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Abstract

In this paper we consider a free boundary problem which describes contact angle dynamics on inhomogeneous surface. We
obtain an estimate on convergence rate of the free boundaries to the homogenization limit in periodic media. The method presented
here also applies to more general class of free boundary problems with oscillating boundary velocities.
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1. Introduction

Consider a bounded domain Ω in R
n containing K = B1(0). Let Ω0 = Ω − K and Γ0 = ∂Ω , and let u0 satisfy

−�u0 = 0 in Ω0, u0 = 1 on K, and u0 = 0 on Γ0.

(See Fig. 1.)
Let us define ei ∈ R

n, i = 1, . . . , n, such that

e1 = (1,0, . . . ,0), e2 = (0,1,0, . . . ,0), . . . , and en = (0, . . . ,0,1),

and consider a Lipschitz continuous function

g : R
n → [m,M], g(x + ei) = g(x) for i = 1, . . . , n

with Lipschitz constant L. For simplicity in the analysis we will work with m = 1, M = 2 and L = 10, but the method
in this paper applies to general m,M > 0 and L.

In this paper we consider the behavior, as ε → 0, of the viscosity solutions uε � 0 of the following problem

(P)ε

{−�uε = 0 in {uε > 0},
uε

t = |Duε |(|Duε | − g(x/ε)) on ∂{uε > 0}
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Fig. 1. Initial setting of the problem.

in Q = (Rn − K) × (0,∞) with initial data u0 and smooth boundary data f (x, t) > 0 on ∂K × [0,∞). Here Du

denotes the spatial derivative of u.
We refer to Γt (u

ε) := ∂{uε(·, t) > 0} − ∂K as the free boundary of uε and to Ωt(u
ε) := {uε(·, t) > 0} as the

positive phase of uε at time t . Note that if uε is smooth up to the free boundary, then the free boundary moves with
outward normal velocity V = uε

t /|Duε |, and therefore the second equation in (P)ε implies that

V = ∣∣Duε
∣∣ − g

(
x

ε

)
= Duε · (−ν) − g

(
x

ε

)

where ν = ν(x,t) denotes the outward normal vector at x ∈ Γt (u) with respect to Ωt(u).
A weak notion of solution is necessary since, due to the collision, neck-pinching or shrinking of free boundary

parts, smooth solutions cease to exist in finite time even with smooth initial data and smooth velocity (see Remark 2).
For the definition of viscosity solutions we refer to Section 2.

(P)ε is a simplified model to describe contact line dynamics of liquid droplets on an irregular surface (see [2]).
Here u(x, t) denotes the height of the droplet. Heterogeneities on the surface, represented by g(x

ε
) in (P)ε , result in

contact lines with a fine scale structure that may lead to pinning of the interface and hysteresis of the overall fluid
shape.

For literature on homogenization of nonlinear PDEs and free boundary problems, we refer to [1] and [6].
Below we recall the main result obtained in [6].

Theorem 1.1. (Theorem 0.1, [6].) Let uε be a viscosity solution of (P)ε with initial data u0 and boundary data f .
Then there exists a continuous function

r(q) = R
n − {0} → [−2,∞), r increases in |q|,

such that the following holds:

(a) If uεk
locally uniformly converges to u as εk → 0, then u is a viscosity solution of

(P)

{−�u = 0 in {u > 0},
ut = |Du|r(Du) on ∂{u > 0}

in Q with initial data u0 and boundary data f on ∂K .
(b) If u is the unique viscosity solution of (P) in Q with initial data u0 and boundary data f on ∂K , then the whole

sequence {uε} locally uniformly converges to u.

Uniqueness of u holds if the initial data satisfies one of the following (see Theorem 2.8 and the remark below):

(A) Ω = Ω0 ∪ K is star-shaped with respect to a small ball Br(0);
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(B) Γ0 is locally Lipschitz and |Du0| > 2 on Γ0;
(C) Γ0 is locally Lipschitz and |Du0| < 1 on Γ0;

where Du0 on Γ0 is taken as the limit from Ω0.

(In case of (A), Ωt(u) stays star-shaped with respect to Br(0) for t > 0. In case of (B) u strictly increases in time,
and in case of (C) u strictly decreases in time for all times.)

The goal of this paper is to refine the analysis performed in [6] to provide a quantitative estimate on the distance
between Ωt(u

ε) and Ωt(u) at each time. The main result (Corollary 4.2) can be summarized as below:

For sufficiently small ε > 0, Ωt(u
ε) stays in O(ε1/70)-neighborhood of Ωt(u) for 0 � t � ε−1/300

if one of conditions (A)–(C) holds for the initial data. (1.1)

Such estimate is, to the best of author’s knowledge, new for homogenization of free boundary problems. Below we
sketch an outline of the paper. In Section 2 we recall the notion of viscosity solutions and their properties. In particular
comparison principle (Theorem 2.6) is used frequently in the paper. In Section 3 we improve existing results obtained
in [6] to derive Proposition 3.5 and Corollary 3.6. In Section 4 we state the main result (Theorem 4.1) and prove it
with the help of Corollary 3.6 and Proposition 4.3. In Section 5 we prove Proposition 4.3, and thus finishing the proof
of Theorem 4.1. We finish with Section 6, the corresponding result are stated for expanding free boundary problem
(P2)ε : for this problem (1.1) holds for general initial data.

Remark 1. The analysis presented here and in [5,6] can be generalized to free boundary problems of the type{
(ut ) − �u = 0 in {u > 0},
V = G(Du, x

ε
) on ∂{u > 0}

where G(p,y) : R
n × R

n → R is (i) Lipschitz continuous, (ii) strictly increasing with respect to |p| and (iii) satisfies

b|p| ∂G

∂|p| − aG �
∣∣∣∣∂G

∂y

∣∣∣∣
for some constants a and b > 0. For example, in (P)ε we have

G(p,y) = |p| − g(y) and a = b = Lipg

infg
.

In (P2)ε given in Section 6 we have

G(p,y) = g(y)|p| and a = 0, b = Lipg

infg
.

2. Notations and viscosity solutions

We begin by recalling existence and uniqueness of viscosity solutions obtained in [6] for a general class of free
boundary problem, including both (P) and (P)ε .

Let us consider a continuous function

F(q, y) : (Rn − {0}) × R
n → [−2,∞)

such that

(a) F increases in |q|, |q| − 2 � F(q, y, ν) � |q| − 1.
(b) F(q, y + ek) = F(q, y) for k = 1, . . . , n.
(c) |F(q, y1) − F(q, y2)| � L|y1 − y2| for y1, y2 ∈ R

n.

Let Σ ⊂ R
n × [0,∞) be a space–time domain with smooth boundary, and consider the free boundary problem

(P̃)ε

{−�uε = 0 in {uε > 0},
uε

t − |Duε |F(Duε, x
ε
) = 0 on ∂{uε > 0}

in Σ with appropriate boundary data.
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Let Σ(s) := Σ ∩ {t = s}. For a nonnegative real valued function u(x, t) defined for (x, t) ∈ Σ , define

Ω(u) = {
(x, t) ∈ Σ : u(x, t) > 0

}
, Ωt (u) = {

x: (x, t) ∈ Σ : u(x, t) > 0
};

Γ (u) = ∂Ω(u) − ∂Σ, Γt (u) = ∂Ωt(u) − ∂Σ(t).

Below we define viscosity solutions of (P̃)ε .

Definition 2.1. A nonnegative, upper semi-continuous function u defined in Σ is a viscosity subsolution of (P̃)ε if

(a) for each a < T < b the set Ω(u) ∩ {t � T } ∩ Σ is bounded; and
(b) for every φ ∈ C2,1(Σ) such that u − φ has a local maximum in Ω(u) ∩ {t � t0} ∩ Σ at (x0, t0),

(i) if u(x0, t0) > 0, then −�φ(x0, t0) � 0.
(ii) if (x0, t0) ∈ Γ (u), |Dφ|(x0, t0) �= 0 and −�φ(x0, t0) > 0,

then (
φt − |Dφ|F

(
Dφ,

x0

ε

))
(x0, t0) � 0.

Note that, because u is only upper semi-continuous, there may be points of Γ (u) at which u is positive.

Definition 2.2. A nonnegative, lower semi-continuous function v defined in Σ is a viscosity supersolution of (P̃)ε if
for every φ ∈ C2,1(Σ) such that v − φ has a local minimum in Σ ∩ {t � t0} at (x0, t0), then

(i) if v(x0, t0) > 0, then −�φ(x0, t0) � 0.
(ii) if (x0, t0) ∈ Γ (v), |Dφ|(x0, t0) �= 0 and −�φ(x0, t0) < 0,

then (
φt − |Dφ|F

(
Dφ,

x0

ε

))
(x0, t0) � 0.

Let K,Ω0,Γ0, f,u0 and Q be as given in the introduction.

Definition 2.3. u is a viscosity subsolution of (P̃)ε in Q with initial data u0 and fixed boundary data f > 0 if

(a) u is a viscosity subsolution of (P̃)ε in Q,
(b) u is upper semicontinuous in Q̄, u = u0 at t = 0 and u � f on ∂K .
(c) Ω(u) ∩ {t = 0} = Ω(u0).

Definition 2.4. u is a viscosity supersolution of (P̃)ε in Q with initial data u0 and boundary data f if u is a viscosity
supersolution in Q, lower semicontinuous in Q̄ with u = u0 at t = 0 and u � f on ∂K .

For a nonnegative real valued function u(x, t) in Σ ⊂ R
n × [0,∞) we define

u∗(x, t) := lim sup
(ξ,s)∈Σ→(x,t)

u(ξ, s),

and

u∗(x, t) := lim inf
(ξ,s)∈Σ→(x,t)

u(ξ, s).

Note that u∗ is upper semicontinuous and u∗ is lower semicontinuous.
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Definition 2.5. u is a viscosity solution of (P̃)ε (in Q with initial data u0 and boundary data f ) if u is a viscosity
supersolution and u∗ is a viscosity subsolution of (P̃)ε (in Q with initial data u0 and boundary data f ).

We say that a pair of functions u0, v0 : D̄ → [0,∞) are (strictly) separated (denoted by u0 ≺ v0) in D ⊂ R
n if

(i) the support of u0, supp(u0) = {u0 > 0} restricted in D̄ is compact and
(ii) u0(x) < v0(x) in supp(u0) ∩ D̄.

Theorem 2.6 (Comparison principle, Theorem 1.7, [6]). Let h1, h2 be respectively viscosity sub- and supersolutions
of (P̃)ε in Σ . If h1 ≺ h2 on the parabolic boundary of Σ , then h1(·, t) ≺ h2(·, t) in Σ .

Theorem 2.7. (Theorem 1.8, [6].) Suppose one of the conditions (A)–(C) holds for u0. Then there exists a unique
solution of (P) in Q with initial data u0 and boundary data 1.

Lemma 2.8. (Lemma 1.9, [6].)

(a) Let u be a supersolution of (P) or (P)ε in Q with fixed boundary data 1. Then Γ (u) does not “jump inward” in
time: for any point x0 ∈ Γt0(u) with t0 > 0 there exists a sequence of points (xn, tn) ∈ {u = 0} such that tn < t0
and (xn, tn) → (x0, t0).

(b) Let u is a subsolution of (P) or (P)ε in Q with fixed boundary data 1. Then Γ (u) does not “jump outward” in
time: for any point x0 ∈ Γt0(u) with t0 > 0 there exists a sequence of points (xn, tn) ∈ Ω̄t (u) such that tn < t0 and
(xn, tn) → (x0, t0).

Proof. 1. To prove (a), suppose that x0 ∈ Γt0(u). If (a) fails for x0, then Br(x0) ⊂ Ωt(u) for t0 − r � t < t0 for some
r > 0. On the other hand there exists y0 ∈ Br/2(x0) such that u(y0, t0) > 2c0 > 0 for some c0 > 0. Since u is lower
semicontinuous, u � c0 > 0 in Bδ(y0) × [t0 − δ, t0] for some 0 < δ < r/2. Consider a barrier function φ(x, t) in

Σ := (
R

n − Bδ(y0)
) × [t0 − δ/2, t0]

such that⎧⎨
⎩

−�φ(·, t) = 0 in Br−2(t−t0+δ/2)(x0) − Bδ(x0),

φ(·, t) = 0 on ∂Br−2(t−t0+δ/2)(x0),

φ(·, t) = c0 on ∂Bδ(x0).

Note that

φt

|Dφ| = V = −2 < |Dφ| − 2 � r(Dφ) on Γ (φ).

Hence φ is a subsolution of both (P) and (P)ε in Σ . It follows from Theorem 2.6 that φ � u in Σ , but this means that
u(·, t0) > 0 in Br/2(x0), contradicting the fact that x0 ∈ Γt0(u).

2. The argument to prove (b) proceeds similarly. Suppose x0 ∈ Γt0(u) and Br(x0) ∩ Ω̄t (u) = ∅ for t0 − δ � t < t0.
We may choose r < δ. Let r(t) := (t0 − t)/(2r2) + r/2. Consider a barrier function φ(x, t) in

Σ := B2r (x0) × [
t0 − r4, t0

]
such that⎧⎨

⎩
−�φ(·, t) = 0 in B2r (x0) − Br(t)(x0),

φ(·, t) = 0 on ∂Br(t)(x0),

φ(·, t) = 1 on ∂B2r (x0).

Note that in Σ we have |Dφ| � C/r with a dimensional constant C. Hence if r is chosen sufficiently small, then

φt = V = −r ′(t) = 1
2

� |Dφ| � r(Dφ) on Γ (φ),
|Dφ| 2r
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and thus φ is a supersolution of both (P) and (P)ε in Σ . Again Theorem 2.6 yields that u � φ in Σ , but this means
that u(·, t0) ≡ 0 in Br/2(x0), contradicting the fact that x0 ∈ Γt0(u). �
Remark 2. Note that above lemma does not guarantee the continuity of the free boundary in time. In fact free bound-
ary parts may instantly disappear, for example in n = 1 if we superpose two radially symmetric functions (see the
introduction in [4]). For n > 1 discontinuity of the free boundary also happens when the free boundary contains a
slit in the middle of its positive phase: in this case the slit instantly disappears and at this time the discontinuity of
the solution occurs as well. The discontinuity of the free boundary also happens if a portion of the positive phase
gets disconnected by a neck pinching and instantly disappears. Hence the definition of the viscosity solution with
semi-continuous sub and supersolutions are indeed necessary for (P̃)ε .

For (x, t) ∈ R
n × R, let us denote the space and space–time balls by

Br(x) := {
y ∈ R

n: |y − x| � r
}

and

B(n+1)
r (x, t) := {

(y, s) ∈ R
n × R:

∣∣(y, s) − (x, t)
∣∣ � r

}
.

The following lemma will be used frequently in our analysis. The proof is parallel to that of Lemma 3.5 in [3].

Lemma 2.9.

(a) If u is a viscosity subsolution of (P̃)ε in Q, then the sup-convolution

ũ(x, t) := sup
y∈Bmε−δt (x)

u(y, t)

is a viscosity subsolution of (P̃)ε in

Qc,δ :=
⋃

{0�t�mε/δ}

((
R

n − (1 + mε − δt)K
) × t

)

with F(Du, x
ε
) replaced by F(Du, x

ε
) + Lm − δ.

(b) If u is a supersolution of (P̃)ε in Q then the inf-convolution

ũ(x, t) = inf
y∈Bmε−δt (x)

u(y, t)

is a viscosity supersolution of (P̃)ε in Qc,δ with F(Du, x
ε
) replaced by F(Du, x

ε
) − Lm + δ.

(a), (b) also holds with Bmε−δt (x) replaced with space–time balls B
(n+1)
mε−δt (x).

3. Properties of free boundaries in obstacle problems

3.1. Introduction of the obstacle problem and statement of previous results

First we recall some of the results obtained in [6]. These results address solutions of “obstacle problems” which
we introduce below. For given nonzero vector q ∈ R

n and r ∈ [−2,∞), we denote ν = q
|q| and define

Pq,r (x, t) := |q|(rt − x · ν)+, lq,r (t) = {
x ∈ R

n: rt = x · ν}
.

Note that the free boundary of Pq,r , Γt (Pq,r ) := lq,r (t), propagates with normal velocity r with its outward normal
direction ν.

Next we construct a domain with which the obstacle problems will be defined. In e1 − en plane, consider a vector
μ = en + √

3e1. Let l to be the line which is parallel to μ and passes through 3e1. Rotate l with respect to en-axis and
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Fig. 2. The spatial domain for test functions.

define D to be the region bounded by the rotated image and {x: −1 � x · en � r} (see Fig. 2). For any nonzero vector
q ∈ R

n, let us define D(q) := Ψ (D), where Ψ is a rotation in R
n which maps en to q/|q|. Let us define

O =
⋃

0�t�1

(
(1 + 3t)D(q) × {t}).

Let us define the space–time domain Q1 := D(q) × [0,1] for r � 0, and Q1 := O for r < 0.

Next we define the maximal subsolution below Pq,r and minimal supersolution above Pq,r in Q1:

ūε;q,r := (
sup

{
u: a subsolution of (P)ε in Q1 with u � Pq,r

})∗
,

uε;q,r := (
inf

{
v: a supersolution of (P)ε in Q1 with u � Pq,r

})
∗.

Remark 3. Note that then ūε;q,r (·, t) and uε;q,r (·, t) are both harmonic in their positive phases. The main reason for
defining a rather complicated domain Q1 is to guarantee that the free boundary of uε;q,r and ūε;q,r does not detach
too fast from Pq,r as it gets away from the lateral boundary of Q1 (see Lemma 2.4 in [6]).

Below we recall properties of ūε;q,r and uε;q,r which we need later in the paper.

Lemma 3.1. (Lemma 2.5, [6].)

(a) ūε;q,r is a subsolution of (P)ε in Q1 with ūε;q,r � Pq,r in Q̄1 and ūε;q,r = Pq,r on the parabolic boundary of Q1.
Moreover (ūε;q,r )∗ is a solution of (P)ε away from Γ (ūε;q,r ) ∩ lq,r .

(b) uε;q,r is a supersolution of (P)ε in Q1 with uε;q,r � Pq,r in Q̄1 and uε;q,r = Pq,r on the parabolic boundary
of Q1. Moreover uε;q,r is a solution of (P)ε away from Γ (uε;q,r ) ∩ lq,r .

(c) ūε;q,r decreases in time if r < 0. uε;q,r increases in time if r > 0.

Lemma 3.2. (Corollary 2.6, [6].) For any given nonzero vector q ∈ R
n, ν = q

|q| and for any a ∈ [0,1], there is η ∈ R
n

such that aν + η ∈ εZ
n, η · ν � 1

2 |η| and ε � |η| < 3ε. For this η the following holds:

(a) For r > 0

ūε;q,r (x + aν + η, t + τ) � ūε;q,r (x, t) (3.1)

for 0 � τ � r−1(a + η · ν) and

uε;q,r (x + aν + η, t + τ) � uε;q,r (x, t) in Q1 (3.2)

for τ � r−1(a + η · ν).

(b) For r < 0 the above inequalities are true with ν, η and r replaced by −ν,−η and |r|, and the range of τ for ūε;q,r

and uε;q,r interchanged.

For a nonzero vector q ∈ R
n we set ν = q

|q| and define the contact sets

Aε;q,r := (
Γ (uε;q,r ) ∩ lq,r

) ∩
(

B1/2

(
1
rν

)
× [1/2,1]

)

2
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and

Āε;q,r := (
Γ (ūε;q,r ) ∩ lq,r

) ∩
(

B1/2

(
1

2
rν

)
× [1/2,1]

)
.

As the speed r of the obstacle Pq,r increases, the contact set from above (Aε;q,r ) increases, and the contact set from
below (Āε;q,r ) decreases. The free boundary speed r(q) in the homogenization limit turns out to be the unique speed
with which both contact sets are (in the limiting sense) nonempty:

Lemma 3.3. (Lemma 3.12, [6].)

r(q) = inf{r: Aε;q,r �= ∅ for ε � ε0 with some ε0 > 0}

= sup{r: Āε;q,r �= ∅ for ε � ε0 with some ε0 > 0}.
Moreover Aε;q,r(q) and Āε;q,r(q) are both nonempty for any 0 < ε < 1/10.

Remark 4. From scaling arguments it follows that if Aε0;q,r (Āε0;q,r ) is nonempty, then so is Aε;q,r (Āε;q,r ) for ε � ε0.

3.2. Improved estimates

For A,B ⊂ Q1, let us define

d(A,B) = inf
{
d(x, y): x ∈ A, y ∈ B

}
.

In [6] we showed that Γ (ūε;q,r ) and Γ (uε;q,r ), with r = r(q) given in (2.1), are at most Mε-away from lq,r (t)

where M depends on several parameters, including the size of q (see Propositions 2.8 and 2.9, [6]). This flatness
constant M is then used in the main proposition (Propositions 3.8 and 3.11 in [6]) to measure the free boundary
detachment from the obstacle, when the speed of the obstacle is not the correct one for the homogenization limit. For
the purpose of our investigation, it is necessary to refine the estimate on M such that the size of M it only depends on
one perturbation parameter γ . This is what we will carry out below:

Lemma 3.4. Let q ∈ Rn − {0} and r = r(q). Then there exist dimensional constants 0 < γ (n) < 1 < C(n) such that
for 0 < γ < γ (n) the following is true:

(a) If r1 = (1 − γ )r and q1 = (1 − γ )q , then

d
(
Γ (uε;q1,r1), lq1,r1

)
<

C(n)ε

γ
.

(b) If r2 = (1 + γ )r and q2 = (1 + γ )q , then

d
(
Γ (ūε;q2,r2), lq2,r2

)
<

C(n)ε

γ
.

Proof. The general idea for the proof of, for example (a), is the following: since Aε;q,r is nonempty and the free
boundary velocity of Γ (uε;q,r ) is increasing with respect to |Duε;q,r |, the size of uε;q,r near lq,r should stay small:
otherwise Γ (uε;q,r ) will completely detach from lq,r . Now suppose part of Γ (uε;q,r ) is trying to get away from lq,r .
Since u is already small near lq,r and is harmonic in its positive set, |Duε;q,r | is very small near the far away part
of Γ (uε;q,r ). This and the free boundary motion law forces Γ (uε;q,r ) recede, putting it closer to lq,r . This heuristic
argument suggests that Γ (uε;q,r ) cannot be too far away from lq,r to begin with. Unfortunately the rigorous proof of
above reasoning is rather complicated, and we will divide the proof into several steps. Observe that by scaling law

r
(
(1 − γ )q

)
� (1 − γ )r(q) and r

(
(1 + γ )q

)
� (1 + γ )r(q),

and thus both Aε;q1,r1 and Āε;q2,r2 are nonempty for 0 < ε < 1/2. Also observe that it is enough to prove the lemma
for r−1ε � t � 1.
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1. Let ν := q
|q| . We first prove (a) in the case r � 0. We begin by claiming that

uε;q1,r1(·, t) � Cε on D := {x: 0 � x · ν � rt − 2ε}. (3.3)

Suppose our claim fails with r < 0. Then uε;q1,r1(x0, t) > Cε for some x0 ∈ D. By lower semicontinuity, we then
have uε;q1,r1(·, t) � Cε in a small ball Bδ(x0), δ > 0.

Choose a lattice vector ξ ∈ εZ n such that |ξ − (ξ · ν)ν| � 2ε and ξ · ν = −10ε. Due to Lemma 3.2, we have

uε;q1,r1(x + ξ, t) � uε;q,r (x, t0) in B1/2(0) × [t0, t0 + 5ε].
Hence

uε;q1,r1 � Cε in Bδ(y0) × [t0, t0 + 5ε], y0 = x0 + ξ.

Next let r(t) := 4(t − t0) + δ/2 , C1 := c(n)C where c(n) is a small dimensional constant to be determined, and
construct a barrier function φ(x, t) solving⎧⎨

⎩
−�φ(·, t) = 0 in B2r(t)(y0) − Br(t)(y0),

φ = C1ε in Br(t)(y0) × [t0, t0 + 5ε],
φ(·, t) = 0 in R

n − B2r(t)(y0).

If C is sufficiently large such that |Dφ| > 6 on Γ (φ) for t0 � t � t0 + 5ε, then

φt

|Dφ| = r ′(t) = 4 � |Dφ| − 2.

Hence φ is a subsolution of (P)ε in

Σ :=
⋃

t0�t�t0+5ε

(
R

n − Br(t)(y0)
) × t.

2. In the following paragraph we show that

φ � uε;q1,r1 in Σ. (3.4)

Proof of (3.4). By construction φ � uε;q1,r1 in Σ ∩{t = t0}. Next observe that, if uε;q1,r1(·, t) is positive in B 3
2 r(t)

(y0),

by interior Harnack inequality for harmonic functions applied to uε;q,r (·, t) in B 3
2 r(t)

(y0) yields that

uε;q1,r1(·, t) � C1ε = φ in Br(t)(y0), (3.5)

where C1 = c(n)C with c(n) a dimensional constant.
On the other hand, suppose that (3.5) holds for t0 � t < s for some t0 � s � t0 + 5ε. Then we claim that

uε;q1,r1 > 0 in
⋃

t0�t�s

B2r(t)(y0) × {t}.

To see this, begin by applying Theorem 2.6 to φ and uε;q1,r1 in Σ to yield φ � uε;q1,r1 in Σ ∩ {t0 � t < s}. As a
consequence B2r(t)(y0) ⊂ Ωt(uε;q1,r1) for t < s. Now Lemma 2.8 and the continuity of r(t) yields that

B 3
2 r(t)

(y0) ⊂ Ωt(uε;q1,r1) for s � t � t + δ0 for some δ0 > 0.

Thus (3.5) holds for t0 � t � s + δ0. This argument states that (3.5) holds for all times t0 � t � t0 + 5ε, and as a
consequence φ � ūε;q1,r1 in Σ . �

(3.4) states, in particular,

uε;q1,r1(x, t0 + 5ε) > 0 in B20ε(y0) ⊃ B8ε(x0).

Observe that, by definition of uε;q1,r1 ,

1
uε;q1,r1(2x,2t) � uε/2;q1,r1(x − η, t + τ) in

1
Q1 + (η,−τ) (3.6)
2 2
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when τ > 0 and η ∈ εZ
n satisfies |η| � 1

2 and η · ν � |r1|τ. In particular it follows that

Aε/2;q1,r1 = ∅,

contradicting the fact that r1 � r(q1). We have shown (3.3).
3. So far we have shown that u is small near lq,r . The next step is to show that |Du| is small on free boundary parts

far away from lq,r . To do this we need to regularize the free boundary in some sense: this is done via sup-convolution
as follows. Define

v(x, t) := sup
y∈Bγε/80(x)

(1 − γ )−1u2ε;q1,r1

(
y + γ ε

20
ν, (1 − γ )−1t

)
.

We claim that

v(x, t) � 2uε;q,r (x/2, t/2). (3.7)

Thanks to Lemma 2.9, v is a subsolution of (P)ε away from lq,r with v � Pq,r . From these facts (3.7) seem plausible.
However we need to go around the technical difficulty arising at lq,r , so a slightly different route is taken.

Let us choose y ∈ Bγε/80(0) and let ξ = y − γ ε
20 ν. Then

w(x, t) := 2(1 − γ )uε;q,r

(
(x + ξ)

2
,
(1 − γ )t

2

)

is a supersolution of (P)2ε . This is because w is harmonic in its positive set and w satisfies the free boundary motion
law

Vx,t = wt

|Dw| (x, t) � (1 − γ )

(
|Duε;q,r |

(
(x + ξ)

2
,
(1 − γ )t

2

)
− g

(
x + ξ

ε

))

� |Dw|(x, t) − (1 − γ )

(
g

(
x

2ε

)
+ 5

8
γ

)

� |Dw|(x, t) − g

(
x

2ε

)
.

(Here the second inequality is due to the fact that Lip g � 10 and g � 1.)
Moreover

w(x, t) � 2(1 − γ )Pq,r

(
(x + ξ)

2
, (1 − γ )(t)

)
� Pq1,r1 in Q1.

Since u2ε;q1,r1 is the smallest supersolution of (P)2ε which stays above Pq1,r1 , it follows that uε;q1,r1 � w and thus
(3.7) is proved.

4. Pick t0 > 0. Let x0 be the furthest point of Γt0(v) from lq1,r1(t0) in Q1 ∩ {t = t0}. We may assume that

d0 := d
(
x0, lq,r (t0)

)
>

C(n)

γ
,

where C(n) is a large dimensional constant, to be determined. Due to the barrier argument in the proof of Lemma 2.4
in [6], if γ � (10C(n))−1, then (x0, t0) is more than 10ε away from the lateral boundary of Q1.

Due to (3.7), (3.6) and due to the fact that Aε;q,r �= ∅ for 0 < ε < 1/2, for any ε neighborhood of a point in

S = {
x: d0 − 20ε � d

(
x, lq,r (t0 − 10ε)

)
� d0

}
there exists z0 in the zero set of uε;q,r (·, t0), and therefore in the zero set of v(·, t0). Choose z0 such that d(z0, x0) ∈
(4ε,6ε).

By definition of v,

uε,q1,r1

(·, (1 − γ )−1(t0 − 10ε)
) = 0 in Bγε/80(z̃0), (3.8)

where z̃0 := z0 − γ ε
ν.
20
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On the other hand, recall that u∗
ε;q1,r1

is a subsolution of (P)ε , and in particular a subharmonic function in x-
variable, away from lq1,r1(t). Moreover uε;q1,r1(·, t0) vanishes in {x: x · ν � d0 + r1t0}, and u∗

ε;q1,r1
(·, t0) � Cε on

lq1,r1(t) by (3.3). Consequently in the domain Q1 ∩ {x: x · ν � r1t} ∩ {t = t0}

uε;q1,r1

(
x, (1 − γ )−1t0

)
� Cε

d0

(
d0 − d

(
x, lq1,r1(t0)

))
+.

Thanks to Lemma 3.2, in the domain Q1 ∩ {x: x · ν � r1t + 3ε} ∩ {t � t0}.

uε;q1,r1

(
x, (1 − γ )−1t

)
� Cε

d0

(
d0 + 3ε − d(x, lq1,r1)(t)

)
+.

In particular

uε;q1,r1(·, t) � 24Cγ

C(n)
ε in S × [t0 − 2ε, t0]. (3.9)

Note that B10ε(z̃0) is a subset of S. Now let us consider a barrier φ(x, t) defined in Σ := B10ε(z̃0) × [t1, t0], t1 :=
(1 − γ )−1(t0 − 10ε) such that

⎧⎪⎨
⎪⎩

−�φ(·, t) = 0 in B10ε(z̃0 − Br(t)(z̃0), r(t) = γ ε
80 + (t − t1),

φ(·, t) = 24Cγ
C(n)

ε on ∂B10ε(z̃0),

φ(·, t) = 0 on ∂Br(t)(z̃0).

If C(n) is chosen sufficiently large, then φ is a subsolution of (P)ε in Σ . Eqs. (3.8) and (3.9) would then yield
that uε;q1,r1(·, t0) ≡ 0 in B8ε(z̃0). But this is a contradiction to the fact that x0 ∈ Γt (v), since from our choice of z̃0 it
follows that v(·, t0) = 0 in B2ε(x0). We have thus shown that (a) holds for r � 0.

6. Next we prove (a) for r � 0. If 0 � r � 2 then parallel argument as above applies to yield (a), thus let us consider
the case r � 2. Here arguing as in the proof of (3.3) yields that

uε;q1,r1(·, t) � Crε on
{
x: 0 � d

(
x, lq1,r1(t)

)
� 2ε

}
, (3.10)

where C is the same dimensional constant as in (3.3).
Let x0 be the furthest point in Γ (uε;q1,r1) from lq1,r1(t0), with

d0 = d
(
x0, lq1,r1(t0)

)
� ε

γ
.

Equipped with (3.10), we can argue as in step 5 to yield

uε;q1,r1(x, t) � Crε

d0

(
d0 + 3ε − d

(
x, lq1,r1(t)

))
+ in {x: x · ν � r1} × {t � t0}.

We are now ready to yield a contradiction. Our barrier this time is

h(x, t) := Crγ

(
d0 + 3ε − d(x, lq1,r1)

(
t0 − 10ε

r

)
+ C(r + 2)γ

(
t − t0 + 10ε

r

))
+
.

h(x, t) is then a planar supersolution of (P)ε in

Σ := Q1 ∩ {x: x · ν � r1t} ∩
{
t0 − 10ε

r
� t � t0

}
.

Hence Theorem 2.6 applied to uε;q1,r1 and h yields that uε;q1,r1 � h in Σ .
If γ � (4C)−1, then the positive set of h does not reach x0 by time t0: precisely

Ωt0(h) ⊂ {
x: d(x, lq1,r1)(t0) < d0 − 2ε

}
.

Hence we reach a contradiction.
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7. As for the proof of (b), the case for r � 0 is shown in the proof of Proposition 2.9 (a) in [6]: the argument is indeed
similar to the proof of (a) for r � 0, with simplifications due to the fact that the corresponding sub-convolution v is
also a subsolution of (P)ε in Q1. For 0 � r � 2 a stronger version of (b) is Proposition 2.8(b) in [6]. Thus it remains
to consider the case r � 2. First observe that, if x0 ∈ Γt (ū2ε;q2,r2) with d(x0, lq2,r2(t)) > ε then for a dimensional
constant C

ū2ε;q2,r2(·, t) < Crε in B2ε(x0 − 3εν). (3.11)

If not a barrier argument as in step 2 using Lemma 3.2(a) yields that x0 ∈ Ωt(ū2ε;q2,r2), a contradiction.
Pick t0 > 0. Suppose y0 is the furthest point of Γt0(ū2ε;q2,r2) from lq,r (t0) in Q1 with

d0 = d
(
x0, lq2,r2(t0)

)
� ε

γ
.

As in (3.6) we have

1

2
ū2ε;q2,r2(2x,2t) � ūε;q2,r2(x + η, t + τ) in

1

2
Q1 + (η,−τ) (3.12)

when τ > 0 and η ∈ εZ
n satisfies |η| � 1

2 and η · ν � rτ. It then follows from (3.11) and (3.12) that

ūε;q2,r2(·, t0) � Crε on B3/4(t0ν) ∩ (
lq,r (t0) − (d0 + 3ε)ν

)
. (3.13)

(3.13) and the fact that ūε;q2,r2(·, t0) is subharmonic yields that

ūε;q2,r2(·, t0) � Crγ ε in B2/3(t0ν) ∩ {x: x · ν � r2t0 − 5ε}.
Above equation and Lemma 3.2 says that for t � t0

ūε;q,r (·, t0) � Crγ ε in B4/7(t0ν) ∩ {x: x · ν � r2t − 3ε}. (3.14)

Now a barrier argument similar to that in step 6 would yield that

ūε;q,r

(
·, t0 + 1

r
ε

)
≡ 0 on lq2,r2

(
t0 + 1

r2
ε

)
,

contradicting the fact that Āε;q,r �= ∅ for 0 < ε < 1
2 . �

Replacing the flatness constant M in Propositions 2.8 and 2.9 in [6] with C(n)
γ

in Lemma 3.4, Propositions 3.8
and 3.11 in [6] now reads as below.

Proposition 3.5. (Propositions 3.8 and 3.11 in [6].) There exists dimensional constant C1 > 0 such that for any
nonzero vector q ∈ R

n and for r = r(q) �= 0 the following is true:

Let us fix 0 < γ � 1 and 0 < ε < ε0 = rγ 11

n
.

(a) For r1 � (1 − γ )r and q1 � (1 − γ )q ,

d
(
Γt (ūε;q1,r1), lq1,r1(t) ∩ B1/4(0)

)
>

C1ε

γ

for t � C1ε

|r|γ 3 .

(b) For r2 � (1 + γ )r and q2 � (1 + γ )q ,

d
(
Γt (uε;q2,r2), lq2,r2(t) ∩ B1/4(0)

)
>

C1ε

γ

for t � C1ε

|r|γ 3 .

Remark 5. Note that by scaling argument it follows that (1 − a)r((1 + a)q) increases in a.



I.C. Kim / Ann. I. H. Poincaré – AN 26 (2009) 999–1019 1011
Proposition 3.5 states that if the obstacle speed r1 (r2) is too fast (slow) compared to the size of q1 (q2), then
the maximal subsolution (minimal supersolution) of (P)ε stays away from the obstacle. We will use the following
variation of Proposition 3.5 in our analysis in Section 4 (see Proposition 4.3).

Corollary 3.6. Let 0 < ε < c(n) and C1 be the constant given in Proposition 3.5. Let uε solve (P)ε in Σ := 2Bε1/2(0)×
[−αε,0], where

αε := min

[
ε4/5

|r| , ε3/5
]
.

(a) If (uε)∗ � Pq0,r0 in Σ and if

r0 �
(
1 − ε1/25)r((1 + ε1/25)q0

) + 2ε1/25

then

d
(
Γ0

((
uε

)∗)
, lq0,r0(0) ∩ Bε1/2/4(0)

)
> C1ε

24/25.

(b) If uε � Pq0,r0 in Σ and if

r0 �
(
1 + ε1/25)r((1 − ε1/25)q0

) − 2ε1/25,

then

d
(
Γ0

(
uε

)
, lq0,r0(0) ∩ Bε1/2/4(0)

)
> C1ε

24/25.

Proof. We only prove (a), since parallel arguments hold for (b).
Choose ξ ∈ εZ

n such that |ξ − rαεν| � 2ε, (ξ − rαε) · ν � 0. ν = q0/|q0|. Define

ũε(x, t) := e−1/2uε
(
ε1/2(x − ξ), ε1/2(t − αε)

)
.

Then (ũε)∗ is a subsolution of (P)ε
1/2

in Σ̃ := B10(0)×[0, αεε
−1/2] with (ũε)∗ � Pq0,r0 . Note that O ∩{0 � t � αε}

is contained in Σ̃ . Hence by definition of ū as the maximal subsolution above Pq,r in O we obtain
(
ũε

)∗ � ūε1/2;q0,r0
in Σ̃.

Therefore if |r((1+ε1/25)q0)| > ε1/25, then (a) follows from Proposition 3.5 with ε replaced by ε1/2 and γ = ε1/25.

If |r((1 + ε1/25)q0)| � ε1/25, then by our hypothesis in (a) it follows that |r0| � ε1/25 and one can apply Proposi-
tion 3.5 with q0 replaced by q̃ = αq0 with which

r0 = (
1 − ε1/25)r((1 + ε1/25)q̃)

.

Since r(q) increases in |q|, we have α > 1. It follows that uε � Pq̃,r0 in Σ . Thus one can apply Proposition 3.2 with
ε replaced by ε1/2 and γ = ε1/25 and use the fact that

(
ũε

)∗ � ūε1/2;q̃,r0
in Σ̃

to derive the conclusion. �
Below we sketch a formal argument to prove (1.1). Suppose uε and u respectively solve (P)ε and (P) with same

initial data u0. Suppose we can perturb u to construct a new function w1 which satisfies the following:

(i) d(Γt (w1),Γt (u)) < ε1/70 for t � 0.
(ii) w1 satisfies (P) with r(Du) replaced by(

1 − ε1/25)r((1 + ε1/25)Dw1
) + ε1/25. (3.15)

(iii) uε(·,0) ≺ w1(·,0) and uε � w1 for x ∈ K .
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Now assume that Γ (uε) touches Γ (w1) for the first time at P0 = (x0, t0). Then t0 > 0 and uε � w1 in Q∩{t � t0}.
Let

q0 = Dw1(P0), r0 = (w1)t

|Dw1| (P0). (3.16)

Note that, due to (3.15),

r0 �
(
1 − ε1/25)r((1 + ε1/25)q0

) + ε1/25. (3.17)

Let ξ be a space–time translate of Pq0,r0 such that lq0,r0 + ξ touches P0. If one can show that uε � Pq0,r0 + ξ in ε1/2-
neighborhood of P0, then a contradiction would follow due to Corollary 3.6, yielding uε � w1. A parallel argument
applies to constructing a perturbation function w2 which will bound uε from below. Once we obtain w2 � uε � w1
with

d
(
Γt (wk),Γt

(
uε

))
� ε1/70 for t � 0, k = 1,2,

(1.1) follows.
In Sections 4, 5 we show a rigorous version of above formal argument to prove (1.1). The challenge is to find correct

perturbations w1,w2 of u and to find q0 and r0 for which (3.17) is satisfied and uε � Pq0,r0 + ξ in ε1/2-neighborhood
of P0. (Note that (3.16) would not apply to nonsmooth w1.)

4. Statement of main result

Let u be a solution of (P) in Q with initial data u0, and fix t0 > ε1/30 and ε > 0. In the domain

Qε := (
R

n − Kε

) × [
ε1/30, ε−1/300], Kε := (

1 + ε1/70 + 2ε1/30)K
we define

u1(x, t) := u
((

1 + ε1/70)−1
x,

(
1 + ε1/70)−1(1 − ε1/60)t + t0

)
, (4.1)

and the inf-convolutions

v1(x, t) := inf
y∈B

ε1/30−ε1/27 t
(x)

u1(y, t), (4.2)

and

w1(x, t) := inf
(y,s)∈B

(n+1)

ε1/30 (x,t)

v1(y, s). (4.3)

Then w1 is a viscosity supersolution of
{−�w1 = 0 in {w1 > 0},

V = (1 − ε1/60)r((1 + ε1/70)Dw1) + ε1/27 on Γ (w1)

in Qε .
The convoluted functions v1 and w1 is introduced to improve the free boundary regularity of u1: any free boundary

point (x0, t0) ∈ Γ (w1) has both an exterior space–time ball and an exterior space ball, lying in the zero set of w1 and
touching (x0, t0) (or x0) on their boundaries.

Similarly in the domain

Q̃ε := (
R

n − K
) × [

ε1/30, ε−1/300], K̃ε = (
1 + 2ε1/30)K

we define

u2(x, t) := u∗((1 − ε1/70)−1
x,

(
1 − ε1/70)−1(1 + ε1/60)t + t1

)
, (4.4)

and
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v2(x, t) := sup
y∈B

ε1/30−ε1/27 t
(x)

u2(y, t),

w2(x, t) := sup
(y,s)∈B

(n+1)

ε1/30 (x,t)

v2(y, s).

Then w2 is a viscosity subsolution of{−�w2 = 0 in Ω(w2),

V = (1 + ε1/60)r((1 − ε1/70)Dw2) − ε1/27 on Γ (w2)

in Q̃ε , with interior ball properties at the free boundary.
Suppose that there exist constants ε1/30 � t0, t1 < ∞, respectively given in (4.1) and (4.4), and τ > 0 such that the

corresponding w2 and w1 satisfy

(H1) w2(x,0) ≺ uε(x, τ ) ≺ w1(x,0).

and for all t � 0

(H2) uε(x, t + τ) < w1(x, t) for x ∈ Kε , w2(x, t) < uε(x, t + τ) for x ∈ K .

Theorem 4.1. Suppose u and uε satisfies (H1), (H2) with some t0, t1 and τ . Then

w2(x, t) � uε(x, t + τ) � w1(x, t) in Qε.

Suppose Ω(u0) ⊂ BR(0). From a barrier argument with radially symmetric solutions of (P), using the fact that
r(|Du|) ∈ [|Du| − 2, |Du| − 1], it follows that

BR1(0) ⊂ Ωt(u) ⊂ BR2(0) for t � 0, (4.5)

where Ri depends on n and u0. In particular R2 is given as the maximum of a dimensional constant and R.

Corollary 4.2. Suppose u solves (P) and uε solves (P)ε , with initial data u0. Also suppose Ω(u0) ⊂ BR(0) and one of
the conditions (A)–(C) holds. Then for any T > 0, there exist positive constants ε0 = ε(n,u0, T ) and C0 = C(n,R)

such that for 0 < ε < ε0

d
(
(x, t),Γ

(
uε

))
� C0ε

1/70 for (x, t) ∈ Γ (u) ∩ [0, T ]. (4.6)

Proof. 1. First suppose that (A) holds. Since Ω is star-shaped with respect to Br(0), it follows that for 0 < ε < ε0 =
ε0(r) and for t0 = τ = t1 = ε1/30

Ω0(w2) � Ωτ

(
uε

)
� Ω0(w1). (4.7)

Due to (4.5) and barrier arguments with radially symmetric harmonic functions it follows that

|Du|(·, t) ∼ C(n,u0) for x ∈ K. (4.8)

Therefore, for sufficiently small ε depending on n and u0, (H2) holds. In particular maximum principle for harmonic
functions yield (H1) due to (4.7) and (H2). Hence if ε is chosen sufficiently small that T � ε−1/300 then Theorem 4.1
yields (4.6) with

C0 = C(n) sup
(x,t)∈Ω(u)

|x|.

Due (4.5), C0 = C(n,R).
2. Next suppose that (B) holds. Then the free boundary velocity is strictly positive at t = 0. Since Γ0 is locally

Lipschitz, by a barrier argument one can check that there exists ε1/30 = t0 < τ, t1 = O(ε1/70) satisfying

Ω0(w2) ⊂ Ωτ(u) ⊂ Ω0(w1)
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Fig. 3.

if ε > 0 is sufficiently small depending on u0. The rest of argument is the same as in the case of (A). Parallel argument
applies to the case (C), for which the free boundary velocity is strictly negative at t = 0. �
Proof of Theorem 4.1. Suppose our theorem is false. Then either (uε)∗ crosses w1 from below or uε crosses w2 from
above in finite time. Suppose the former, that is

0 < t0 = sup
{
t : Ωt

((
uε

)∗) ≺ Ωt(w1)
}

< ∞.

For simplicity we denote (uε)∗ by uε in the rest of the proof.
Suppose Ω̄t0(u

ε) is a compact subset of Ω(w1)−Kε . Since uε < w1 on Kε and (uε −w1)(·, t0) is subharmonic in
Ωt0(u

ε) − Kε , it follows from the maximum principle for harmonic functions that uε(·, t) < w1(·, t) in Ωt0(u
ε), and

thus uε(·, t0) ≺ w1(·, t0). Due to the lower semicontinuity of w1 −uε , then for a small time period after t0 the supports
of uε and w1 stays strictly ordered and thus uε(·, t) ≺ w1(·, t), contradicting the definition of t0.

On the other hand suppose uε(x0, t0) > 0 at some x0 ∈ Γt0(w1). By construction, there exists a space–time ball
B(n+1) of radius ε1/30 such that

E := {
(x, t): |x − y| � ε1/30/2 for some (y, t) ∈ B(n+1)

}
lies in the zero set of w1 and touches (x0, t0) on its boundary (see Fig. 3). A barrier argument based on this set, similar
to the one given in the proof of Lemma 2.8(b), leads to a contradiction.

From above discussion we conclude that at t = t0 we have Ωt0(u
ε) ⊂ Ωt0(w1), uε = 0 on Γt0(w1), and there exists

P0 := (p0, t0) such that p0 = Γt0(u
ε) ∩ Γt0(w1). In particular due to (H2) uε � w1 for t � t0.

Next we investigate the geometry of Γ (w1) at the contact point P0. By definition of w1, the set Ω(w1) lies outside

B
(n+1)
1 := B

(n+1)

ε1/30 (P1) (4.9)

with P1 = (p1, t1) ∈ Γ (v1), touching Γ (w1) at P0 (see Fig. 2). On the other hand Ω(u1) has an interior space ball
B2 := Bε1/30−ε1/6t1

(P1) touching Γ (u1) at P2 = (p2, t1). We rotate the coordinates such that

P0 − P1 = (d1e1,−d2) ∈ R
n × R, where d1 � 0 and e1 = (1,0, . . . ,0).

P1 − P2 is then also parallel to e1. Observe that, if Γ (w1) were smooth, d2/d1 equals the (outward) normal velocity
of Γ (w1) at P0. Barrier arguments with radially symmetric barrier in 2B

(n+1)
1 − B

(n+1)
1 , as in the proof of Theorem

2.2 in [4], yields that

d1 �= 0 and
d2

d1
� −2.

(Formally speaking d1 �= 0 since otherwise Γ (w1) would have infinite normal velocity at P0: but this is impossible
because |Dw1| stays finite on Γ (w1) due to the exterior ball property.)
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Let us define

r0 = d2

d1
∈ [−2,∞) and q0 = me1,

where

m = min
x∈W, x1=ε1/10

u1(x + p2, t1)

ε1/10

and

W = {
x: x1 := x · e1 � 0, |x − x1e1| �

(
1 − ε1/70)|x|}

(see Fig. 4).
We will prove, in the next section, the following proposition:

Proposition 4.3. For 0 < ε < c(n) let q1 = (1 + ε1/50)q0. Then(
uε

)∗ � Pq1,r0 + P0 + ε29/30e1 in Bε1/2(x0) × (t0 − αε, t0),

where αε is as given in Corollary 3.6 and

r0 �
(
1 − ε1/60)r((1 + ε1/60)q1

) + 2ε1/25.

If above proposition is true, then due to Corollary 3.6 and Remark 5

d
(
Γt0

((
uε

)∗)
, x0

)
> C1ε

24/25 − ε29/30,

where C1 is a dimensional constant. Hence for 0 < ε < c(n),

d
(
Γt0

((
uε

)∗)
, x0

)
>

C1

2
ε24/25,

which contradicts the fact that x0 ∈ Γt0((u
ε)∗).

Parallel argument holds for the case uε crossing w2 from above. �
5. Proof of Proposition 4.3

It remains to show Proposition 4.3. We begin with the following lemma.

Lemma 5.1.

r0 >
(
1 − ε1/60)r((1 + ε1/65)q0

) + ε1/27

for 0 � ε � c(n).
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Proof. Recall that u1 satisfies the free boundary motion law

V �
(
1 − ε1/60)r((1 + ε1/70)Du1

)
on Γ (u1)

in the viscosity sense. As mentioned in the previous section, Ωt1(u1) has an interior space ball Bε1/30−ε1/27t1
(P1)

touching p2 ∈ Γt1(u1). Therefore one can also find a space ball B̃ of radius ε1/13 in Ωt1(u1) touching p2. In fact from
(4.2), (4.3)

O ⊂ Ω(u1),

where O is a “flat” space–time ball-like set given by

O := {
(x, t): |x − y| � ε1/30 − ε1/27t for some y ∈ B

(n+1)
1

}
,

where B
(n+1)
1 is as given in (4.9) (see Fig. 5).

Let

C(t) = a(t)B̃,

where a(t) = sup{s: sB̃ × {t} ⊂ O} and

Σ =
⋃

t1−δ�t�t1

(
C(t) − 1

2
C(t)

)
× {t},

where δ is small and to be determined. We now construct φ(x, t) in Σ as follows:⎧⎪⎨
⎪⎩

−�φ(·, t) = 0 in C(t) − (1 − ε1/10)C(t),

φ(·, t) = (1 − ε)mε1/10 > 0 on (1 − ε1/10)∂C(t),

φ(·, t) = 0 on ∂C(t).

Then we have

|Dφ|(P2) �
(
1 − Cε1/10−1/13)m,

φt

|Dφ| (P2) = r0 − ε1/27.

Note that

S = {
(x + p2, t1): x1 = ε1/10} ∩ B̃

is a set of width ε1/10 in e1-direction and of width

Cε1/20+1/26 � ε6/70 for 0 < ε < c(n)

in other directions, and S ⊂ W + p2. Hence

φ(·, t) = (1 − ε)mε1/10 < u1(·, t) on S × [t1 − δ, t1],
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if δ is chosen sufficiently small, first at t = t1 by definition of m, and then for other times by lower semi-continuity
of u. Moreover Σ is a subset of Ω(u1) by construction. Therefore by maximum principle of harmonic functions

φ � u1 in
{
x + p2: x1 � ε1/10} ∩ B̃ × [t1 − δ, t1],

and in particular u1 − φ has a local minimum zero at P2.
Using the definition of viscosity supersolution, if ε is sufficiently small,

r0 = φt

|Dφ| (P2) + ε1/27 �
(
1 − ε1/60)r((1 + ε1/70)|Dφ|(P2)

) + ε1/27

�
(
1 − ε1/60)r((1 + ε1/70)(1 − ε3/130)q0

) + ε1/27

�
(
1 − ε1/60)r((1 + ε1/65)q0

) + ε1/27. �
Our next goal is to construct a barrier which bounds w1 from above and lies below (a perturbation of) Pq0,r0 + P0.

Such barrier will be constructed by small increments, starting from investigation of u1 at p2.
By definition of m, there exists y0 ∈ W ∩ {x: x1 = ε1/10} + p2 such that

u1(y0, t1) = mε1/10.

By definition of v1 we then have

v1(x, t1) � mε1/10 in D1 := B
ε1/30−ε1/27 t1

(y0). (5.1)

Recall that Ωt1(v1) has an exterior ball Bε1/30−ε1/27t1
(p2) touching p1 ∈ Γt1(v1). Thus Ωt1(v1) also has an exterior

spatial ball D̃ = Bε1/30/4(x̃) touching p1.
Since y0 − x2 = ε1/10e1 + μ with μ · e1 = 0, |μ| � ε6/70, a straightforward calculation yields that

∂D1 is outside
(
1 + 4ε1/15 − ε2/15)D̃. (5.2)

(See Fig. 6.)
Let h(x) be the harmonic function in the ring domain

Π := (
1 + 4ε1/15 − ε2/15)D̃ − D̃

with boundary data

h = mε1/10 on
(
1 + 4ε1/15 − ε2/15)∂D̃, h = 0 on ∂D̃.

Then |Dh| = m(1 + Cε1/15) on ∂D̃: in fact from the explicit formula for radially symmetric harmonic functions it
follows that |Dh| � m(1 + Cε1/15) in Π .

Due to (5.1) and (5.2), for 0 < ε < c(n) v1(·, t1) � mε1/10 � h on the outer boundary of Π , and thus

v1(·, t1) � h on Π. (5.3)
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Next we construct a barrier for w1, using the information gathered from above. Let us construct the space–time
ring domain

C =
⋃

t0−αε�t�t0

(
Π + a(t)e1

) × {t}

where

a(t) > 0,−→v (t) := (
a(t)e1, t − t1

) ∈ ∂B
(n+1)

ε1/30 (0).

In particular a(t) ∈ C2, a(t0) = d1 and a′(t0) = −r0 (see Fig. 7).
Now define ϕ(x, t) = h(x − a(t)en) in C . Then by definition of w1 and (5.3)

w1(x, t) � v1
(
x − a(t)en, t1

)
� ϕ(x, t) in C. (5.4)

Finally we bound ϕ from above by Pq0,r0(x, t) + P0. Note that Γt (ϕ) is a sphere of radius ε1/30/4. This fact and
the twice differentiability of a(t) yields that, in Bε1/2(x0) × [t0 − ε1/2, t0], Γt (ϕ) is in ε1−1/30-neighborhood of its
space–time tangent plane at (x0, t0), which is lq0,r0(t) + P0. Since |Dh| � m(1 + Cε1/5) in Π , so is |Dϕ| in C .
Therefore

ϕ �
(
1 + ε1/50)Pq0,r0 + P0 + ε29/30e1 in Bε1/2(x0) × [

t0 − ε1/2, t0
]
. (5.5)

Recall that we have (uε)∗ � w1 for t � t0. This and (5.4), (5.5) proves our proposition.

6. Remarks on an expanding free boundary problem

As stated in Corollary 3.6, for problem (P)ε and (P) our error estimate is only obtained for the class of initial data
(A)–(C). This is because uniqueness does not hold for solutions of (P) with general initial data.

Below we show that stronger result holds for problems with expanding free boundaries.
Let u0,Ω,K,g and Γ0 the same as in the introduction, and let u(x, t) solve

(P2)ε

⎧⎨
⎩

−�uε(·, t) = 0 in Ωt(u) − K,

V = g(x
ε
)|Duε | on Γ (u),

uε = 1 on K,

in Q = (Rn − K) × (0,∞) with initial data u0. The following result was recently shown in [5] and [7]:

Theorem 6.1. (See [5,7].) Let uε be a viscosity solution of (P2)ε with initial data u0. In addition suppose that Γ0
is C1. Then uε locally uniformly converges to the unique viscosity solution of

(P2)

⎧⎨
⎩

−�u(·, t) = 0 in Ωt(u) − K,

V = (〈 1
g
〉)−1|Du| on Γ (u),

u = 1 on K

in Q with initial data u0. Here 〈h〉 denotes the average of h, i.e.,
∫
[0,1]n h(x) dx.

Parallel analysis as in Sections 3–5, yields the following:
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Proposition 6.2. Proposition 3.5 holds for u and uε , respectively solving (P2) and (P2)ε .

Corollary 6.3. If Γ0 is C1, then for sufficiently small ε > 0 depending on Γ0

d
(
(x, t),Γ (u)

)
� ε1/90 for (x, t) ∈ Γ

(
uε

)
.

Proof. Since Γ0 is C1 and u0 is harmonic in Ω0 with u0 = 1 on K , one can conclude that

u(−den,0)

d
∈ [

d1/8, d−1/8] for small d > 0.

Hence by a barrier argument, one can check that for sufficiently small t > 0 the set Γt(u) lies outside t9/8-
neighborhood and inside t7/8-neighborhood of Ω0(u).

It follows that for sufficiently small ε > 0, (H1) and (H2) in Proposition 3.5 is satisfied with t0 = ε1/30, τ = ε1/80

and t1 = 2ε1/80. �
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