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Abstract

The main goal of this paper is to study the nature of the support of the solution of suitable nonlinear Schrödinger equations,
mainly the compactness of the support and its spatial localization. This question touches the very foundations underlying the
derivation of the Schrödinger equation, since it is well-known a solution of a linear Schrödinger equation perturbed by a regular
potential never vanishes on a set of positive measure. A fact, which reflects the impossibility of locating the particle. Here we shall
prove that if the perturbation involves suitable singular nonlinear terms then the support of the solution is a compact set, and so any
estimate on its spatial localization implies very rich information on places not accessible by the particle. Our results are obtained
by the application of certain energy methods which connect the compactness of the support with the local vanishing of a suitable
“energy function” which satisfies a nonlinear differential inequality with an exponent less than one. The results improve and extend
a previous short presentation by the authors published in 2006.
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1. Introduction

This paper deals with the study of the following stationary nonlinear Schrödinger equation (SNLS) with a complex
singular potential

−i�u + a|u|−(1−m)u + bu = F (x), in Ω. (1.1)
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Here, Ω ⊆ R
N is an open subset, 0 < m < 1, and (a,b) ∈ C

2. The interest of the consideration of this stationary
problem is motivated not only in order to study the asymptotic states, when t → ∞, of the solutions of the associated
evolution problem but also by the study of the so-called standing waves of the evolution problem (1.2) below, with
b ∈ iR in (1.1). Indeed, choosing arbitrarily b ∈ iR in (1.1) and setting for any (t, x) ∈ R ×Ω, ϕ(t, x) = u(x)ebt , if u

is a solution to (1.1) then ϕ is a solution to⎧⎪⎪⎨⎪⎪⎩
i
∂ϕ

∂t
+ �ϕ + ia|ϕ|−(1−m)ϕ = iF (x)ebt , in R × Ω,

ϕ|∂Ω = 0, on R × ∂Ω,

ϕ(0) = u, in Ω.

(1.2)

The main goal of this paper is to study the nature of the support of the solution of (1.1): mainly its compactness
and localization. Let us mention that, in our opinion, this question touches the very foundations of the derivation of
the Schrödinger equation. Indeed, one of the main modifications introduced by Quantum Mechanics, with respect
Classical Mechanics, is the impossibility to localize the state (position and velocity) of a particle. The solution u(t, x)

is related to the probability of finding the position and momentum of particle (see, e.g. the presentation made in the
text book by Strauss [24]). It is well-known that in most of the different versions of the Schrödinger equations the
corresponding solution never vanishes on a subset positive measure of the domain, which reflects the impossibility of
localizing the particle as mentioned above. This is the case, for instance, in case of the linear Schrödinger equation
and also for some nonlinear versions where the linear equation is perturbed by a nonlinear regular potential (see, for
instance, the monographs of Sulem and Sulem [25] and Cazenave [9]).

The main goal of this work is to show that if the linear Schrödinger equation is perturbed with suitable singu-
lar nonlinear potentials, then the support of the solution becomes a compact set and so any estimate on its spatial
localization implies very rich information on places which cannot be occupied by the particle.

We point out that complex potentials with certain types of singularities arise in many different situations (see, for
instance, in Brezis and Kato [7], LeMesurier [19] and Liskevitch and Stollmann [22], and the references therein). We
also refer the reader to the survey Belmonte-Beitia [6] in which the author supplying many references to this type
of equation and many other contexts such as: semiconductors, nonlinear optics, Bose–Einstein condensation, plasma
physics, molecular dynamics. Special mention is paid in this paper to the so-called Gross–Pitaevskii (corresponding
to b �= 0).

In this paper, we improve some of our previous results, outlined briefly in Bégout and Díaz [4]. Moreover, we
include here new estimates and generalizations. We are aware of very few other results in the literature dealing with
the support of solutions of nonlinear Schrödinger equations. For instance, Rosenau and Schochet [23] propose a (one-
dimensional) quasilinear Schrödinger equation in order to get solutions with compact support for each t fixed. That
equation and the techniques used in that paper are very different from the ones in the present work. Analogously, in
a paper dated from 2008 [18], Kashdan and Rosenau consider the question of the existence (with some numerical
experiments) of some special solutions: an one-dimensional travelling wave solution of soliton type u(t, x) = A(x −
λt) exp(i(�(x − λt) + ωt)), for the special case of a = iγ (in problem (1.2)) and m ∈ (0,1). They also consider the
two-dimensional case (now with changing propagation directions). A nonlinear term (of cubic type) is added in their
equation. Those interesting results are independent of our study which also applies in the presence of some additional
nonlinear terms as in the above mentioned reference.

A more restricted point of view was taken in the paper by Carles and Gallo [8] where the authors prove finite time
stabilization for a linear Schrödinger equations perturbed with a suitable singular nonlinear potential. In their setting,
they also prove some kind of compactness of the support of the solution by means of a different energy method, but
in their case the compactness occurs merely in time and not in the spatial coordinates.

We also point out that different propagation effects have been intensively studied in the literature, but most of
them are related to singularities, spectral and other properties (see, for instance, Jensen [17]). The question of the
compactness of the support considered here is of very different nature.

In order to present our results, we shall start by indicating some very special cases which are consequences of more
technical results stated later (see Theorem 2.1 below).

Theorem 1.1. Let 0 < m < 1, let a ∈ R \ {0} and let b ∈ R, b > 0. Let F ∈ L
m+1
m (RN) with compact support. Then

there exists a unique weak solution u ∈ H 1(RN) ∩ Lm+1(RN) (see Definition 2.3 below) of the problem
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−i�u + a|u|−(1−m)u + ibu = F (x), in R
N.

In addition, u is compactly supported.

Theorem 1.2. Let Ω ⊆ R
N be a nonempty open subset, let 0 < m < 1, let a ∈ R \ {0} and let b ∈ R, b > 0. Let

F ∈ L
m+1
m (Ω) with compact support. Assume that F is small enough in L

m+1
m (Ω). Then there exists a unique weak

solution u ∈ H 1
0(Ω) ∩ Lm+1(Ω) (see Definition 2.3 below) of the problem{−i�u + a|u|−(1−m)u + ibu = F (x), in Ω,

u|∂Ω = 0, on ∂Ω.

In addition, u is compactly supported in Ω.

We emphasize that no sign assumption has been made on a in the precedent statements. Much more general
versions of our results are presented in the next section where we also include a detailed explanation of the notations
used in this paper.

2. Notations and general versions of the main results

Before stating our main results we shall indicate here some of the notations used throughout. Bold symbols are
used for complex mathematics objects. For a real number r, r+ = max{0, r} is the positive part of r. We write i2 = −1.

We denote by z the conjugate of the complex number z, by Re(z) its real part and by Im(z) its imaginary part. For
1 � p � ∞, p′ is the conjugate of p defined by 1

p
+ 1

p′ = 1. Let j, k ∈ Z with j < k. We then write �j, k� = [j, k]∩Z.

We denote by ∂Ω the boundary of a nonempty subset Ω ⊆ R
N, Ω its closure, Ωc = R

N \ Ω its complement and
ω � Ω means that ω ⊂ Ω and that ω is a compact subset of R

N. For an open subset Ω ⊆ R
N, the usual Lebesgue

and Sobolev spaces are respectively denoted by Lp(Ω) = Lp(Ω;C) and Wm,p(Ω) = Wm,p(Ω;C) (1 � p � ∞ and
m ∈ N), Hm(Ω) = Wm,2(Ω;C), Hm

0 (Ω) = Wm,2
0 (Ω;C) is the closure of D(Ω) = D(Ω;C) under the Hm-norm,

and H−m(Ω) is its topological dual. H 1
c(Ω) = {u ∈ H 1(Ω); suppu � Ω}. C(Ω) = C0(Ω) = C(Ω;C) = C0(Ω;C)

is the space of continuous functions from Ω to C. For k ∈ N, Ck(Ω) = Ck(Ω;C) is the space of functions lying
in C(Ω;C) and having all derivatives of order lesser or equal than k belonging to C(Ω;C). For 0 < α � 1 and

k ∈ N0
def= N ∪ {0},

Ck,α
loc (Ω) = Ck,α

loc (Ω;C) =
{
u ∈ Ck(Ω;C); ∀ω � Ω,

∑
|β|=k

Hα
ω

(
Dβu

)
< +∞

}
,

where

Hα
ω (u) = sup{

(x, y) ∈ ω2

x �= y

|u(x) − u(y)|
|x − y|α .

The Laplacian in Ω is written � = ∑N
j=1

∂2

∂x2
j

. For a functional space E ⊂ L1
loc(Ω;C), we denote by Erad the space

of functions f ∈ E such that f is spherically symmetric. For a Banach space E, we denote by E� its topological dual
and by 〈·,·〉E�,E ∈ R the E�–E duality product. In particular, for any T ∈ Lp′

(Ω) and ϕ ∈ Lp(Ω) with 1 � p < ∞,

〈T ,ϕ〉
Lp′

(Ω),Lp(Ω)
= Re

∫
Ω

T (x)ϕ(x)dx. For x0 ∈ R
N and r > 0, we denote by B(x0, r) = {x ∈ R

N ; |x − x0| < r}
the open ball of R

N of center x0 and radius r , by S(x0, r) = {x ∈ R
N ; |x − x0| = r} its boundary and by B(x0, r) =

B(x0, r)∪S(x0, r) its closure. We also use the notation BΩ(x0, r) = Ω ∩B(x0, r). As usual, we denote by C auxiliary
positive constants, and sometimes, for positive parameters a1, . . . , an, write C(a1, . . . , an) to indicate that the constant
C continuously depends only on a1, . . . , an (this convention also holds for constants which are not denoted by “C”).

Let us return to Eq. (1.2). Note that no boundary condition is imposed since all the compact support results (which
are due to Theorem 2.1 below) rest on the notion of local solution (Definition 2.3 below). If Ω �= R

N, boundary
conditions are necessary for establishing existence and uniqueness of global solutions of (1.1). For the purpose of
clarity, we shall consider the Dirichlet case,
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u|∂Ω = 0, on ∂Ω, (2.1)

rather than Neumann boundary condition, mixed boundary condition or another one. The choice of the boundary
condition is motivated by the integration by parts relation 〈�u,v〉 = −〈∇u,∇v〉.

Compactness, existence and uniqueness results will follow from assumptions on (a,b) ∈ C
2 stated below. Define

the following subsets{
A = C \ {

z ∈ C; Re(z) = 0 and Im(z) � 0
}
,

B = A ∪ {0}.

Existence assumption. Let (a,b) ∈ C
2 satisfy

(a,b) ∈ A × B and

⎧⎪⎨⎪⎩
Re(a)Re(b) � 0,

or

Re(a)Re(b) < 0 and Im(b) >
Re(b)

Re(a)
Im(a).

(2.2)

Uniqueness assumption. Let (a,b) ∈ C
2 satisfy

Im(a) � 0 and

⎧⎨⎩a �= 0 and Re(ab) � 0,

or
a = 0 and b ∈ B.

(2.3)

For a geometric explanation of these hypotheses, see Section 6. For (a,b) ∈ C
2 satisfying (2.2), it will be conve-

nient to introduce the following constants. Let δ > 0 be an arbitrarily chosen parameter.

A(δ) = |Re(a)| + |Im(a)| + δ

|Re(a)| , if Re(a) �= 0, (2.4)

B = |Re(b)| + |Im(b)|
|Re(b)| , if Re(b) �= 0, (2.5)

L =

⎧⎪⎪⎨⎪⎪⎩
δ, if Im(a) < 0 and Re(a)Re(b) � 0,

|Re(a)|, if Im(a) = 0, Im(b) � 0 and Re(a)Re(b) � 0,

Im(a) if Im(a) > 0 and Im(b) � 0,

Im(a) − Re(a)
Re(b)

Im(b), otherwise,

(2.6)

M =

⎧⎪⎨⎪⎩
max{A(δ),B}, if Im(a) < 0, Im(b) < 0 and Re(a)Re(b) � 0,

A(δ), if Im(a) < 0, Im(b) � 0 and Re(a)Re(b) � 0,

2 if Im(a) � 0, Im(b) � 0 and (Im(a) > 0 or Re(a)Re(b) � 0),

B if (Im(a) � 0 and Im(b) < 0) or Re(a)Re(b) < 0.

(2.7)

Under hypothesis (2.2), one easily checks that A(δ), B, L and M are well defined and positive. The parameter δ

may seem very mysterious but, actually, it is not. In order to obtain the crucial estimate (7.7), we apply Lemma 7.3
to (7.8) and (7.9). The hard case Im(a) < 0 can be treated in the following way. If Re(a)Re(b) > 0 then we add the
assumption Im(b) >

Re(b)
Re(a)

Im(a). But when Re(a)Re(b) � 0, if we do not want make an additional assumption on
a and b, we have to introduce a positive parameter δ in order to obtain a positive coefficient L = L(δ) in front of
‖u‖m+1

Lm+1(B(x0,ρ))
(played by C2 in Lemma 7.3). If we do not introduce this parameter (that is, if we choose δ = 0) then

we get L = 0 in (7.7) and we loose the effect of the nonlinearity (see Cases 5 and 6 in the proof of Lemma 7.3).
Numerical computations of stationary solutions are done in Bégout and Torri [5], while the evolution case and

self-similar solutions are studied in Bégout and Díaz [2,3], respectively. In this paper, we prove the results stated in
Bégout and Díaz [4] and add some generalizations. This paper is concerned with the propagation of the support of F

to the solution u, and all these results are a consequence of the following theorem.

Theorem 2.1. Let Ω ⊆ R
N be a nonempty open subset, let 0 < m < 1, let (a,b) ∈ C

2 satisfying (2.2), let L > 0 be
given by (2.6) and let M > 0 be given by (2.7). There exists C = C(N,m) > 0 satisfying the following property. Let
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F ∈ L1
loc(Ω), let u ∈ H 1

loc(Ω) be any local weak solution of (1.1) (see Definition 2.3 below), let x0 ∈ Ω and let
ρ0 > 0. If ρ0 > dist(x0, ∂Ω) then assume further that u ∈ H 1

0(Ω). If F |BΩ(x0,ρ0) ≡ 0 then u|BΩ(x0,ρmax) ≡ 0, where

ρν
max =

(
ρν

0 − CM2 max

{
1,

1

L2

}
max

{
ρν−1

0 ,1
}

min
τ∈( m+1

2 ,1]

{
E(ρ0)

γ (τ) max{b(ρ0)
μ(τ), b(ρ0)

η(τ)}
2τ − (1 + m)

})
+
, (2.8)

and where for any τ ∈ (m+1
2 ,1],

E(ρ0) = ‖∇u‖2
L2(BΩ(x0,ρ0))

, b(ρ0) = ‖u‖m+1
Lm+1(BΩ(x0,ρ0))

, γ (τ ) = 2τ − (1 + m)

k
∈ (0,1),

μ(τ) = 2(1 − τ)

k
, η(τ ) = 1 − m

1 + m
− γ (τ) > 0, k = 2(1 + m) + N(1 − m),

ν = k

m + 1
> 2.

Remark 2.2. If the solution is too “large”, it may happen that ρmax = 0 and so the above result is not consistent.
A sufficient condition to observe a localizing effect is that the solution is small enough, in a suitable sense. We give
two results in this direction. The first one (Theorem 3.3) pertains to the size of the solution, while the second one
is concerned with the size of the external source F (Theorem 3.5), which seems to be more natural. In addition,
Theorem 3.5 says where the support of the solutions is localized with respect to the support of the external source F .

Now, we state the precise notion of solution.

Definition 2.3. Let Ω ⊆ R
N be an open subset, let (a,b) ∈ C

2, let 0 < m < 1 and let F ∈ L1
loc(Ω). We say that u is

a local weak solution of (1.1) if u ∈ H 1
loc(Ω) and if u is a solution of (1.1) in D ′(Ω), that is〈−i�u + a|u|−(1−m)u + bu,ϕ

〉
D ′(Ω),D(Ω)

= 〈F ,ϕ〉D ′(Ω),D(Ω), (2.9)

for any ϕ ∈ D(Ω).

We say that u is a global weak solution of (1.1) and (2.1) if u is a local weak solution of (1.1) and if furthermore
u ∈ H 1

0(Ω) ∩ Lm+1(Ω).

Let z ∈ C \ {0}. Since ||z|−(1−m)z| = |z|m, it is understood that ||z|−(1−m)z| = 0 when z = 0.

Remark 2.4. Here are some comments about Definition 2.3.

1. For a global weak solution u of (1.1) and (2.1), the boundary condition u|∂Ω = 0 is included in the assumption
u ∈ H 1

0(Ω). On the contrary, the notion of local weak solution does not consider any boundary condition.

2. When u is a local weak solution of (1.1), we have ∇u ∈ L2
loc(Ω), a|u|−(1−m)u ∈ L

m+1
m

loc (Ω) and bu ∈ L2
loc(Ω).

Then �u ∈ L1
loc(Ω) and Eq. (1.1) makes sense in L1

loc(Ω). Furthermore, L
m+1
m

loc (Ω) ⊂ L2
loc(Ω) and D(Ω) is

dense in H 1
c(Ω). It follows from Sobolev’s embedding that if u is a local weak solution of (1.1) then

Re
∫
Ω

i∇u(x).∇ϕ(x)dx + Re
∫
Ω

(
a
∣∣u(x)

∣∣−(1−m)
u(x) + bu(x)

)
ϕ(x)dx = Re

∫
Ω

F (x)ϕ(x)dx, (2.10)

for any ϕ ∈ H 1
c(Ω) with either suppϕ∩suppF = ∅ or F ∈ L

p
p−1
loc (Ω), for some 1 � p � ∞ if N = 1, 1 � p < ∞

if N = 2 or 1 � p � 2N
N−2 , if N � 3. For example, p = m + 1 is always an admissible value.

3. In the same way, by density of D(Ω) in H 1
0(Ω) ∩ Lm+1(Ω) ∩ Lp(Ω), for any 1 � p < ∞, and in H 1

0(Ω) ∩
Lm+1(Ω), if u is a global weak solution of (1.1) and (2.1) then (2.10) holds for any ϕ ∈ H 1

0(Ω) ∩ Lm+1(Ω)

with either suppϕ ∩ suppF = ∅ or ϕ ∈ Lp(Ω) and F ∈ L
p

p−1 (Ω), for some 1 � p < ∞. In particular, if p is as
in 2. of this remark with additionally p � m+1, then in view of H 1

0(Ω)∩Lm+1(Ω) ↪→ Lp(Ω), Eq. (1.1) makes

sense in H−1(Ω) + L
m+1
m (Ω) and (2.10) holds for any ϕ ∈ H 1

0(Ω) ∩ Lm+1(Ω).
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3. Spatial localization property

Theorem 3.1. Let Ω ⊆ R
N be a nonempty open subset, let 0 < m < 1 and let (a,b) ∈ C

2 satisfying (2.2). Let F ∈
L

m+1
m (Ω), let u ∈ H 1

loc(Ω) be any local weak solution of (1.1) (Definition 2.3), let x0 ∈ Ω and let ρ1 > 0. If ρ1 >

dist(x0, ∂Ω) then assume further that u ∈ H 1
0Ω). Then there exist E� > 0 and ε� > 0 satisfying the following property.

Let ρ0 ∈ (0, ρ1). If ‖∇u‖2
L2(B(x0,ρ1))

< E� and if

∀ρ ∈ (0, ρ1),‖F‖
m+1
m

L
m+1
m (B(x0,ρ))

< ε�

(
(ρ − ρ0)+

)p
, (3.1)

where p = 2(1+m)+N(1−m)
1−m

> N + 2, then u|BΩ(x0,ρ0) ≡ 0. In other words, with the notation of Theorem 2.1,

ρmax = ρ0.

Remark 3.2. We may estimate E� and ε� as

E� = E�

(
‖u‖−1

Lm+1(B(x0,ρ1))
, ρ1,

ρ0

ρ1
,

L

M
,N,m

)
,

ε� = ε�

(
‖u‖−1

Lm+1(B(x0,ρ1))
,
ρ0

ρ1
,

L

M
,N,m

)
,

where L > 0 and M > 0 are given by (2.4) and (2.7), respectively. The dependence on 1
δ

means that for any value δ

small enough, E� and ε� are bounded from below.
Note that p = 1

γ (1)
, where γ is the function defined in Theorem 2.1.

Theorem 3.3. Let Ω ⊆ R
N be a nonempty open subset, let 0 < m < 1, let (a,b) ∈ C

2 satisfying (2.2), let L > 0 be
given by (2.6) and let M > 0 be given by (2.7). There exists C = C(N,m) > 0 satisfying the following property. Let
F ∈ L1

loc(Ω), let u ∈ H 1
loc(Ω) be any local weak solution of (1.1) (Definition 2.3), let x0 ∈ Ω and let ρ0 > 0. If

2ρ0 > dist(x0, ∂Ω) then assume further that u ∈ H 1
0(Ω). Finally, suppose F |BΩ(x0,2ρ0) ≡ 0, ‖u‖Lm+1(BΩ(x0,2ρ0))

� 1
and one of the two estimates (3.2) or (3.3) below is satisfied.

‖∇u‖
2(1−m)

k

L2(BΩ(x0,2ρ0))
� C

(
2ν − 1

)
(1 − m)M−2 min

{
1,L2}min

{
1

2
, ρ0

}ν−1

ρ0, (3.2)⎧⎪⎨⎪⎩
‖∇u‖L2(BΩ(x0,2ρ0))

� 1,

‖u‖
2s(m+1)

k

Lm+1(BΩ(x0,2ρ0))
� C

(
2ν − 1

)
(1 − m − 2s)M−2 min

{
1,L2}min

{
1

2
, ρ0

}ν−1

ρ0,
(3.3)

for some s ∈ (0, 1−m
2 ), where the constants k > ν > 2 are given in Theorem 2.1. Then u|BΩ(x0,ρ0) ≡ 0.

Remark 3.4. Note that in estimate (3.2), 2(1−m)
k

= 2
p
, where p > N + 2 is given in Theorem 3.1.

Theorem 3.5. Let Ω ⊆ R
N be a nonempty open subset, let 0 < m < 1, let (a,b) ∈ C

2 satisfying (2.2), let L > 0 be
given by (2.6) and let M > 0 be given by (2.7). Then for any ε > 0, there exists δ0 = δ0(ε,N,m,L,M) > 0 satisfying

the following property. Let F ∈ L
m+1
m (Ω) and let u ∈ H 1

0(Ω) ∩ Lm+1(Ω) be any global weak solution of (1.1) and
(2.1). If suppF is a compact set and if ‖F‖

L
m+1
m (Ω)

� δ0 then suppu ⊂ Ω ∩ O(ε), where O(ε) is the open bounded
set

O(ε) = {
x ∈ R

N ; ∃y ∈ suppF such that |x − y| < ε
}
.

In particular, if ε > 0 is small enough then suppu ⊂ O(ε) ⊂ Ω.

We see that localization effect occurs under some smallness condition, either on the solution u (Theorem 3.3) or on
the external source F (Theorem 3.5). When Ω = R

N, the phenomenon is simpler since localization effect is always
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observed, without any condition of the size, neither on the solution nor on the external source, as show the following
result.

Theorem 3.6. Let 0 < m < 1, let (a,b) ∈ C
2 satisfying (2.2), let F ∈ Lp(RN), for some 1 � p � ∞, and let u ∈

H 1(RN) ∩ Lm+1(RN) be any global weak solution of (1.1). If suppF is a compact set then suppu is also compact.

4. Existence and smoothness

In this section, we give an existence result of solutions for Eq. (1.1) (Theorem 4.1), some a priori bounds for the
solutions of Eq. (1.1) (Theorem 4.4), which will be useful to establish our existence result, and a smoothness result
for Eq. (1.1) (Proposition 4.5).

Theorem 4.1. Let Ω ⊆ R
N be a nonempty open subset, let 0 < m < 1, let (a,b) ∈ C

2 satisfying (2.2) and let F ∈
L

m+1
m (Ω). Then Eqs. (1.1) and (2.1) admit at least one global weak solution u ∈ H 1

0(Ω) ∩ Lm+1(Ω). Furthermore,
the following properties hold for any global weak solution u (except Property (3)).

(1) u ∈ W
2, m+1

m

loc (Ω).

(2) Let α ∈ (0,m]. If F ∈ C0,α
loc (Ω) then u ∈ C2,α

loc (Ω).

(3) If Ω = {x ∈ R
N ; r < |x| < R}, for some −∞ < r � r+ < R � +∞, and if F is spherically symmetric then

there exists a spherically symmetric global weak solution u ∈ H 1
0(Ω) ∩ Lm+1(Ω) of (1.1) and (2.1). For N = 1,

this means that if F is an even (respectively, an odd) function on Ω = (−R,−r) ∪ (r,R) then u is also an even
(respectively, an odd) function.

Remark 4.2. Assume F is spherically symmetric. Since we do not know, in general, if we have uniqueness of the
solution, we are not able to show that any solution is radially symmetric. For a uniqueness result, see Theorem 5.2
below.

Remark 4.3. Assume |Ω| < ∞. There exists ε = ε(N) > 0 such that for any (a,b) ∈ C
2, 0 < m < 1 and F ∈ L2(Ω),

if |b||Ω| 2
N < ε then Eqs. (1.1) and (2.1) admit at least one global weak solution u ∈ H 1

0(Ω). In addition, u ∈ H 2
loc(Ω).

Finally, Properties (2) and (3) of Theorem 4.1 hold. For more details, see Bégout and Torri [5].

Theorem 4.4. Let Ω ⊆ R
N be a nonempty open subset, let 0 < m < 1, let (a,b) ∈ C

2 satisfying (2.2), let L > 0 be

given by (2.6), let M > 0 be given by (2.7) and let F ∈ L
m+1
m (Ω). Let u ∈ H 1

0(Ω) ∩ Lm+1(Ω) be any global weak
solution of (1.1) and (2.1). Then we have the following estimates

‖∇u‖2
L2(Ω)

+ ‖u‖m+1
Lm+1(Ω)

< M0‖F‖
m+1
m

L
m+1
m (Ω)

, (4.1)

‖u‖2
H 1

0(Ω)
+ ‖u‖m+1

Lm+1(Ω)
< CM̃0

(
1 + ‖F‖

δ(m+1)
m

L
m+1
m (Ω)

)‖F‖
m+1
m

L
m+1
m (Ω)

, (4.2)

where M0 = M( 2M
L

)
1
m max{1, 2

L
}, δ = 2(1−m)

(N+2)−m(N−2)
, M̃0 = M0(1 + Mδ

0) and C = C(N,m).

Proposition 4.5. Let a ∈ C, let 0 < m < 1, let V ∈ Lr
loc(Ω;C), for any 1 < r < ∞, let F ∈ L1

loc(Ω;C) and, for some

ε > 0, let u ∈ L1+ε
loc (Ω;C) (u ∈ L1

loc(Ω;C) suffices if V ∈ L∞
loc(Ω;C)) be a solution to

−�u + V u + a|u|−(1−m)u = F (x), in D ′(Ω). (4.3)

Let 1 < q < ∞ and suppose u ∈ L
q

loc(Ω). Then the following regularity results hold.

(1) If for some p ∈ [q,∞), F ∈ L
p

loc(Ω) then u ∈ W
2,p

loc (Ω).

(2) Let α ∈ (0,m]. If (F ,V ) ∈ C0,α
loc (Ω) × C0,α

loc (Ω) then u ∈ C2,α
loc (Ω).
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Remark 4.6. Since 0 < m < 1 and u ∈ L1
loc(Ω), one has L

1
m

loc(Ω) ⊂ L1
loc(Ω) and so |u|−(1−m)u ∈ L1

loc(Ω). In
addition, from Hölder’s inequality V u ∈ L1

loc(Ω) and it follows that �u ∈ L1
loc(Ω). In conclusion, Eq. (4.3) makes

senses in L1
loc(Ω).

Remark 4.7. We only state a local smoothness result since we are interested by compactly supported solutions. In this
case, global smoothness is immediate. Nevertheless, one may wonder what happens when a solution is not compactly
supported. We use the notation of Proposition 4.5 and assume further that Ω is bounded3 and has a C1,1 boundary.
Let the assumptions of Proposition 4.5 be fulfilled and let u ∈ Lq(Ω), for some 1 < q < ∞, be a solution to (4.3)
such that u|∂Ω = 0 in the sense of the trace.4

1. If for some p ∈ [q,∞), F ∈ Lp(Ω) and V ∈ Lr (Ω), ∀r ∈ (1,∞), then u ∈ W 2,p(Ω) ∩ W
1,p

0 (Ω). Indeed,
recalling that if for some 1 < p < ∞, a function v ∈ Lp(Ω) satisfies �v ∈ Lp(Ω) and v|∂Ω = 0 in the sense of

the trace2 then v ∈ W 2,p(Ω) ∩ W
1,p

0 (Ω) (Grisvard [15, Corollary 2.5.2.2, p. 131]). We then apply the bootstrap
method of the proof of Proposition 4.5 to prove the result, where we use the embedding Lr (Ω) ↪→ Ls(Ω), which
holds for any r � s (since Ω is bounded) and the global regularity result of Grisvard [15, Corollary 2.5.2.2, p. 131]
in place of a local regularity result (Cazenave [10, Theorem 4.1.2, pp. 101–102]).

2. Let α ∈ (0,m]. If Ω has a C2,α boundary and (F ,V ) ∈ C0,α(Ω)×C0,α(Ω) then u ∈ C2,α(Ω)∩C0(Ω).5 Indeed,
it follows from the above remark that u ∈ W 2,N+1(Ω) ∩ H 1

0(Ω) and by Sobolev’s embedding, u ∈ C0,1(Ω).

Setting

f = F (x) − V u − a|u|−(1−m)u,

it then follow from Eq. (4.3) and estimate (8.5) below that f ∈ C0,α(Ω). Let v ∈ C def= C2,α(Ω) ∩ C0(Ω) be a
solution to

−�w = f , (4.4)

given by Gilbarg and Trudinger [14, Theorem 6.14, p. 107]. Since u ∈ H 1
0(Ω) is also a solution to (4.4), unique-

ness for Eq. (4.4) holds in H 1
0(Ω) (Lax–Milgram’s Theorem) and C ⊂ H 1

0(Ω), we conclude that u = v and so
u ∈ C.

We end this section by giving a result for the evolution equation (in a particular case).

Corollary 4.8. Let 0 < m < 1, let (λ, b) ∈ C × R satisfying λ �= 0 and b � 0. If Im(λ) = 0 then assume further
Re(λ) � 0. Finally, let F ∈ C0,m(RN) be compactly supported. Then there exists a solution u ∈ C∞(R;C2,m

b (RN))

to ⎧⎨⎩ i
∂u

∂t
+ �u + λ|u|−(1−m)u = F (x)eibt , in R × R

N,

u(0) = ϕ, in R
N,

(4.5)

given by

∀(t, x) ∈ R × R
N, u(t, x) = ϕ(x)eibt , (4.6)

where ϕ ∈ C2,m
b (RN) is a solution compactly supported of

3 Actually, assumptions on Ω we use in this remark are ∂Ω bounded and |Ω| < ∞. But these two conditions imply that Ω is bounded.
4 Let T :u → {γu,γ ∂u

∂ν
} be the trace function defined on D(Ω), let 1 < p < ∞ and let Xp(Ω) = {u ∈ Lp(Ω); �u ∈ Lp(Ω)}. By density

of D(Ω) in Xp(Ω), T has a continuous and linear extension from Xp(Ω) into W
− 1

p ,p
(∂Ω) × W

−1− 1
p ,p

(∂Ω) (Hörmander [16, Theorem 2,
p. 503]; Lions and Magenes [20, Lemma 2.2 and Theorem 2.1, p. 47]; Lions and Magenes [21, Propositions 9.1, 9.2 and Theorem 9.1, p. 82];
Grisvard [15, p. 54]). Since u ∈ Lm+1(Ω), it follows from Eq. (4.3) and Hölder’s inequality that u ∈ Xp(Ω), for any 1 < p < m + 1. Then
“u|∂Ω = 0 in the sense of the trace” makes sense and means that γu = 0.

5 For k ∈ N0 and 0 < α � 1, Ck,α(Ω) = {u ∈ Ck(Ω;C); ∑
|β|=k Hα

Ω(Dβu) < +∞} ⊂ W k,∞(Ω) (since Ω is bounded) and C0(Ω) = {u ∈
C(Ω); ∀x ∈ ∂Ω, u(x) = 0}.
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−�ϕ − λ|ϕ|−(1−m)ϕ + bϕ = −F (x), in R
N, (4.7)

given by Theorem 4.1. Furthermore, for any t ∈ R, suppu(t) is compact.

5. Uniqueness

Theorem 5.1. Let Ω ⊆ R
N be a nonempty open subset, let 0 < m < 1, let (a,b) ∈ C

2 \ {(0,0)} satisfying (2.3) and
let F 1,F 2 ∈ L1

loc(Ω) be such that F 1 − F 2 ∈ L2(Ω). Let u1,u2 ∈ H 1
0(Ω) ∩ Lm+1(Ω) be two global weak solutions

of

−i�u1 + a|u1|−(1−m)u1 + bu1 = F 1(x), in Ω, (5.1)

−i�u2 + a|u2|−(1−m)u2 + bu2 = F 2(x), in Ω, (5.2)

respectively. We have the following estimates.⎧⎨⎩‖u1 − u2‖L2(Ω) � |a|
Re(ab)

‖F 1 − F 2‖L2(Ω), if a �= 0 and Re(ab) > 0,

‖u1 − u2‖L2(Ω) � 1
b0

‖F 1 − F 2‖L2(Ω), if a = 0,
(5.3)

where b0 = |Re(b)|, if Re(b) �= 0 and b0 = Im(b), if Re(b) = 0. If a �= 0 and Re(ab) = 0 then assume further that
u1,u2 ∈ L∞(Ω). Then there exists a positive constant C = C(N,m) such that

‖u1 − u2‖L2(Ω) � C
(‖u1‖L∞(Ω) + ‖u2‖L∞(Ω))

1−m

|a| ‖F 1 − F 2‖L2(Ω). (5.4)

Theorem 5.2. Let Ω ⊆ R
N be a nonempty open subset, let 0 < m < 1, let (a,b) ∈ C

2 satisfying (2.3) and let F ∈
L1

loc(Ω). Then Eqs. (1.1) and (2.1) admit at most one global weak solution u ∈ H 1
0(Ω) ∩ Lm+1(Ω).

Corollary 5.3. Let Ω ⊆ R
N be a nonempty open subset, let 0 < m < 1, let (a,b) ∈ A × B satisfying (2.3) and let

F ∈ L
m+1
m (Ω). Then Eqs. (1.1) and (2.1) admit a unique global weak solution u ∈ H 1

0(Ω)∩Lm+1(Ω). Furthermore,
this solution satisfies Properties (1)–(3) of Theorem 4.1.

Corollary 5.4. Let Ω ⊆ R
N be a nonempty open subset, let 0 < m < 1 and let (a,b) ∈ C

2 satisfying (2.3). Then the
problem{−i�u + a|u|−(1−m)u + bu = 0, in Ω,

u ∈ H 1
0(Ω) ∩ Lm+1(Ω),

has for unique solution u ≡ 0.

Corollary 5.5. Let 0 < m < 1, let (a,b) ∈ A×B satisfying (2.3) and let F ∈ C0,m(RN) be compactly supported. Then
there exists a unique solution u ∈ C2,m

b (RN) of (1.1) and (2.1) compactly supported. If furthermore F is spherically
symmetric then u is also spherically symmetric. For N = 1, this means that if F is an even (respectively, an odd)

function then u is also an even (respectively, an odd) function.

6. Pictures

In this section, we give some geometric interpretation of the values of a and b. For convenience, we repeat the
hypotheses (2.2) and (2.3). We recall that,{

A = C \ {
z ∈ C; Re(z) = 0 and Im(z) � 0

}
,

B = A ∪ {0}.
For existence of solutions to problem (1.1) and (2.1), we suppose (a,b) ∈ C

2 satisfies
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Fig. 1. Existence, choice of b. Fig. 2. Existence, choice of a and b.

(a,b) ∈ A × B and

⎧⎪⎨⎪⎩
Re(a)Re(b) � 0,

or

Re(a)Re(b) < 0 and Im(b) >
Re(b)

Re(a)
Im(a),

(6.1)

while for uniqueness, we assume

Im(a) � 0 and

⎧⎨⎩a �= 0 and Re(ab) � 0,

or
a = 0 and b ∈ B.

(6.2)

Existence. Condition (6.1) may easily be interpreted in this way: if b �= 0 then one requires that [a,b]∩B = ∅, where
B is the geometric representation of B. See Figs. 1 and 2.

Uniqueness. The second condition of (6.2) is trivial. Indeed, b can be chosen anywhere in the complex plane, except
on the half-axis where Im(z) < 0. Let us consider the first condition. We first choose a ∈ C \ {0} such that Im(a) � 0,

and we choose b with respect to a. We see a and b as vectors of R
2. Then we write, −→a = ( Re(a)

Im(a)

)
,

−→
b = ( Re(b)

Im(b)

)
and

we have

Re(ab) = Re(a)Re(b) + Im(a) Im(b) = −→a .
−→
b , (6.3)

where . denotes the scalar product between two vectors of R
2. Then the condition Re(ab) � 0 is equivalent to

|� (−→a ,
−→
b )| � π

2 rad (see Fig. 3).

Remark 6.1. Let (a,b) ∈ C
2. Thanks to (6.3), the following assertions are equivalent.

(1) (a,b) satisfies (6.1)–(6.2) (or (2.2)–(2.3)).
(2) (a,b) ∈ A × B satisfies (6.2) (or (2.3)).
(3) ((a,b) satisfies (6.2)), (a �= 0) and (Im(a) = Re(b) = 0 ⇒ Im(b) � 0).

In other words, when Im(a) �= 0, uniqueness hypothesis (6.2) implies existence hypothesis (6.1) (see Fig. 4).
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Fig. 3. Uniqueness. Fig. 4. Uniqueness implies existence.

7. Proofs of the localization properties

In this section, we prove Theorems 2.1, 3.1, 3.3, 4.4, 3.5 and 3.6.
We recall some useful Gagliardo–Nirenberg’s and Young inequalities.

Proposition 7.1. Let Ω ⊆ R
N be a nonempty open subset and let 0 � p � 1. Then, there exists a positive constant

C = C(N) such that

∀u ∈ H 1
0(Ω) ∩ Lp+1(Ω), ‖u‖L2(Ω) � C‖∇u‖

N(1−p)
(N+2)−p(N−2)

L2(Ω)
‖u‖

2(1+p)
(N+2)−p(N−2)

Lp+1(Ω)
, (7.1)

∀u ∈ H 1
0(Ω) ∩ L1(Ω), ‖u‖p+1

Lp+1(Ω)
� C‖∇u‖

2pN
N+2

L2(Ω)
‖u‖

(N+2)−p(N−2)
N+2

L1(Ω)
. (7.2)

Note that C does not depend on Ω.

Lemma 7.2. For any real x � 0, y � 0, ε > 0 and p > 1, one has

xy � 1

p′ ε
p′

xp′ + 1

p
ε−pyp. (7.3)

Lemma 7.3. Let (a,b) ∈ C
2 satisfying (2.2) and let C0, C1, C2, C3 be four nonnegative real numbers satisfying∣∣C1 + Im(a)C2 + Im(b)C3

∣∣ � C0, (7.4)∣∣Re(a)C2 + Re(b)C3
∣∣ � C0. (7.5)

Then one has

0 � C1 + LC2 � MC0, (7.6)

where the positive constants L and M are defined by (2.6) and (2.7), respectively.

Proof. We split the proof in 6 cases. Let δ > 0.

Case 1. Im(a) > 0 and Im(b) � 0.
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Then (7.6) follows from (7.4).

Case 2. Im(a) = 0, Im(b) � 0 and Re(a)Re(b) � 0.

We compute (7.4) + sign(Re(a))(7.5) and then obtain (7.6).

Case 3. Im(a) � 0, Im(b) < 0 and Re(a)Re(b) � 0.

We compute (7.4) + |Im(b)|
Re(b)

(7.5) and then obtain (7.6).

Case 4. Re(a)Re(b) < 0.

If Im(b) = 0 then (2.2) implies Im(a) > 0, which fall into the scope of Case 1. So we may assume Im(b) �= 0. We
compute (7.4) − Im(b)

Re(b)
(7.5) and then obtain (7.6).

Case 5. Im(a) < 0, Im(b) � 0 and Re(a)Re(b) � 0.

We compute (7.4) + |Im(a)|+δ
Re(a)

(7.5) and then obtain (7.6).

Case 6. Im(a) < 0, Im(b) < 0 and Re(a)Re(b) > 0.

We compute (7.4) + max{ |Im(a)|+δ
Re(a)

,
|Im(b)|
Re(b)

}(7.5) and then obtain (7.6).
This ends the proof. �

Proof of Theorems 2.1 and 3.1. In order to establish our result in all cases of (2.2), we will adopt the proofs of
Theorem 2.1, pp. 12–18 and Theorem 3.2, pp. 28–30 of Antontsev, Díaz and Shmarev [1], which has to be adapted.
We denote by σ the surface measure on a sphere, ρ2 = ρ0, if we are concerned by Theorem 2.1 and ρ2 = ρ1, if we are
concerned by Theorem 3.1. Assume we have either ρ2 < dist(x0, ∂Ω) (⇔ B(x0, ρ2) ⊂ Ω) or ρ2 > dist(x0, ∂Ω). The
remaining case ρ2 = dist(x0, ∂Ω) (⇔ B(x0, ρ2) ⊂ Ω and ∂Ω ∩S(x0, ρ2) �= ∅), will be treated at the end of the proof.6

If ρ2 > dist(x0, ∂Ω), we have u ∈ H 1
0(Ω). So we may define ũ ∈ H 1

0(Ω ∪ B(x0, ρ2)) satisfying ũ|Ω ∈ H 1
0(Ω), by

setting ũ = u, in Ω and ũ = 0, in Ωc ∩ B(x0, ρ2). Then ∇ũ = ∇u, almost everywhere in Ω and ∇ũ = 0, almost
everywhere in Ωc ∩ B(x0, ρ2). Still if ρ2 > dist(x0,Ω), we denote by F̃ the extension of F by 0 in Ωc ∩ B(x0, ρ2).

We now proceed with the proof in 7 steps.

Step 1. Let L and M be the constants defined by (2.6) and (2.7), respectively. For almost every ρ ∈ (0, ρ2),

‖∇ũ‖2
L2(B(x0,ρ))

+ L‖ũ‖m+1
Lm+1(B(x0,ρ))

� MI(ρ) + MJ(ρ), (7.7)

where I (ρ) = | ∫
S(x0,ρ)

ũ∇ũ.
x−x0|x−x0| dσ | and J (ρ) = ∫

B(x0,ρ)
|F̃ (x)̃u(x)|dx. Moreover, I, J ∈ L1(0, ρ2).

From Hölder’s inequality, the above discussion and Sobolev’s embedding,

‖I‖L1(0,ρ2)
� ‖ũ‖2

H 1(B(x0,ρ2))
< ∞,

‖J‖L1(0,ρ2)
� ‖F̃‖

L
m+1
m (B(x0,ρ2))

‖ũ‖Lm(B(x0,ρ2)) < ∞.

Let ρ ∈ (0, ρ2) For any n ∈ N, n > 1
ρ
, we define the cutoff function ψn ∈ W 1,∞(R) by

∀t ∈ R, ψn(t) =

⎧⎪⎨⎪⎩
1, if |t | ∈ [0, ρ − 1

n
],

n(ρ − |t |), if |t | ∈ (ρ − 1
n
, ρ),

0, if |t | ∈ [ρ,∞),

6 For simplicity, we assume that ∂Ω �= ∅. Otherwise, we have Ω = R
N and we only have to treat the first case: B(x0, ρ2) ⊂ Ω.
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and we set for almost every x ∈ Ω ∪ B(x0, ρ2), ϕn(x) = ψn(|x − x0|)̃u(x). If ρ2 < dist(x0, ∂Ω) then suppϕn ⊆
B(x0, ρ) ⊂ Ω and so ϕn ∈ H 1

c(Ω). If ρ2 > dist(x0, ∂Ω) then ϕn|Ω ∈ H 1
0(Ω) and suppϕn ⊆ Ω ∩ B(x0, ρ). It follows

from Definition 2.3 and Remark 2.4.2. and 3., that ϕ = iϕn|Ω is an admissible test function and so

Re
∫

B(x0,ρ)

ψn

(|x − x0|
)(|∇ũ|2 − ia |̃u|m+1 − ib|̃u|2)dx

= −Re
∫

B(x0,ρ)

ψ ′
n

(|x − x0|
)̃
u∇ũ.

x − x0

|x − x0| dx + Im
∫

B(x0,ρ)

ψn

(|x − x0|
)
F̃ ũdx.

Introducing the spherical coordinates (r, σ ), we get∣∣∣∣Re
∫

B(x0,ρ)

ψn

(|x − x0|
)(|∇ũ|2 − ia |̃u|m+1 − ib|̃u|2)dx

∣∣∣∣
=

∣∣∣∣∣Re

(
n

ρ∫
ρ− 1

n

( ∫
S(x0,r)

ũ∇ũ.
x − x0

|x − x0| dσ

)
dr

)
− Im

∫
B(x0,ρ)

ψn

(|x − x0|
)
F̃ ũdx

∣∣∣∣∣
� n

ρ∫
ρ− 1

n

I (r)dr +
∫

B(x0,ρ)

ψn

(|x − x0|
)∣∣F̃ (x)̃u(x)

∣∣dx.

We now let n ↗ ∞. Using the Lebesgue’s dominated convergence theorem and recalling that I ∈ L1(0, ρ2), we obtain∣∣‖∇ũ‖2
L2(B(x0,ρ))

+ Im(a)‖ũ‖m+1
Lm+1(B(x0,ρ))

+ Im(b)‖ũ‖2
L2(B(x0,ρ))

∣∣ � I (ρ) + J (ρ). (7.8)

Proceeding as above with ϕ = ϕn|Ω, we get∣∣Re(a)‖ũ‖m+1
Lm+1(B(x0,ρ))

+ Re(b)‖ũ‖2
L2(B(x0,ρ))

∣∣ � I (ρ) + J (ρ). (7.9)

Then Step 1 follows from (7.8), (7.9) and Lemma 7.3.
Let us recall and introduce some notations. Let τ ∈ (m+1

2 ,1] and let ρ ∈ (0, ρ2). We set

E(ρ) = ‖∇ũ‖2
L2(B(x0,ρ))

, b(ρ) = ‖ũ‖m+1
Lm+1(B(x0,ρ))

, δ = k

2(1 + m)
,

θ = (1 + m) + N(1 − m)

k
∈ (0,1), � = 1

θ(1 + m)
, γ (τ) = 2τ − (1 + m)

k
∈ (0,1),

μ(τ) = 2(1 − τ)

k
, η(τ ) = 1 − m

1 + m
− γ (τ) > 0.

Step 2. E ∈ W 1,1(0, ρ2), for a.e. ρ ∈ (0, ρ2), E′(ρ) = ‖∇ũ‖2
L2(S(x0,ρ))

and

0 � E(ρ) + b(ρ) � CL1ME′(ρ)
1
2
(
E(ρ)

1
2 + ρ−δb(ρ)

1
m+1

)θ
b(ρ)

1−θ
m+1 + (2L1M)

m+1
m ‖F̃‖

m+1
m

L
m+1
m (B(x0,ρ))

, (7.10)

where C = C(N,m) and L1 = max{1, 1
L
}.

We have the identity E(ρ) = ∫ ρ

0 (
∫

S(x0,r)
|∇ũ|2 dσ)dr. Since the mapping r �→ ∫

S(x0,r)
|∇ũ|2 dσ lies in L1(0, ρ2),

E is absolutely continuous on (0, ρ2). We then get the first part of the claim and we only have to establish (7.10). Let
ρ ∈ (0, ρ2). It follows from Cauchy–Schwarz’s inequality that

I (ρ) � ‖∇ũ‖L2(S(x0,ρ))‖ũ‖L2(S(x0,ρ)) = E′(ρ)
1
2 ‖ũ‖L2(S(x0,ρ)). (7.11)

We recall the interpolation-trace inequality (see Corollary 2.1 in Díaz and Véron [12]. Note there is a misprint: δ has
to be replaced with −δ).
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‖ũ‖L2(S(x0,ρ)) � C
(‖∇ũ‖L2(B(x0,ρ)) + ρ−δ‖ũ‖Lm+1(B(x0,ρ))

)θ‖ũ‖1−θ

Lm+1(B(x0,ρ))
, (7.12)

where C = C(N,m). Putting together (7.7), (7.11) and (7.12), we obtain,

E(ρ) + b(ρ) � CL1ME′(ρ)
1
2
(
E(ρ)

1
2 + ρ−δb(ρ)

1
m+1

)θ
b(ρ)

1−θ
m+1 + L1M

∫
B(x0,ρ)

∣∣F̃ (x)̃u(x)
∣∣dx. (7.13)

Applying Young’s inequalities (Lemma 7.2) with x = ‖F̃‖
L

m+1
m (B(x0,ρ))

, y = ‖ũ‖Lm+1(B(x0,ρ)), ε = ( 2L1M
m+1 )

1
m+1 and

p = m + 1, we get∫
B(x0,ρ)

∣∣F̃ (x)̃u(x)
∣∣dx � m

m + 1

(
2L1M

m + 1

) 1
m ‖F̃‖

m+1
m

L
m+1
m (B(x0,ρ))

+ 1

2L1M
b(ρ), (7.14)

for any ρ ∈ (0, ρ2). Putting together (7.13) and (7.14), we obtain (7.10). Hence Step 2.

Step 3. Let C0 be the constant in (7.10). For any τ ∈ (m+1
2 ,1] and for a.e. ρ ∈ (0, ρ2),

C0L1ME′(ρ)
1
2
(
E(ρ)

1
2 + ρ−δb(ρ)

1
m+1

)θ
b(ρ)

1−θ
m+1

�
(
K1(τ )ρ−(ν−1)E′(ρ)

) 1
2
(
E(ρ) + b(ρ)

) γ (τ )+1
2 , (7.15)

where K1(τ ) = CL2
1M

2 max{ρν−1
2 ,1}max{b(ρ2)

μ(τ), b(ρ2)
η(τ)} and C = C(N,m).

Let τ ∈ (m+1
2 ,1] and let ρ ∈ (0, ρ2). A straightforward calculation yields(

E(ρ)
1
2 + ρ−δb(ρ)

1
m+1

)
b(ρ)

1−θ
θ(m+1)

= E(ρ)
1
2 b(ρ)

1−θ
θ(m+1) + ρ−δb(ρ)

1
θ(m+1)

= E(ρ)
1
2 b(ρ)τ(1−θ)�b(ρ)(1−τ)(1−θ)� + ρ−δb(ρ)

1
2 +τ(1−θ)�b(ρ)�−τ(1−θ)�− 1

2

� 2ρ−δ max
{
ρδ

2,1
}
K2(τ )

1
θ
(
E(ρ) + b(ρ)

) 1
2 +τ(1−θ)�

,

where K2
2 (τ ) = max{b(ρ2)

μ(τ), b(ρ2)
η(τ)}. Hence (7.15) with K1(τ ) = 4C2

0L2
1M

2K2
2 (τ )max{ρν−1

2 ,1}.

Step 4. For any τ ∈ (m+1
2 ,1] and for a.e. ρ ∈ (0, ρ2),

0 � E(ρ)1−γ (τ) � K1(τ )ρ−(ν−1)E′(ρ) + (4L1M)
(m+1)(1−γ (τ ))

m ‖F̃‖
(m+1)(1−γ (τ ))

m

L
m+1
m (B(x0,ρ))

. (7.16)

Putting together (7.10) and (7.15), and applying again Young’s inequality (7.3) with p = 2
γ (τ)+1 , ε = (γ (τ )+1)

γ (τ)+1
2 ,

x = (K1(τ )ρ−(ν−1)E′(ρ))
1
2 and y = (E(ρ) + b(ρ))

γ (τ)+1
2 , we obtain

E(ρ) + b(ρ) �
(
K1(τ )ρ−(ν−1)E′(ρ)

) 1
2
(
E(ρ) + b(ρ)

) γ (τ )+1
2 + (2L1M)

m+1
m ‖F̃‖

m+1
m

L
m+1
m (B(x0,ρ))

� C
(
K1(τ )ρ−(ν−1)E′(ρ)

) 1
1−γ (τ ) + 1

2

(
E(ρ) + b(ρ)

) + (2L1M)
m+1
m ‖F̃‖

m+1
m

L
m+1
m (B(x0,ρ))

,

where C = p−1
p

ε
p

p−1 = C(N,m). Changing, if needed, the constant C in the definition of K1(τ ), we obtain

E(ρ) + b(ρ) �
(
K1(τ )ρ−(ν−1)E′(ρ)

) 1
1−γ (τ ) + (4L1M)

m+1
m ‖F̃‖

m+1
m

L
m+1
m (B(x0,ρ))

.

Raising both sides of the above inequality to the power 1 − γ (τ) and recalling that (1 − γ (τ)) ∈ (0,1), we ob-
tain (7.16).

Step 5. Let α ∈ (0, ρ0]. If E(α) = 0 then u|BΩ(x0,α) ≡ 0.
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From our hypothesis, E′ = 0 on (0, α). Furthermore, ‖F̃‖
L

m+1
m (B(x0,α))

= 0 (from assumption of Theorem 2.1

or (3.1)). It follows from Step 2 and continuity of b that b(α) = 0. Hence Step 5 follows.

Step 6. Proof of Theorem 2.1.

Thus ρ2 = ρ0 and ‖F̃‖
L

m+1
m (B(x0,ρ0))

= 0. For any τ ∈ (m+1
2 ,1], set r(τ )ν = (ρν

2 −ν
K1(τ )E(ρ2)

γ (τ )

γ (τ )
)+ and let ρmax =

max
τ∈( m+1

2 ,1] r(τ ). Note that definition of ρmax coincides with (2.8). Let τ ∈ (m+1
2 ,1]. We claim that E(r(τ)) = 0.

Otherwise, E(r(τ)) > 0 and so E > 0 on [r(τ ), ρ0). From (7.16), one has (we recall that γ (τ) − 1 < 0),

for a.e. ρ ∈ (
r(τ ), ρ0

)
, K1(τ )E′(ρ)E(ρ)γ (τ)−1 � ρν−1. (7.17)

We integrate this estimate between r(τ ) and ρ0. We obtain

ν
K1(τ )

γ (τ )

(
E(ρ0)

γ (τ) − E
(
r(τ )

)γ (τ)) � ρν
0 − ρν

1 (τ ).

By definition of r(τ ), this gives E(r(τ)) � 0. A contradiction, hence the claim. In particular, E(ρmax) = 0. It follows
from Step 5 that u|BΩ(x0,ρmax) ≡ 0, which is the desired result. It remains to treat the case where ρ0 = dist(x0, ∂Ω).

We proceed as follows. Let n ∈ N, n � 1
ρ0

. We work on B(x0, ρ0 − 1
n
) instead of B(x0, ρ0) and apply the above result.

Thus u|B(x0,ρ
n
max)

≡ 0, where ρn
max is given by (2.8) with ρ0 − 1

n
in place of ρ0. We then let n ↗ ∞ which leads to the

result. This finishes the proof of Theorem 2.1.

Step 7. Proof of Theorem 3.1.

We have ρ2 = ρ1. Let γ = γ (1) and set for any ρ ∈ [0, ρ1], F (ρ) = (4L1M)
(m+1)(1−γ )

m ‖F̃‖
(m+1)(1−γ )

m

L
m+1
m (B(x0,ρ))

and K =
K1(1)ρ

−(ν−1)
0 . Let E� = (

γ
2K

(ρ1 − ρ0))
1
γ and ε� = 1

2p′
(4L1M)

m+1
m

(
γ

2K
)p. Note that p = 1

γ
. Assume now E(ρ1) < E�.

Applying Step 4 with τ = 1, one has for a.e. ρ ∈ (ρ0, ρ1),

−KE′(ρ) + E(ρ)1−γ � F(ρ). (7.18)

Let define the function G by

∀ρ ∈ [0, ρ1], G(ρ) =
(

γ

2K
(ρ − ρ0)+

) 1
γ

. (7.19)

Then G(ρ1) = E�, G ∈ C1([0, ρ1];R) (since 1
γ

> 2) and G satisfies

∀ρ ∈ [0, ρ1], −KG′(ρ) + 1

2
G(ρ)1−γ = 0, (7.20)

E(ρ1) < G(ρ1). (7.21)

Finally and recalling that γ = 1
p
, from our hypothesis (3.1) and (7.19), one has

∀ρ ∈ (0, ρ1), F (ρ) <
1

2

(
γ

2K
(ρ − ρ0)+

) 1−γ
γ = 1

2
G(ρ)1−γ . (7.22)

Putting together (7.18), (7.22) and (7.20), one obtains

−KE′(ρ) + E(ρ)1−γ < −KG′(ρ) + G(ρ)1−γ , for a.e. ρ ∈ (ρ0, ρ1). (7.23)

Now, we claim that for any ρ ∈ [ρ0, ρ1), E(ρ) � G(ρ). Indeed, if the claim does not hold, it follows from (7.21) and
continuity of E and G that there exist ρ� ∈ (ρ0, ρ1) and δ ∈ (0, ρ� − ρ0] such that

E(ρ�) = G(ρ�), (7.24)

E(ρ) > G(ρ), ∀ρ ∈ (ρ� − δ,ρ�). (7.25)
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It follows from (7.23) and (7.25) that for a.e. ρ ∈ (ρ� − δ,ρ�), G′(ρ) < E′(ρ). But, with (7.24), this implies that for
any ρ ∈ (ρ� −δ,ρ�), G(ρ) > E(ρ), which contradicts (7.25), hence the claim. It follows that 0 � E(ρ0) � G(ρ0) = 0.

We deduce with help the of Step 5 that u|BΩ(x0,ρ0) ≡ 0, which is the desired result. It remains to treat the case where
ρ1 = dist(x0, ∂Ω). We proceed as follows. Assume E(ρ1) < E�. Then there exists ε > 0 small enough such that

ρ0 < ρ1 − ε and E(ρ1) < E�(ε), where E�(ε) = (
γ

2K
(ρ1 − ρ0 − ε))

1
γ . Since ε� is a non-increasing function of ρ1,

we do not need to change its definition. Estimates (7.18)–(7.23) holding with ρ1 − ε in place of ρ1, it follows that
E(ρ0) = 0 and we finish with the help of Step 5. This ends the proof of Theorem 3.1. �
Proof of Theorem 3.3. Let C0 = C0(N,m) be the constant in estimate (2.8) given by Theorem 2.1. We then choose
C = C−1

0 in (3.2) and (3.3). Using the notations of Theorem 2.1 and its proof, we define for any τ ∈ (m+1
2 ,1],

r(τ )ν =
(

(2ρ0)
ν − C0M

2 max

{
1,

1

L2

}
max

{
(2ρ0)

ν−1,1
}E(2ρ0)

γ (τ) max{b(2ρ0)
μ(τ), b(2ρ0)

η(τ)}
2τ − (1 + m)

)
+
,

and recall that ρmax = max
τ∈( m+1

2 ,1] r(τ ). Assume (3.2) holds. Then ρmax � ρ1(1) � ρ0 and it follows from (2.8) of

Theorem 2.1 that b(ρ0) = 0. Now assume (3.3) holds. Since E(2ρ0) � 1, b(2ρ0) � 1 and 0 < μ(τ) < η(τ) < 1, for
any τ ∈ (m+1

2 ,1), it follows from definitions of ρ1 and ρmax, that

ρν
max � ρν

1 (1 − s) � (2ρ0)
ν − C0M

2 min
{
1,L2}max{(2ρ0)

ν−1,1}
1 − m − 2s

b(2ρ0)
μ(1−s) � ρν

0 .

By (2.8) of Theorem 2.1, b(ρ0) = 0. This concludes the proof. �
Proof of Theorem 4.4. By Definition 2.3 and of Remark 2.4.3., we can choose ϕ = iu and ϕ = u in (2.10). We then
obtain,

‖∇u‖2
L2(Ω)

+ Im(a)‖u‖m+1
Lm+1(Ω)

+ Im(b)‖u‖2
L2(Ω)

= Im
∫
Ω

Fudx,

Re(a)‖u‖m+1
Lm+1(Ω)

+ Re(b)‖u‖2
L2(Ω)

= Re
∫
Ω

Fudx.

Applying Lemma 7.3, these estimates yield,

‖∇u‖2
L2(Ω)

+ L‖u‖m+1
Lm+1(Ω)

� M

∫
Ω

|F ||u|dx. (7.26)

We apply Young’s inequality (7.3) with x = |F |, y = |u|, ε = ( 2M
(m+1)L

)
1

m+1 and p = m + 1. With (7.26), we get

‖∇u‖2
L2(Ω)

+ L

2
‖u‖m+1

Lm+1(Ω)
< M

(
2M

L

) 1
m ‖F‖

m+1
m

L
m+1
m (Ω)

,

from which we deduce (4.1). Finally, applying Gagliardo–Nirenberg’s inequality (7.1), with p = m, and Young’s
inequality (7.3), with p = 4+N(1−m)

N(1−m)
and ε = 1, one obtains

‖u‖2 (N+2)−m(N−2)
4+N(1−m)

L2(Ω)
� C‖∇u‖

2N(1−m)
4+N(1−m)

L2(Ω)
‖u‖

4(1+m)
4+N(1−m)

Lm+1(Ω)
< C

(‖∇u‖2
L2(Ω)

+ ‖u‖m+1
Lm+1(Ω)

)
,

and finally

‖u‖2
L2(Ω)

< C
(‖∇u‖2

L2(Ω)
+ ‖u‖m+1

Lm+1(Ω)

)δ+1
, (7.27)

where δ = 2(1−m)
(N+2)−m(N−2)

. Estimate (4.2) then follows from (4.1) and (7.27). �
Proof of Theorem 3.5. Let C be the constant given by Theorem 3.3 and let ε > 0. Set K = suppF and K(ε) = O(ε).

We would like to apply Theorem 3.3 with ρ0 = ε
4 . By (4.1) of Theorem 4.4, there exists δ0 = δ0(ε,N,m,L,M) > 0

such that if ‖F‖ m+1 � δ0 then ‖u‖Lm+1(Ω) � 1 and

L m (Ω)
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‖∇u‖
2(1−m)

k

L2(Ω)
� C2−2ν

(
2ν − 1

)
(1 − m)M−2 min

{
1,L2}min{2, ε}ν−1ε. (7.28)

We recall that the distance between two closed sets A and B of R
N with one of them compact is defined by

dist(A, B) = min
(x,y)∈A×B

|x − y|

and that

dist(A, B) > 0 ⇐⇒ A ∩ B = ∅.

Let x0 ∈ K(ε)c. Let y ∈ B(x0,
ε
2 ) and let z ∈ K. By definition of K(ε), dist(K(ε)c,K) = ε. We then have

ε = dist
(
K(ε)c,K

)
� |x0 − z| � |x0 − y| + |y − z| � ε

2
+ |y − z|.

Taking the minimum on (y, z) ∈ B(x0,
ε
2 ) × K, we get

ε

2
� dist

(
B

(
x0,

ε

2

)
,K

)
,

which means that B(x0,
ε
2 ) ∩ K = ∅, for any x0 ∈ K(ε)c. By (7.28), u satisfies (3.2) with ρ0 = ε

4 and we deduce that

for any x0 ∈ K(ε)c, u|Ω∩B(x0,
ε
4 ) ≡ 0 (Theorem 3.3). Let n ∈ N. By compactness, K( 7ε

8 )c ∩ B(0, n) may be covered

by a finite number of balls B(x0,
ε
4 ) with x0 ∈ K(ε)c. Thus for any n ∈ N, u|Ω∩K( 7ε

8 )c∩B(0,n) ≡ 0. It follows that u = 0
almost everywhere on

⋃
n∈N

(
Ω ∩ K

(
7ε

8

)c

∩ B(0, n)

)
= Ω ∩ K

(
7ε

8

)c

.

This means that suppu ⊂ Ω ∩K( 7ε
8 ) ⊂ Ω ∩ O(ε). Finally, since K is a compact set, Ω is open and K ⊂ Ω , it follows

that if ε is small enough then O(ε) ⊂ Ω. This ends the proof. �
Proof of Theorem 3.6. Let L, M and C be the constants given by (2.6), (2.7) and Theorem 3.3, respectively. We

would like to apply Theorem 3.3 with ρ0 = 1. Since F is compactly supported and u ∈ H 1(RN) ∩ L
m+1
m (RN), there

exists R > 1 such that suppF ⊂ B(0,R − 1),

‖u‖Lm+1({|x|>R−1}) � 1 and ‖∇u‖
2(1−m)

k

L2({|x|>R−1}) � C21−ν
(
2ν − 1

)
(1 − m)M−2 min

{
1,L2}.

Let x0 ∈ R
N be such that |x0| � R + 1. Then B(x0,2) ∩ suppF = ∅ and, with help of the above estimate, u satisfies

(3.2) with ρ0 = 1. It follows from Theorem 3.3 that u|B(x0,1) ≡ 0. For each integer n � 2, define the compact set Cn

by

Cn =
{
x ∈ R

N ; R + 1

n
� |x| � R + n − 1

n

}
.

By compactness, Cn may be covered by a finite number of balls B(x0,1), where R + 1 � |x0| � R + 1 + n. Thus for
any n ∈ N, u|Cn ≡ 0. It follows that u = 0 almost everywhere on⋃

n�2

Cn = {
x ∈ R

N ; |x| > R
}
.

Then suppu ⊂ B(0,R), which is the desired result. �
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8. Proofs of the existence and smoothness results

In this section, we prove Proposition 4.5, Theorems 4.1 and 4.8.

Proof of Proposition 4.5. By Remarks 4.6, Eq. (4.3) makes senses in L1
loc(Ω).

Proof of Property (1). Let 1 < q � p < ∞. Assume F ∈ L
p

loc(Ω) and u ∈ L
q

loc(Ω) is a solution to (4.3). For

r ∈ (1,∞), r− denotes any real in (1, r). Assume v ∈ Lr−
loc(Ω), for some 1 < r < ∞, is a solution of (4.3). It follows

that |v|−(1−m)v ∈ L
r−
m

loc (Ω) and since 0 < m < 1, L
r−
m

loc (Ω) ⊂ Lr
loc(Ω). So by (4.3) and Hölder’s inequality, V u ∈

Lr−
loc(Ω) and so �v ∈ L

min{r−,p}
loc (Ω). Furthermore, if for some 1 < r < ∞, v ∈ Lr

loc(Ω;C) and �v ∈ Lr
loc(Ω;C) then

v ∈ W 2,r
loc(Ω;C) (see for instance Cazenave [10, Theorem 4.1.2, pp. 101–102]). We then have shown the following

property. Let 1 < r < ∞.

u ∈ Lr−
loc(Ω) �⇒ u ∈ W

2,min{r−,p}
loc (Ω). (8.1)

Now, we proceed to the proof of Property (1) in 2 cases.

Case 1. (N
2 � q � p) or (q < N

2 and q � p � Nq
N−2q

).

It follows from (8.1), applied with r = q, that u ∈ W
2,q−
loc (Ω). In one hand, if q < N

2 then W
2,q−
loc (Ω) ⊂ L

p−
loc (Ω). It

follows from (8.1) (applied with r = p) and Sobolev’s embedding that u ∈ L
p+δ

loc (Ω), for δ ∈ (0,1) small enough. On

the other hand, if q � N
2 then W

2,q−
loc (Ω) ⊂ L

p+1
loc (Ω). So in both cases, u ∈ L

p+δ

loc (Ω). Applying (8.1) with r = p+δ,

we then obtain u ∈ W
2,p

loc (Ω).

Case 2. 1 < q < p, q < N
2 and Nq

N−2q
< p.

We recall that if 1 < r < N
2 then Sobolev’s embedding is

W 2,r−
loc (Ω) ⊂ Ls−

loc(Ω), for any 1 � s < ∞ such that
1

s
� 1

r
− 2

N
. (8.2)

Since Nq
N−2q

< p, we may define the smallest integer n0 � 2 such that 1
q

− 2n0
N

< 1
p
. We then set

1

pn0

=
{ 1

p+1 , if 1
q

− 2n0
N

� 0,

1
q

− 2n0
N

, if 1
q

− 2n0
N

> 0,

in order to have p < pn0 < ∞. Finally, define the n0 real (pn)n∈�0,n0−1� by p0 = q and

∀n ∈ �0, n0 − 1�,
1

pn

= 1

p0
− 2n

N
.

It follows that for any n ∈ �1, n0 − 1�, q � pn−1 < pn � p < pn0 < ∞ and

∀n ∈ �1, n0 �,
1

pn

� 1

pn−1
− 2

N
. (8.3)

From (8.1)–(8.3) applied n0 times (and recalling that p < pn0 < ∞), we then obtain u ∈ W
2,p

loc (Ω). This ends the
proof of Property (1).

Proof of Property (2). We recall the following Sobolev’s embedding and estimate.

W 2,N+1
loc (Ω) ⊂ C

1, 1
N+1

loc (Ω) ⊂ C0,1
loc (Ω), (8.4)

∀(z1,z2) ∈ C
2,

∣∣|z1|−(1−m)z1 − |z2|−(1−m)z2
∣∣ � 5|z1 − z2|m. (8.5)
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Assume further that (F ,V ) ∈ C0,α
loc (Ω) × C0,α

loc (Ω), for some α ∈ (0,m]. In particular, V ∈ L∞
loc(Ω) and by Prop-

erty (1), u ∈ W 2,N+1
loc (Ω). It follows from (8.4), (8.5) and (4.3) that |u|−(1−m)u ∈ C0,m

loc (Ω) and so �u ∈ C0,α
loc (Ω).

Thus u ∈ C2,α
loc (Ω) (Gilbarg and Trudinger [14, Theorem 9.19, pp. 243–244]). This concludes the proof of the propo-

sition. �
Proof of Theorem 4.1. Let L and M be the constants given by (2.6) and (2.7), respectively. We proceed in 4 steps.

Step 1. Let Ω ⊂ R
N be an open bounded subset and let g ∈ L2(Ω). Then there exists a unique solution u ∈ H 1

0(Ω)

of

−�u = g, in L2(Ω). (8.6)

Moreover, there exists a positive constant C = C(|Ω|,N) such that∥∥(−�)−1g
∥∥

H 1
0(Ω)

� C‖g‖L2(Ω), ∀g ∈ L2(Ω). (8.7)

In particular, the mapping (−�)−1 :L2(Ω) → H 1
0(Ω) is linear continuous.

Existence and uniqueness come from Lax–Milgram’s Theorem where the bounded coercive bilinear form a on
H 1

0(Ω) × H 1
0(Ω) and the bounded linear functional L on H−1(Ω) are defined by

a(u, v) = Re
∫
Ω

∇u(x).∇v(x)dx and 〈L,v〉H−1,H 1
0
= Re

∫
Ω

v(x)g(x)dx,

respectively. Note that a is coercive due to Poincaré’s inequality. Taking the H−1 − H 1
0 duality product of Eq. (8.6)

with u and applying Poincaré’s inequality, we obtain estimate (8.7) and so continuity of (−�)−1.

Step 2. Let Ω ⊂ R
N be an open bounded subset, let 0 < m < 1, let (a,b) ∈ C

2 and let F ∈ L2(Ω). For each � ∈ N,

define f � = g� − iF , where

∀v ∈ L2(Ω), g�(v) =
{

ia|v|−(1−m)v + ibv, if |v| � �,

ia�m v
|v| + ib� v

|v| , if |v| > �.
(8.8)

Then for any � ∈ N, there exists at least one solution u� ∈ H 1
0(Ω) of

−�u� = f �(u�), in L2(Ω).

It is clear that (f �)�∈N ⊂ C(L2(Ω);L2(Ω)). With the help of Step 1 and the continuous and compact embedding
i : H 1

0(Ω) ↪→ L2(Ω), we may define a continuous and compact sequence of mappings (T �)�∈N of H 1
0(Ω) as follows.

For any � ∈ N, set

T � :H 1
0(Ω)

i
↪→ L2(Ω)

f �−→ L2(Ω)
(−�)−1−−−−−→ H 1

0(Ω),

v �→ i(v) = v �→ f �(v) �→ (−�)−1(f �)(v).

Let � ∈ N. Let C be the constant in (8.7) and set R = C(|a| + |b| + 1)(2�|Ω| 1
2 + ‖F‖L2(Ω)). Let v ∈ H 1

0(Ω). It
follows from (8.7) that∥∥T �(v)

∥∥
H 1

0(Ω)
= ∥∥(−�)−1(f �)(v)

∥∥
H 1

0(Ω)
� C

∥∥f �(v)
∥∥

L2(Ω)

� C
(|a| + |b| + 1

)(
(�m + �)|Ω| 1

2 + ‖F‖L2(Ω)

)
� R.

Hence, T �(H
1
0(Ω)) ⊂ BH 1

0
(0,R), where BH 1

0
(0,R) = {u ∈ H 1

0(Ω); ‖u‖H 1
0(Ω) � R}. In a nutshell, T � is a con-

tinuous and compact mapping from H 1
0(Ω) into itself, BH 1

0
(0,R) is a closed convex subset of H 1

0(Ω) and

T �(BH 1
0
(0,R)) ⊂ BH 1

0
(0,R). By the Schauder’s fixed point theorem, T � admits at least one fixed point u� ⊂

BH 1(0,R). Hence Step 2 follows.

0
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Step 3. Let be the hypotheses of the theorem. Assume further that Ω is bounded. Then Eq. (1.1) admits at least one
solution u ∈ H 1

0(Ω).

In other words, we have to solve

−�u = f (u), in L2(Ω), (8.9)

where f = g − iF and for any v ∈ L2(Ω), g(v) = ia|v|−(1−m)v + ibv. Let (F k)k∈N ⊂ D(Ω) be such that

F k L
m+1
m (Ω)−−−−−−→

k→∞ F and for any k ∈ N, ‖F k‖
L

m+1
m (Ω)

� 2‖F‖
L

m+1
m (Ω)

. Let g� be defined by (8.8) and set for any

(k, �) ∈ N
2, f k

� = g� − iF k. For any (k, �) ∈ N
2, let uk

� ∈ H 1
0(Ω) be a solution of

−�uk
� = f �

(
uk

�

)
, in L2(Ω), (8.10)

given by Step 2. We take the H−1 − H 1
0 duality product of Eq. (8.10) with uk

� first and iuk
� second. Applying

Lemma 7.3, we then get for any (k, �) ∈ N
2,∥∥∇uk

�

∥∥2
L2(Ω)

+ L
∥∥uk

�

∥∥m+1
Lm+1({|uk

� |��}) + L�m
∥∥uk

�

∥∥
L1({|uk

� |>�}) � M

∫
Ω

∣∣F k
∣∣∣∣uk

�

∣∣(χ{|uk
� |��} + χ{|uk

� |>�})dx.

Applying Young’s inequality (7.3) to the first term on the right-hand side and the Hölder’s inequality to the second
term of the right-hand side, we arrive to the following estimate.

2
∥∥∇uk

�

∥∥2
L2(Ω)

+ L
∥∥uk

�

∥∥m+1
Lm+1({|uk

� |��}) + 2
∥∥uk

�

∥∥
L1({|uk

� |>�})
(
L�m − M‖F k‖L∞(Ω)

)
� M

(
2M

L

) 1
m ∥∥F k

∥∥m+1
m

L
m+1
m (Ω)

� C‖F‖
m+1
m

L
m+1
m (Ω)

. (8.11)

For any k ∈ N, there exists �k ∈ N large enough such that L�m
k −M‖F k‖L∞(Ω) � 1. Moreover, Ω being bounded, we

have Lm+1(Ω) ↪→ L1(Ω). So (∇uk
�k

)k∈N and (uk
�k

)k∈N are bounded in L2(Ω) and L1(Ω), respectively. It follows

from Gagliardo–Nirenberg’s inequality (7.2) (applied with p = 1), that (uk
�k

)k∈N is also bounded in L2(Ω) and

so in H 1
0(Ω). Finally, by Rellich–Kondrachov’s Theorem, there exists a subsequence (un

ϕ(n))n∈N of (uk
�k

)k∈N and

h ∈ L2(Ω;R), such that

un
ϕ(n)

L2(Ω)−−−−→
n→∞ u, (8.12)

un
ϕ(n)

a.e. in Ω−−−−−→
n→∞ u, (8.13)∣∣un

ϕ(n)

∣∣ � h, for any n ∈ N, a.e. in Ω, (8.14)

By (8.13) and (8.14),

gϕ(n)

(
un

ϕ(n)

)
χ{|un

ϕ(n)
|�ϕ(n)} a.e. in Ω−−−−−→

n→∞ g(u),

∀n ∈ N,
∣∣gϕ(n)

(
un

ϕ(n)

)∣∣ � C
(
hm + h

) ∈ L1(Ω), a.e. in Ω.

It follows from the dominated convergence theorem that

gϕ(n)

(
un

ϕ(n)

)
χ{|un

ϕ(n)
|�ϕ(n)}

L1(Ω)−−−−→
n→∞ g(u). (8.15)

In addition, by (8.12) and Hölder’s inequality,∥∥gϕ(n)

(
un

ϕ(n)

)
χ{|un

ϕ(n)
|>ϕ(n)}

∥∥
L1(Ω)

� C

ϕ(n)

(∥∥un
ϕ(n)

∥∥m+1
Lm+1(Ω)

+ ∥∥un
ϕ(n)

∥∥2
L2(Ω)

) n→∞−−−−→ 0. (8.16)

Putting together (8.15) and (8.16), we obtain

gϕ(n)

(
un

ϕ(n)

) L1(Ω)−−−−→g(u). (8.17)

n→∞
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Since F n n→∞−−−−→ F in L
m+1
m (Ω) ↪→ L1(Ω), we deduce with help of (8.12) and (8.17) that

�un
ϕ(n)

H−2(Ω)−−−−−→
n→∞ �u, (8.18)

f ϕ(n)

(
un

ϕ(n)

) L1(Ω)−−−−→
n→∞ f (u). (8.19)

By (8.10), we have for any n ∈ N, −�un
ϕ(n) = f n

ϕ(n)(u
n
ϕ(n)), in L2(Ω). Estimates (8.18) and (8.19) allow to pass

in the limit in this equation in the sense of D ′(Ω). This means that u ∈ H 1
0(Ω) is a solution of (8.9) and since

f (u) ∈ L2(Ω), Eq. (8.9) makes sense in L2(Ω).

Step 4. Conclusion. Under the hypotheses of the theorem, Eq. (1.1) admits at least one solution u ∈ H 1
0(Ω) ∩

Lm+1(Ω) and Properties (1)–(5) of the theorem hold.
For any n ∈ N, we write Ωn = Ω ∩ B(0, n). Let n0 ∈ N be large enough to have Ωn0 �= ∅. For each n > n0,

let un ∈ H 1
0(Ωn) be any solution of (1.1) in Ωn given by Step 3, with the external source F n = F |Ωn. We define

ũn ∈ H 1
0(Ω) by extending un by 0 in Ω ∩B(0, n)c. Then ∇ũn = ∇un, almost everywhere in Ωn and ∇ũn = 0, almost

everywhere in Ω ∩ B(0, n)c. It follows from (4.2) of Theorem 4.4 that (un)n∈N is bounded in H 1
0(Ωn) ∩ Lm+1(Ωn),

or equivalently, (ũn)n∈N is bounded in H 1
0(Ω) ∩ Lm+1(Ω). Up to a subsequence, that we still denote by (ũn)n∈N,

there exists u ∈ H 1
0(Ω) ∩ Lm+1(Ω) such that ũn ⇀ u in H 1

w(Ω), as n → ∞, and ũn

Lm+1
loc (Ω)−−−−−→
n→∞ u. Let ϕ ∈ D(Ω).

Since ũn

Lm+1
loc (Ω)−−−−−→
n→∞ u, we have |ũn|−(1−m)ũn

L
m+1
m

loc (Ω)−−−−−−→
n→∞ |u|−(1−m)u, and in particular

lim
n→∞

〈
a|ũn|−(1−m)ũn,ϕ

〉
L

m+1
m (Ω),Lm+1(Ω)

= 〈
a|u|−(1−m)u,ϕ

〉
L

m+1
m (Ω),Lm+1(Ω)

. (8.20)

Recalling that u ∈ H 1
0(Ω) and ũn ⇀ u in H 1

w(Ω), as n → ∞, we get with help of (8.20),

lim
n→∞

(〈i∇ũn,∇ϕ〉L2(Ω),L2(Ω) + 〈
a|ũn|−(1−m)ũn,ϕ

〉
L

m+1
m (Ω),Lm+1(Ω)

+ 〈bũn,ϕ〉L2(Ω),L2(Ω)

)
= 〈−i�u + a|u|−(1−m)u + bu

〉
D ′(Ω),D(Ω)

. (8.21)

Let n1 > n0 be large enough to have suppϕ ⊂ Ωn1 . Using the basic properties of ũn described as above and the fact
un is a solution of (1.1) in Ωn, we obtain for any n > n1, ϕ|Ωn

∈ D(Ωn) and

0 = 〈−i�un + a|un|−(1−m)un + bun − F n,ϕ|Ωn

〉
D ′(Ωn),D(Ωn)

= 〈
i∇un,∇(ϕ|Ωn

)
〉
L2(Ωn),L2(Ωn)

+ 〈
a|un|−(1−m)un,ϕ|Ωn

〉
L

m+1
m (Ωn),Lm+1(Ωn)

+ 〈bun,ϕ|Ωn
〉L2(Ωn),L2(Ωn) − 〈F n,ϕ|Ωn

〉
L

m+1
m (Ωn),Lm+1(Ωn)

= 〈i∇ũn,∇ϕ〉L2(Ω),L2(Ω) + 〈
a|ũn|−(1−m)ũn,ϕ

〉
L

m+1
m (Ω),Lm+1(Ω)

+ 〈bũn,ϕ〉L2(Ω),L2(Ω) − 〈F ,ϕ〉
L

m+1
m (Ω),Lm+1(Ω)

,

from which we deduce

〈i∇ũn,∇ϕ〉L2(Ω),L2(Ω) + 〈
a|ũn|−(1−m)ũn,ϕ

〉
L

m+1
m (Ω),Lm+1(Ω)

+ 〈bũn,ϕ〉L2(Ω),L2(Ω)

= 〈F ,ϕ〉
L

m+1
m (Ω),Lm+1(Ω)

, (8.22)

for any n > n1. Passing to the limit in (8.22), we get with (8.21),〈−i�u + a|u|−(1−m)u + bu,ϕ
〉
D ′(Ω),D(Ω)

= 〈F ,ϕ〉D ′(Ω),D(Ω), ∀ϕ ∈ D(Ω),

which is the desired result. Properties (1) and (2) follow from Proposition 4.5. Finally, if F is spherically symmetric
then u, obtained as a limit, is also spherically symmetric. Indeed, we replace all the functional spaces E with Erad and
we follow the above proof step by step. For N = 1, this includes the case where F is an even function. Finally, if F is
an odd function, it is sufficient to work with the space Eodd = {v ∈ E; v is odd} in place of E. Hence Property (4). �
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Proof of Corollary 4.8. Let the assumptions of the corollary be satisfied. Let a = −iλ, b = ib and G = −iF . Then
(a,b) ∈ A × B satisfies (2.2) and we may apply Theorems 4.1 and 3.6 to find a solution ϕ ∈ C2,m

b (RN) of (1.1)
compactly supported for such a, b and G. It follows that ϕ is a solution to (4.7). A straightforward calculation show
that u defined by (4.6) is a solution to (4.5). This ends the proof. �
9. Proofs of the uniqueness results

In this section, we prove Theorems 1.1, 1.2, 5.1 and 5.2, and Corollaries 5.3, 5.4 and 5.5. Let 0 < m � 1. Set for
any z ∈ C, f (z) = |z|−(1−m)z, where it is understood that f (0) = 0. The proof of Theorem 5.1 relies on the two
following lemmas.

Lemma 9.1. Let 0 < m � 1. Then there exists a positive constant C such that

∀(z1,z2) ∈ C
2, Re

((
f (z1) − f (z2)

)
(z1 − z2)

)
� C

|z1 − z2|2
(|z1| + |z2|)1−m

,

as soon as |z1| + |z2| > 0.

Proof. We denote by |.|2 the Euclidean norm in R
2. From Díaz [11, Lemma 4.10, p. 264], there exists a positive

constant C such that(|X|−(1−m)
2 X − |Y |−(1−m)

2 Y
)
.(X − Y) � C

|X − Y |22
(|X|2 + |Y |2)1−m

,

for any (X,Y ) ∈ R
2 × R

2 satisfying |X|2 + |Y |2 > 0. We apply this lemma with X = ( Re(z1)

Im(z1)

)
and Y = ( Re(z2)

Im(z2)

)
. Note

that |X|2 = |z1|, |Y |2 = |z2| and |X − Y |2 = |z1 − z2|. The result follows from a direct calculation. �
Corollary 9.2. Let 0 < m � 1. Then,

Re
((

f (z1) − f (z2)
)
(z1 − z2)

)
� 0,

for any (z1,z2) ∈ C
2.

Proof. The result is clear if |z1| + |z2| = 0. Otherwise, apply Lemma 9.1. �
Remark 9.3. Corollary 9.2 still holds for any m > 0 and can be directly obtained as follows. The mapping f (consid-
ered as a function from R

2 onto R
2) is the derivative of the convex function

F : R
2 → R,

(x, y) �→ 1

m + 1

(
x2 + y2)m+1

2 .

It follows that f is a monotone function (Ekeland and Temam [13, Proposition 5.5, p. 25]).

Lemma 9.4. Let Ω ⊆ R
N be an open subset, let 0 < m < 1, let (a,b) ∈ C

2 satisfying (2.3) and let F 1,F 2 ∈ L1
loc(Ω)

be such that F 1 − F 2 ∈ L2(Ω). Let u1,u2 ∈ H 1
0(Ω) ∩ Lm+1(Ω) be two solutions of (5.1) and (5.2), respectively.

Then there exists a positive constant C = C(N,m) satisfying the following property. If a �= 0 then

Im(a)‖∇u1 − ∇u2‖2
L2 + C|a|2

∫
ω

|u1 − u2|2
(|u1(x)| + |u2(x)|)1−m

dx + Re(ab)‖u1 − u2‖2
L2

� Re
∫
Ω

a
(
F 1(x) − F 2(x)

)(
u1(x) − u2(x)

)
dx, (9.1)

where ω = {x ∈ Ω; |u1(x)| + |u2(x)| > 0}. If a = 0 then
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Re(b)‖u1 − u2‖2
L2 = Re

∫
Ω

(
F 1(x) − F 2(x)

)(
u1(x) − u2(x)

)
dx, (9.2)

‖∇u1 − ∇u2‖2
L2 + Im(b)‖u1 − u2‖2

L2 = Im
∫
Ω

(
F 1(x) − F 2(x)

)(
u1(x) − u2(x)

)
dx. (9.3)

Proof. Let u1 and u2 be two solutions of (1.1) and (2.1) and set u = u1 − u2 and F = F 1 − F 2. Then u satisfies

−i�u + a
(
f (u1) − f (u2)

) + bu = F , in H−1(Ω) + L
m+1
m (Ω). (9.4)

Assume a �= 0. We take the H−1 + L
m+1
m − H 1

0 ∩ Lm+1 duality product of (9.4) with au. We obtain,

Im(a)‖∇u‖2
L2 + |a|2〈f (u1) − f (u2),u

〉
L

m+1
m ,Lm+1 + Re(ab)‖u‖2

L2 = 〈aF ,u〉L2,L2 . (9.5)

Applying Lemma 9.1, there exists a positive constant C = C(N,m) such that〈
f (u1) − f (u2),u

〉
L

m+1
m ,Lm+1 � C

∫
ω

|u(x)|2
(|u1(x)| + |u2(x)|)1−m

dx. (9.6)

Then (9.1) follows from (9.5) and (9.6). We turn out the case a = 0. Taking the H−1 + L
m+1
m − H 1

0 ∩ Lm+1 duality
product of (9.4) with u and iu, one respectively obtains (9.2) and (9.3). �
Proof of Theorem 5.1. Note that since (a,b) ∈ C

2 \ {(0,0)} satisfies (2.3), if a = 0 and Re(b) = 0 then one
necessarily has Im(b) > 0. We apply estimates (9.1)–(9.3) of Lemma 9.4, according to the different cases, and
Cauchy–Schwarz’s inequality. Estimates (5.3) and (5.4) follow. �
Proof of Theorem 5.2. Let F ∈ L1

loc(Ω) and let u1,u2 ∈ H 1
0(Ω)∩Lm+1(Ω) be two solutions of (1.1) and (2.1). By

Lemma 9.4, (9.1)–(9.3) hold with F 1 − F 2 = 0. We first note that, since u1 − u2 ∈ H 1
0(Ω), if ‖∇u1 − ∇u2‖L2 = 0

then u1 −u2 = 0, a.e. in Ω and uniqueness holds. It follows from hypotheses (2.3) and Lemma 9.4 that one necessarily

has ‖u1 − u2‖L2 = 0, ‖∇u1 − ∇u2‖L2 = 0 or
∫
ω

|u1−u2|2
(|u1(x)|+|u2(x)|1−m)

dx, where ω = {x ∈ Ω; |u1(x)| + |u2(x)| > 0}.
Those three cases imply that u1 = u2, a.e. in Ω. This finishes the proof of the theorem. �
Proof of Corollary 5.3. Apply Theorems 4.1, 5.2 and Remark 6.1. �
Proof of Corollary 5.4. By uniqueness (Theorem 5.2), u ≡ 0 is the unique solution. �
Proof of Corollary 5.5. Apply Theorems 3.6, 4.1, Proposition 4.5, Theorem 5.2 and Remark 6.1. �
Proof of Theorem 1.1. Apply Theorem 3.6 and Corollary 5.3. �
Proof of Theorem 1.2. Apply Theorem 3.5 and Corollary 5.3. �
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