2
ãε�φeik + C

([0, T∗];L2).
We are in a case where ãε�φeik /∈ L2. To overcome this issue, consider∥∥∣∣uε(t)e

1
2

∫ t
0 �φeik(τ ) dτ

∣∣2 − 1
∥∥2

L2 = ∥∥∣∣aε(t)e
∫ t

0 TrQ(τ)dτ
∣∣2 − 1

∥∥2
L2 ,

where Q is given by Lemma 1.1. For t ∈ [0, T∗], this quantity is equivalent to:∥∥∣∣ãε(t)e
∫ t

0 TrQ(τ)dτ
∣∣2 − 1

∥∥2
L2 .

We have:

d

dt

∥∥∣∣ãε(t)e
∫ t

0 TrQ(τ)dτ
∣∣2 − 1

∥∥2
L2 � C

∥∥∣∣ãε(t)e
∫ t

0 TrQ(τ)dτ
∣∣2 − 1

∥∥
L2

∥∥ãε(t)
∥∥

L∞

∥∥∥∥∂t ã
ε(t) + 1

2
ãε(t)�φeik(t)

∥∥∥∥
L2

.

We infer that |ãε(t)e
∫ t

0 TrQ(τ)dτ |2 − 1 ∈ C([0, T∗];L2), hence∣∣uε(t)e
∫ t

0 TrQ(τ)dτ
∣∣2 − 1 ∈ C

([0, T∗];L2).
Morally, for t ∈ [0, T∗], the modulus of uε goes to exp(− ∫ t

0 TrQ(τ)dτ) as |x| → ∞. We conclude by some examples
that illustrate this analysis.
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Example 1. Consider the case where φquad = 0, and Vquad(x) = ω2 |x|2
2 is an isotropic harmonic potential (ω > 0).

Then we compute

φeik(t, x) = −ω
|x|2

2
tan(ωt), t ∈ [0,+∞[,

and exp

(
−

t∫
0

TrQ(τ)dτ

)
= exp

(
nω

2

t∫
0

tan(ωτ)dτ

)
= (

cos(ωt)
)−n/2

.

Therefore, the “limit of the modulus of uε at infinity” grows as time evolves. If in Proposition 2.2, we can take T∗
arbitrarily close to π/(2ω), this suggests that there is some sort of “blow-up at infinity” at t approaches π/(2ω).

Example 2. Consider the case where φquad = 0, and Vquad(x) = −ω2 |x|2
2 is an isotropic repulsive harmonic potential

(ω > 0). We have

φeik(t, x) = ω
|x|2

2
tanh(ωt), t ∈ [0,+∞[,

and exp

(
−

t∫
0

TrQ(τ)dτ

)
= (

cosh(ωt)
)−n/2

.

Therefore, the “limit of the modulus of uε at infinity” decays at time evolves.

Example 3. Consider the case φquad = −|x|2/2, and Vquad(x) = 0. We compute

φeik(t, x) = |x|2
2(t − 1)

, t ∈ [0,1[, and exp

(
−

t∫
0

TrQ(τ)dτ

)
= (1 − t)−n/2.

This case is similar to the first example.

Example 4. Consider the case φquad = |x|2/2, and Vquad(x) = 0. We have

φeik(t, x) = |x|2
2(t + 1)

, t ∈ [0,+∞[, and exp

(
−

t∫
0

TrQ(τ)dτ

)
= (1 + t)−n/2.

This case is similar to the second example, provided that we consider positive times.

6. On the hydrodynamic limit

In this paragraph, we consider the setting of either Theorems 1.3 or 1.10. That is, the semi-classical limit is justified
for small time in Zhidkov spaces. Let Φ = φeik + φ, v = ∇Φ and ρ = |a|2. As is easily checked, (ρ,v) solves the
following compressible Euler equation:{

∂tρ + div(ρv) = 0; ρ|t=0 = |a0|2,
∂tv + v · ∇v + ∇V + ∇f (ρ) = 0; v|t=0 = ∇φ0,

(6.1)

where f (ρ) = ρ − 1 in the cubic case, and f (ρ) = ρ2 + λρ in the cubic-quintic case. To simplify the discussion,
assume in this paragraph that Vquad = φquad = 0, hence φeik = 0. Proposition 3.1 implies in particular the convergence
of the main two quadratic quantities, as ε → 0:

• Density: |uε|2 → ρ in L∞([0, T∗] × R
n).

• Momentum: Im(εūε∇uε) → ρv in L∞([0, T∗] × R
n).

It should be noted that if we assume only that for some s > n/2 + 2,∥∥aε
0 − a0

∥∥
Xs = δε

0 = o(1) as ε → 0,
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the proof of Proposition 3.1 shows that we have:∥∥∇(
φε − φ

)∥∥
L∞([0,T∗];Xs)

+ ‖aε − a‖L∞([0,T∗];Xs) = O
(
ε + δε

0

)
.

Therefore,

|uε|2 = ρ + O
(
ε + δε

0

); Im
(
εūε∇uε

) = ρv + O
(
ε + δε

0

)
.

To have a more precise asymptotics, it is necessary to work with the assumption of Theorem 1.3. If for some s >

n/2 + 2,∥∥aε
0 − a0 − εa1

∥∥
Xs = δε

1 = o(ε) as ε → 0,

we get:

|uε|2 = ρ + 2ε Re
(
āa(1)

) + O
(
ε2 + δε

1

)
,

Im
(
εūε∇uε

) = ρv + ε
(
2 Re

(
āa(1)

)
v + ρ∇φ(1)

) + O
(
ε2 + δε

1

)
.

Finally, note that in general, even if a1 = 0, the modulation φ(1) is not trivial. Suppose that a1 = 0: (3.2) shows that
∂ta

(1)
|t=0 �= 0, because of the source term i

2�a. Therefore, even if φ
(1)
|t=0 = ∂tφ

(1)
|t=0 = 0, we have ∂2

t φ
(1)
|t=0 �= 0 in general,

and the correctors of order ε in the above asymptotics are not trivial.
However, if a0 is real-valued and a1 = 0, then a is real-valued, a(1) is purely imaginary, so φ(1) ≡ 0. The same

holds if a0 is real-valued and a1 is purely imaginary.
We end this section by studying the hydrodynamic limit in the case when Ω ⊂ Rn is a regular domain with

bounded boundary ∂Ω and n ∈ {2,3} (either a bounded domain or an exterior domain). To simplify the presentation,
we consider the case without external potential and without linear or quadratic initial phase. The Gross–Pitaevskii
equation is then supplemented with the Neumann boundary condition:⎧⎪⎪⎨⎪⎪⎩

iε∂tu
ε + ε2

2
�uε = (|uε|2 − 1

)
uε in Ω,

∂uε

∂n
= 0 on ∂Ω,

(6.2)

where n is the unit outward normal to ∂Ω . Consider the corresponding limit system⎧⎪⎨⎪⎩
∂tρ + div(ρ∇φ) = 0 in Ω,

∂tφ + 1

2
|∇φ|2 + ρ − 1 = 0 in Ω,

∇φ · n = 0 on ∂Ω.

(6.3)

In [21], Lin and Zhang proved that if n = 2, then the quadratic observables |uε|2 and ε Im(ūε∇uε) converge towards
the density ρ and the momentum ρ∇φ. In the spirit of the pioneering work of Brenier [7], in [21] the strategy of the
proof is to estimate the modulated energy functional

Eε := 1

ε2

∫
Ω

|ε∇uε − iuε∇φ|2 + (|uε|2 − ρ
)2

dx.

The assumption n = 2 does not enter into the analysis of Eε and only corresponds to the fact that they used the
Brezis–Gallouët inequality (see also [10]) to define sufficiently smooth solutions to the Gross–Pitaevskii equation.
There are now several 3D results (see [17,5,12,13]), and hence one can justify the hydrodynamic limit for n ∈ {2,3}.
In particular, Theorem 6.1 below is not new, but rather an update. Yet, our main purpose here is to establish a local
version of the modulated energy functional. This is done in the proof of Theorem 6.1 (see (6.4)), by following the
approach introduced in [3].

Theorem 6.1. Let uε and (ρ,φ) be classical solutions of (6.2) and (6.3) satisfying, for some fixed T > 0,

uε ∈ C
([0, T ];X2(Ω)

)
, |uε|2 − 1 ∈ C

([0, T ];L2(Ω)
)
,

ρ ∈ C
([0, T ];X1(Ω)

)
, ρ − 1 ∈ C

([0, T ];L2(Ω)
)
,

∇φ,∇2φ,∇3φ ∈ C
([0, T ];L2(Ω) ∩ L∞(Ω)

)
.
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Assume that initially∥∥ε∇uε
0 − iuε

0∇φ0
∥∥

L2(Ω)
+ ∥∥∣∣uε

0

∣∣2 − ρ0
∥∥

L2(Ω)
= O(ε),

then

|uε|2 − ρ = O(ε) in L∞([0, T ];L2(Ω)
)
,

ε Im
(
ūε∇uε

) − ρ∇φ = O(ε) in L∞([0, T ];L1
loc(Ω)

)
.

Remark 6.2. In the above statement, the existence of uε up to time T > 0 is an assumption. This point is guaranteed
as soon as the solution is global in time. This is the case if Ω is bounded or exterior in 2D, or if Ω is an exterior
domain in 3D. This is also the case if Ω is the 3D ball and the data are radial, from [4].

Proof. The idea consists in filtering out the oscillations by the change of unknown

aε(t, x) := uε(t, x)e−iφ(t,x)/ε.

The amplitude aε solves

∂ta
ε + ∇φ · ∇aε + 1

2
aε�φ − i

ε

2
�aε = − i

ε

(|aε|2 − ρ
)
aε.

Next set

qε := |aε|2 − ρ

ε
·

We easily find that

∂tq
ε + div

(
Im

(
āε∇aε

)) + div
(
qε∇φ

) = 0.

Furthermore, with this notation, the equations for ψε := ∇aε read

∂tψ
ε + ∇φ · ∇ψε + 1

2
ψε�φ + ψε · ∇∇φ + 1

2
aε∇�φ + iqεψε + iaε∇qε = i

ε

2
�ψε.

Also, note that ψε · n = e−iφ/ε(∇uε − iε−1uε∇φ) · n = 0 on ∂Ω .
We now introduce the modulated energy

eε := |ψε|2 + (qε)2.

The key point is that

qε div
(
Im(āε∇aε)

) + Re
(
iaε(∇qε) · ψ̄ε

) = div
(
Im(qεāεψε)

)
.

Hence, directly from the previous equations, we have

∂t e
ε + div(eε∇φ) + div

(
2 Im(qεāεψε)

) + div
(
ε Im(ψ̄ε · ∇ψε)

)
= −(qε)2�φ − Re

(
(2ψε · ∇∇φ + aε∇�φ) · ψ̄ε

)
. (6.4)

We claim that

Eε(t) = ∥∥eε(t)
∥∥

L1(Ω)
�

∥∥eε(0)
∥∥

L1(Ω)
exp(Ct) + C, (6.5)

for some constant C independent of ε. Since v · n = 0 and ψε · n = 0 on ∂Ω , by integrating in space and using the
Gronwall’s lemma, to prove (6.6), the only delicate point is to prove that,∫

|aε∇�φ · ψ̄ε|dx � C‖eε‖L1(Ω) + C. (6.6)

To do so, as in Lemma 1 in [17], let χ ∈ C0(C) be such that 0 � χ � 1, χ(z) = 1 for |z| � 2, and χ(z) = 0 for |z| � 3.
Then write aε = bε + cε where bε = χ(aε)aε and cε = (1 − χ(aε))aε . We have |bε| � 3, |cε| � ||aε|2 − 1| and hence

‖bε‖L∞(Ω) � 3, ‖cε‖L2(Ω) �
∥∥|aε|2 − 1

∥∥
2 � ε‖qε‖L2(Ω) + ‖ρ − 1‖L2(Ω).
L (Ω)
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The desired estimate (6.6) then follows from∥∥bε∇�φ · ψ̄ε
∥∥

L1(Ω)
� ‖bε‖L∞(Ω)‖∇�φ‖L2(Ω)‖ψε‖L2(Ω),∥∥cε∇�φ · ψ̄ε

∥∥
L1(Ω)

� ‖cε‖L2(Ω)‖∇�φ‖L∞(Ω)‖ψε‖L2(Ω),

and the elementary inequality
√

x � 1 + x.
Since

eε = 1

ε2
|ε∇uε − iuε∇φ|2 + 1

ε2

(|uε|2 − ρ
)2

,

the family (eε(0))ε∈]0,1] is bounded in L1(Ω) by assumption. Consequently, it follows from (6.5) that (eε)ε∈]0,1] is
bounded in L∞([0, T ];L1(Ω)).

By definition, this implies that |uε|2 − ρ = O(ε) in L∞([0, T ];L2(Ω)). It remains to prove that

ε Im
(
ūε∇uε

) − ρ∇φ = O(ε) in L∞([0, T ];L1
loc(Ω)

)
.

Write

ε Im
(
ūε∇uε

) − ρ∇φ = ε Im
(
āε∇aε

) + (|aε|2 − ρ
)∇φ.

Since ∇φ ∈ L∞([0, T ] × Ω), the previous result implies that the second term is O(ε) in L∞([0, T ];L2(Ω)). With
regards to the first one, again write aε = bε + cε and use the obvious estimates∥∥ε Im

(
bε∇aε

)∥∥
L2(Ω)

� ε‖bε‖L∞(Ω)‖∇aε‖L2(Ω) � 3ε‖eε‖1/2
L1(Ω)

,∥∥ε Im
(
cε∇aε

)∥∥
L1(Ω)

� ε‖cε‖L2(Ω)‖∇aε‖L2(Ω) � Cε‖eε‖1/2
L1(Ω)

+ Cε2‖eε‖L1(Ω).

This completes the proof. �
7. Cubic-quintic nonlinearity

In view of Theorem 1.10, we now consider (1.9) in the case where the elliptic region becomes relevant: λ < 0, and
assume for instance that there exists x ∈ R

n such that |a0( x )|2 < |λ|/2. If we write uε = aεeiΦε/ε , where (aε,Φε) is
given by (2.2), then we naturally have to consider the limit system:⎧⎪⎨⎪⎩

∂tφ + 1

2
|∇φ|2 + fλ

(|a|2) = 0; φ|t=0 = φ0,

∂ta + ∇φ · ∇a + 1

2
a�φ = 0; a|t=0 = a0.

(7.1)

Setting v = ∇φ, we find:⎧⎨⎩
∂tv + v · ∇v + ∇fλ

(|a|2) = 0; v|t=0 = ∇φ0,

∂ta + v · ∇a + 1

2
a divv = 0; a|t=0 = a0.

(7.2)

Then [23, Theorem 3.2] shows that (7.2) is strongly ill-posed in Sobolev spaces. The problem remains in Zhidkov
spaces, since analyticity is essentially necessary. Indeed, Hadamard’s argument (see [23] and references therein)
shows for instance that if φ0 is analytic near x, then (7.2) has a C1-solution only if a0 is also analytic near x. So
it may happen that (7.2) has no solution in Xs , even for s large.

On the other hand, if one is ready to work with analytic regularity, then it becomes possible to justify the semi-
classical limit for (1.9); see [16,28].
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