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Abstract

We prove an isoperimetric inequality of the Rayleigh–Faber–Krahn type for a nonlinear generalization of the first twisted Dirich-
let eigenvalue, defined by

λp,q(Ω) = inf

{‖∇v‖Lp(Ω)

‖v‖Lq(Ω)
, v �= 0, v ∈ W

1,p
0 (Ω),

∫
Ω

|v|q−2v dx = 0

}
.

More precisely, we show that the minimizer among sets of given volume is the union of two equal balls.

Résumé

On montre une inégalité isopérimétrique du type Rayleigh–Faber–Krahn pour une généralisation non-linéaire de la première
valeur propre de Dirichlet torsadée, définie par

λp,q(Ω) = inf

{‖∇v‖Lp(Ω)

‖v‖Lq(Ω)
, v �= 0, v ∈ W

1,p
0 (Ω),

∫
Ω

|v|q−2v dx = 0

}
.

Plus précisément, on montre que le minimum parmi les ensembles de volume donné est l’union de deux boules égales.
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1. Introduction

In this note we study a generalized version of the so-called twisted Dirichlet eigenvalue problem. More precisely,
for Ω an open bounded subset of R

N we set

λp,q(Ω) = inf

{‖∇v‖Lp(Ω)

‖v‖Lq(Ω)

, v �= 0, v ∈ W
1,p

0 (Ω),

∫
Ω

|v|q−2v dx = 0

}
. (1.1)
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Among the sets Ω with fixed volume, we are interested in characterizing those which minimize λp,q(Ω). In other
words we look for an isoperimetric inequality of Rayleigh–Faber–Krahn type. This kind of inequality is related to
the optimization of the first eigenvalue for the Dirichlet problem associated to nonlinear operators in divergence form
and has been widely studied for functionals that do not involve mean constraints. In such cases a rearrangement
technique proves that the minimizing set is a ball and several results concerning its stability are also available (see
for instance [23,21,15]). When mean type constraints are considered together with the Dirichlet boundary condition
in an eigenvalue problem, the optimization problem becomes more difficult, since one is lead to deal with non-local
problems. Due to the fact that an eigenfunction for λp,q(Ω) is forced to change sign inside Ω , and hence has at least
two nodal domains, one cannot expect in general to have a radial optimizer.

The adjective twisted was introduced by Barbosa and Bérard in [1], in the study of spectral properties of the second
variation of a constant mean curvature immersion of a Riemannian manifold. In that framework a Dirichlet eigenvalue
problem arose naturally with a vanishing mean constraint. The condition on the mean value comes from the fact that
the variations under consideration preserve some balance of volume.

Further results in this direction can be found in the paper of Freitas and Henrot [14], where, dealing with the linear
case, the authors solved the shape optimization problem for the first twisted Dirichlet eigenvalue. In particular they
considered λ2,2(Ω), and they proved that the only optimal shape is given by a pair of balls of equal measure. The
one-dimensional case has also attracted much interest. In [6], Dacorogna, Gangbo and Subía studied the following
generalization of the Wirtinger inequality

inf

{
‖u′‖Lp((−1,1))

‖u‖Lq((−1,1))

, u ∈ W
1,p

0 (−1,1) \ {0},
1∫

−1

|u|q−2udx = 0

}
(1.2)

for p,q > 1 proving that the optimizer is an odd function. Moreover they explained the connection between the value
of λp,p′

((−1,1)), where p′ = p
p−1 , and an isoperimetric inequality. Indeed, let A ⊂ R

2 whose boundary is a simple

closed curve t ∈ [−1,1] → (x(t), y(t)) with x, y ∈ W
1,p

0 ((−1,1)). Let

L(∂A) =
1∫

−1

(∣∣x′(t)
∣∣p + ∣∣y′(t)

∣∣p) 1
p dt

and

M(A) = 1

2

1∫
−1

[
y′(t)x(t) − y(t)x′(t)

]
dt.

Then L2(∂A) − 4λp,p′
((−1,1))M(A) � 0. The case of equality holds if and only if A = {(x, y) ∈ R

2: |x|p′ +
|y|p′ = 1}, up to a translation and a dilation.

Several other results are available in the one-dimensional case, see for instance [5,4,2,19,11] and the references
therein for further details.

Our aim here, as in [14], is to prove that the optimal shape for λp,q(Ω) is a pair of equal balls. The main result can
be stated as follows.

Theorem 1. Let Ω be an open bounded subset of R
N . Then, for

1 < p < ∞ and

⎧⎨
⎩1 < q < p∗ = Np

N − p
, if 1 < p < N,

1 < q < ∞, if p � N

(1.3)

we have

λp,q(Ω) � λp,q(B1 ∪ B2),

where B1 and B2 are disjoint balls of measure |Ω|/2.



G. Croce et al. / Ann. I. H. Poincaré – AN 29 (2012) 21–34 23
The rest of the paper is devoted to the proof of Theorem 1 and it is divided into two steps. In the first one, using
the symmetrization technique, we show that it is enough to minimize the functional λp,q on sets given by the union
of two disjoint balls B1 and B2 (not necessarily equal) and to identify the minimizing pairs. Moreover we write the
Euler equation for a minimizer u of λp,q(B1 ∪ B2), proving that the Lagrange multiplier associated to the constraint∫

Ω

|u|q−2u = 0

is zero (cf. Theorem 6).
The second step, which consists in showing that the two optimal balls have to be equal, is more subtle. In the case

p = q = 2 solved in [14], the proof is based on the explicit formula for the (radial) solutions to the Euler equation
of the functional and on fine properties of the zeroes of Bessel functions. Here we use a more geometric argument
obtaining as a byproduct a simpler proof of the results of Freitas and Henrot. More precisely λp,q(B1 ∪B2) is attained
at a function u = u1χB1 − u2χB2 , with u1 and u2 radial positive functions. If we look at λp,q(B1 ∪ B2) as a function
of sets we obtain the following optimality condition from the domain derivative (cf. Theorem 8):∣∣∣∣∂u1

∂ν1

∣∣∣∣ =
∣∣∣∣∂u2

∂ν2

∣∣∣∣.
On the other hand, the divergence theorem applied to the Euler equation gives that∣∣∣∣∂u1

∂ν1

∣∣∣∣
p−1

|∂B1| =
∣∣∣∣∂u2

∂ν2

∣∣∣∣
p−1

|∂B2|.

This, combined with the previous condition, implies that B1 and B2 have the same measure.

2. The first generalized twisted eigenvalue

We start our study proving that the value λp,q(Ω) is attained for any choice of a bounded open set Ω ⊂ R
N .

Lemma 2. Assume (1.3). Then λp,q(Ω) > 0 and there exists a bounded function u ∈ W
1,p

0 (Ω) such that

λp,q(Ω) = ‖∇u‖Lp(Ω)

‖u‖Lq(Ω)

and
∫
Ω

|u|q−2udx = 0.

Proof. Let

H 1
n
(v) = ‖∇v‖p

Lp(Ω) −
([

λp,q(Ω)
]p + 1

n

)
‖v‖p

Lq(Ω)

with n ∈ N, and

G(v) =
∫
Ω

|v|q−2v dx.

By definition of infimum, for every n there exists un such that∫
Ω

|un|q−2un dx = 0, H 1
n
(un) < 0.

Without loss of generality we can assume that ‖∇un‖Lp(Ω) = 1. By Poincaré inequality, ‖un‖W 1,p(Ω) is uniformly

bounded. Since p > 1, up to a subsequence, un converges weakly to some u ∈ W
1,p

0 (Ω). By hypotheses (1.3) on p

and q , un → v in Lq(Ω) and then∫
|u|q−2udx = 0.
Ω
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This implies that

‖∇u‖p

Lp(Ω) − [
λp,q(Ω)

]p‖u‖p

Lq(Ω) � 0.

By definition of λp,q(Ω), necessarily we have

‖∇u‖p

Lp(Ω)
− [

λp,q(Ω)
]p‖u‖p

Lq(Ω)
= 0.

To prove that u �= 0 and λp,q(Ω) > 0, it is sufficient to pass to the limit in Hn(un) < 0 to get

1 �
[
λp,q(Ω)

]p‖u‖p

Lq(Ω).

We are now going to prove that u is bounded. For ϕ, θ ∈ C∞
0 (Ω), let

Φ(ε, t) =
∫
Ω

|∇udx + ε∇ϕ + t∇θ |p dx − [
λp,q(Ω)

]p[∫
Ω

|u + εϕ + tθ |q dx

] p
q

.

Let θ be such that

(q − 1)

∫
Ω

|u|q−2θ dx = 1,

if such θ does not exist one would have |u|q−2 = 0 which is a contradiction. Then, set

ψ(ε, t) =
∫
Ω

|u + εϕ + tθ |q−2(u + εϕ + tθ) dx.

The hypotheses on θ imply that ψt(0,0) = 1. By the implicit function theorem applied to ψ , there exists a function τ

such that ψ(ε, τ (ε)) = 0 and τ ′(0) = −ψε(0,0). Since (0,0) is a minimizer for Φ , we deduce that

Φε(0,0) + Φt(0,0)τ ′(0) = Φε(0,0) − Φt(0,0)ψε(0,0) = 0. (2.1)

By explicit calculations we have

Φε(0,0) = p

∫
Ω

|∇u|p−2∇u · ∇ϕ dx − [
λp,q(Ω)

]p
p‖u‖p−q

Lq(Ω)

∫
Ω

|u|q−2uϕ dx;

Φt(0,0) = p

∫
Ω

|∇u|p−2∇u · ∇θ dx − [
λp,q(Ω)

]p
p‖u‖p−q

Lq(Ω)

∫
Ω

|u|q−2uθ dx;

ψε(0,0) = (q − 1)

∫
Ω

|u|q−2ϕ dx,

Eq. (2.1) is indeed equivalent to∫
Ω

|∇u|p−2∇u · ∇ϕ dx − [
λp,q(Ω)

]p‖u‖p−q

Lq(Ω)

∫
Ω

|u|q−2uϕ dx = μ0(q − 1)

∫
Ω

|u|q−2ϕ dx

with

μ0 =
∫
Ω

|∇u|p−2∇u · ∇θ dx − [
λp,q(Ω)

]p‖u‖p−q

Lq(Ω)

∫
Ω

|u|q−2uθ dx.

By standard regularity results on elliptic equations (see §5 of Chapter 2 in [22]) we deduce that u is bounded. �
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Let now u ∈ W
1,p

0 (Ω) be such that

λp,q(Ω) = ‖∇u‖Lp(Ω)

‖u‖Lq(Ω)

and
∫
Ω

|u|q−2udx = 0

and set

Ω+ = {
x ∈ Ω: u(x) > 0

}
, Ω− = {

x ∈ Ω: u(x) < 0
}
.

Our aim is to prove that we can reduce to the case of two balls. We will use a technique used in [14] based on the
Schwarz rearrangement. Here we recall just the definition and the properties that we will need in the proof. For more
details on rearrangement techniques we refer to [16] and [18].

Definition 3. For a measurable set ω ⊂ R
N , we denote by ω∗ the ball of same measure as ω. If u is a non-negative

measurable function defined on a measurable set Ω and u = 0 on ∂Ω , let

Ω(c) = {
x ∈ Ω: u(x) � c

}
.

The Schwarz rearrangement of u is the function u∗ defined on Ω∗ by

u∗ = sup
{
c: x ∈ Ω(c)∗

}
.

The next theorem summarizes some of the main properties of the Schwarz symmetrization.

Theorem 4. Let u be a non-negative measurable function defined on a measurable set Ω with u = 0 on ∂Ω . Then

(1) u∗ is a radially symmetric non-increasing function of |x|;
(2) for any measurable function ψ : R

+ → R∫
Ω

ψ(u)dx =
∫

Ω∗
ψ

(
u∗)dx;

(3) if u ∈ W
1,p

0 (Ω), then u∗ ∈ W
1,p

0 (Ω∗) and∫
Ω

|∇u|p dx �
∫

Ω∗

∣∣∇u∗∣∣p dx.

Using the Schwarz symmetrization and suitable constrained variations we are now able to reduce our problem to
the “radial” one. Indeed we have the following theorem.

Theorem 5. Let B± be a ball of same measure as |Ω±|. Then λp,q(Ω) � λp,q(B+ ∪ B−).

Proof. Let u+ = u�Ω+ and u− = −u�Ω− . By symmetrizing u+ and u− respectively, by the properties of Schwarz
rearrangement (cf. Theorem 4) we can write

[
λp,q(Ω)

]p �
‖∇u∗+‖p

Lp(B+) + ‖∇u∗−‖p

Lp(B−)

[‖u∗+‖q

Lq(B+) + ‖u∗−‖q

Lq(B−)]
p
q

.

Moreover, by equimeasurability ensured by Theorem 4(2), using the volume constraint, we deduce that

0 =
∫

Ω+

|u+|q−2u+ dx −
∫

Ω−

|u−|q−2u− dx =
∫
B+

∣∣u∗+
∣∣q−2

u∗+ dx −
∫
B−

∣∣u∗−
∣∣q−2

u∗− dx.

If we set

λ∗ = inf
A

‖∇f ‖p

Lp(B+) + ‖∇g‖p

Lp(B−)

[‖f ‖q
q + ‖g‖q

q ] p
q

L (B+) L (B−)
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where A is defined by

A =
{
(f, g) ∈ W

1,p

0 (B+) × W
1,p

0 (B−):
∫

B+

|f |q−2f =
∫

B−

|g|q−2g

}
,

we clearly have[
λp,q(Ω)

]p � λ∗. (2.2)

It is easily seen that λ∗ is attained in (f+, f−), with f+, f− � 0. Without loss of generality we can moreover assume
that ∫

B+

|f+|q dx +
∫
B−

|f−|q dx = 1. (2.3)

For ϕ±, θ± ∈ C∞
0 (B±), define

Φ(ε, t) =
∫
B+

|∇f+ dx + ε∇ϕ+ + t∇θ+|p dx +
∫
B−

|∇f− dx + ε∇ϕ− + t∇θ−|p dx

− λ∗
[ ∫
B+

|f+ + εϕ+ + tθ+|q dx +
∫
B−

|f− + εϕ− + tθ−|q dx

] p
q

.

Let (θ+, θ−) be such that

(q − 1)

∫
B+

|f+|q−2θ+ dx − (q − 1)

∫
B−

|f−|q−2θ− dx = 1.

Such choice of (θ+, θ−) is possible, since, if not, one would have |f+|q−2 = |f−|q−2 = 0, that contradicts (2.3). If we
define the functional

ψ(ε, t) =
∫

B+

|f+ + εϕ+ + tθ+|q−2(f+ + εϕ+ + tθ+) dx

−
∫
B−

|f− + εϕ− + tθ−|q−2(f− + εϕ− + tθ−) dx,

the hypotheses on (θ+, θ−) imply that ψt(0,0) = 1. By the implicit function theorem applied to ψ , there exists a
function τ such that ψ(ε, τ (ε)) = 0 and τ ′(0) = −ψε(0,0). Since (0,0) is a minimizer for Φ ,

Φε(0,0) + Φt(0,0)τ ′(0) = Φε(0,0) − Φt(0,0)ψε(0,0) = 0,

that is,

μ0(q − 1)

[ ∫
B+

|f+|q−2ϕ+ dx −
∫
B−

|f−|q−2ϕ− dx

]

=
∫
B+

|∇f+|p−2[∇f+] · ∇ϕ+ dx

+
∫

|∇f−|p−2∇f− · ∇ϕ− dx − λ∗
[ ∫

|f+|q−2f+ϕ+ dx +
∫

|f−|q−2f−ϕ− dx

]

B− B+ B−
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with

μ0 =
∫

B+

|∇f+|p−2∇f+ · ∇θ+ dx +
∫
B−

|∇f−|p−2∇f− · ∇θ− dx

− λ∗
[ ∫
B+

|f+|q−2f+θ+ dx +
∫
B−

|f−|q−2f−θ− dx

]
.

It follows that w = f+χB+ − f−χB− satisfies on B+ ∪ B− the equation

−div
(|∇w|p−2∇w

) = λ∗|w|q−2w + μ0(q − 1)|w|q−2. (2.4)

Now we observe that multiplying (2.4) by w, one has

λ∗ � inf

{ ∫
B+∪B−

|∇v|p dx, v:
∫

B+∪B−

|v|q−2v dx = 0, ‖v‖Lq(B+∪B−) = 1

}

= [
λp,q(B+ ∪ B−)

]p
.

The above inequality and (2.2) imply that λp,q(Ω) � λp,q(B+ ∪ B−). �
We are now going to write the Euler equation for λp,q(Ω) in the case where Ω is the union of two disjoint balls.

We will make use of a technique introduced in [6] to carefully choose the variations.

Theorem 6. Let Ω = B1 ∪ B2 where B1 and B2 are two disjoint balls. Let u ∈ W
1,p

0 (Ω) be a bounded function such

that
∫
Ω

|u|q−2udx = 0 and λp,q(Ω) = ‖∇u‖Lp(Ω)

‖u‖Lq (Ω)
. Then

−div
(|∇u|p−2∇u

) = [
λp,q(Ω)

]p‖u‖p−q

Lq(Ω)|u|q−2u. (2.5)

Proof. We set

G(v) =
∫
Ω

|v|q−2v dx, F (v) =
∫
Ω

|∇v|p dx − [
λp,q(Ω)

]p[∫
Ω

|v|q dx

]p/q

.

Let ϕ ∈ C∞
0 (Ω) and t ∈ (0,1). Let

Ψ : R → R

β → G(u + tϕ + β).

Then Ψ is continuous, Ψ (−1 − ‖u + tϕ‖L∞(Ω)) < 0 and Ψ (1 + ‖u + tϕ‖L∞(Ω)) > 0. By continuity there exists
βt ∈ R such that Ψ (βt ) = G(u + tϕ + βt ) = 0.

Let t ∈ (0,1) fixed. We set ct = βt

t
. We are going to prove the existence of a sequence tn → 0 such that ctn has a

finite limit as n → ∞ (up to a subsequence). If there exists a sequence tn → 0 and xtn ∈ Ω such that ϕ(xtn) + ctn = 0,
then we have the result, since ϕ is bounded. If there exists δ > 0 such that, for every 0 < t < δ, ϕ(x)+ ct �= 0 for every
x ∈ Ω , let us show that ϕ(x) + ct must change sign in Ω . Otherwise, by the strict convexity of s → |s|q (and then by
the strict monotonicity of s → |s|q−2s) we should have∫

Ω

|u + tϕ + βt |q−2(u + tϕ + βt ) dx >

∫
Ω

|u|q−2udx

or ∫
|u + tϕ + βt |q−2(u + tϕ + βt ) dx <

∫
|u|q−2udx,
Ω Ω
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that is,

0 =
∫
Ω

|u + tϕ + βt |q−2(u + tϕ + βt ) dx >

∫
Ω

|u|q−2udx = 0

or

0 =
∫
Ω

|u + tϕ + βt |q−2(u + tϕ + βt ) dx <

∫
Ω

|u|q−2udx = 0

which is a contradiction.
Then, for 0 < t < δ, on a subset of Ω one has ϕ(x) + ct > 0 and on its complement ϕ(x) + ct < 0. This implies

that |ct | � ‖ϕ‖L∞(Ω). Therefore there exists 0 < tn < δ such that tn → 0 and ctn → c as n → +∞.
We have〈

F ′(u),ϕ
〉 = p

∫
Ω

|∇u|p−2∇u · ∇ϕ dx − p
[
λp,q(Ω)

]p‖u‖p−q

Lq(Ω)

∫
Ω

|u|q−2uϕ dx.

On the other hand,

0 � lim
n→∞

F(u + tn(ϕ + ctn)) − F(u)

tn
= 〈

F ′(u),ϕ
〉 − c p

[
λp,q(Ω)

]p‖u‖p−q

Lq(Ω)

∫
Ω

|u|q−2udx

= 〈
F ′(u),ϕ

〉
.

The previous inequality implies that∫
Ω

|∇u|p−2∇u · ∇ϕ dx = [
λp,q(Ω)

]p‖u‖p−q

Lq(Ω)

∫
Ω

|u|q−2uϕ dx

for every ϕ ∈ C∞
0 (Ω). �

3. The shape optimization problem

In this section we are going to find a geometrical necessary condition for a set Ω to be a minimizer of λp,q(Ω),
where Ω is the union of two disjoint balls. We will exploit the derivative with respect to the domain of the set functional
λp,q(Ω) and investigate an optimality condition, i.e. we will identify the domains with vanishing domain derivative.
Here we briefly recall, for the reader’s convenience, the ideas underlying the concept of domain derivative and we
refer for instance to [17] and [25] for a detailed description of the theory and for further details on its applicability.

Roughly speaking the domain derivative can be understood in the following way. Let Ω be a bounded smooth
domain in R

n, V : R
n → R

n be a sufficiently smooth vector field, t � 0 and denote by Ωt the image of Ω under the
map I + tV , where I stands for the identity. Let us consider the boundary value problem{ A(t, u) = 0 in Ωt,

u = 0 on ∂Ωt

(3.1)

and an integral functional given by

J (t) :=
∫
Ωt

C(u)dx,

with A and C are differential operators acting on a space of functions defined in Ωt . Under suitable regularity hy-
potheses, the function t → ut , that associates to t the solution of problem (3.1), is differentiable and its derivative in
zero, denoted by u̇ := u′

t (0), satisfies the following conditions{
∂t A(0, u0) + ∂t A(0, u0)u̇ = 0 in Ω,

u̇ = −∂u0
V · ν on ∂Ω

(3.2)

∂ν



G. Croce et al. / Ann. I. H. Poincaré – AN 29 (2012) 21–34 29
where ν is the outward unit normal to ∂Ω . Moreover, we can calculate the domain derivative for t = 0 of the functional
J in the direction V as

J ′(0) =
∫
Ω

∂uC u̇dx +
∫

∂Ω

C(u0)V · ν dHN−1. (3.3)

The results of the previous section ensure us that we can restrict our study to the sets Ω = B1 ∪ B2 where B1 and
B2 are two disjoint balls of radius R1 and R2 respectively such that |B1 ∪ B2| = ωN , where ωN is the measure of
the unit ball in R

N . Let u be the minimizer function realizing the value λp,q(Ω). Using the Schwarz rearrangement
as in Theorem 5 we can assume that λp,q(B1 ∪ B2) is attained at a function u = u1χB1 − u2χB2 , with u1 and u2
non-negative radial functions on B1 and B2 respectively.

For this kind of domains, by Theorem 6, u satisfies (2.5). By scaling invariance, it is not restrictive to deal with
solutions that satisfy the condition∫

Ω

|u|q dx = 1. (3.4)

Thus we are lead to consider u satisfying (3.4), the constraint∫
Ω

|u|q−2v dx = 0

and the Dirichlet eigenvalue problem{−div
(|∇u|p−2∇u

) = [
λp,q(Ω)

]p|u|q−2u in Ω,

u = 0 on ∂Ω.

Observe that in dimension 1, the minimizer of λp,q((a, b)) is an anti-symmetric function with respect to ( a+b
2 ,0),

as proved in [6]. Therefore in the sequel we will assume that N � 2.
Clearly an optimal set, i.e. a set that minimizes λp,q(Ω), will be a critical set with respect to the domain variations.

If we prove that the eigenvalue has a domain derivative λ̇p,q(Ω), which will be true if λp,q(Ω) is a simple eigenvalue,
then λ̇p,q(Ω) = 0 (see for example [17] for further details and proof of the differentiability of a simple eigenvalue).
This motivates the next theorem.

Theorem 7. Let Ω = B1 ∪B2, where B1 and B2 are two disjoint balls. Then λp,q(Ω) is a simple eigenvalue, i.e. there
exists a unique function u = u1χB1 − u2χB2 , modulo a multiplicative constant, that realizes

λp,q(Ω) = ‖∇u‖Lp(Ω)

‖u‖Lq(Ω)

,

∫
Ω

|u|q−2udx = 0.

Proof. Let u = u1χB1 −u2χB2 and û = û1χB1 − û2χB2 be two functions at which λp,q(Ω) is attained. We can assume
that ui and ûi , for i = 1,2, are radial by Theorem 12 in Appendix A. Moreover u1, u2, û1, û2 are non-negative and∫

B1

u
q−1
1 dx =

∫
B2

u
q−1
2 dx,

∫
B1

û
q−1
1 dx =

∫
B2

û
q−1
2 dx. (3.5)

Without loss of generality we can assume that ‖u‖Lq(Ω) = ‖û‖Lq(Ω) = [λp,q(Ω)] p
q−p . Therefore∫

B1

u
q

1 dx +
∫
B2

u
q

2 dx =
∫
B1

û
q

1 dx +
∫
B2

û
q

2 dx. (3.6)

We remark that, by Theorem 6, letting r = |x|, we have that u1 = u1(r) and û1 = û1(r) satisfy on [0,R1], the Cauchy
problem
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{
−(

rN−1
∣∣φ′∣∣p−2

φ′)′ = rN−1|φ|q−1,

φ(0) = c, φ′(0) = 0

with possibly different constants c for u1(0) and û1(0), and a similar result holds for u2 = u2(r) and û2 = û2(r) on
[0,R2].

Assume, without loss of generality, that u1(0) > û1(0). By Lemma 13 in Appendix A, u1(r) � û1(r) on [0,R1].
Therefore∫

B1

u
q−1
1 dx >

∫
B1

û
q−1
1 dx,

∫
B1

u
q

1 dx >

∫
B1

û
q

1 dx.

By (3.5)∫
B2

u
q−1
2 dx >

∫
B2

û
q−1
2 dx; (3.7)

using (3.6) we deduce that∫
B2

u
q

2 dx <

∫
B2

û
q

2 dx. (3.8)

If u2(0) � û2(0), by Lemma 13, we have u2(r) � û2(r) on [0,R2] and this is in contradiction with (3.8). If, on the
other hand, u2(0) < û2(0), again using Lemma 13 we have u2(r) � û2(r) on [0,R2] and this contradicts (3.7). Then
u1(0) = û1(0). Finally, another application of Lemma 13 gives us that u1 = û1 and by (3.6) we get also u2 = û2. �

Now, by (3.2) (cf. [9,3]) we have that u̇1 and u̇2 solve, in B1 and B2 respectively, the equation

−div

(
(p − 2)|∇u|p−1 ∇u · ∇u̇

|∇u|3 ∇u + |∇u|p−2∇u̇

)
= pλp−1λ̇uq−1 + (q − 1)λpuq−2u̇ (3.9)

where we use the notation λ instead of λp,q(B1 ∪ B2). We are in position to prove the optimality condition for the
radial problem associated to λp,q(B1 ∪ B2).

Theorem 8. Consider the following minimization problem

inf
{
λp,q(B1 ∪ B2): (B1,B2) disjoint balls, |B1 ∪ B2| = ωN

}
. (3.10)

Let the pair (B̃1, B̃2) be critical for (3.10). Then, denoted by u = u1χB̃1
− u2χB̃2

the function at which λp,q(B̃1 ∪ B̃2)

is attained, we have∣∣∣∣∂u1

∂ν1

∣∣∣∣ =
∣∣∣∣∂u2

∂ν2

∣∣∣∣.
Proof. We will denote B1 ∪ B2 by Ω . We recall that u1 and u2 satisfy (3.9). Multiplying by u and integrating we
obtain

(p − 1)

∫
Ω

|∇u|p−2∇u · ∇u̇ dx = pλp−1λ̇

∫
Ω

|u|q dx + (q − 1)λp

∫
Ω

|u|q−2uu̇ dx. (3.11)

Since we are working with normalized functions, the domain derivative of ‖u‖q

Lq(Ω) has to be zero, i.e. by (3.4), using
(3.3), we deduce that∫

|u|q−2uu̇ dx = −
∫

|u|q V · ν dHN−1.
Ω ∂Ω
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As u vanishes on ∂Ω ,∫
Ω

|u|q−2uu̇ dx = 0. (3.12)

Moreover, by Theorem 6, u satisfies

−div
(|∇u|p−2∇u

) = λp|u|q−2u;
this implies that∫

Ω

|∇u|p−2∇u · ∇u̇ dx =
∫

∂Ω

u̇

∣∣∣∣∂u

∂ν

∣∣∣∣
p−2

∂u

∂ν
dHN−1 + λp

∫
Ω

|u|q−2uu̇ dx. (3.13)

Combining (3.12) and (3.13), (3.11) reduces to

λ̇
p

p − 1
λp−1 =

∫
∂Ω

u̇

∣∣∣∣∂u

∂ν

∣∣∣∣
p−2

∂u

∂ν
dHN−1.

We recall that on ∂Ω , by (3.2), we have

u̇ = −∂u

∂ν
V · ν;

as a consequence we obtain the Hadamard formula

λ̇
p

p − 1
λp−1 = −

∫
∂Ω

∣∣∣∣∂u

∂ν

∣∣∣∣
p

V · ν dHN−1. (3.14)

It follows that

λ̇p,q(Ω) = 0 ⇐⇒
∫

∂Ω

V · ν
∣∣∣∣∂u

∂ν

∣∣∣∣
p

dHN−1 = 0.

Since Ω = B1 ∪ B2 and since u is radial on B1 and on B2, this is equivalent to∣∣∣∣∂u1

∂ν1

∣∣∣∣
p ∫
∂B1

V · ν dHN−1 +
∣∣∣∣∂u2

∂ν2

∣∣∣∣
p ∫
∂B2

V · ν dHN−1 = 0.

For variations V preserving the volume, we must choose V such that
∫
Ω

div(V )dx = 0. We deduce

λ̇p,q(Ω) = 0 ⇐⇒
∣∣∣∣∂u1

∂ν1

∣∣∣∣
p

−
∣∣∣∣∂u2

∂ν2

∣∣∣∣
p

= 0,

that implies the claim. �
Using the previous analysis and the Pohozaev type identity (A.3) in Appendix A, we will uniquely identify the

critical domain for λp,q(Ω).

Theorem 9. The only critical domain among union of balls of given volume for λp,q(Ω) is the union of two balls of
same measure.

Proof. Let u = u1χB1 −u2χB2 be the function at which λp,q(B1 ∪B2) is realized, satisfying (3.9). By the divergence
theorem applied to (2.5) one has∣∣∣∣∂u1

∣∣∣∣
p−1

|∂B1| =
∣∣∣∣∂u2

∣∣∣∣
p−1

|∂B2|.

∂ν1 ∂ν2
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By the above equality and Theorem 8 we easily deduce that∣∣∣∣∂u1

∂ν1

∣∣∣∣
p−2

∂u1

∂ν1
|∂B1| =

∣∣∣∣∂u1

∂ν1

∣∣∣∣
p−2

∂u1

∂ν1
|∂B2|. (3.15)

We are going to show, arguing by contradiction, that ∂u1
∂ν1

�= 0 on ∂Ω . Indeed, if this is not true, thanks to the regularity
given by Theorem 12, we can use (A.3) to infer that

[
λp,q(Ω)

]p(
N − p

p
− N

q

)
= −p − 1

p

∣∣∣∣∂u1

∂ν1

∣∣∣∣
p[ ∫

∂B1

(x · ν)dHN−1 +
∫

∂B2

(x · ν)dHN−1
]

= 0

which gives in turns that N−p
p

− N
q

= 0. The last equality contradicts hypotheses (1.3) on p, q , N .
Therefore (3.15) is equivalent to |∂B1| = |∂B2| and so the two balls B1 and B2 have the same radius. �
We are now in position to prove Theorem 1.

Proof of Theorem 1. We recall that by Theorem 5 we have

λp,q(Ω) � λp,q(B+ ∪ B−).

Moreover, using Theorem 9, we infer that

λp,q(B+ ∪ B−) � λp,q
(
B ′

1 ∪ B ′
2

)
where B ′

1 and B ′
2 are disjoint balls such that |B ′

1| = |B ′
2| = |B+∪B−|

2 .
We now observe that, if, Ω1 and Ω2 are two sets, with Ω1 ⊆ Ω2, then λp,q(Ω1) � λp,q(Ω2). Indeed, it suffices to

consider a function u1 in which λp,q(Ω1) is attained and defining 0 in Ω2 \ Ω1. Therefore

λp,q
(
B ′

1 ∪ B ′
2

)
� λp,q(B1 ∪ B2),

where B1 and B2 are disjoint balls of measure |Ω|
2 . Combining the previous inequalities we end up with

λp,q(Ω) � λp,q(B1 ∪ B2).

This proves the claim. �
Remark 10. As pointed out by the referee, an alternative proof of Theorem 9 can be obtained reasoning as follows:
λp,q(B+ ∪ B−) is the first Dirichlet eigenvalue for the Rayleigh quotient

‖∇v‖Lp(B±)

‖v‖Lq(B±)

on each separate ball B±, and it coincides on both balls. By the Hadamard formula (3.14), this first eigenvalue is
strictly monotone decreasing with respect to the radius of the ball. Therefore the balls B+ and B− must have identical
radius.

Remark 11. One could ask about the limit as p → 1 of λp,q(Ω). Observe that the limit, as p → 1, of

αp(Ω) = inf

{‖∇v‖Lp(Ω)

‖v‖Lp(Ω)

, v �= 0, v ∈ W
1,p

0 (Ω)

}
is the Cheeger constant, defined by

inf
D⊂Ω

HN−1(∂D)

|D|
with D varying on all smooth subdomains of Ω whose boundary does not touch ∂Ω , as proved by Kawohl and
Fridman [20]. The limit of λp,q(Ω) as p → 1 seems to be much more difficult, due to the presence of the parameter
q not necessarily equal to p and the non-local constraint

∫
Ω

|u|q−2q = 0.
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Appendix A

We recall here some results about quasilinear elliptic equations. The first (see [7] and the references therein) gives
the radial symmetry of positive solutions to p-laplacian equations.

Theorem 12. Let u ∈ W
1,p

0 (B) be a positive solution to −div(|∇u|p−2∇u) = λ|u|q−2u, where B is a ball. Then
u ∈ C1,α(B) for some α > 0 and u is radial.

The next result is a useful comparison lemma for solutions of an initial value problem for the ordinary differential
equation arising when one writes in radial coordinates the Euler–Lagrange equation of λp,q(Ω). This result is widely
discussed for example in [12] and [10] and used in this form in [13].

Lemma 13. Under hypotheses (1.3) and N > 1, the Cauchy problem{
−(

rN−1
∣∣φ′∣∣p−2

φ′)′ = rN−1|φ|q−1,

φ(0) = c, φ′(0) = 0
(A.1)

has at most a positive solution on [0,R] of class C1([0,R])∩C2((0,R)). Moreover, let φ1, φ2 be two positive solutions
with c = c1 and c2 respectively; if c1 < c2, then φ1 � φ2 on [0,R].

The proof of the previous lemma goes exactly as the one of Lemmata 3.1 and 3.3 of [10]. The only comment to
make concerns the slightly restrictive hypotheses on the values of p and q that we find in [10]. We observe that we
need to check that setting u(0) = α, we can invert the unique solution of (A.1) u = u(t, α) and this is ensured by
Propositions 1.2.6 and A2 in [12]. Once we have this, the only hypothesis that has to be satisfied for the applicability
of the results in [10] is the following inequality

[
(N − p)|s|q−2s + (N − p)s(q − 1)|s|q−2 − Np|s|q−2s

]|s|q−2s � (q − 1)|s|q−2
[
(N − p)|s|q − Np

q
|s|q

]
,

that is,

(N − p)q � Np. (A.2)

If N − p � 0, clearly we have (A.2) for any q . If on the contrary we have N − p > 0, then (A.2) is satisfied exactly
for q � p∗ as in our hypotheses.

We finally recall the following generalization of the Pohozaev identity, established in [24] and [8].

Theorem 14. Let G(u) = ∫ u

0 g(s) ds where g : R → R is a continuous function. Let Ω ⊂ R
N , N � 2, be an open

bounded set of class C1. Let u ∈ W 2,p(Ω) ∩ W
1,p

0 (Ω) be a solution to{−div
(|∇u|p−2∇u

) = g(u) in Ω,

u = 0 on ∂Ω.

Then

−p − 1

p

∫
∂Ω

|∇u|p(x · ν)dHN−1 =
∫
Ω

[
N − p

p
|∇u|p − NG(u)

]
dx. (A.3)
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