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Abstract

In this paper a second order semilinear parabolic PDE with rapidly oscillating coefficients is homogenized. The novelty of our
result lies in the fact that we allow the second order part of the differential operator to be degenerate in some part of Rd .

Our fully probabilistic method is based on the deep connection between PDEs and BSDEs and the weak convergence of a class
of diffusion processes.
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1. Introduction

Our goal is to study by a probabilistic approach the homogenization property of a second order semilinear parabolic
PDE with periodic coefficients. Namely, we deal with the semilinear parabolic PDE with Cauchy type condition⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∀(t, x) ∈ R+ × Rd ,

∂tu
ε(t, x) = Lεu

ε(t, x) + 1

ε
e

(
x

ε
,uε(t, x)

)
+ f

(
x

ε
, x,uε(t, x), ∂xu

ε(t, x)σ

(
x

ε

))
,

uε(0, x) = g(x), x ∈ Rd .

(1.1)

The second order differential operator with rapidly oscillating coefficients Lε is given by

Lε(·) = 1

2

d∑
i,j=1

aij

(
x

ε

)
∂2
xixj

+
d∑

i=1

[
1

ε
bi

(
x

ε

)
+ ci

(
x

ε

)]
∂xi

(1.2)

where a, b, c are periodic functions (a = σσ ∗ for some periodic function σ ).
After the pioneer work of Freidlin [12] which is also presented in Chapter 3 of Bensoussan et al. [1], it is well known

that a linear parabolic PDE can be homogenized by probabilistic arguments based on the Feynman–Kac formula, the
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ergodic theorem and the central limit theorem. Using the deep connection between backward stochastic differential
equations and semilinear PDEs, several authors studied the extension of this approach to the case of non-linear equa-
tions with periodic coefficients and highly oscillating potential. The first scheme based on stability of BSDEs and a
regularization procedure was developed by Buckdahn, Hu and Peng [3]. Briand and Hu [2] exploited this method and
homogenized a system of semilinear elliptic PDEs using the stochastic representation of the solutions of such systems
by BSDEs with random terminal time. The second way was initiated by Pardoux [19], who used weak convergence
techniques. The results and the formulation of the limiting equation involve the solution u of the Poisson equation
Lu + f = 0, where L is the infinitesimal generator of a Markov process on the d-dimensional torus induced by a
nonrescaled version of (1.2). Pardoux and Veretennikov [24], using essentially probabilistic tools and some estimates
from PDE theory, solved this Poisson equation for an elliptic and ergodic diffusion and provided some rather sharp
estimates of the solution. This strong result has been extensively used for the study of the homogenization property of
non-linear equations by means of probabilistic tools. For example Lejay [17] has treated the case of divergence form
operators whereas Delarue [7], coupling this latter scheme with an efficiently controlled regularization procedure, has
dealt with the case of quasilinear PDEs.

In all these results, a key assumption is the uniform non-degeneracy (also called uniform ellipticity) of the diffusion
matrix a, that is λ−1 Id � a(x) � λ Id for some strictly positive constant λ and any x ∈ Rd . It implies irreducibility of
the above Markov process and smoothness of the solution of the corresponding Poisson equation. More recently, some
authors have been interested in weakening this non-degeneracy assumption, in other words in allowing the matrix a to
vanish along some directions. Roughly speaking, the first idea was to investigate the case when a remains uniformly
elliptic but the value of λ becomes very large (see for instance Heron and Mossino [14] on this topic). Afterwards, in
a series of papers, De Arcangelis and Serra Cassano [5], Paronetto and Serra Cassano [26] and Paronetto [27,28] have
investigated the periodic homogenization of a class of divergence form degenerate linear equations. Loosely speaking,
the diffusion coefficient is controlled by the identity matrix λ−1(x) Id � a(x) � λ(x) Id where the scalar function λ

satisfies a so-called Muckenhoupt condition, that is λ verifies suitable integrability conditions together with its inverse.
In a similar spirit, Huang et al. [15] have considered non-linear equations with periodic coefficients and Engström
et al. [10] have investigated homogenization of nonlinear random operators. However, the Muckenhoupt condition is
rather close to the non-degenerate case. From the mathematical angle, the developed techniques are similar to the non-
degenerate case (compactness methods based on Sobolev’s type inequalities in appropriate weighted spaces). From
the modelling angle, the geometry of the degeneracies of the matrix a are restrictive in the sense that, first, a may
degenerate only on a subset of null Lebesgue measure and, second, when it does (at x ∈ Rd ), the matrix a(x) can be
nothing but the null matrix 0.

Thereafter, Rhodes [29,30] and Delarue and Rhodes [8] have worked under apparently minimal assumptions for
the homogenization property to hold in the case of symmetric divergence form operators, respectively for linear and
quasilinear random PDEs. Intuitively, their assumption on the matrix a could be expressed as follows (in the case
of periodic coefficients): if a periodic function ϕ satisfies a(x)∂xϕ(x) = 0 for Lebesgue almost every x then it is
constant. For instance, the Muckenhoupt condition implies such a relation. The authors also give examples where the
matrix a is everywhere degenerate, but the rank of a must be greater than 1 over a set of full Lebesgue measure.
However, such a condition does not allow the matrix a to reduce to 0 over an open domain. The reason is simple:
such a condition only relies on the matrix a. But if a reduces to 0 over an open domain, say D, it is plain to see that
the leading term in (1.2) is b over D (up to a scaling factor). To improve the considered degeneracies of a, it is now
clear that appropriate assumptions must be made both on the diffusion coefficient a and the drift term b. This is the
underlying idea of our main assumption (H1) on Lε: roughly speaking, we assume that the space can be divided in
two parts, a regularizing area U where a is non-degenerate enough (i.e. a satisfies the strong Hörmander condition,
see Definition 2.1), and its complementary Uc where a may degenerate (and even reduce to 0) but the drift term b

compensates for the lack of non-degeneracy of a (mathematically speaking, we assume that ∀x ∈ Uc, P ε
t0
(1U)(x) > 0

where P ε is the semigroup associated to (1.2) and t0 is a fixed time). This idea was first developed for linear parabolic
PDEs by Hairer and Pardoux [13], to which the reader is referred for several illustrating examples (Section 7). The
reader may wonder which comparison could be made between [8,29,30] and [13]. It turns out that these approaches
are basically different and examples satisfying one condition but not the other one can be constructed and conversely.

The aim of the present paper is to extend the work [13] to semilinear PDEs. Unlike [3] or [2], the limiting equation
may be degenerate so that it requires careful attention. Moreover, this difficulty is coupled with the oscillations of the



A.B. Sow et al. / Ann. I. H. Poincaré – AN 26 (2009) 979–998 981
non-linear term 1
ε
e( x

ε
, uε(t, x)) in (1.2) (e is not bounded with respect to uε). This raises the difficulty of controlling

the gradient ∂xuε .
The paper is organized as follows. Section 2 recalls the results obtained in the linear case. Our main assumptions

and results are stated in Section 3. Section 4 is devoted to the main proofs.

2. Diffusions with periodic coefficients

In all what follows, we assume given a complete stochastic basis (Ω, F , (Ft )t�0,P), where the filtration (Ft )t�0
is generated by a d-dimensional Brownian motion (Bt )t�0, and the continuous functions

b, c : Rd −→ Rd, σ : Rd −→ Rd × Rd,

which are periodic of period 1 in each direction of Rd . Given ε > 0 and x ∈ Rd , let {Xx,ε
s }s�0 (which will be mostly

written (Xε
s )s�0) denote the solution of the stochastic differential equation

∀t � 0, Xε
t = x +

t∫
0

(
1

ε
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s

ε
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j
s (2.1)

and

Lε(·) = 1

2
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ε

)
∂2
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+
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[
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ε
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x

ε

)
+ ci

(
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(2.2)

its infinitesimal generator, where a = σσ ∗. Considering the processes (X̃ε
t )t�0 and (X̄ε

t )t�0 defined by

∀t � 0, X̃ε
t = 1

ε
Xε

ε2t
; X̄ε

t = Xε
t

ε
= X̃ε

t/ε2,

then there exists a standard d-dimensional Brownian motion (Bt )t�0 depending on ε (in fact for 0 � s � t , Bε
s = 1

ε
Bε2s

and we forget that dependence since it has no incidence on the law of the process), such that

∀t � 0, X̃ε
t = x

ε
+

t∫
0

(
b
(
X̃ε

s

)+ εc
(
X̃ε

s

))
ds +

d∑
j=1

t∫
0

σj

(
X̃ε

s

)
dB

j
s . (2.3)

We consider the Markov process (X̃ε
t )t�0 solution of (2.3) as taking values in the d dimensional torus Td = Rd/Zd

and pε(t, x,A) its transition probability. We shall write p(t, x,A) for p0(t, x,A). We will also consider the same
equation starting from x but without the term εc, namely

∀t � 0, X̃x
t = x +

t∫
0

b
(
X̃x

s

)
ds +

d∑
j=1

t∫
0

σj

(
X̃x

s

)
dB

j
s (2.4)

and (J x
t )t�0 the Jacobian of the stochastic flow associated to (X̃x

t )t�0, that is the d × d matrix valued stochastic
process solving

dJ x
t = Db

(
X̃x

t

)
J x

t dt +
d∑

j=1

Dσj

(
X̃x

t

)
J x

t dB
j
t , J x

0 = I. (2.5)

Moreover to the stochastic differential equation satisfied by (X̃x
t )t�0, having in mind Stroock–Varadhan’s support

theorem, we associate the controlled ODE (where we use the convention of summation over repeated indices). For
each x ∈ Td, u ∈ L2

loc(R+,Rd), let (z
x,ε
u (t), t � 0) denote the solution of⎧⎨

⎩
dzi

dt
(t) = (bi + εci)

(
z(t)

)− 1

2
(∂xk

σij σkj )
(
z(t)

)+ σij

(
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)
uj (t);

z(0) = x.

(2.6)



982 A.B. Sow et al. / Ann. I. H. Poincaré – AN 26 (2009) 979–998
2.1. Assumptions and preliminary result

Let us recall the following

Definition 2.1. Let us denote by σj (1 � j � d) the column vectors of σ . We will say that the strong Hörmander
condition holds at some point x ∈ Td if the Lie algebra generated by {σj }1�j�d spans the whole space Rd at x ∈ Td.

We furthermore say that the parabolic Hörmander condition holds at x ∈ Td, if the Lie algebra generated by the
(d + 1)-dimensional vectors (b,1) ∪ {(σj ,0)}1�j�d spans the whole space of Rd+1 at x ∈ Td.

We say that the drift and the diffusion coefficients satisfy assumptions (H1) if the following holds (the same as
in [13])

(H1.1) σ,b and c are of class C∞ and periodic of period one in each direction.
(H1.2) There exists a non-empty, open and connected subset U of Td on which the strong Hörmander conditions

holds. Furthermore, there exists t0 and ε0 such that

∀x ∈ Td, 0 � ε � ε0, inf
u∈L2(0,t0,Rd )

{‖u‖L2; zx,ε
u (t0) ∈ U

}
< ∞. (2.7)

(H1.3) The following holds

inf
t>0

sup
x∈Td

E
(∣∣J x

t

∣∣,{τx
V � t

})
< 1,

where V denotes the subset of Td where the parabolic Hörmander condition holds, τx
V is the first hitting time of V by

the process {X̃x
t }.

Put in probabilistic words, (2.7) means that a particle Xε driven by SDE (2.1) located at x ∈ Uc at time t = 0 has
a reasonable probability to reach U before the time t0, namely that Px(X

ε
t0

∈ U) > 0. Assumption (H1.3) ensures the
semigroup associated to Xε is regularizing enough.

Remark 2.1. Here is the simplest example of a situation where our assumptions are satisfied, with a degenerating
matrix of diffusion coefficients. Let λ ∈ C∞(Td, [0,1]) be such that {x, λ(x) > 0} is connected and not empty. Let
U = V = {x, λ(x) > 0}. For x ∈ Td\U , let

t (x) := inf

{
s > 0, zx

s ∈ U, where
dzx

s

ds
= b

(
zx
s

)
, zx

0 = x

}
.

Let a(x) = λ(x)I , where I denotes the d × d identity matrix. Provided the smooth vector field {b(x), x ∈ Td} is such
that supx∈Td\U t (x) < ∞, the assumptions (H1.1), (H1.2) and (H1.3) are satisfied. Several precise examples of such

coefficients {a(x), b(x), x ∈ Td} are given in [13], which also satisfy the assumption (H1.4) below.

It is not difficult to verify that under (H1.1) and (H1.2) the following Doeblin condition is satisfied: there exists
t1 > 0, 0 < ε1 < ε0, β > 0 and ν a probability measure on Td which is absolutely continuous with respect to the
Lebesgue measure, s.t. for all 0 < ε < ε1, x ∈ Td, A a Borel subset of Td,

pε(t1;x,A) � βν(A).

This ensures existence and uniqueness of a unique invariant measure με of (X̃ε
t )t�0 (let us denote μ = μ0) and the

following facts (see [13]).

Lemma 2.2 (The spectral gap). There exists ρ > 0 such that for all 0 � ε � 1, t > 0 and f ∈ L∞(Td),∣∣∣∣E[f (X̃ε
t

)]−
∫
Td

f (x)με(dx)

∣∣∣∣� ‖f ‖∞e−ρt .

Lemma 2.3. The following holds

με
ε→0−−−→ μ, weakly.
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We finally assume that
(H1.4) The crucial centering condition is satisfied:

∫
Td b(x)μ(dx) = 0.

2.2. The Poisson equation

Let us consider the infinitesimal generator L of the Td-valued diffusion process (X̃x)t�0 given by

L = 1

2

d∑
i,j=1

(σσ ∗)ij (x)∂2
xixj

+
d∑

i=1

bi(x)∂xi
(2.8)

and Pt the semigroup generated by (X̃x)t�0.
For a function f ∈ C1(Td) satisfying the centering condition∫

Td

f (x)μ(dx) = 0, (2.9)

we want to solve the PDE

Lf̂ (x) + f (x) = 0, x ∈ Td, (2.10)

in order to get rid of the terms depending on ε−1 in the perturbed equations. For this purpose we recall the following
result given in [13, Lemma 2.6] which will be useful in the sequel:

Lemma 2.4. Under (H1), Pt maps C1(Td) into itself and there exists two positive constants K > 0 and ρ > 0 such
that for every f ∈ C1(Td) satisfying (2.9) and for every t � 0, we have

‖Pt f ‖C1(Td) � Ke−ρt‖f ‖C1(Td). (2.11)

It follows from Lemma 2.4 the

Lemma 2.5. Under assumption (H1) if f ∈ C1(Td) satisfies (2.9), then the function f̂ defined by

f̂ (x) =
+∞∫
0

Ex

[
f (X̃t )

]
dt, x ∈ Td,

belongs to C1(Td) and is the unique weak sense solution of Eq. (2.10) which is centered with respect to μ.

(For the notion of weak sense solution to (2.10), see [25].)

3. Homogenization of a semilinear parabolic PDE

For each ε > 0, we consider the PDE with Cauchy type condition⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∀(t, x) ∈ R+ × Rd ,

∂tu
ε(t, x) = Lεu

ε(t, x) + 1

ε
e

(
x

ε
,uε(t, x)

)
+ f

(
x

ε
, x,uε(t, x), ∂xu

ε(t, x)σ

(
x

ε

))
,

uε(0, x) = g(x), x ∈ Rd

(3.1)

where g belongs to C(Rd ,R) and the measurable functions f : Rd × Rd × R × Rd → R, e : Rd × R → R satisfy the
following assumptions (H2) (in what follows, keep in mind that y and z respectively stand for uε and ∂xu

ε):

(H2.1) e and f are periodic of period 1 in each direction in the first argument and continuous.
(H2.2) e is twice continuously differentiable in y uniformly with respect to x and moreover there exists c > 0 such

that ∀y ∈ R,
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(i) e(·, y), ∂ye(·, y) and ∂2
yye(·, y) belong to C1(Td).

(ii) (1 + |y|)−1‖e(·, y)‖C1(Td) + ‖∂ye(·, y)‖C1(Td) + (1 + |y|)‖∂2
yye(·, y)‖∞ � c.

(H2.3) The following centering condition holds

∀y ∈ R,

∫
Td

e(x, y)μ(dx) = 0. (3.2)

(H2.4) There exists K ′ > 0 such that for x ∈ Td, (x̃, x̃′) ∈ (Rd)2, (y, y′) ∈ R2 and (z, z′) ∈ (Rd)2,∣∣g(x̃)
∣∣+ ∣∣f (x, x̃, y, z)

∣∣� K ′(1 + |y| + |z|),∣∣g(x̃) − g(x̃′)
∣∣+ ∣∣f (x, x̃, y, z) − f (x, x̃ ′, y′, z′)

∣∣� K ′(|x̃ − x̃′| + |y − y′| + |z − z′|).
Remark 3.1. We first stress that the centering condition (H2.3) is classical (see [7,9,19] for instance). Moreover, our
standing assumption on f with respect to x̃ and g can be weaken as follows. We may only assume continuity and
sublinear growth. So in this case the homogenization property can be established under slight modifications. To prove
existence of a unique bounded and continuous viscosity solution of the limit PDE (3.10), f and g must be at least
locally Lipschitz in x̃.

Our assumption on e has the advantage of allowing e to grow linearly in y as |y| → ∞. However, the assumption
on the second derivative is rather restrictive. The arguments from [19] could be adapted here. They allow to treat a
function e which is the sum of a linear function of y, and an element of C2

b(R), whose coefficients depend upon x.

Under the previous assumptions, for any fixed y ∈ R and i = 1, . . . , d, we can consider the solutions of the follow-
ing Poisson equations on the torus Td:

Lê(·, y) + e(·, y) = 0, and Lb̂i(·) + bi(·) = 0, (3.3)

given for any (x, y) ∈ Td × R by

ê(x, y) =
+∞∫
0

Ex

[
e(X̃t , y)

]
dt, and b̂i (x) =

+∞∫
0

Ex

[
bi(X̃t )

]
dt. (3.4)

Then we have (the proof is given in Section 4):

Proposition 3.1. The functions b̂i (·) (1 � i � d) and ê(·, y) (y ∈ R) belong to C1(Td). Furthermore, for each x ∈ Td,
the mapping y ∈ R 
→ ê(x, y) is twice continuously differentiable and the derivatives are solutions of the following
Poisson equations

L∂yê(·, y) = −∂ye(·, y); L∂2
yy ê(·, y) = −∂2

yye(·, y).

Furthermore, ∂y ê(·, y), ∂2
yy ê(·, y) belong to C1(Td) for any y ∈ R and there exists a constant c′, only depending

on K,ρ and c such that ∀(x, y) ∈ Td × R,

∀y ∈ R,
(
1 + |y|)−1∥∥ê(·, y)

∥∥
C1(Td)

+ ∥∥∂y ê(·, y)
∥∥

C1(Td)
+ (

1 + |y|)∥∥∂2
yy ê(·, y)

∥∥∞ � c′. (3.5)

We now aim at describing the limit PDE. Let us consider the following functions defined for every (x, x̃, y, z) ∈
Td × Rd × R × Rd by

Λ(x) = (I + ∂xb̂)(x)σ (x),

F (x, y) = (I + ∂xb̂)(x)
(
c + a(x)∂2

xy ê(x, y)
)
,

U1(x, y) = 〈
∂x ê(x, y), c

〉− ∂y ê(x, y)e(x, y) + ∂2
xy ê

∗(x, y)a(x)∂x ê(x, y),

U(x, x̃, y, z) = U1(x, y) + f
(
x, x̃, y, z + ∂x ê(x, y)σ (x)

)
.

We should point out that there exists a positive constant C > 0 such that F and U satisfy for all x ∈ Td, (x̃, x̃′) ∈ (Rd)2,
(y, y′) ∈ R2 and (z, z′) ∈ (Rd)2
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∣∣U(x, x̃, y, z)
∣∣� C

(
1 + |y| + |z|),∣∣F(x, y) − F(x, y′)
∣∣+ ∣∣U(x, x̃, y, z) − U(x, x̃′, y′, z′)

∣∣� C
(|x̃ − x̃′| + |y − y′| + |z − z′|). (3.6)

We can then identify the coefficients of the limit PDE given for all (x̃, y, z) ∈ Rd × R × Rd , by

A =
∫
Td

(ΛΛ∗)(x)μ(dx), (3.7)

F̄ (y) =
∫
Td

F(x, y)μ(dx) ≡ D1 + D̄(y), where D1 =
∫
Td

(I + ∂xb̂)c(x)μ(dx),

Ū(x̃, y, z) =
∫
Td

U
(
x, x̃, y,Λ(x)z

)
μ(dx), (3.8)

and the second order operator

L̄(·) = 1

2

d∑
i,j=1

Aij ∂
2
xixj

+
d∑

i=1

F̄i(·)∂xi
. (3.9)

Then the equation satisfied by the limit of the solution of (3.1) can be formulated as{
∂tu(t, x) = L̄u(t, x) + Ū

(
x,u(t, x), ∂xu(t, x)

)
, (t, x) ∈ [0, T ] × Rd ,

u(0, x) = g(x), x ∈ Rd .
(3.10)

We are in position to formulate our main result.

Theorem 3.2. For all t � 0, x ∈ Rd ,

uε(t, x)
ε−→0−−−−→ u(t, x) pointwise,

where uε is the viscosity solution of (3.1) and u the viscosity solution of (3.10).

Because of the degeneracy allowed on the diffusion matrix, it is not obvious that the limit PDE is solvable under
our standing assumptions. In the following section we discuss existence, uniqueness and regularity of the solution u

of (3.10).

3.1. Analysis of the limit PDE

In what follows, we want to prove that this PDE admits a (unique) solution in some sense and that this solution
can be approximated by a sequence of smooth functions, given by a regularization of the PDE (3.10). Namely, let us
consider two smooth mollifiers ρ : Rd → R and 
 : R → R and define, for n � 1, ρn(·) = ndρ(n·) and 
n(·) = n
(n·).
The regularized coefficients are defined for any triple (x, y, z) ∈ Rd × R × Rd by

gn(x) = (g ∗ ρn)(x), D̄n(y) = (D̄ ∗ 
n)(y), and Ūn = [
Ū ∗ (ρn ⊗ 
n ⊗ ρn)

]
(x, y, z),

where ∗ stands for the standard convolution operator and (ρn ⊗
n ⊗ρn)(x, y, z) = ρn(x)
n(y)ρn(z). In what follows,
D̄0 and Ū0 stand respectively for D̄ and Ū . Standard arguments of convolution techniques ensure that, for n � 0, with
a constant still noted C that do not depend on n � 0, for every (x, x ′) ∈ (Rd)2, (y, y′) ∈ R2 and (z, z′) ∈ (Rd)2,∣∣D̄n(y)

∣∣+ ∣∣Ūn(x, y, z)
∣∣+ ∣∣gn(x)

∣∣� C
(
1 + |y| + |z|),∣∣D̄n(y) − D̄n(y′)

∣∣+ ∣∣Ūn(x, y, z) − Ūn(x′, y′, z′)
∣∣+ ∣∣gn(x) − gn(x′)

∣∣
� C

(|x − x′| + |y − y′| + |z − z′|). (3.11)

We can then consider the following regularized problem on [0, T ] × Rd :⎧⎨
⎩

∂tu
n(t, x) = Trace

[
A∂2

xxu
n
]
(t, x) + D̄n

(
un(t, x)

) · ∂xu
n(t, x) + D1 · ∂xu

n(t, x)

+ Ūn
(
x,un(t, x), ∂xu

n(t, x)
)
,

n n

(3.12)
u (0, x) = g (x).
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We shall prove

Theorem 3.3. Assume that (H1) and (H2) are in force. Then the PDE (3.10) admits a unique bounded continuous
viscosity solution u. Moreover, for every n � 1, there exists a unique classical solution un ∈ C1,2([0, T ] × Rd ;R) of
PDE (3.12) satisfying:

(i) There exists a constant C3.3 independent of n such that

∀(t, x) ∈ R+ × Rd,
∣∣un(t, x)

∣∣+ ∥∥A1/2∂xun(t, x)
∥∥� C3.3.

(ii) There exists two constants C
(n)
3.3 and γ (n) only depending on T ,n and C such that

∀1 � i, j � d, ∀(t, x) ∈ [0, T ] × Rd,
∣∣∂xi

un(t, x)
∣∣+ ∣∣∂2

xixj
un(t, x)

∣∣� C
(n)
3.3

(
1 + |x|)γ (n)

.

(iii) un (n � 1) converges pointwise towards u as n tends to infinity.

Proof. Let us first say a word about the structure of the degeneracies of the coefficients. Note that, for a vector
X ∈ Rd , if X ∈ Ker(A) then D̄(y) · X = 0 and Ū (x, y,X) = Ū (x, y,0). Indeed, if AX = 0 then Λ∗(x)X = 0 for μ

almost every x ∈ Td (see (3.7)). It is then clear that X · D̄(y) = ∫
Td ∂2

xy ê
∗(x, y)σ (x)Λ∗(x)X dμ(x) = 0. The same

argument remains valid for Ū . We can then express the matrix A as A = M Diag[λ1, . . . , λr ,0, . . . ,0]M∗, for r reals
λ1, . . . , λr different from 0 and for an orthogonal matrix M (hence r = Dim(Im(A))), and define

D̄A(y) = D̄(y)B, ŪA(x, y, z) = Ū (x, y, zB)

where B = M Diag[λ−1/2
1 , . . . , λ

−1/2
r ,0, . . . ,0]M∗. It is then readily seen that

D̄A(y)A1/2 = D̄(y) and ŪA

(
x, y, zA1/2)= Ū (x, y, z).

Similarly, for n � 1, we can define D̄n
A(y) = D̄n(y)B , Ūn

A(x, y, z) = Ūn(x, y, zB) and check that

D̄n
A(y)A1/2 = D̄n(y) and Ūn

A

(
x, y, zA1/2)= Ūn(x, y, z).

Sticking with the spirit of the previous notations, D̄0
A(y) and Ū0

A respectively denote D̄A(y) and ŪA(y). With these
notations, PDE (3.12) then reads⎧⎨

⎩
∂tu

n(t, x) = Trace
[
A∂2

xxu
n
]
(t, x) + D̄n

A

(
un(t, x)

) · A1/2∂xu
n(t, x) + D1 · ∂xu

n(t, x)

+ Ūn
A

(
x,un(t, x),A1/2∂xu

n(t, x)
)
,

un(0, x) = gn(x).

(3.13)

The reader can easily check that un(t, x) is a continuous viscosity solution (resp. classical solution) of (3.13) if and
only if vn(t, x) = un(t, x − D1t) is a continuous viscosity solution (resp. classical solution) of the PDE⎧⎨

⎩
∂tu

n(t, x) = Trace
[
A∂2

xxu
n
]
(t, x) + D̄n

A

(
un(t, x)

) · A1/2∂xu
n(t, x)

+ Ūn
A

(
x,un(t, x),A1/2∂xu

n(t, x)
)
,

un(0, x) = gn(x).

(3.14)

For the definition of viscosity solution, the reader is referred to [4]. The main advantage of factorizing the coefficients
D̄ and Ū by A1/2 is that we can now make use of the theory of BSDEs to solve (3.14) by means of the BSDE:⎧⎪⎪⎨

⎪⎪⎩
Xx

s = x + A1/2Bs, x ∈ Rd,

Y x,n
s = gn

(
Xx

t

)+
t∫

s

[
Ūn

A

(
Xx

r ,Y x,n
r ,Zx,n

r

)+ D̄n
A

(
Yx,n

r

)
Zx,n

r

]
dr −

t∫
s

Zx,n
r dBr .

(3.15)

However, to solve this BSDE, we are faced with the term D̄n
A(y)z, which need not be Lipschitzian as required by

the classical theory. To overcome this difficulty, we want to make use of the non-degeneracy of A along its image
Im(A). Decompose the whole space Rd as the orthogonal sum Rd = Ker(A) ⊕ Im(A) so that a vector x ∈ Rd can be
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written as x = xK + xI where (xK, xI ) ∈ Ker(A) × Im(A). Fix xK ∈ Ker(A). Following [6, Section 3], we can define
(Y xI ,xK,n,ZxI ,xK ,n) as the unique pair of processes solution of the BSDE⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

XxI
s = xI + A1/2Bs, xI ∈ Im(A),

Y xI ,xK,n
s = gn

(
X

xI
t + xK

)+
t∫

s

Ūn
A

(
XxI

r + xK,Y xI ,xK ,n
r ,ZxI ,xK,n

r

)
dr

+
t∫

s

D̄n
A

(
YxI ,xK,n

r

)
ZxI ,xK,n

r dr −
t∫

s

ZxI ,xK ,n
r dBr .

(3.16)

It is then easily checked that, for each x = xK + xI ∈ Rd , the triple (xK + XxI ,Y xI ,xK ,n,ZxI ,xK,n) solves the BSDE
(3.15). Conversely, for each solution (Xx,Y x,n,Zx,n) of (3.15), then the triple of processes (XxI , Y xI ,xK,n,ZxI ,xK ,n)

is the unique solution of (3.16). As a consequence, (3.15) is uniquely solvable for n � 0. Furthermore (see [6, Theo-
rem 3.1]), there exists a constant Γ > 0, which only depends on d, K̃, T ,A, such that∣∣Zx,n

r

∣∣� Γ, dP ⊗ dt a.e.

Considering a bounded smooth hΓ : Rd → Rd such that hΓ (z) = z if |z| � Γ + 1 and |hΓ (z)| � |z| for z ∈ Rd , the
triple (Xx,Y x,n,Zx,n) (n � 0) coincides with the unique solution of the following BSDE with standard Lipschitz
assumption on the coefficients⎧⎪⎪⎨

⎪⎪⎩
Xx

s = x + A1/2Bs, x ∈ Rd,

Y x,R,n
s = gn

(
Xx

t

)+
t∫

s

[
Ūn

A

(
Xx

r ,Y x,R,n
r ,Zx,R,n

r

)+ D̄n
A

(
Yx,R,n

r

)
hR

(
Zx,R,n

r

)]
dr −

t∫
s

Zx,R,n
r dBr .

(3.17)

Consequently, for each n � 1, the function un(t, x) ≡ Y
x,n
0 = Y

x,R,n
0 ∈ C1,2([0, T ] × Rd ;R) is the unique classical

solution to (3.14) (see [22]). For n = 0, u(t, x) ≡ Y
x,0
0 = Y

x,R,0
0 is a continuous bounded viscosity solution of (3.14)

(see [21, Theorem 2.4 and Section 6.4]). Furthermore, for each 0 � t � T and x ∈ Rd , un(t, x) → u(t, x) as n tends
to ∞ (this follows from [21, Theorems 1.5, 2.4]. The fact that |un(t, x)| � C3.3 for some constant C3.3 independent
of n is a consequence of [21, Proposition 1.1] and (3.11). Estimates of the derivatives up to order 2 of ∂xi

un and
∂2
xixj

un are quite classical and can be established by iterating the scheme of the proof of [22, Theorem 2.9] (see also
[6, Appendix B] for a more general framework).

Let us now tackle the uniqueness of the viscosity solution of (3.14) (n = 0). We already know (see [6, Theorem 3.1])
that u is bounded, continuous and Lipschitzian with respect to the variable xI ∈ Im(A), namely

∀(xI , x
′
I , xK, t

) ∈ Im(A)2 × Ker(A) × [0, T ], ∣∣u(t, xI + xK) − u
(
t, x′

I + xK

)∣∣� Γ
∣∣xI − x′

I

∣∣.
These properties are sufficient to ensure uniqueness among the viscosity solutions of (3.18) below that are continuous
and bounded. Indeed, if v is such a solution then, for each fixed xK ∈ Ker(A), the functions xI 
→ u(t, xI + xK) and
xI 
→ v(t, xI + xK) are both viscosity solutions of the following PDE defined on Im(A):⎧⎨

⎩
∂tu(t, xI ) = Trace

[
A∂2

xI xI
u
]
(t, xI ) + D̄A

(
u(t, xI )

) · A1/2∂xI
u(t, xI )

+ ŪA

(
xI + xK,u(t, xI ),A

1/2∂xI
u(t, xI )

)
, xI ∈ Im(A),

un(0, xI ) = gn(xI + xK), xI ∈ Im(A),

(3.18)

and satisfy the assumptions of [16, Theorem 3.2]. Hence they coincide. �
3.2. The homogenization property

Our approach is purely probabilistic and is based on BSDE techniques. The strategy consists in introducing the
unique pair (Y ε

s ,Zε
s )0�s�t of Ft -progressively measurable processes solution of the BSDEs

∀0 � s � t, Y ε
s = g

(
Xε

t

)+
t∫ (

1

ε
e
(
X̄ε

r , Y
ε
r

)+ f
(
X̄ε

r ,X
ε
r , Y

ε
r ,Zε

r

))
dr −

t∫
Zε

r dBr (3.19)
s s
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satisfying the integrability condition

E

(
sup

0�s�t

∣∣Y ε
s

∣∣2 +
t∫

0

∣∣Zε
r

∣∣2 dr

)
< ∞.

It is well known (see Pardoux [20]) that the solution of (3.1) admits the probabilistic representation

uε(t, x) = Y ε
0 , ∀(t, x) ∈ R+ × Rd

(of course Y ε· depends on the starting point x of Xε· and the final time t of the BSDE).
In order to get rid of the highly oscillating terms (depending on ε−1), let us consider the following processes (recall

that X̄ε
t = Xε

t

ε
) given by

∀0 � s � t, X̂ε
s = Xε

s + ε

(
b̂
(
X̄ε

s

)− b̂

(
x

ε

))
, Ŷ ε

s = Y ε
s − εê

(
X̄ε

s , Y
ε
s

)
.

Using Itô’s formula (see Section 4.2), they both can be rewritten as

∀0 � s � t, X̂ε
s = x +

s∫
0

(I + ∂xb̂)c
(
X̄ε

r

)
dr +

t∫
0

Λ
(
X̄ε

r

)
dBr, (3.20)

Ŷ ε
s = g

(
Xε

t

)− εê
(
X̄ε

t , Y
ε
t

)+
t∫

s

(U1 + f − ε∂y êf )
(
X̄ε

r ,X
ε
r , Y

ε
r ,Zε

r

)
dr

−
t∫

s

Z̃ε
r

[
dBr − (

σ ∗∂2
xy ê

)(
X̄ε

r , Y
ε
r

)
dr
]+ ε

t∫
s

∂y ê
(
X̄ε

r , Y
ε
r

)
Zε

r dBr + ε

2

t∫
s

∂2
yy ê

(
X̄ε

r , Y
ε
r

)∣∣Zε
r

∣∣2 dr (3.21)

where for 0 � s � t ,

Z̃ε
s = Zε

s − ∂xê
(
X̄ε

s , Y
ε
s

)
σ
(
X̄ε

s

)
.

By virtue of Girsanov’s theorem, there exists a new probability P̃ equivalent to P under which the process
(B̃s)0�s�t defined by

∀0 � s � t, B̃s = Bs −
s∫

0

(
σ ∗∂2

xy ê
)(

X̄ε
r , Y

ε
r

)
dr (3.22)

is a P̃-Brownian motion. Then rewriting (3.20), we obtain for any 0 � s � t ,

X̂ε
s = x +

s∫
0

F
(
X̄ε

r , Y
ε
r

)
dr +

s∫
0

Λ
(
X̄ε

r

)
dB̃r . (3.23)

and (Θε(r) stands for (X̄ε
r ,X

ε
r , Y

ε
r , Z̃ε

r ))

Ŷ ε
s = g

(
Xε

t

)− εê
(
X̄ε

t , Y
ε
t

)+
t∫

s

U
(
Θε(r)

)
dr −

t∫
s

Z̃ε
r dB̃r + Rε

s (3.24)

where the process Rs(ε) can be divided into two parts
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Rs(ε) = ε

t∫
s

[
∂yê

(
X̄ε

r , Y
ε
r

)
Zε

r σ
∗∂2

xy ê
(
X̄ε

r , Y
ε
r

)− ∂y ê
(
X̄ε

r , Y
ε
r

)
f
(
Θε(r)

)+ 1

2
∂2
yy ê

(
X̄ε

r , Y
ε
r

)∣∣Zε
r

∣∣2]dr

+ ε

t∫
s

∂y ê
(
X̄ε

r , Y
ε
r

)
Zε

r dB̃r

=
t∫

s

Rε(1, r) dr +
t∫

s

Rε(2, r) dB̃r .

Moreover let us consider the process

∀0 � s � t, Mε
s = −

s∫
0

Z̃ε
r dB̃r .

We intend to study the tightness property of the pair of processes (Y ε
s ,Mε

s )0�s�t indexed by ε > 0 in the space
D([0, t];Rd) (the space of right continuous functions having left limits) equipped with the Meyer–Zheng topology
(see [18] for further details).

It is well known that the sequence of quasi-martingales {Un
s ;0 � s � t} defined on the filtered probability space

{Ω; F , (Fs)0�s�t ,P} is tight whenever

sup
n

[
sup

0�s�t

E
∣∣Un

s

∣∣+ CV 0
t

(
Un

)]
< ∞,

where CV 0
t (Un), the so-called “conditional variation of Un on [0, t]”, is defined as

CV 0
t

(
Un

)= sup E
(∑

i=1

∣∣E(Un
ti+1

− Un
ti
/Fti

)∣∣)

where the supremum is taken over all partitions of the interval [0, t].
We claim that (the proof is given in Section 4.4).

Proposition 3.4. There exists a positive constant C3.4 > 0 such that

∀ε > 0, P̃
(

sup
0�s�t

∣∣Y ε
s

∣∣� C3.4

)
= 1,

sup
ε>0

Ẽ

t∫
0

∣∣Z̃ε
s

∣∣2 ds � C3.4.

As a consequence, we deduce

Corollary 3.5. For every t � 0, the following holds

lim
ε→0

Ẽ

[( t∫
0

∣∣Rs(1, ε)
∣∣ds

)2

+
( t∫

0

∣∣Rs(2, ε)
∣∣2 ds

)2]
= 0.

In particular Ẽ sup0�s�t |Rs(ε)|2 ε→0−−−→ 0.

Corollary 3.6. The family of processes (Y ε· ,Mε· ) indexed by ε is P̃-tight as elements of D([0, t],R2), equipped with
the S-topology of Jakubowski.
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It is readily seen from (3.23), that the sequence of processes {Xε
s ,0 � s � t,0 � ε � 1} is tight in the space

C([0, t],Rd) endowed with the topology of uniform convergence. Moreover thanks to the martingale central limit
theorem [11, Theorem 7.1.4], we have

·∫
0

Λ
(
X̄ε

s

)
dB̃s �⇒ A1/2B̃· in C

([0, T ];Rd
)

where �⇒ means “converges in law towards”. Hence there exists a subsequence still denoted by (Xε
s , Y

ε
s ,Mε

s ) such
that (

Xε
s ,Y

ε
s ,Mε

s

) �⇒ (
Xx,Y,M

)
in D

([0, T ];R2d+1).
Let us assume that the following extension of [13, Corollary 2.5] holds (the proof is given in Section 4.3),

Theorem 3.7. Let Ψ : Rd × RN → R be a measurable function, periodic with respect to its first variable, satisfying:

(1) for any R > 0, we can find KR > 0 such that whenever (x, v, v′) ∈ Rd × RN × RN , |v| � R and |v′| � R then we
have |Ψ (x, v) − Ψ (x, v′)| � KR|v − v′|;

(2) there exists M > 0 such that for any x ∈ Rd, v ∈ RN , |Ψ (x, v)| � M(1 + |v|).

Suppose additionally that (V ε)ε>0 is a family of RN -valued processes, which is tight in D([0, T ];RN) equipped
with the S-topology of Jakubowski and satisfies supε>0 E(sup0�s�t |V ε

s |2) < ∞.
Then the following convergence holds:

E

[
sup

0�s�t

∣∣∣∣∣
t∫

s

Ψ
(
X̄ε

r ,V
ε
r

)
dr −

t∫
s

Ψ̄
(
V ε

r

)
dr

∣∣∣∣∣
]

→ 0, as ε tends to 0, (3.25)

where Ψ̄ (v) = ∫
Td Ψ (x, v)μ(dx).

We can then apply Theorem 3.7 with the function Ψ = F and V ε = Y ε , and deduce that (Xx)t�0 must solve the
stochastic differential equation

∀t � 0, Xx
t = x +

t∫
0

F̄ (Yr ) dr + A1/2B̃t .

Moreover thanks Corollary 3.5, the process (Y ε
s )0�s�t has the same asymptotic behaviour as the process (Y̆ ε

s )0�s�t

defined by

∀0 � s � t, Y̆ ε
s = g

(
Xε

t

)+
t∫

s

U
(
Θε(r)

)
dr −

t∫
s

Z̃ε
r dB̃r . (3.26)

From now on, our strategy consists in showing that the difference Y̆ ε
s −u(t − s, X̂ε

s ) tends to 0 as ε goes to 0. However,
in the following computations, we are faced with the lack of smoothness of the function u. To overcome this difficulty,
we approximate the function u with the help of the smooth approximating sequence (un)n∈N defined in Theorem 3.3.
Thus we consider, for every n ∈ N, the pair of processes (Ỹ

ε,n
s , Z̃

ε,n
s )0�s�t defined by

∀0 � s � t, Ỹ ε,n
s = Y̆ ε

s − un
(
t − s, X̂ε

s

)
, Z̃ε,n

s = Z̃ε
s − ∂xu

n
(
t − s, X̂ε

s

)
Λ
(
X̄ε

s

)
.

Then we claim

Theorem 3.8. The following holds

(i) There exists a constant C3.8 > 0 such that for every ε > 0 and for every n ∈ N, we have∣∣Ỹ ε,n
s

∣∣� C3.8 a.s.
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(ii) For all δ > 0 there exists an integer n(δ) such that for all n � n(δ),

lim sup
ε→0

∣∣Ỹ ε,n
0

∣∣� δ. (3.27)

Proof. Ito’s formula yields for every 0 � s � t and α > 0,

eαs
∣∣Y̆ ε

s

∣∣2 +
t∫

s

eαr
∣∣Z̃ε

r

∣∣2 dr = eαt
∣∣g(Xε

t

)∣∣2 + 2

t∫
s

eαr Y̆ ε
r U

(
Θε(r)

)
dr −

t∫
s

αeαr
∣∣Y̆ ε

r

∣∣2 dr − 2

t∫
s

eαr Y̆ ε
r Z̃ε

r dB̃r .

Thanks to Proposition 3.4, and (3.6), there exists a constant still noted C > 0 (its value may change from line to line)
s.t. for every s � r � t ,

2Y̆ ε
r U

(
Θε(r)

)
� C

(
1 + ∣∣Y̆ ε

r

∣∣2)+ 1

2

∣∣Z̃ε
r

∣∣2.
Since g is bounded, this implies

eαs
∣∣Y̆ ε

s

∣∣2 � Ceαt +
t∫

s

eαr (−α + C)
∣∣Y̆ ε

r

∣∣2 dr − 2

t∫
s

eαr Y̆ ε
r Z̃ε

r dB̃r .

Choosing α = C and taking the conditional expectation ẼFs , we deduce (i) from the boundedness of un.
Let us prove (3.27). Since un ∈ C1,2([0, T ] × Rd), then Itô’s formula yields for any 0 � s � t ,

un
(
t − s, X̂ε

s

)= un
(
0, X̂ε

t

)−
t∫

s

(−∂ru
n
(
t − r, X̂ε

r

)+ L̂ε,n(r)
)
dr −

t∫
s

∂xu
n
(
t − r, X̂ε

r

)
Λ
(
X̄ε

r

)
dB̃r

where for every 0 � r � t ,

L̂ε,n(r) = 1

2

d∑
i,j=1

[
(ΛΛ∗)

(
X̄ε

r

)]
ij
∂2
xixj

un
(
t − r, X̂ε

r

)+
d∑

i=1

[
F
(
X̄ε

r , Y
ε
r

)]
i
∂xi

un
(
t − r, X̂ε

r

)
.

Hence putting

∀(t, x) ∈ R+ × Rd, Lnun(t, x) = Trace
[
A∂2

xxu
n(t, x)

]+ D̄n
(
un(t, x)

) · ∂xu
n(t, x) + D1 · ∂xu

n(t, x),

we deduce that for every 0 � s � t ,

un
(
t − s, X̂ε

s

)= un
(
0, X̂ε

t

)+
t∫

s

(
Lnun

(
t − r, X̂ε

r

)− L̂ε,n(r)
)
dr −

t∫
s

∂xu
n
(
t − r, X̂ε

r

)
Λ
(
X̄ε

r

)
dB̃r

+
t∫

s

Ū (n)
(
X̂ε

r , u
n
(
t − r, X̂ε

r

)
, ∂xu

n
(
t − r, X̂ε

r

))
dr

which implies that for every 0 � s � t ,

Ỹ ε,n
s = g

(
Xε

t

)− g(n)
(
X̂ε

t

)+
t∫

s

(
Lnun

(
t − r, X̂ε

r

)− L̂ε,n(r)
)
dr

+
t∫

s

(
U
(
Θε,n(r)

)− Ū (n)
(
X̂ε

r , u
n
(
t − r, X̂ε

r

)
, ∂xu

n
(
t − r, X̂ε

r

)))
dr −

t∫
s

Z̃ε,n
r dB̃r

where Θε,n(r) = (X̄ε
r ,X

ε
r , Ỹ

ε,n
r +un(t − r, X̂ε

r ), Z̃
ε,n
r +∂xu

n(t − r, X̂ε
r )Λ(X̄ε

r )). Itô’s formula yields for any 0 � s � t ,
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∣∣Ỹ ε,n
s

∣∣2 +
t∫

s

∣∣Z̃ε,n
r

∣∣2 dr = ∣∣g(Xε
t

)− g(n)
(
X̂ε

t

)∣∣2 + 2

t∫
s

Ỹ ε,n
r

(
Lnun

(
t − r, X̂ε

r

)− L̂ε,n(r)
)
dr

+ 2

t∫
s

Ỹ ε,n
r

(
δ1,n(ε, r) + δ2,n(ε, r) + δ3,n(ε, r) + δ4,n(ε, r)

)
dr − 2

t∫
s

Ỹ ε,n
r Z̃ε,n

r dB̃r

where

δ1,n(ε, r) = U
(
Θε,n(r)

)− U
(
X̄ε

r ,X
ε
r , Y̆

ε
r , ∂xu

n
(
t − r, X̂ε

r

)
Λ
(
X̄ε

r

))
,

δ2,n(ε, r) = U
(
Xε

r , Y̆
ε
r , ∂xu

n
(
t − r, X̂ε

r

)
Λ
(
X̄ε

r

))− Ū
(
Xε

r , Y̆
ε
r , ∂xu

n
(
t − r, X̂ε

r

))
,

δ3,n(ε, r) = Ū
(
Xε

r , Y̆
ε
r , ∂xu

n
(
t − r, X̂ε

r

))− Ū
(
Xε

r ,u
n
(
t − r, X̂ε

r

)
, ∂xu

n
(
t − r, X̂ε

r

))
,

δ4,n(ε, r) = Ū
(
Xε

r ,u
n
(
t − r, X̂ε

r

)
, ∂xu

n
(
t − r, X̂ε

r

))− Ū (n)
(
X̂ε

r , u
n
(
t − r, X̂ε

r

)
, ∂xu

n
(
t − r, X̂ε

r

))
.

The Lipschitz property of U and Ū , implies

Ỹ ε,n
r

(
δ1,n(ε, r) + δ3,n(ε, r)

)
� K̃

(∣∣Ỹ ε,n
r

∣∣∣∣Z̃ε,n
r

∣∣+ ∣∣Ỹ ε,n
r

∣∣2).
So we have for every 0 � s � t ,

Ẽ
∣∣Ỹ ε,n

s

∣∣2 + Ẽ

t∫
s

∣∣Z̃ε,n
r

∣∣2 dr � Ẽ
∣∣g(Xε

t

)− g(n)
(
X̂ε

t

)∣∣2 + 2Ẽ sup
0�s�t

∣∣∣∣∣
t∫

s

Ỹ ε,n
r

(
Lun

(
t − r, X̂ε

r

)− L̂ε,n(r)
)
dr

∣∣∣∣∣
+ CK̃ Ẽ

t∫
s

∣∣Ỹ ε,n
r

∣∣2 dr + 1

2
Ẽ

t∫
s

∣∣Z̃ε,n
r

∣∣2 dr

+ Ẽ sup
0�s�t

∣∣∣∣∣
t∫

s

Ỹ ε,n
r δ2,n(ε, r) dr

∣∣∣∣∣+ Ẽ

t∫
s

∣∣δ4,n(ε, r)
∣∣2 dr

where the constant C
K̃

depends only on K̃ . Then exploiting Gronwall’s lemma, we deduce that∣∣Ỹ ε,n
0

∣∣2 � Cn(ε)e
C

K̃
t (3.28)

where

Cn(ε) = Ẽ
∣∣g(Xε

t

)− g(n)
(
X̂ε

t

)∣∣2 + 2Ẽ sup
0�s�t

∣∣∣∣∣
t∫

0

Ỹ ε,n
r

(
Lun

(
t − r, X̂ε

r

)− L̂ε,n(r)
)
dr

∣∣∣∣∣
+ Ẽ sup

0�s�t

∣∣∣∣∣
t∫

s

Ỹ ε,n
r δ2,n(ε, r) dr

∣∣∣∣∣+ Ẽ

t∫
s

∣∣δ4,n(ε, r)
∣∣2 dr

:= C1
n(ε) + C2

n(ε) + C3
n(ε) + C4

n(ε).

It is easy to check that C1
n(ε) satisfies (3.27) thanks to the Lipschitz property of g.

We now are going to treat the terms C2
n(ε) and C3

n(ε). Fix n ∈ N. Thanks to the tightness of the process
(Xε

s , X̂
ε
s , Ỹ

ε,n
s )0�s�t , we deduce from Theorem 3.7 that

C2
n(ε)

ε→0−−−→ 0, and C3
n(ε)

ε→0−−−→ 0.

Moreover the Lipschitz property of Ū (with a constant still noted C) with respect to its first argument yields∣∣δ4,n(ε, r)
∣∣� C

∣∣Xε
t − X̂ε

t

∣∣+ sup
x∈Rd , |y|+|z|�C3.3

∣∣(ŪA − Ū
(n)
A

)
(x, y, z)

∣∣,
which is enough to prove that C4

n(ε) satisfies (3.27). �
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4. Proofs

4.1. Proof of Proposition 3.1

From Lemma 2.4, b̂i (1 � i � d) and ê(·, y) (y ∈ R) belong to C1(Td). Furthermore, for all x ∈ Td, y ∈ R, T > 0
and δ > 0, we have

∣∣ê(x, y + δ) − ê(x, y)
∣∣�

T∫
0

∣∣Ex

[
e(X̃t , y + δ) − e(X̃t , y)

]∣∣dt +
∞∫

T

∣∣Ex

[
e(X̃t , y + δ) − e(X̃t , y)

]∣∣dt

� T c|δ| + (2/ρ)ce−ρT .

The continuity of the function y 
→ ê(x, y) follows. Thanks to assumption (H2.2) and (H2.3), using similar techniques
and Lemma 2.2, we conclude that the mapping y → Ex[e(X̃t , y)] is twice continuously differentiable with respect to
y and satisfies with some positive constant C > 0,∣∣Ex

[
e(X̃t , y)

]∣∣+ ∣∣Ex

[
∂ye(X̃t , y)

]∣∣+ ∣∣Ex

[
∂2
yye(X̃t , y)

]∣∣� Ce−ρ[t]. (4.1)

Hence we deduce that for all x ∈ Td, the function ê(x, ·) is twice differentiable with respect to y and the derivatives
(by the same argument as before) ∂y ê and ∂2

yy ê are continuous and bounded on Td × R thanks to (4.1). Moreover

Lemma 2.4 and assumption (H2.2) ensure that for every y ∈ R, ∂yê(·, y) ∈ C1(Td).

4.2. Proof of the Itô formula

This section is devoted to establishing formula (3.21). This boils down to proving that we can apply the Itô formula
to the function (x, y) 
→ ê(x, y) and to the couple of Itô processes (X̄ε, Y ε). We remind the reader that the Itô formula
only holds for C2-class functions and, obviously, ê is not smooth enough. However, we have already proved the
existence of the only derivatives of ê involved in (3.21). So, as guessed by the reader, we just need to carry out a
regularization procedure to establish formula (3.21). This is the guiding line of the following computations.

To begin with, let us establish the following result.

Lemma 4.1. Let ρ : Rd → R+ be a smooth function with compact support s.t.
∫

Rd ρ(x) dx = 1. Then the sequence of
mollifiers defined by for all n ∈ N and x ∈ Rd , ρn(x) = ndρ(nx) satisfies: For all function v : Rd × R → R such that

∀y ∈ R, v(·, y) ∈ C1(Td) and Lv(·, y) ∈ C0(Td),
we have

L
(
v(·, y) ∗ ρn

) n→∞−−−−→ Lv(·, y) pointwise.

Moreover if ‖v(·, y)‖C1(Td) + ‖Lv(·, y)‖C0(Td) � CR for every |y| � R, then

∀x ∈ Td, |y| � R,
∣∣L(v ∗ ρn)(x, y)

∣∣� C′
R.

Proof. For every n ∈ N, let us consider the function ϕn defined For every (x, y) ∈ Rd × R by

ϕn(x, y) = L
(
v(x, y) ∗ ρn

)− [(
Lv(·, y)

) ∗ ρn

]
(x)

where using the convention of summation over repeated indices

ϕn(x, y) = 1

2

[
aij (x)∂xi

(
∂xj

v(·, y) ∗ ρn

)
(x) − ∂xi

(
aij ∂xj

v(·, y) ∗ ρn

)
(x) + (

∂xi
aij ∂xj

v(·, y) ∗ ρn

)
(x)

]
+
∫

Rd

[
bi(x) − bi(x − u)

]
∂xi

v(x − u,y)ρn(u)du.

Then since Lv(·, y) ∈ C0(Td), we deduce that (Lv(·, y) ∗ ρn)
n→+∞−−−−−→ Lv(·, y) and the sequence is uniformly

bounded. Hence it remains to study the sequence ϕn.
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Thanks the properties of convolution, this one can be rewritten as follows

ϕn(x, y) = 1

2

[
aij (x)

(
∂xj

v(·, y) ∗ ∂xi
ρn

)
(x) − (

aij ∂xj
v(·, y) ∗ ∂xi

ρn

)
(x) + (

∂xi
aij ∂xj

v(·, y) ∗ ρn

)
(x)

]
+
∫

Rd

[
bi(x) − bi(x − u)

]
∂xi

v(x − u,y)ρn(u)du

which implies for all x ∈ Rd ,

ϕn(x, y) = 1

2

[ ∫
Rd

[
aij (x) − aij (x − u)

]
∂xj

v(x − u,y)nd+1ρ′
i (nu)du

+
∫

Rd

∂xi
aij (x − u)∂xj

v(x − u,y)ndρ(nu)

]

+
∫

Rd

[
bi(x) − bi(x − u)

]
∂xj

v(x − u,y)ndρ(nu)du. (4.2)

Obviously, the last term in the right-hand side of (4.2) is uniformly bounded and converges to 0 since it is equal to

bi(x)
[
∂xi

v(·, y) ∗ ρn

]
(x) − [(

bi∂xi
v(·, y)

) ∗ ρn

]
(x).

Note that∫
Rd

∂xi
aij (x − u)∂xj

v(x − u,y)ndρ(nu) = [(
∂xi

aij ∂xj
v(·, y)

) ∗ ρn

]
(x)−→

n→∞∂xi
aij (x)∂xj

v(x, y).

We now prove that the remaining term converges to minus that last limit. Indeed, there exists u′ satisfying |u′| � |u|
such that (using summation over repeated indices)

In =
∫

Rd

[
aij (x) − aij (x − u)

]
∂xj

(x − u,y)nd+1ρ′
i (nu)du

=
∫

Rd

u · ∂xaij (x − u′)∂xj
v(x − u,y)nd+1ρ′

i (nu)du

=
∫

Rd

∂xk
aij (x)∂xj

v(x − u,y)ukn
d+1ρ′

i (nu)du

+
∫

Rd

∂xk

(
aij (x − u′) − aij (x)

)
∂xj

v(x − u,y)ukn
d+1ρ′

i (nu)du.

The first term of the above right-hand side exactly matches∫
Rd

∂xk
aij (x)∂xj

v(x, y)ukn
d+1ρ′

i (nu)du +
∫

Rd

∂xk
aij (x)

(
∂xj

v(x − u,y) − ∂xj
v(x, y)

)
ukn

d+1ρ′
i (nu)du

and, using the change of variables r = nu, we deduce (where δik denotes the Kronecker symbol)

In = −∂xk
aij (x)∂xj

v(x, y)δik + ∂xk
aij (x)

∫
Rd

(
∂xj

v

(
x − r

n
, y

)
− ∂vxj

(x, y)

)
rkρ

′
i (r) dr

+
∫
d

∂xk

(
aij (x − u′) − aij (x)

)
∂xj

v

(
x − r

n
, y

)
rkρ

′
i (r) dr.
R
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Then using the fact that ρ′
i is null outside of the unit ball of radius 1, the continuity of the functions

x −→ ∂xj
v(x, y) and x −→ ∂xj

aij (x)

and the Lebesgue convergence dominated theorem, we prove that the last two integrals converge to 0 as n → +∞.
This completes the proof. �

We are now in position to prove formula (3.21). To this purpose, we consider the mollifiers (ρn)n�1 and define for
all y ∈ R the function ên(·, y) on Rd by

∀x ∈ Rd , ên(x, y) = [
ê(·, y) ∗ ρn

]
(x).

The theorem of derivation under the integral sign implies easily ∀n ∈ N, ên ∈ C2(Td × R). Define for all n ∈ N, the
process

∀0 � s � t, Ŷ ε,n
s = Y ε

s + ε
(
ên

(
X̄ε

t , Y
ε
t

)− ên

(
X̄ε

s , Y
ε
s

))
.

Itô’s formula, yields for all 0 � s � t ,

Ŷ ε,n
s = g

(
Xε

t

)+
t∫

s

(〈∂x ên, c〉 − ∂yêne + f − ε∂yênf
)(

Xε
r , X̄

ε
r , Y

ε
r ,Zε

r

)
dr

+
t∫

s

∂2
xy ên

(
X̄ε

r , Y
ε
r

)
σ
(
X̄ε

r

)
Zε

r dr +
t∫

s

(
∂x ên

(
X̄ε

r , Y
ε
r

)
σ
(
X̄ε

r

)− Zε
r

)
dBr

+ ε

t∫
s

∂y ên

(
X̄ε

r , Y
ε
r

)
Zε

r dBr + ε

2

t∫
s

∂2
yy ên

(
X̄ε

r , Y
ε
r

)∣∣Zε
r

∣∣2 dr + 1

ε

t∫
s

(Lên + e)
(
X̄ε

r , Y
ε
r

)
dr. (4.3)

It just remains to explain how to pass to the limit as n → ∞ in the above expression and get formula (3.21). Thanks
to Lemma 4.1, we have

∀y ∈ R, Lên(·, y) −→ −e(·, y) as n −→ +∞. (4.4)

Moreover, since for all y ∈ R,

∂y ên(·, y) = ∂yê(·, y) ∗ ρn, ∂
2
yy ên(·, y) = ∂2

yy ê(·, y) ∗ ρn and ∂2
xy(∂y ên)(·, y) = ∂2

xy ê(·, y) ∗ ρn,

we deduce that ên and its derivatives ∂yên, ∂2
yy ên, ∂2

xy ên are uniformly bounded on Td × R and respectively converge

towards ê, ∂y ê, ∂2
yy ê, ∂2

xy ê. So, the Lebesgue dominated convergence theorem and Lemma 4.1 ensure we can pass to
the limit as n → ∞ in the various integrals in (4.3). We then obtain formula (3.21).

4.3. Theorem 3.7

Proof. First step: Suppose that Ψ is bounded and that KR does not depend on R. In this case, the proof, without the
sup, is quite classical and can readily be adapted from [23, Lemma 5]. The result (with the sup) then follows from the
boundedness of Ψ and the following argument.

Fix N ∈ N∗ and consider a fine enough equidistant subdivision of [0, t] by means of points (ti)0�i�N s.t. for
0 � i � N , ti = i

N
t . Then we have

Ẽ

[
sup

0�s�t

∣∣∣∣∣
t∫

s

Ψ
(
X̄ε

r ,V
ε
r

)
dr −

t∫
s

Ψ̄
(
V ε

r

)
dr

∣∣∣∣∣
]

� Ẽ

[
sup

0�i�N−1

∣∣∣∣∣
t∫

ti

Ψ
(
X̄ε

r ,V
ε
r

)
dr −

t∫
ti

Ψ̄
(
V ε

r

)
dr

∣∣∣∣∣
]

+ 2t

N
‖Ψ ‖∞.

It just remains to let ε go to 0 to make the first term in the above right-hand side vanish and then let N tend to ∞.
Second step: We no longer assume that Ψ is bounded and KR does not depend on R. For each R > 0, let us consider

a bounded Lipschitzian function hR : Rd → Rd such that{∣∣hR(v)
∣∣� min

(|v|,R + 1
)

for v ∈ Rd, (4.5)

hR(v) = v if |v| � R.
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It is easy to see that (3.25) holds for ΨR(x, v) = Ψ (x,hR(v)).
To complete the proof, it just remains to estimate the difference

Ẽ

[
sup

0�s�t

t∫
s

∣∣(Ψ − ΨR)
(
X̄ε

r ,V
ε
r

)∣∣+ ∣∣(Ψ̄ − Ψ̄R)
(
V ε

R

)∣∣dr

]
.

But this quantity is bounded by

4Ẽ
[

sup
0�s�t

∣∣V ε
s

∣∣;{ sup
0�s�t

∣∣V ε
s

∣∣� R
}]

� 4

R
E
(

sup
0�s�t

∣∣V ε
s

∣∣2)

and thus converges to 0 as R goes to ∞ uniformly with respect to ε. The result follows. �
4.4. Proof of Proposition 3.4

Proposition 3.4 follows from the following proposition and its corollary

Proposition 4.2. There exists a constant C4.2, only depending on t,K ′, c′, and ε0 > 0 such that

∀0 < ε < ε0, sup
0�s�t

E
∣∣Y ε

s

∣∣2 + E

t∫
0

∣∣Zε
r

∣∣2 dr � C4.2.

Proof. From (3.21), we deduce thanks to Ito’s formula applied to the function y 
→ y2

d
∣∣Ŷ ε

r

∣∣2 = −2Ŷ ε
r

(
U1 + f − ε

∂ê

∂y
f − σ ∗ ∂2ê

∂x∂y
− (ε/2)

∂2ê

∂y2

∣∣Zε
r

∣∣2)(Xε
r , X̄

ε
r , Y

ε
r ,Zε

r

)
dr

+ 2Ŷ ε
r

[
Z̃ε

r − ε
∂ê

∂y

(
X̄ε

r , Y
ε
r

)
Zε

r

]
dBr +

∣∣∣∣Z̃ε
r − ε

∂ê

∂y

(
X̄ε

r , Y
ε
r

)
Zε

r

∣∣∣∣
2

dr.

We take the expectation. The martingale term vanishes and we obtain for every 0 � s � t ,

E
∣∣Ŷ ε

s

∣∣2 + E

t∫
s

∣∣∣∣Z̃ε
r − ε

∂ê

∂y

(
X̄ε

r , Y
ε
r

)
Zε

r

∣∣∣∣
2

dr

= E
∣∣Ŷ ε

t

∣∣2 + 2E

t∫
s

Ŷ ε
r

(
U1 + f − ε

∂ê

∂y
f − σ ∗ ∂2ê

∂x∂y
− (ε/2)

∂2ê

∂y2

∣∣Zε
r

∣∣2)(Xε
r , X̄

ε
r , Y

ε
r ,Zε

r

)
dr.

Recall that Ŷ ε
r = Y ε

r + ε(ê(X̄ε
r , Y

ε
r ) − ê(X̄ε

t , Y
ε
t )) and Z̃ε

r = Zε
r − ∂x ê(X̄

ε
r , Y

ε
r )σ (X̄ε

r ). From the growth properties of
the coefficients U1, ê, f, g, there exists a constant C4.2, only depending on t,K ′, c′, such that for any 0 < ε � 1 (the
constant C4.2 may change from line to line) and 0 � s � t ,

E
∣∣Y ε

s

∣∣2 + E

t∫
s

∣∣Zε
r

∣∣2 dr � C4.2 + C4.2εE
∣∣Y ε

s

∣∣2 + C4.2εE

t∫
s

∣∣Zε
r

∣∣2 dr + C4.2E

t∫
s

(
1 + ∣∣Y ε

r

∣∣)(1 + ∣∣Y ε
r

∣∣+ ∣∣Zε
r

∣∣)dr

� C4.2 + C4.2εE
∣∣Y ε

s

∣∣2 +
(

C4.2ε + 1

2

)
E

t∫
s

∣∣Zε
r

∣∣2 dr + C4.2E

t∫
s

∣∣Y ε
r

∣∣2 dr.

Hence for any ε < (4C4.2)
−1, we have E|Y ε

s |2 + E
∫ t

s
|Zε

r |2 dr � 4C4.2 + 4C4.2E
∫ t

s
|Y ε

r |2 dr , so that the result follows
from the Gronwall lemma. �
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Corollary 4.3. There exists a constant C3.4 such that

∀ε0 > ε > 0, P̃
(

sup
0�s�t

∣∣Y ε
s

∣∣� C3.4

)
= 1.

Proof. From Proposition 4.2, we have E|Y ε
0 |2 � C4.2 for any ε0 > ε > 0. Since Y ε

0 is F0-measurable, it is constant
and hence |Y ε

0 |2 � C4.2. Note that the constant C4.2 does not depend on the starting point x ∈ Rd of the diffusion
process Xε . Let us now reintroduce the starting point x in our notations and denote by Xε,x the process solution
of (2.1) starting from x, and by Y ε,t,x the solution of (3.19). From uniqueness for BSDEs, it is not hard to see that

Y
ε,t,x
s = Y

ε,t−s,X
ε,x
s

0 for 0 � s � t . In particular, for any 0 � s � t and ε0 > ε > 0, |Y ε,t,x
s |2 � C4.2. �
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