

Available online at www.sciencedirect.com

Ann. I. H. Poincaré - AN 26 (2009) 1049-1054

www.elsevier.com/locate/anihpc

Erratum to: "Multiple critical points of perturbed symmetric strongly indefinite functionals" [http://dx.doi.org/10.1016/j.anihpc.2008.06.002]

Erratum

Denis Bonheure^{a,*,1}, Miguel Ramos^{b,2}

^a Université libre de Bruxelles, Département de Mathématique, U.L.B., CP214, Boulevard du Triomphe, 1050 Bruxelles, Belgium ^b University of Lisbon, CMAF – Faculty of Science, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal

Received 21 October 2008; accepted 14 January 2009

Available online 17 March 2009

Abstract

We correct the statement and the proof of Proposition 9 in [D. Bonheure, M. Ramos, Multiple critical points of perturbed symmetric strongly indefinite functionals, http://dx.doi.org/10.1016/j.anihpc.2008.06.002]. © 2008 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

MSC: 35J50; 35J55; 58E05

Keywords: Elliptic system; Strongly indefinite functional; Perturbation from symmetry; Lyapunov-Schmidt reduction; Genericity

The proof of [1, Proposition 9] is incorrect. We weaken the statement of this proposition and present a proof of it. The weaker statement however is enough for the purposes of [1]. We use the notation and assumptions introduced in [1].

Let $I^*: E \to \mathbb{R}$ be the functional associated to the problem

$\int -\Delta u = v $	$ ^{q-2}v$ in Ω ,	
$\int -\Delta v = u $	$ ^{q-2}v$ in Ω , $ ^{p-2}u$ in Ω ,	(1.1)
u = 0 v = 0	on $\partial \Omega$,	(1.1)
v = 0	on $\partial \Omega$.	

Consider the associated reduced functional

$$J^*(\alpha) := I^*\left(\alpha + \psi_{\alpha}^*, \alpha - \psi_{\alpha}^*\right) := \max_{\psi \in H_0^1(\Omega)} I^*(\alpha + \psi, \alpha - \psi).$$
(1.2)

* Corresponding author.

DOI of original article: 10.1016/j.anihpc.2008.06.002.

E-mail addresses: denis.bonheure@ulb.ac.be (D. Bonheure), mramos@ptmat.fc.ul.pt (M. Ramos).

¹ Research supported by the F.R.S.-FNRS (Belgium).

² Research partially supported by FCT (Fundação para a Ciência e Tecnologia), program POCI-ISFL-1-209 (Portugal/Feder-EU).

^{0294-1449/\$ -} see front matter © 2008 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.anihpc.2009.01.007

Recall that if α is a critical point of J^* then

$$-2\Delta\alpha = f(u_{\alpha}^*) + g(v_{\alpha}^*), \tag{1.3}$$

where $u_{\alpha}^* := \alpha + \psi_{\alpha}^*, v_{\alpha}^* := \alpha - \psi_{\alpha}^*$ and ψ_{α}^* is the unique solution of the following equation in $H_0^1(\Omega)$:

$$-2\Delta\psi_{\alpha}^{*} = g(v_{\alpha}^{*}) - f(u_{\alpha}^{*}).$$

$$(1.4)$$

Denote by $m^*(\alpha)$ the *augmented Morse index* of the critical point α with respect to J^* , i.e. the number of non-positive eigenvalues of the quadratic form $(J^*)''(\alpha)$.

We will be interested in special critical points constructed via a min-max argument. To that purpose, we introduce the following notations. Let us write

$$H := H_0^1(\Omega) = E_k \oplus E_k^\perp,$$

where, for each $k \in \mathbb{N}_0$, E_k is spanned by the first k eigenfunctions of the Laplacian operator in $H_0^1(\Omega)$. Arguing as in [1, Lemma 3], we can provide a large constant $R_k > 0$ such that $J^*(\alpha) < 0$ for every $\alpha \in E_k$ satisfying $||\alpha|| > R_k$. Let

 $G_k := \left\{ \sigma \in C \left(B_{R_k}(0) \cap E_k; H \right) \mid \sigma(-\alpha) = -\sigma(\alpha) \; \forall \alpha \in H, \; \sigma_{|\partial B_{R_k}(0) \cap E_k} = \mathrm{Id} \right\}$

and define the minimax levels

$$b_k := \inf_{\sigma \in G_k} \max \left\{ J^*(\sigma(\alpha)) \colon \alpha \in B_{R_k}(0) \cap E_k \right\}.$$
(1.5)

We next derive a bound on b_k .

Proposition 9. Assume 2 . There exist <math>C > 0 and $k_0 \in \mathbb{N}_0$ such that for every $k \ge k_0$,

$$k \leqslant Cb_k^{(1-\frac{1}{p}-\frac{1}{q})\frac{N}{2}}.$$

Proof. For the sake of clarity we divide the proof in several steps.

Step 1. According to (1.3) and (1.4), if α is a critical point of J^* , $m^*(\alpha)$ is the number of eigenvalues $\mu \leq 1$ of the problem

$$-2\Delta\varphi = \mu \left(f'(u_{\alpha}^{*})(\varphi + \phi) + g'(v_{\alpha}^{*})(\varphi - \phi) \right), \quad \varphi \in H_{0}^{1}(\Omega),$$

$$(1.6)$$

where $\phi \in H_0^1(\Omega)$ solves

$$-2\Delta\phi = g'(v_{\alpha}^{*})(\varphi - \phi) - f'(u_{\alpha}^{*})(\varphi + \phi).$$

$$(1.7)$$

By denoting $V = (f'(u_{\alpha}^*) + g'(v_{\alpha}^*))/2$ and $W = (f'(u_{\alpha}^*) - g'(v_{\alpha}^*))/2$, we can rephrase (1.6)–(1.7) by

$$-\Delta \varphi = \mu (V\varphi + W\phi)$$
 and $(-\Delta + V)\phi = -W\varphi$.

Hence, $m^*(\alpha)$ is the number of eigenvalues $\mu \leq 1$ of the problem

$$-\Delta \varphi = \mu T \varphi, \quad \varphi \in H^1_0(\Omega).$$

where T is the compact operator

$$T := V - W(-\Delta + V)^{-1}W.$$

Since the operator $W(-\Delta + V)^{-1}W$ is positive, we have that $m^*(\alpha) \leq m_V^*(\alpha)$, where the latter quantity denotes the number of eigenvalues $\mu \leq 1$ of the problem

$$-\Delta \varphi = \mu V(x)\varphi, \quad \varphi \in H_0^1(\Omega).$$

According to a well-known estimate obtained in [2,3,5] (see e.g. [6] for a proof), we have that

$$m_V^*(\alpha) \leqslant C \int V(x)^{N/2} \tag{1.8}$$

1050

for some universal constant C > 0. Going back to the original system $-\Delta u = |v|^{q-2}v, \ -\Delta v = |u|^{p-2}u$, we observe that $\int |u_{\alpha}^*|^p = \int |v_{\alpha}^*|^q$ and

$$J^{*}(\alpha) = I^{*}(u_{\alpha}^{*}, v_{\alpha}^{*}) = \left(\frac{1}{2} - \frac{1}{p}\right) \int |u_{\alpha}^{*}|^{p} + \left(\frac{1}{2} - \frac{1}{q}\right) \int |v_{\alpha}^{*}|^{q}$$
$$= \left(1 - \frac{1}{p} - \frac{1}{q}\right) \int |u_{\alpha}^{*}|^{p}$$
$$= \left(1 - \frac{1}{p} - \frac{1}{q}\right) \int |v_{\alpha}^{*}|^{q}.$$

By using this and by applying Hölder inequality in (1.8) we get that

$$m^{*}(\alpha) \leq C \left(J^{*}(\alpha)^{(p-2)N/2p} + J^{*}(\alpha)^{(q-2)N/q} \right).$$
(1.9)

We will next refine this estimate by introducing a free parameter.

Step 2. For any $\lambda > 0$, define

$$J_{\lambda}^{*}(\alpha) := I^{*}\left(\lambda\alpha + \psi_{\alpha,\lambda}^{*}, \alpha - \frac{\psi_{\alpha,\lambda}^{*}}{\lambda}\right) := \max_{\psi \in H} I^{*}\left(\lambda\alpha + \psi, \alpha - \frac{\psi}{\lambda}\right),$$

so that $J_1^*(\alpha) = J^*(\alpha)$. Arguing as in step 1, we can check that if α is a critical point of J_{λ}^* then the corresponding Morse index $m_{\lambda}^*(\alpha)$ is given by the number of eigenvalues $\mu \leq 1$ of the problem

 $-\Delta \varphi = \mu T_{\lambda} \varphi, \quad \varphi \in H_0^1(\Omega),$

where T_{λ} is the compact operator

$$T_{\lambda} := V_{\lambda} - W_{\lambda} (-\Delta + V_{\lambda})^{-1} W_{\lambda},$$

with $V_{\lambda} = \frac{1}{2} (\lambda f'(u_{\alpha}^*) + g'(v_{\alpha}^*)/\lambda)$ and $W_{\lambda} = \frac{1}{2} (f'(u_{\alpha}^*) - g'(v_{\alpha}^*)/\lambda^2)$. Here, of course, $u_{\alpha}^* := \lambda \alpha + \psi_{\alpha,\lambda}^*$, $v_{\alpha}^* := \alpha - \frac{\psi_{\alpha,\lambda}^*}{\lambda}$. Then, similarly to (1.8)–(1.9), we get that

$$m_{\lambda}^{*}(\alpha) \leq C\left(\left(\lambda J_{\lambda}^{*}(\alpha)^{(p-2)/p}\right)^{N/2} + \left(\frac{J_{\lambda}^{*}(\alpha)^{(q-2)/q}}{\lambda}\right)^{N/2}\right).$$

$$(1.10)$$

Step 3. As a further preliminary step in our proof, we introduce the map

$$\theta_{\lambda}(\alpha) := \frac{\lambda+1}{2}\alpha + \frac{\lambda-1}{2\lambda}\psi_{\alpha,\lambda}^{*}.$$

We claim that $\theta_{\lambda}: H \to H$ is an odd homeomorphism such that

$$J_{\lambda}^{*}(\theta_{\lambda}^{-1}(\alpha)) \leqslant J_{1}^{*}(\alpha), \quad \forall \alpha \in H.$$

$$(1.11)$$

We can already assume that $\lambda \neq 1$, otherwise our statement is obvious. Observe that given $\beta \in H$ it is possible to find an unique $\alpha \in H$ such that

$$\psi_{\alpha,\lambda}^* = \frac{2\lambda}{\lambda-1}\beta - \frac{\lambda(\lambda+1)}{\lambda-1}\alpha.$$

Indeed, using the definition of $\psi^*_{\alpha,\lambda}$, this means that we must solve the equation in H:

$$-2\lambda \frac{\lambda+1}{\lambda-1} \Delta \alpha = \frac{-4\lambda}{\lambda-1} \Delta \beta - g\left(\frac{2\lambda}{\lambda-1}\alpha - \frac{2}{\lambda-1}\beta\right) + \lambda f\left(\frac{-2\lambda}{\lambda-1}\alpha + \frac{2\lambda}{\lambda-1}\beta\right)$$

and, clearly, this problem has a unique solution $\alpha \in H$ for any given $\beta \in H$. As for (1.11), given $\alpha \in H$, let $\beta = \theta_{\lambda}^{-1}(\alpha)$. Then $\alpha = \theta_{\lambda}(\beta)$ and

$$J_{\lambda}^{*}(\beta) := I^{*}\left(\lambda\beta + \psi_{\beta,\lambda}, \beta - \frac{\psi_{\beta,\lambda}}{\lambda}\right) = I^{*}(\alpha + \varphi, \alpha - \varphi) \leqslant J_{1}^{*}(\alpha),$$

where $\varphi := \lambda \beta + \psi_{\beta,\lambda} - \alpha$ and we have used the definition of J_1^* in the last inequality.

Step 4. We now describe the following min-max construction. By using Fatou's lemma, we easily see that for any finite dimensional subspace Y of H, $J_{\lambda}^{*}(\alpha) \to -\infty$ as $\|\alpha\| \to \infty$, $\alpha \in Y$. From now on, we denote by Q_{k}^{λ} a large ball $Q_k^{\lambda} = B_{R_k^{\lambda}}(0) \cap E_k$ and

$$\partial Q_k^{\lambda} := \left\{ \alpha \in E_k \colon \|\alpha\| = R_k^{\lambda} \right\}, \qquad S := \left\{ \alpha \in H_{k-1}^{\perp} \colon \|\alpha\| = \rho \right\}.$$

The constant $\rho = \rho_k$ is defined in the following way: from now on we restrict ourselves to a fixed interval $\lambda \in$ $[\lambda^*, +\infty]$ with $0 < \lambda^* < 1$; then it is possible to fix $\rho \in [0, R_k]$ in such a way that

$$\inf\left\{I^*\left(\frac{2\lambda}{\lambda+1}\alpha,\frac{2\lambda}{\lambda+1}\alpha\right):\alpha\in S\right\}>0.$$
(1.12)

We stress that ρ does not depend on λ . The positive constant R_k^{λ} is taken large enough so that $J_{\lambda}^*(\alpha) < 0$ for every $\alpha \in E_k$ such that $\|\alpha\| \ge R_k^{\lambda}$ and we choose $R_k^1 = R_k$. By possibly taking a larger R_k^{λ} , we also require that

$$\left\|\theta_{\lambda}^{-1}(\alpha)\right\| > \rho, \quad \forall \alpha \in \partial Q_{k}^{\lambda}.$$

$$(1.13)$$

Finally, we require that $R_k^{\lambda} \ge R_k^1$ for every $\lambda \in [\lambda^*, +\infty[$. Given $A \subset H$, we say that A and S link if:

- (i) A is compact and symmetric;
- (ii) A contains a subset B which is odd homeomorphic to ∂Q_k^{λ} and $\sup_B J_{\lambda}^* < 0$;
- (iii) $\gamma(A) \cap S \neq \emptyset$ for every odd and continuous map $\gamma: A \to H$ such that $\gamma|_B = Id$. Accordingly, we denote

$$\mathcal{A}_{\lambda} := \{ A \subset H \colon A \text{ and } S \text{ link} \}$$

and

$$c_{\lambda}^* := \inf_{A \in \mathcal{A}_{\lambda}} \sup_{A} J_{\lambda}^*.$$

The class \mathcal{A}_{λ} contains the set Q_k^{λ} , since $\rho < R_k^{\lambda}$. We also observe that $c_{\lambda}^* > 0$. Indeed, by definition, we have $c_{\lambda}^* \ge \inf_S J_{\lambda}^*$ while, using the very definition of J_{λ}^* , for every $\alpha \in H$,

$$J_{\lambda}^{*}(\alpha) \geq I^{*}\left(\lambda\alpha + \varphi, \alpha - \frac{\varphi}{\lambda}\right) = I^{*}\left(\frac{2\lambda}{\lambda + 1}\alpha, \frac{2\lambda}{\lambda + 1}\alpha\right),$$

where $\varphi := \frac{\lambda(1-\lambda)}{1+\lambda} \alpha$, and our claim follows from (1.12).

Now, it is standard that there exists a critical point α_{λ} of J_{λ}^* at level c_{λ}^* satisfying $m_{\lambda}^*(\alpha_{\lambda}) \ge k$. It then follows from (1.9) that

$$k \leqslant C\left(\left(\lambda(c_{\lambda}^{*})^{(p-2)/p}\right)^{N/2} + \left(\frac{(c_{\lambda}^{*})^{(q-2)/q}}{\lambda}\right)^{N/2}\right).$$
(1.14)

This estimate holds uniformly in λ and in k, provided λ is bounded away from zero. In our final step below we prove that, for every λ ,

$$c_{\lambda}^* \leqslant b_k. \tag{1.15}$$

By inserting (1.15) in the inequality (1.14) with $\lambda := b_k^{\frac{1}{p} - \frac{1}{q}}$ completes then the proof of Proposition 9. We stress that indeed $b_k \ge 1$ for every large $k \in \mathbb{N}$.

Step 5. In order to prove (1.15), given $\varepsilon > 0$, let $\sigma \in G_k$ be such that $\sup_{\sigma(Q_k^1)} J_1^* \leq b_k + \varepsilon$; we recall that $Q_k^1 =$ $B_{R_k^1}(0) \cap E_k = B_{R_k}(0) \cap E_k$. Since $R_k^1 \leq R_k^{\lambda}$, we can extend σ to Q_k^{λ} by setting

$$\tilde{\sigma}(\alpha) := \begin{cases} \sigma(\alpha) & \text{if } \alpha \in Q_k^1, \\ \alpha & \text{if } \alpha \in Q_k^1 \setminus Q_k^1. \end{cases}$$

Let $A := \theta_{\lambda}^{-1}(\tilde{\sigma}(Q_k^{\lambda}))$. We claim that $A \in \mathcal{A}_{\lambda}$. Indeed, by letting $B := \theta_{\lambda}^{-1}(\tilde{\sigma}(\partial Q_k^{\lambda})) = \theta_{\lambda}^{-1}(\partial Q_k^{\lambda})$, thanks to (1.11) we see that

$$\sup_{B} J_{\lambda}^{*} \leqslant \sup_{\tilde{\sigma}(\partial Q_{k}^{\lambda})} J_{1}^{*} = \sup_{\partial Q_{k}^{\lambda}} J_{1}^{*} < 0$$

since $R_k^{\lambda} \ge R_k^1$. On the other hand, let $\gamma : A \to H$ be any odd and continuous map such that $\gamma(\alpha) = \alpha$ for all $\alpha \in \theta_{\lambda}^{-1}(\partial Q_k^{\lambda})$. Define

$$\mathcal{U} := \left\{ \alpha \in Q_k^{\lambda} \colon \left\| \gamma \left(\theta_{\lambda}^{-1} \big(\tilde{\sigma} \left(\alpha \right) \right) \right) \right\| < \rho \right\}.$$

This is a bounded, symmetric neighborhood of the origin in E_k . According to the Borsuk–Ulam theorem, there exists $\alpha \in \partial \mathcal{U}$ such that $\gamma(\beta) \in E_{k-1}^{\perp}$, with $\beta := \theta_{\lambda}^{-1}(\tilde{\sigma}(\alpha))$. Of course we have $\|\gamma(\beta)\| \leq \rho$. Now, if $\alpha \in \partial Q_k^{\lambda}$ then $\gamma(\beta) = \theta_{\lambda}^{-1}(\alpha)$ and so $\|\gamma(\beta)\| > \rho$, see (1.13). Thus $\alpha \notin \partial Q_k^{\lambda}$ and therefore $\|\gamma(\beta)\| = \rho$. In conclusion, $\gamma(\beta) \in \gamma(A) \cap S$. This proves the required linking property and shows that $A \in \mathcal{A}_{\lambda}$. As a consequence,

$$c_{\lambda}^* \leqslant \sup_{\lambda} J_{\lambda}^*$$

But, again by (1.11) and the fact that $R_k^{\lambda} \ge R_k^1$ we have that

$$\sup_{A} J_{\lambda}^{*} = \sup_{\theta_{\lambda}^{-1}(\tilde{\sigma}(\mathcal{Q}_{k}^{\lambda}))} J_{\lambda}^{*} \leqslant \sup_{\tilde{\sigma}(\mathcal{Q}_{k}^{\lambda})} J_{1}^{*} = \sup_{(\mathcal{Q}_{k}^{\lambda} \setminus \mathcal{Q}_{k}^{1}) \cup \sigma(\mathcal{Q}_{k}^{1})} J_{1}^{*} = \sup_{\sigma(\mathcal{Q}_{k}^{1})} J_{1}^{*}.$$

In conclusion,

 $c_{\lambda}^* \leqslant b_k + \varepsilon, \quad \forall \varepsilon > 0,$

and this establishes (1.15). \Box

The proof of [1, Theorem 1] follows easily from Proposition 9. [1, Claim 2 of Theorem 1] has to be adapted to the new statement of Proposition 9. We include the details for completeness.

We denote again by E_k the eigenspace associated to the first k eigenfunctions of the Laplacian operator in $H_0^1(\Omega)$ and we fix a large constant $\tilde{R}_k > 0$ such that $\tilde{J}(\alpha) < 0$ for every $\alpha \in E_k$ satisfying $||\alpha|| > \tilde{R}_k$. Let

 $G_k := \left\{ \sigma \in C\left(B_{\tilde{R}_k}(0) \cap E_k; H_0^1(\Omega) \right) \mid \sigma(-\alpha) = -\sigma(\alpha), \ \sigma \mid \partial B_{\tilde{R}_k}(0) \cap E_k = \mathrm{Id} \right\},$

and define the minimax levels

$$\tilde{b}_k := \inf_{\sigma \in G_k} \max\{\tilde{J}(\sigma(\alpha)) \colon \alpha \in B_{\tilde{R}_k}(0) \cap E_k\}.$$
(1.16)

Proof of [1, Theorem 1]. Assume by contradiction that \tilde{J} does not admit an unbounded sequence of critical values. Let $(\tilde{b}_k)_k$ be the sequence of minimax levels of \tilde{J} defined by (1.16).

Claim 1. *There exist* C, $k_0 > 0$ *such that for all* $k \ge k_0$,

$$\tilde{b}_k \leqslant C k^{p/(p-1)}. \tag{1.17}$$

The claim follows exactly as in [4, Prop. 10.46].

Claim 2. There exist C' > 0 and $k'_0 > 0$ such that for all $k \ge k'_0$,

$$\tilde{b}_k \geqslant C' k^{2pq/N(pq-p-q)}.$$
(1.18)

Let us fix a small c > 0 in such a way that the functional

$$\hat{I}(u,v) = \int \left(\langle \nabla u, \nabla v \rangle - cF(u) - cG(v) \right)$$

is such that $\tilde{I} - \hat{I}$ is bounded from below in $H_0^1(\Omega) \times H_0^1(\Omega)$. We also consider the associated reduced functional \hat{J} defined by

$$\hat{J}(\alpha) := \hat{I}(\alpha + \hat{\psi}_{\alpha}, \alpha - \hat{\psi}_{\alpha}) := \max_{\psi \in H_0^1(\Omega)} \hat{I}(\alpha + \psi, \alpha - \psi)$$

and the corresponding minimax numbers

$$\hat{b}_k := \inf_{\sigma \in G_k} \max \left\{ \hat{J}(\sigma(\alpha)) \colon \alpha \in B_{\hat{R}_k}(0) \cap E_k \right\}$$

where taking $\hat{R}_k = \tilde{R}_k$ larger if necessary, we can assume that $\hat{J}(\alpha) < 0$ for every $\alpha \in E_k$ satisfying $\|\alpha\| > \hat{R}_k$. Clearly, the sequence $\tilde{b}_k - \hat{b}_k$ is bounded from below. According to Proposition 9, we have that $k^{2pq/N(pq-p-q)} \leq C\hat{b}_k$, so that the claim follows.

The conclusion easily follows. \Box

References

- D. Bonheure, M. Ramos, Multiple critical points of perturbed symmetric strongly indefinite functionals, http://dx.doi.org/10.1016/ j.anihpc.2008.06.002.
- [2] M. Cwickel, Weak type estimates and the number of bound states of Schrödinger operators, Ann. Math. 106 (1977) 93-102.
- [3] E.H. Lieb, Bounds on the eigenvalues of the Laplace and Schrödinger operators, Bull. Amer. Math. Soc. 82 (1976) 751-753.
- [4] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf., vol. 65, Amer. Math. Soc., Providence, RI, 1986.
- [5] G. Rosenbljum, The distribution of the discrete spectrum for singular differential operators, Soviet Math. Dokl. 13 (1972) 245–249.
- [6] B. Simon, Functional Integration and Quantum Physics, Academic Press, 1979.