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Abstract

We prove that simply connected H -surfaces with bounded area and free boundary in a domain necessarily concentrate at a critical
point of the mean curvature of the boundary of this domain.

Introduction

The aim of this article is to understand the asymptotic behaviour of sequences of surfaces with large constant
mean curvature and free boundaries. These surfaces arise naturally in the partitioning problem which consists in
dividing a domain into two parts of prescribed volumes by a surface of minimal area. The existence of solutions of
this problem is given by the geometric measure theory (see for instance Morgan [18]). However we get no information
about the topology of such surfaces, except in the case of strictly convex domains, where we know that such a surface
is connected and we get some bounds on the number of components of its boundary as well as its genus, see Ros and
Vergasta [20]. Moreover it is conjectured that, in this case, the surface is homeomorphic to a disk, see Ritoré and
Ros [19].

In the following, we let Ω be a smooth domain of R3 and we will consider H -surface as a map u ∈ C2(D,R
3)

where

D = {
z ∈ R

2 s.t. |z| < 1
}

which is an immersion and which satisfies⎧⎪⎨
⎪⎩

�u = −2Hux ∧ uy,

〈ux,uy〉 = |ux | − |uy | = 0,

u(z) ∈ ∂Ω for all z ∈ ∂D,

∂νu(z)⊥Tu(z)∂Ω for all z ∈ ∂D,

(1)

where � = − ∂2

∂x2 − ∂2

∂y2 .
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Then u(D) is a regular surface of constant mean curvature H with boundary contained in ∂Ω and which meets ∂Ω

orthogonally.
The first result of existence of solutions of (1) is due to Struwe [21], which finds solutions in domains diffeomorphic

to a ball using a parabolic version of our equation. Another idea to find solutions of (1) in a general domain is to look
for solutions with large mean curvature (i.e. with a small diameter). In fact in this case the topology of the domain
play no role and the geometry is under control.

This intuition was confirmed by Fall [9]. However, the existence of such solutions is subject to a local condition on
the curvature of the boundary of Ω . Fall proved in [9] the following: given any smooth domain Ω ⊂ R

3 and p ∈ ∂Ω

be a non-degenerate critical point of the mean curvature of ∂Ω . There exists a family of solutions uε ∈ C2(D,R
3)

of (1) for H = 1
ε

such that uε(D) is embedded and ‖uε − p‖∞ → 0 when ε → 0. Moreover 1
ε
uε , correctly translated,

converges to a hemisphere of radius 1.
This result is similar to the result of Ye [25] concerning the existence of closed surfaces with constant mean

curvature in a curved manifold. Indeed they are similar in their statement but also in the method of proof which takes
a solution of the limit equation, here one hemisphere, and tries to perturb it via the implicit functions theorem. This
remark done, the question of the necessity of the condition that p is a critical point of the mean curvature of ∂Ω comes
naturally. A first answer in this direction is provided by Fall [10]. Indeed he shows that the solutions to the problem
of partitioning, which are equivalent to the isoperimetric problem solutions in this context, converge to a point of
maximal mean curvature when their volume tends to zero.

This theorem is similar to the result of Druet [7] concerning the location of small isoperimetric domains in a curved
manifold. Indeed Druet proved that these domains are near global maxima of the scalar curvature. In [17], we proved
under suitable assumptions that surfaces of large constant mean curvature and small diameter in a 3-dimensional man-
ifold are necessarily located near a critical point of the scalar curvature. Here we show under reasonable assumptions
that surfaces of large constant mean curvature with boundary included in ∂Ω and meeting ∂Ω orthogonally are nec-
essarily located near a critical point of the mean curvature of ∂Ω . First, we assume that the diameter is controlled
in order to avoid solutions that collapse along some geodesics (such examples were constructed by Mahmoudi and
Fall [11]). Second, we assume that the area is controlled to avoid an infinity of bubbles. Then we prove the following
theorem.

Theorem 0.1. Let Ω be a smooth domain of R
3 and a sequence of embedded surfaces Σε in Ω satisfying the following

assumptions:

(i) ∂Σε ⊂ ∂Ω and Σε and ∂Ω meet orthogonally,
(ii) Σε has constant mean curvature equal to 1

ε
,

(iii) the diameter and the area of Σε are respectively an O(ε) and an O(ε2).

Then, up to a subsequence, Σε converges to p ∈ ∂Ω which is a critical point of the mean curvature of ∂Ω .

This theorem can be explained in the following way: given Ω ⊂ R
3 a smooth domain, for any δ > 0, any C > 0,

there exists ε0 > 0 such that any embedded surface orthogonal to the boundary Σ of constant mean curvature 1
ε

with
ε < ε0, diameter(Σ) � Cε, Area(Σ) � Cε2, satisfies that Σ ⊂ B(p, δ) for some critical point p ∈ ∂Ω of the mean
curvature of ∂Ω .

Note that the bound on the diameter and the area are scale invariant with respect to the mean curvature.
This article is organized as follows. In the first section we remind some useful results about regularity of constant

mean curvature surfaces with free boundaries. In the second section we remind the classification of the solution of the
constant mean curvature equation on the whole plane and we extend it to domain like disk or half-plane. Finally in
a third section we give a proof of the theorem, dividing it in three parts; first we perform a blow-up analysis decompos-
ing our sequence in a sum of spheres and hemispheres; then we insure the existence of at least one hemisphere in the
decomposition using notably the Aleksandrov reflexion principle, finally we achieve the proof applying the balancing
formula. The main difficulty is to understand precisely the asymptotic behaviour of our sequence of surfaces Σε on
the boundary of Ω . Some technical lemmas are postponed to Appendix A.
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1. Regularity and a priori estimates on constant mean curvature surfaces with free boundaries

In this section we give a general result on the regularity of constant mean curvature surfaces with free boundaries,
the reader will find all the details in Chapter 7 of [6].

Theorem 1.1. Let Ω be a Cm,α domain of R3 with m � 3 and α > 0, then every solution of (1) is Cm,α .

The solutions inherit of the regularity of the Ω provided it is sufficiently smooth.
The proof of this result is divided into three steps. The first shows, using the isoperimetric inequality for surfaces,

that the solutions are C0,η up to the boundary. Then, using a priori estimates in the spaces Hk,p , we deduce the C1, 1
2

regularity up to the boundary. Finally, using a classical argument of bootstrap, we obtain that the solutions are smooth
inside and inherit of the regularity of the domain up to the boundary as soon as it is at least C3,α .

We give here the a priori estimate which is the keystone of the second step and that will be used later.

Theorem 1.2. Let Ω be a smooth domain, whose metric of the boundary will be denoted by g, and u be a solution
of (1). We assume that u belongs to C0,η(D). Then, for every open set U of D and every 2 < p < +∞, there exists
a constant c depending only on ‖g‖3, U , p,

∫
U

|∇u|2 dz and the modulus of continuity of u such that∫
U

|∇u|p dz < c.

This estimate and the standard elliptic theory lead to uniform bounds of the type

‖u‖2+η,U < c,

where c depends only on ‖g‖3, U , p,
∫
U

|∇u|2 dz and the modulus of continuity of u.

Remark 1.1. In particular, we note that from any sequence of solutions whose gradient is uniformly bounded on an
open set U of D, we can extract a subsequence which converges uniformly in C2(U).

2. Classification of solution of the limit equation

We start by remind a crucial result of Brezis and Coron [2] which states that the only solutions of

�u = −2ux ∧ uy on R
2

with bounded energy are exactly, up to a conformal reparametrization, the inverse of the stereographic projection. This
result can be seen as a variant of the Hopf’s theorem where the hypothesis of conformality is replaced by a bound on
the area.

Lemma 2.1 (Lemma A.1 of [2]). Let ω ∈ L1
loc(R

2,R3) which satisfies

�ω = −2ωx ∧ ωy,∫
R2

|∇ω|2 dz < +∞. (2)

Then ω has precisely the form

ω(z) = π−1
N

(
P(z)

Q(z)

)
+ C,

where N ∈ S2, P and Q are polynomial, C is a constant and πN is the stereographic projection from the north pole N .
In addition
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∫
R2

|∇ω|2 = 8πk with k = max{degP,degQ},

provided that P
Q

is irreducible.

It could be useful to remark that the gradient of such an ω satisfies the following formula

|∇ω| = 2
√

2|P ′Q − Q′P |
|P |2 + |Q|2 .

Then we define a special class of solutions which will be important in what follows: the spheres which are parametrized
only once.

Definition 2.1. A solution ω of (2) is said to be simple if

ω(z) = π−1
N

(
P(z)

Q(z)

)
+ C,

with P
Q

is irreducible and max{degP,degQ} = 1.

In particular, if ω is a simple solution of (2), then we have

∣∣∇ωε(x)
∣∣ = O

(
λε

|x − aε|2 + (λε)2

)
, (3)

where ωε = ω( .−aε

λε ), aε and λε are respectively a sequence of points in R
2 and a sequence of positive numbers.

Finally we give a generalization of the result of Brezis and Coron for solutions defined on the disk or the half-plane
with appropriate boundary conditions.

Lemma 2.2. Let Ω = H or D and u : Ω → R
2 × R+ be such that

�u = −2ux ∧ uy,

〈ux,uy〉 = |ux | − |uy | = 0,

‖∇u‖2 < +∞,

u|∂Ω ⊂ R
2 × {0}

and such that the angle between u(Ω) and R
2 × {0} when it is defined is right. Then

u = C + π−1
(

P

Q

)

where π is the stereographic projection and P and Q are two polynoms of C[z]. Moreover, u|∂Ω describes a circle of
radius one.

Proof of Lemma 2.2. First of all we can assume that Ω = D. Indeed let φ : D \ {1} → H defined by

φ(z) = −i
z + 1

z − 1
.

It is well known that this application is a conformal isomorphism. Hence if u : H → R
2 × R+ satisfies the hypothesis

of the lemma, it is the same for ũ : D \ {1} → R
2 × R+ defined by ũ = u ◦ φ. But, since ‖∇ũ‖2 = ‖∇u‖2 < +∞,

thanks to the regularity theory ũ can be extended smoothly at 1.
Then we can extend u to the whole plane, setting

u(z) = −
(

u1

u2

3

)(
1

z

)
for all z ∈ R

2 \ D.
−u
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Fig. 1. A surface with boundary.

This extension is C1 and moreover satisfies the hypothesis of Lemma 2.1, since the energy is simply doubled by
this extension. This proves the first part of the theorem. Finally we easily remark that u|∂Ω describes a circle of 1,
remarking that u is equal, up to a sign change, to its Gauss map. But our hypothesis forces to the Gauss map to be
contained in a great circle on the boundary, which achieves the proof of the theorem. �
3. Proof of theorem

The main idea is to apply the balancing formula to the boundary of our sequences of surfaces in order to detect the
geometry of ∂Ω . We remind that the balancing formula is an identity discovered by Kusner [16] which concerns the
shape of the boundary of a surface with constant mean curvature. Let S be a surface with constant mean curvature.
Then ∫

∂S

�η ds = 2H0

∫
Σ

�ν dσ, (4)

where Σ is a smooth surface having the same boundary as S, �ν is the normal of Σ and �η is the conormal of ∂S, see
Fig. 1. The reader will find a proof of (4) at Chapter 7 of [15].

In order to exploit this formula, we need a precise description of the behaviour of our surfaces. In order to obtain it,
we start by proving that the sequence decomposes asymptoticly as a sum of spheres and hemispheres. Then we shall
prove that this decomposition contains at least one hemisphere, that is to say that the boundaries of our sequence of
surfaces do not collapse to a point.

Now we consider a smooth domain Ω of R
3 and a sequence of embedded disks Σε in Ω which satisfy the following

assumptions

(i) ∂Σε ⊂ ∂Ω and ∂Σε and ∂Ω meet orthogonally,
(ii) Σε has constant mean curvature equal to 1

ε
,

(iii) the diameter and the area of Σε are respectively an O(ε) and an O(ε2).

Up to translate Ω and to extract a subsequence of Σε , we can assume that Σε goes to 0 and that 0 ∈ ∂Σε . Then we
rescale the space by a factor 1

ε
and we choose a conformal parametrization for our sequence of surfaces, that is to say

a sequence of uε : D → R
3 such that{

�uε = −2uε
x ∧ uε

y,〈
uε

x,u
ε
y

〉 = ∥∥uε
x

∥∥ − ∥∥uε
y

∥∥ = 0,
on D,

∥∥uε
∥∥∞ = O(1) and

∥∥∇uε
∥∥

2 = O(1),

uε(∂D) ⊂ ∂Ωε and
〈
uε

x ∧ uε
y,N

ε
〉 = 0 on ∂D, (5)

where Ωε = 1
ε
Ω and Nε is the exterior normal of ∂Ωε . The regularity of such a sequence of functions depends on

the regularity of the surface where its free boundary lives. Here, since ∂Ω is smooth, our sequence is smooth up to
the boundary.
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3.1. Decomposition of uε as a sum of spheres and hemispheres

We start performing a decomposition of our surfaces as a sum of spheres and hemispheres in the spirit of what
has been done by Brezis and Coron in [2]. However there are two big changes. On the one hand, there are two limit
solutions (sphere and hemisphere). On the other hand, we must obtain an L∞-estimate rather than estimates on the
gradient, while the equation lends itself much better to obtain estimates on the gradient.

Theorem 3.1. Let uε be a sequence of maps in C2(D) which are non-constant solutions of (5), then either uε converges
uniformly to 0 or there exist p ∈ N and

(i) ω1, . . . ,ωp non-constant solutions of (2),
(ii) aε

1, . . . , a
ε
p sequences of D, and

(iii) λε
1, . . . , λ

ε
p sequences of positive real numbers such that limε→0 λε

i < +∞,

such that, for a subsequence uε (still denote uε), we get

uε
i → ωi in C2

loc(Ωi \ Si) as ε → 0 for all 1 � i � p, (A)

where uε
i = uε(λε

i . + aε
i ), Ωi = limε→0{z ∈ R

2 s.t. λε
i . + aε

i ∈ D} and Si = limε→0{ aε
j −aε

i

λε
i

s.t. j ∈ {1, . . . , p} \ {i}}.

lim
ε→0

dε
i (aε

j )

λε
j

+ dε
j (aε

i )

λε
i

= +∞ for all i �= j, (B)

where dε
i (x) =

√
(λε

i )
2 + |aε

i − x|2,

d

(
uε(D),

p⋃
i=1

Bi

)
→ 0 as ε → 0, (C)

where Bi is the limit set of ωε
i (D) as ε goes to zero, with ωε

i = ωi(
.−aε

i

λε
i

), that is to say some spheres and hemispheres.

Proof. We are going to extract the bubble by induction, the process will stop thanks to our uniform estimate on the
energy of uε . In fact, such an extraction will be done until a “weak estimate” is not satisfied on the reminder, which is
by now an almost classical technics since the work of Druet, Hebey and Robert about strong estimate for sequences
of solution of Yamabe-type equation, see [8]. The advantage of this method is to insure a C2

loc-converge rather than an
H 1-converge.

Let k � 1, we say that uε satisfies the property (Pk) if there exist

(i) ω1, . . . ,ωk non-constant solution of (2),
(ii) aε

1, . . . , a
ε
k sequences of D and

(iii) λε
1, . . . , λ

ε
k sequences of positive real numbers such that limε→0 λε

i < +∞,

such that, for a subsequence uε (still denoted uε), we get

uε
i → ωi in C2

loc(Ωi \ Si) as ε → 0 for all 1 � i � k, (Ak)

where uε
i = uε(λε

i . + aε
i ), Ωi = limε→0{z ∈ R

2 s.t. λε
i . + aε

i ∈ D} and Si = limε→0{ aε
j −aε

i

λε
i

s.t. j ∈ {1, . . . , p} \ {i}}.
dε
i (aε

j )

λε
j

+ dε
j (aε

i )

λε
i

→ +∞ as ε → 0 for all i �= j, (Bk)

where dε
i (x) =

√
(λε

i )
2 + |aε

i − x|2. Moreover, when Ωi �= R
2, ωi

|∂Ωi
describes (perhaps several times) a circle of

radius 1.
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Claim 1. If (Pk) holds for some k � 1, then either (Pk+1) holds or

lim
ε→0

sup
z∈D

(
min

1�i�k
dε
i (z)

)∣∣∣∣∣∇
(

uε −
k∑

i=1

ωε
i

)
(z)

∣∣∣∣∣ = 0, (6)

where ωε
i = ωi(

.−aε
i

λε
i

).

Proof. Assume that (Pk) holds and that there exist γ0 > 0 and a subsequence uε (still denoted uε) such that

sup
z∈D

(
min

1�i�k
dε
i (z)

)∣∣∣∣∣∇
(

uε −
k∑

i=1

ωε
i

)
(z)

∣∣∣∣∣ � γ0. (7)

Let aε
k+1 ∈ D be such that

(
min

1�i�k
dε
i

(
aε
k+1

))∣∣∣∣∣∇
(

uε −
k∑

i=1

ωε
i

)(
aε
k+1

)∣∣∣∣∣ = sup
z∈D

(
min

1�i�k
dε
i (z)

)∣∣∣∣∣∇
(

uε −
k∑

i=1

ωε
i

)
(z)

∣∣∣∣∣.
We define λε

k+1 by∣∣∣∣∣∇
(

uε −
k∑

i=1

ωε
i

)(
aε
k+1

)∣∣∣∣∣ = 1

λε
k+1

.

Remarking that min1�i�k dε
i (aε

k+1) is bounded, it is clear that

lim
ε→0

λε
k+1 < +∞. (8)

There are now two cases to consider.

First case:

lim
ε→0

min1�i�k dε
i (aε

k+1)

λε
k+1

= +∞. (9)

In that case, (Bk+1) is automatically satisfied. We set

uε
k+1(z) = uε

(
λε

k+1z + aε
k+1

)
for all z ∈ Ωε

k+1

where Ωε
k+1 = {z ∈ R

2 s.t. λε
k+1z + aε

k+1 ∈ D}. Let z ∈ Ωε
k+1, we get∣∣∇uε

k+1(z)
∣∣ = λε

k+1

∣∣∇uε
(
λε

k+1z + aε
k+1

)∣∣
� λε

k+1

∣∣∣∣∣∇
(

uε −
k∑

i=1

ωε
i

)(
λε

k+1z + aε
k+1

)∣∣∣∣∣ + λε
k+1

∣∣∣∣∣∇
(

k∑
i=1

ωε
i

)(
λε

k+1z + aε
k+1

)∣∣∣∣∣. (10)

Thanks to (Ak) and (9), we easily get that

λε
k+1

∣∣∣∣∣∇
(

k∑
i=1

ωε
i

)(
λε

k+1z + aε
k+1

)∣∣∣∣∣ = o(1). (11)

Then, using the definition of aε
k+1, (9), (10) and (11), we get

∣∣∇uε
k+1(z)

∣∣ �
min1�i�k dε

i (aε
k+1)

min1�i�k dε
i (λε

k+1z + aε
k+1)

+ o(1) = 1 + o(1). (12)

Then |∇uε
k+1| is bounded on every compact subset of Ωε

k+1. Moreover, thanks to conformal invariance of our equa-
tion, uε

k+1 still satisfies (5). Hence, using standard elliptic theory, see Section 1 and [13], we see that there exist
a subsequence of uε (still denoted uε) and ωk+1 ∈ C2(Ωk+1) such that
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uε
k+1 → ωk+1 in C2

loc(Ωk+1)

and

�ωk+1 = −2ωk+1
x ∧ ωk+1

y on Ωk+1,

where Ωk+1 = limε→0 Ωε
k+1. Here there are again two cases: either Ωk+1 is the whole plane or this is a disk or an

half-plane (which is conformally equivalent). In the case of the disk or the half-plane, the boundary condition passes
to the limit, that is to say, up to rotation,

ωk+1(∂Ωk+1) ⊂ R
2 × {0}

and 〈
ωk+1

x ∧ ωk+1
y ,N

〉 = 0 on ∂Ωk+1,

where N = (0,0,1). Moreover, thanks to conformal invariance of ‖∇.‖2, up to extract a subsequence, we get

uε
k+1 ⇀ ωk+1 in L2(

R
2)

and ∥∥∇ωk+1
∥∥

2 � lim inf
ε→0

∥∥∇uε
k+1

∥∥
2 = lim inf

ε→0

∥∥∇uε
∥∥

2 < +∞.

Finally, thanks to Lemmas 2.1 and 2.2, ωk+1 has the desired shape, moreover ωk+1 is non-constant since
|∇ωk+1(0)| = 1. This achieves the proof of (Pk+1) in the first case.

Second case:

lim
ε→0

min1�i�k dε
i (aε

k+1)

λε
k+1

= γ > 0. (13)

First of all, we need to show that (Bk+1) holds. We assume by contradiction that (Bk+1) does not hold, then, up to
extract a subsequence, there exists 1 � i0 � k such that

dε
k+1

(
aε
i0

) = O
(
λε

i0

)
and dε

i0

(
aε
k+1

) = O
(
λε

k+1

)
. (14)

On the one hand, (14) gives

lim
ε→0

λε
k+1

λε
i0

= c and
∣∣aε

i0
− aε

k+1

∣∣ = O
(
λε

i0

)
, (15)

where c is a positive constant. On the other hand, thanks to (Ak) and (Bk), we get

∇
((

uε −
k∑

i=1

ωε
i

)(
λε

i0
. + aε

i0

)) → 0 in C2
loc(Ωi0 \ Si0). (16)

Hence, thanks to (13) and (15), we necessarily get

d

(
aε
k+1 − aε

i0

λε
i0

, Si0

)
= o(1).

Let j ∈ {1, . . . , k} \ {i0} be such that∣∣∣∣a
ε
k+1 − aε

j

λε
i0

∣∣∣∣ = o(1).

Using (13) and (15), we remark that for ε small enough,

λε
j

λε � γ

2
,

k+1
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and, using again (15), we remark that, for ε small enough,

λε
j

λε
i0

� γ

4c
.

Since
aε
i0

−aε
j

λε
i0

= O(1) and i0 and j satisfy (Bk), we necessarily get

λε
i0

= o
(
λε

j

)
.

Hence, for all j such that
aε
k+1−aε

j

λε
i0

= o(1), we get

λε
i0

= o
(
λε

j

)
.

In particular, thanks to (Ak), there exits δ > 0 such that for all z ∈ B(0, δ), we have

λε
i0

∣∣∇ωε
i

(
aε
k+1 + zλε

i0

)∣∣ = o(1) for all i �= i0.

We easily see that

λε
i0

∣∣∇uε
∣∣ = O(1) on B

(
aε
k+1, δλ

ε
i0

)
.

Using standard elliptic theory, up to extract a subsequence, we get that uε
i0

converges to ωi0 in C2
loc(B(ck+1,

δ
2 )) where

ck+1 = limε→0
aε
k+1−aε

i0
λε

i0
. Then we deduce that

∣∣∇(
uε

i0
− ωi0

)(
aε
k+1

)∣∣ → 0,

which leads to

λε
i0

∣∣∣∣∣∇
((

uε −
k∑

i=1

ωε
i

)(
aε
k+1

))∣∣∣∣∣ → 0,

which, thanks to (16), is a contradiction with (13) and proves (Bk+1).
Now, we set

uε
k+1 = uε

(
λε

k+1. + aε
k+1

)
for all z ∈ Ωε

k+1,

where Ωε
k+1 = {z ∈ R

2 s.t. λε
k+1z + aε

k+1 ∈ D}. Let z ∈ Ωε
k+1 \ {Sk+1}, we have∣∣∇uε

k+1(z)
∣∣ = λε

k+1

∣∣∇uε
(
λε

k+1z + aε
k+1

)∣∣
� λε

k+1

∣∣∣∣∣∇
(

uε −
k∑

i=1

ωε
i

)(
λε

k+1z + aε
k+1

)∣∣∣∣∣ + λε
k+1

∣∣∣∣∣∇
(

k∑
i=1

ωε
i

)(
λε

k+1z + aε
k+1

)∣∣∣∣∣. (17)

Thanks to (Ak) and (13), we obtain

λε
k+1

∣∣∣∣∣∇
(

k∑
i=1

ωε
i

)(
λε

k+1. + aε
k+1

)∣∣∣∣∣ = O

(
1

d(z, Sk+1)
+ |z| + 1

)
. (18)

With the consention that d(z,∅) = +∞.
Then using the definition of aε

k+1, (17) and (18), we get

∣∣∇uε
k+1(z)

∣∣ �
min1�i�k dε

i (aε
k+1)

min1�i�k dε
i (λε

k+1z + aε
k+1)

+ O

(
1

d(z, Sk+1)
+ |z| + 1

)

= O

(
1 + |z| + 1

)
. (19)
d(z, Sk+1)
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Then |∇uε
k+1| is bounded on every compact subset of Ωε

k+1 \ Sk+1. Moreover, thanks to the conformal invariance of
our equation, uε

k+1 still satisfies (5). Hence, thanks to the standard elliptic theory, see Section 1 and [13], there exist
a subsequence of uε (still denoted uε) and ωk+1 ∈ C2(Ωk+1 \ Sk+1) such that

uε
k+1 → ωk+1 in C1

loc(Ωk+1 \ Sk+1),

and

�ωk+1 = −2ωk+1
x ∧ ωk+1

y on Ωk+1 \ Sk+1

where Ωk+1 = limε→0 Ωε
k+1. As before, there are two possibilities; either Ωk+1 is the whole plane or this is a disk

or a half-plane (which is conformally equivalent). If it is a disk or a half-plane, the boundary condition passes to the
limit, that is to say, up to rotation,

ωk+1(∂Ωk+1) ⊂ R
2 × {0}

and 〈
ωk+1

x ∧ ωk+1
y ,N

〉 = 0 on ∂Ωk+1,

where N = (0,0,1).
Moreover, thanks the conformal invariance of ‖∇.‖2, up to extract a subsequence, we get

uε
k+1 ⇀ ωk+1 in L2(

R
2)

and ∥∥∇ωk+1
∥∥

2 � lim inf
ε→0

∥∥∇uε
k+1

∥∥
2 = lim inf

ε→0

∥∥∇uε
∥∥

2 < +∞.

Then, ωk+1 is a solution of (2) on Ωk+1, and ωk+1 has the desired shape. Finally, we need to show that ωk+1 is
non-constant. This is trivial if 0 /∈ Sk+1, since in that case |∇ωk+1(0)| = 1. Else, for all i0 such that

|aε
i0

− aε
k+1|

λε
k+1

= o(1),

thanks to (13) and (Bk+1), we get

λε
i0

= o
(
λε

k+1

)
.

Then mimicking the argument of the proof of (Bk+1) we show that

∇uε
k+1 → ∇ωk+1 on B(0, δ),

where δ > 0. This leads in every case to |∇ωk+1(0)| = 1 and then ωk+1 is non-constant. This proves (Pk+1) in this
second case. The study of these two cases ends the proof of Claim 1. �

Then, we need to prove a claim about the energy of a sum of bubbles. In fact, using (Bk), we show that the bubbles
do not interact in a weak sense and that each one provides at least the energy of a simple hemisphere,that is to say 4π .

Claim 2. Let k ∈ N
∗ and

(i) ω1, . . . ,ωk non-constant solutions of (2),
(ii) aε

1, . . . , a
ε
k sequences of D, and

(iii) λε
1, . . . , λ

ε
k sequences of positive real numbers such that limε→0 λε

i = 0,

such that, with uε , they satisfy (Pk). Then

lim inf
ε→0

∥∥∇uε
∥∥2

2 �
k∑

i=1

∥∥∇ωi
∥∥2

2 � 4πk.
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Proof. Let R be a positive real number, thanks to (Bk), for ε small enough, we get

∫
D

∣∣∇uε
∣∣2

dz �
k∑

i=1

∫
D∩B(aε

i ,Rλε
i )\Ωε

i (R)

∣∣∇uε
∣∣2

dz,

where

Ωε
i (R) =

{
z ∈ B

(
aε
j ,Rλε

j

)
where j is such that lim

ε→0

λε
j

λε
i

= 0

}
.

Then, thanks to (Ak), we get

∫
R2

∣∣∇uε
∣∣2

dz �
k∑

i=1

∫
(B(− aε

i
λε
i
, 1
λε
i
)∩B(0,R))\Ωi(R)

|∇ωi |2 dz + δε,R

� 4πk + δε,R (20)

where Ωi(R) = ⋃
x∈Si

B(x, 1
R

) and limR→+∞ limε→0 δε,R = 0. Here we bound the energy of a solution by the small-
est possible, that is to say the energy of a hemisphere. �
Proof of the theorem. We start setting aε

1 ∈ D and λε
1 as∣∣∇uε

(
aε

1

)∣∣ = sup
z∈D

∣∣∇uε(z)
∣∣

and ∣∣∇uε
(
aε

1

)∣∣ = 1

λε
1
.

Either λε
1 goes to infinity and then uε converges uniformly to 0 which proves the theorem. Or we set

uε
1(z) = uε

(
aε

1 + λε
1z

)
for all z ∈ Ωε

1

where Ωε
1 = {z ∈ R2 s.t. aε

1 + λε
1z ∈ D}.

It is clear that |∇uε
1| is bounded on every compact subset of Ωε

1 . Moreover thanks to conformal invariance of our
equation, uε

1 still satisfies (5). Hence, applying standard elliptic theory, see Section 1 and [13]. We see that there exists
a subsequence of uε

1 (still denoted uε
1) and ω1 ∈ C2(Ω1) such that

uε
1 → ω1 in C2

loc(Ω1)

and

�ω1 = −2ω1
x ∧ ω1

y on Ω1,

where Ω1 = limε→0 Ωε
1 . There are two possibilities for Ω1; it is either the whole plane or disk or a half-plane (which

is conformally equivalent). In the last case, the boundary condition passes to the limit, that is to say, up to rotation,

ω1(∂Ω1) ⊂ R
2 × {0}

and 〈
ω1

x ∧ ω1
y,N

〉 = 0 on ∂Ωk,

where N = (0,0,1). Moreover, thanks to conformal invariance of ‖∇.‖2, up to extract a subsequence, we get

uε
1 ⇀ ω1 in L2(

R
2)

and
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∥∥∇ω1
∥∥

2 � lim inf
ε→0

∥∥∇uε
1

∥∥
2 = lim inf

ε→0

∥∥∇uε
∥∥

2 < +∞.

Then, thanks to Lemmas 2.1 and 2.2, ω1 has the desired shape. Finally ω1 is non-constant since |∇ω1(0)| = 1.
Now we can start our induction. Indeed, thanks to Claims 1 and 2 and the fact that the energy is uniformly bounded,

there exists k ∈ N
∗ such that (Pk) is satisfies and

lim
ε→0

sup
z∈D

(
min

0�i�k
dε
i (z)

)∣∣∣∣∣∇
(

uε −
k∑

i=0

ωε
i

)
(z)

∣∣∣∣∣ = 0, (21)

where ωε
i = ωi(

.−aε
i

λε
i

). This proves (A) and (B).

It suffices to show (C) to conclude. We start with the following claim.

Claim 3.∥∥∥∥∥∇
(

uε −
k∑

i=1

ωε
i

)∥∥∥∥∥
2

→ 0 when ε → 0. (22)

Proof. We set

Rε = uε −
k∑

i=1

ωε
i

and we assume that there exists δ > 0 such that∥∥∇Rε
∥∥

2 � δ.

With those assumptions, we are going to prove the existence of a new bubble which will contradict (21). In order to
find this bubble, we follow the method developed in [2].

First of all, we introduce the concentration function

Cε(t) = sup
z∈D

∫
B(z,t)

∣∣∇Rε
∣∣2

dz.

It is clear that Cε is continuous, increasing with respect to t and that Cε(0) = 0. We fix ν such that

0 < ν < min

{
1

2C0
,
δ

2

}
,

where C0 is the constant in the Wente inequality given by Lemma A.1. Hence there exists aε ∈ D and λε > 0 such that

Cε
(
λε

) =
∫

B(aε,λε)

∣∣∇Rε
∣∣2

dz = ν.

Then we rescale around aε , setting f̃ = f (λε. + aε) for all z ∈ Ωε = {z ∈ R
2 s.t. λεz + aε ∈ D}, and we get∫

Ωε

∣∣∇R̃ε
∣∣2

dz = ∥∥∇Rε
∥∥2

2 � C,

and ∥∥R̃ε
∥∥∞ � C,

where C is a positive real. Moreover, using (5), we remark that R̃ε satisfies

�R̃ε = −2R̃ε
x ∧ R̃ε

y + O

(
k∑∣∣∇ω̃ε

i

∣∣(∑∣∣∇ω̃ε
j

∣∣ + ∣∣∇R̃ε
∣∣))

.

i=0 j �=i
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However, thanks to (B), we get∣∣∇ω̃ε
i

∣∣∣∣∇ω̃ε
j

∣∣ → 0 in L1
loc

(
Ω0

)
for i �= j

and, thanks to (21), we get∣∣∇ω̃ε
i

∣∣∣∣∇R̃ε
∣∣ → 0 in L1

loc

(
Ω0

)
for all i,

with Ω0 = limε→0 Ωε . Finally

�R̃ε = −2R̃ε
x ∧ R̃ε

y + hε,

where hε → 0 in L1
loc(Ω

0) when ε → 0. Then, up to extract a subsequence, we get

R̃ε → R p.p. on Ω0

and

∇R̃ε ⇀ ∇R weakly in L2(Ω0).
Moreover R is a weak solution of

�R = −2Rx ∧ Ry on Ω0.

Now, thanks to our choice of ν, we are going to show that the weak convergence is in fact strong. Let vε = R̃ε − R,
then vε satisfy

�vε = −2vε
x ∧ vε

y − 2
(
vε
x ∧ Ry + Rx ∧ vε

y

) + hε.

Moreover, thanks to Corollary A.1, there exists ψε ∈ H 1
0 (Ω0) a solution of

�ψε = −2
(
vε
x ∧ Ry + Rx ∧ vε

y

)
satisfying∥∥∇ψε

∥∥
2 + ∥∥ψε

∥∥∞ �
∥∥∇vε

∥∥
2‖∇R‖2. (23)

However,∫
Ω0

∣∣∇ψε
∣∣2

dz = −2
∫

Ω0

〈
ψε, vε

x ∧ Ry + Rx ∧ vε
y

〉
dz.

Then using (23), we get that ψε ∧Rx and ψε ∧Ry are bounded in L2(Ω0). Hence, since ∇vε → 0 weakly in L2(Ω0),
we get that∫

Ω0

∣∣∇ψε
∣∣2

dz → 0.

Then we deduce that

�vε = −2vε
x ∧ vε

y + gε,

where gε → 0 in D′(Ω0).
Finally, let φ ∈ C∞

c (Ω0) be such that supp(φ) is contained in a ball of radius 1, using Lemma A.1, we get∫
Ω0

∣∣∇(
φvε

)∣∣2
dz = −2

∫
Ω0

〈
vε,φvε

x ∧ φvε
y

〉
dz + o(1),

� 2
(
C0

∥∥∇vε
| supp(φ)

∥∥
2

)∥∥∇(
φvε

)∥∥2
2 + o(1).

Thanks to our choice of λε , we get C0‖∇vε ‖2 � 1 , which gives finally
| supp(φ) 2
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∫
Ω0

∣∣∇(
φvε

)∣∣2
dz = o(1)

which proves

∇R̃ε → ∇R strongly in L2
loc

(
Ω0

)
.

Indeed, we can remark that R isn’t constant since ‖∇R‖2 = ν > 0. But, thanks to (21), we have, for all z ∈ R
2, that

there exists i such that∣∣∇R̃ε(z)
∣∣ = o

(
1√

(
λε

i

λε )2 + |z + aε−aε
i

λε |2

)
,

which is a contradiction and proves (22). �
In order to conclude, we have to transform this H 1-estimate in an L∞-estimate. An idea could be to use the Wente

inequality as it is done by Brezis and Coron in [2] in order to get L∞-estimate. But contrary to Brezis and Coron,
here we don’t control what happens on the boundary. In order to overpass this difficulty we are going to extend our
surfaces.

Usually extend a surface across its boundary smoothly is not an easy fact, but here, thanks to the fact that our
surfaces and the boundary of our domains meet orthogonally, this will be possible without perturbing too much the
condition to be with constant mean curvature.

The idea is to reflect our surface through ∂Ωε which is almost a plane so that our transformation will be almost
an isometry (in fact a symmetry) and will almost conserve the mean curvature. Moreover the new surfaces will be at
least C1,1 thanks to the fact that our surfaces meet ∂Ωε orthogonally.

Since ∂Ωε converges uniformly to a plane, there exists a diffeomorphism ψε : B(0,2R) → R
3, where R is chosen

such that uε(D) ⊂ B(0,R), which sends ∂Ωε ∩ B(0,2) in R2 × {0} and which preserves the orthogonality on ∂Ωε .
In fact it suffices to straighten up the local foliation of the normal bundle of ∂Ωε to R

2 × R. Then now we get new
surfaces which have almost constant mean curvature equal to 1. Then we extend our map to S2. Here S2 will be
identified with the Riemann sphere Ĉ. We set

vε(z) = s

(
vε

(
1

z

))
for all z ∈ Ĉ \ D,

where s is the symmetry through R
2 ×{0} and vε = ψε ◦uε . Using the fact that vε(D) and R

2 ×{0} meet orthogonally
we easily show that vε is C1,1. Then we set ũε = ψ−1 ◦ vε which is also C1,1 and its mean curvature uniformly
converges to 1.

Then we are in position to prove our theorem. Assume by contradiction that

d

(
Σ̃ε,

k⋃
i=1

B̃i

)
� 0,

where Σ̃ε = ũε(S2) and B̃i is the union of Bi and its symmetry through T0∂Ωε .
Then there exits yε ∈ Σ̃ε such that

d

(
yε,

k⋃
i=1

B̃i

)
� 0.

Let zε ∈ Ĉ be such that ũε(zε) = yε . We are going to prove that there is some area in a neighbourhood of zε . The
idea is that if a surface has bounded mean curvature, passes through the center of a ball, and has no boundary inside
the ball, then it has to use a certain amount of area to leave the ball. Since the mean curvature is bounded, then the
Gaussian curvature of our surface is uniformly bounded from above by a constant K0. Let r0 > 0 be such that

B
(
yε, r0

) ∩
(

k⋃
B̃i

)
= ∅.
i=1
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Then using a Bishop comparison, like Theorem III.4.2 of [4], we see that

Vol

(
B

(
yε,

r0

2

)
∩ Σ̃ε

)
� Vol

(
BΣ̃ε

(
yε,

r0

2

))
� Vol

(
BMK0

(
yε,

r0

2

))
� C0r

2
0 ,

where MK0 is the space of constant curvature K0 and C0 a positive constant. Hence we see that uε necessarily get
some area in a neighbourhood of zε whose image is far from the bubbles, which is a contradiction with Claim 3 since
all the area of uε is devoted to cover the bubbles. This proves (C) and achieves the proof of the theorem. �
3.2. There is at least one hemisphere in the decomposition

In order to show our result, we have to eliminate the sequence of surfaces whose boundaries collapse. It suffices to
show that in Theorem 3.1, there is at least one bubble whose domain of definition is not the whole plane, that is to say
there is at least one hemisphere.

Since our surfaces are embedded, we can assume that our bubbles are simple. In fact, we just need to prove that
max{degPi,degQi} = 1 for all 1 � i � p, with ωi = πPi

(
Pi

Qi
) where Pi

Qi
is irreducible. But this is an easy consequence

of the fact that our surfaces are embedded, (A) and the following lemma.

Lemma 3.1. Let uε : B(0,1) → R
3 a sequence of smooth embedding such that there exist u0 ∈ C1(B(0,1),R

3) and

uε → u0 in C2
loc

(
B(0,1) \ {0}).

Then u0 can’t be a multiple parametrization, that is to say there is no embedded U0 ∈ C1(B(0,1),R
3), Φ ∈

O(B(0,1),C) a holomorphic function and an integer k � 2 such that

u0 = U0 ◦ Φ

and

Φ(z) = zk + o
(|z|k) as z → 0.

Proof. First of all, up to a diffeomorphism of a neighbourhood of 0, we can assume that

uε → U0(zl
)

in C2
loc

(
B(0, δ) \ {0}),

where l � 2 and δ > 0. Let Aδ = B(0, δ
2 ) \ B(0, δ

3 ) and Cr be the cylinder of center U0(0), radius r and orthogonal
to TU0(0)U

0(B(0,1)), the tangent plane to the image of U0 at U0(0). Let δ > 0 and r > 0 be small enough such that
Cr ∩ U0(Aδ) is a simple curve. Then, for ε small enough, we easily see that the intersection of uε(Aδ) and Cr turns l

times around the cylinder, hence uε(Aδ) necessary intersect, which is a contradiction and proves the lemma. �
Claim. Let uε be a sequence of C2-solutions of (5). We note p the number of bubbles given by the decomposition 3.1,
this number splits into k spheres and l hemispheres, such that p = k + l. Then we necessarily have that l � 1.

Proof. We assume by contradiction that l = 0. We show first that necessarily k � 1, that is to say there is no neck as
in Fig. 2.

We assume for contradiction that k � 2 and we consider the highest bubble, that is to say the one which corresponds
to the smallest λε

i . Up to reorder, we assume that i = 1. Thanks to (B), there is no bubble closed to this one, that is to
say

uε
1 → ω1 in C2

loc

(
R

2)
where uε

1 = uε(aε
1 + λε

1.).
We claim that the highest bubble is over another bubble. More precisely, there exist i > 1 and R0 > 0 such that for

all R > 0 one gets B(aε
1,Rλε

1) ⊂ B(aε
i ,R0λ

ε
i ) for ε small enough.

Else this bubble would be isolated and will become tangent to ∂Ω at 0. Indeed, there exists z0 ∈ ∂D such that for
all R > 0 and for all zε ∈ ∂B(aε,Rλε), there exists a curve Γ of D joining zε to z0 staying far from the other bubble.
1 1
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Fig. 2. Two bubbles joined by a neck. Fig. 3. Σ̃ε range by uε of a neighbourhood of the highest bubble.

Hence thanks to the estimate (21), for ε small enough, we see that the bubble ωε
1 would be almost tangent to ∂Ωε . This

makes impossible the existence of an other isolated bubble, since it would be also almost tangent to ∂Ωε at the same
point, since we can take the same z0 for the two bubbles. This would contradict the fact that the bubble is embedded
and in the interior of Ωε . Hence the second bubble should be over the first one and so higher, which is a contradiction.

There exist i0 and R0 > 0 such that for all R > 0 we get B(aε
1,Rλε

1) ⊂ B(aε
i0
,R0λ

ε
i0
). Then we choose the mini-

mal λε
i0

satisfying this property. In this case we consider a neighbourhood of aε
1, B(aε

1, rλ
ε
i0
), where r > 0 is chosen

such that this neighbourhood contains no other bubble. For ε small enough, the range of this neighbourhood by uε ,
which will be noted by Σ̃ε , seems like a sphere glued on a spherical cap, see Fig. 3.

Now we are in position to apply the Aleksandrov reflexion principle, as described in Chapter VII of [14]. Let P ε be
the tangent plane to Σ̃ε at uε(aε

1) and νε the exterior normal at this point. We set P ε
t = P ε + tνε , Σ̃

ε,+
t = Σ̃ε ∩{P ε +

uνε s.t. u � t} and Σ̃
ε,−
t the reflexion of Σ̃

ε,+
t with respect to P ε

t . We consider the first negative time t such that Σ̃
ε,−
t

meets Σ̃ε . For ε small enough, the contact point of Σ̃
ε,−
t and Σ̃ε can’t belong to the boundary thanks to the presence

of the neck. Moreover at the contact point the surfaces get the same orientation since Σ̃
ε,−
t comes from the interior

of the bubble. Hence applying the Aleksandrov principle, we get Σ̃
ε,−
t = Σ̃ε \ Σ̃

ε,+
t , which is clearly a contradiction

with the fact that the surface is embedded and with a boundary. Which proves that k � 1.
Now we have to exclude k = 0 and k = 1. If k = 0, then p = 0 and in that case the surface collapses. In fact his area

will go to 0, see the proof of Theorem 3.1. In that case, we rescale our space in order to get a new surface, denoted
by Σ̂ε , whose area is equal to 1. This imposes to the mean curvature of our new surface to go to 0. Then our new
sequence of surfaces Σ̂ε goes to a minimal surface which bounds a plane curve. Indeed to insure the convergence
it suffices to prove that |∇ûε| is uniformly bounded, where ûε is a conformal parametrization of Σ̂ε . The regularity
theory given in Section 1, will give the convergence in C2(D).

Let us assume by contradiction that supD |∇ûε| → +∞ when ε → 0. Then we set aε
1 ∈ D and λε

1 such that∣∣∇ûε
(
aε

1

)∣∣ = sup
z∈D

∣∣∇ûε(z)
∣∣

and ∣∣∇ûε
(
aε

1

)∣∣ = 1

λε
1
.

Then we set

ûε
1(z) = ûε

(
aε

1 + λε
1z

)
for all z ∈ Ωε

1

where Ωε
1 = {z ∈ R2 s.t. aε

1 + λε
1z ∈ D}.

It is clear that |∇ûε
1| is bounded on every compact subset of Ωε

1 . Moreover, thanks to conformal invariance of our
equation, ûε satisfies
1
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�ûε
1 = o

((
ûε

1

)
x

∧ (
ûε

1

)
y

)
and 〈(

ûε
1

)
x
,
(
ûε

1

)
y

〉 = ∣∣(ûε
1

)
x

∣∣ − ∣∣(ûε
1

)
y

∣∣ = 0.

Hence, applying standard elliptic theory, see Section 1 and [13], we see that there exists a subsequence of ûε
1 (still

denoted by ûε
1) and β1 ∈ C2(Ω1) such that

ûε
1 → β1 in C2

loc(Ω1)

and

�β1 = 0,〈
(β1)x, (β1)y

〉 = ∣∣(β1)x
∣∣ − ∣∣(β1)y

∣∣ = 0,

where Ω1 = limε→0 Ωε
1 . Then there are two possibilities for Ω1, either it is the whole plane or it is a disk or a half-

plane (which is conformally equivalent). In this last case the boundary condition passes to the limit, that is to say, up
to a rotation,

β1(∂Ω1) ⊂ R
2 × {0}

and 〈
β1

x ∧ β1
y ,N

〉 = 0 on ∂Ωk,

where N = (0,0,1). In that case β1 can be extend by symmetry in a C1 function defined on the whole plane.
Moreover, thanks to the conformal invariance of ‖∇.‖2, we get∥∥∇β1

∥∥
2 � 2 lim inf

ε→0

∥∥∇ûε
1

∥∥
2 = 2 lim inf

ε→0

∥∥∇ûε
∥∥

2 = 2.

Thanks to the Liouville theorem, we necessarily get ∇β1 ≡ 0, which is a contradiction with the fact that |∇β1(0)| = 1.
This proves that |∇ûε| is uniformly bounded and also the convergence of the sequence of surfaces Σ̂ε .

With this convergence, the boundary condition passes to the limit, that is to say the minimal surface which is
obtained meets the plane which contains its boundary orthogonally. But thanks to classical theory of minimal surfaces,
see [5], these surfaces should be flat, which contradicts the fact it must meet orthogonally the plane which contains its
boundary.

Fig. 4. A bubble meeting ∂Ω .

Finally, the last possibility is k = 1, that is to say there is only one bubble as in Fig. 4.
But we can apply once more the Aleksandrov reflexion principle with respect to the tangent plane Σε at the furthest

point to ∂Ωε . Then the contact point between the surface and the reflected part is necessarily at the boundary, else the
surface should be closed without boundary. Indeed if we have a contact in the interior, the local equality given by the
reflexion principle would be global thanks to connexity, which is impossible since the upper part is simply connected
and the lower is not. Hence the contact is done at the boundary ∂Σε , but the tangent plane to Σε at the furthest point
to ∂Ωε becomes parallel to the one of ∂Ω at 0, which forces the angle between ∂Ωε and Σε at the contact point to
go to zero when ε goes to 0, which is a contradiction and achieves the proof of the claim. �
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Fig. 5. ωε which is bounded by ∂Σε .

3.3. Proof of Theorem 0.1

Thanks to the previous section, uε(S1) converges uniformly to a union of circles with radius 1 centered at points (ci)

of T0∂Ω (see Fig. 5). Now we are in position to prove Theorem 0.1. In order to do it we apply the balancing formula
(4) to the sequence Σε . This gives

2
∫
ωε

�Nε dv −
∫

∂Σε

�νε dσ = 0 (24)

where �νε is the conormal.
The fact that Σε and Ωε meet orthogonally imposes �νε = �Nε . We make a Taylor expansion of �Nε . Since ∂Ωε

is a graph above its tangent plane, we make the expansion in those coordinates. In fact, we are not going to do the
expansion with respect to 0 but with respect to cε ∈ ∂Ωε a point closed to 0 which will be fixed later.

�Nε(z) = �Nε
(
cε

) + εd �Ncε

(
z − cε

) + ε2d2 �Ncε

(
z − cε

)(
z − cε

) + o
(
ε2).

At the first order, the left-hand side (24) gives(
2
∣∣ωε

∣∣ − ∣∣∂Σε
∣∣) �N(

cε
)
. (25)

We can remark here that, thanks to Theorem 3.1, we have,∣∣ωε
∣∣ → lπ,

and

lim inf
ε→0

∣∣∂Σε
∣∣ � l2π.

In the first equality, we use the L∞-convergence while in the second, we use the C2
loc-convergence. Then, thanks

to (25), we get

lim
ε→0

∣∣∂Σε
∣∣ = l2π,

which proves that ∂Σε converges to a union of l circles as a current which justifies the fact that we will pass to the
limit in the integral defined over this set.

In order to eliminate (25) we project the left-hand side term of (24) orthogonally to �Nε(cε), which gives to the
second order

επε

(
2
∫
ωε

d �Ncε

(
z − cε

)
dv −

∫
∂Σε

d �Ncε

(
z − cε

)
dσ

)
(26)

where πε is the orthogonal projection parallel to �Nε(cε).
Then we remark that there exists cε such that (26) vanishes. Indeed

2
∫
ωε

(
z − cε

)
dv −

∫
∂Σε

(
z − cε

)
dσ

is the weighted barycenter of (ωε,2) and (∂Σε,−1), then it suffices to choose cε as the corresponding barycenter to
vanish (26).
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Then it remains the order two terms, in which we pass to the limit after dividing them by ε2, which gives

π0
(

2
∫
ω0

d2 �N0
(
z − c0)(z − c0)dv −

∫
∂Σ0

d2 �Nc0

(
z − c0)(z − c0)dσ

)
= 0 (27)

where π0 is the orthogonal projection parallel to �N(0), c0, ω0 and ∂Σ0 are respectively the limit of cε , ωε and ∂Σε .
As already remarked at the beginning of this section, ω0 and ∂Σ0 are respectively a union of disks with radius 1 and
union of circles with radius 1 centered at some points ci . Then we decompose the integral on this subset, which gives

l∑
i=1

π0
(

2
∫

D(ci ,1)

d2 �N0
(
z − c0)(z − c0)dv −

∫
∂D(ci ,1)

d2 �Nc0

(
z − c0)(z − c0)dσ

)

=
l∑

i=1

π0
(

2
∫

D(ci ,1)

d2 �N0
(
z − ci

)(
z − ci

)
dv −

∫
∂D(ci ,1)

d2 �Nc0

(
z − ci

)(
z − ci

)
dσ

)
.

Here we use the fact that the integral vanishes if it contains an odd number of z − ci and the fact that 2|D(ci,1)| =
|∂D(ci,1)|. Now we integrate, which traces d2 �N and gives

l

(
2
∫
D

|z|2 dz − 1

)
π0(� �N(0)

) = 0.

But the general equation of a Gauss map of an immersion X is given by

� �N = |∇ �N |2 �N − 2|∇X|2∇H(u), (28)

hence we get

l

2
∇H(0) = 0,

which achieves the proof of the theorem. �
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Appendix A. Wente’s inequality and application

The aim of this section is to remind some Wente’s inequalities, originally proved in [23].

Theorem A.1. Let Ω be a bounded open set of R
2 and a, b ∈ H 1(Ω). Let u ∈ W

1,1
0 (Ω) be the solution of

�u = axby − aybx on Ω,

then

‖u‖∞ � 1

2π
‖∇a‖2‖∇b‖2,

and

‖∇u‖2 �
√

3

16π
‖∇a‖2‖∇b‖2.

Moreover the constant are optimal.
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Which is remarkable here is that the constant is independent of Ω . We will find the proof in [22] and [12], see
also [24] and [1]. These inequalities have been extend to function defined on surfaces. In particular, we have the
following theorem.

Theorem A.2. Let Σ a compact Riemannian surface without boundary and v ∈ H 1(Σ,R
2). Then if u ∈ W 1,1(Σ,R)

be the solution of

�u = det(∇v) on Σ,

then

osc(u) + ‖∇u‖2 �
(

1

4π
+

√
3

128π

)
‖∇v‖2

2,

where osc(u) = supx,y∈Σ |u(x) − u(y)|.

Then, assuming that u ∈ H 1, we extend such an equality to Ω = R
2.

Corollary A.1. Let v ∈ H 1(R2,R
3) and u ∈ H 1(R2,R

3) be a solution of

�u = −2vx ∧ vy on R
2

then

osc(u) + ‖∇u‖2 �
(

1

π
+

√
3

8π

)
‖∇v‖2

2.

Here the constant is a priori not optimal.

Proof. Let π the standard stereographic projection from S2 to R
2. Thanks to the conformal invariance of the equation,

u ◦ π−1 and v ◦ π−1 satisfy the hypothesis of Theorem A.2 when Σ = S2, hence we get that

osc
(
u1) + ∥∥∇u1

∥∥
2 �

(
1

2π
+

√
3

32π

)(∥∥∇v2
∥∥2

2 + ∥∥∇v3
∥∥2

2

)
,

osc
(
u2) + ∥∥∇u3

∥∥
2 �

(
1

2π
+

√
3

32π

)(∥∥∇v1
∥∥2

2 + ∥∥∇v3
∥∥2

2

)
and

osc
(
u3) + ∥∥∇u3

∥∥
2 �

(
1

2π
+

√
3

32π

)(∥∥∇v1
∥∥2

2 + ∥∥∇v2
∥∥2

2

)
.

Then summing these inequalities, we get the desired inequality. �
To conclude this section we remind a useful Wente’s type inequality, see [3] for example.

Lemma A.1. Let u ∈ H 1(D) ∩ L∞(D) and v ∈ H 1
0 (D), then there exists C, independent of u and v, such that

∣∣∣∣
∫
Ω

〈u,vx ∧ vy〉
∣∣∣∣ � C‖∇u‖2‖∇v‖2

2.
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