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Abstract

We present some uniqueness (non-fattening) results for the motion by mean curvature perturbed by stochastic noise. It is
well known that for special initial data, the deterministic motion has multiple solutions, i.e., it develops interior. Our result for
a particular evolution of curves iR? illustrates that stochastic perturbations can select a unique solution in a natural way. The
noise we use is white in time and constant in space. The results are formulated both almost surely and in probability law.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

Nous présentons des résultats d'unicité pour le mouvement par courbure moyenne, perturbé par un bruit stochastique. Il
est bien connu que pour certaines conditions initiales, le mouvement a plusieurs solutions, i.e. il acquiert un intérieur. Notre
résultat pour I'évolution de courbes spécifiques d&fdllustre le fait que les perturbations stochastiques peuvent sélectionner
une unique solution de maniére naturelle. Le bruit utilisé ici est blanc dans le temps et constant dans I'espace. Nous donnons
nos résultats en termes presqliessainsi qu’en loi de probabilité.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

The study of the motion by mean curvature (MMC) of curves and surfaces before and after the development
of singularities has a long history. It involves interesting mathematical theories coming from nonlinear partial

* Corresponding author.
E-mail addressyip@math.purdue.edu (N.K. Yip).
1 Partially supported by the NSF.

0294-1449/$ — see front matter2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. Al rights reserved
doi:10.1016/j.anihpc.2002.11.001



2 P.E. Souganidis, N.K. Yip / Ann. I. H. Poincaré — AN 21 (2004) 1-23

differential equations, geometric measure theory, singular perturbations and asymptotic analysis. It also has many
applications in materials science and image processing. We refer to [1,25-27] for surveys on the mathematical
studies and physical interpretation of MMC.

This paper investigates the issue of the non-uniqueness of, or, equivalently, the development of interior for
solutions of MMC. It is well known that multiple solutions can arise from some initial data. When this happen, the
notion of solutions used so far cannot uniquely predict the evolution of the surfaces. Some additional information is
needed to select a unigue solution. This further manifests itself in the fact that different approximation schemes can
produce different solutions. As we also have in mind the physical applications of MMC in the study of materials
interfacial motions, the phenomena of non-uniqueness would mean that some underlying physical processes might
not be captured by the present model.

In this work we explore the use of noise to select a unique solution. The incorporation of stochastic perturbations
has been widely considered in the physics community. The noise can come from thermal fluctuations, impurities
or the atomistic processes describing the surface motions. The mathematical theory for the study of noise naturally
involves nonlinear stochastic partial differential equations. Compared to its deterministic counterpart, this is largely
an open area, which only recently has begun to be investigated in the work of P.-L. Lions and one of the authors
(see [20-23]). The results presented here are among the first which describe quantitatively the effects of noise in
terms of the statistics of the solutions.

A time dependent hypersurfa¢yr) in RV is said to evolve by MMC for > 0, if the outward normal velocity
v, at every point of the surface equals the mean curvature

Uy = —K, (1.1)

with the sign convention fae chosen so that a sphere shrinks.

There are several, basically equivalent, methods to construct sets moving by mean curvature. Classical partial
differential equation and differential geometry techniques have been used for the study of smooth flows. But this
approach requires special treatment to continue the solution when singularities and topological changes to the
surfaces occur. We refer to [2] for a survey of this approach and related questions.

The first global in time (weak) solution for MMC was constructed in [9] using the theory of varifolds. This
method, which also works for higher co-dimensional curves and surfaces, is so far only applicable in the isotropic
case. In addition, there is a high degree of non-uniqueness in the solutions.

Another approach, which has been used widely to study a large number of applications — see [25] for a general
survey — is the level-set formulation. This method makes use of a continuous fumcsanh that its zero-

(or anyc-) level set defined as

)= {x eRV: u(x,t):O}
evolves by MMC. This function would then be a solution of the following degenerate parabolic equation
D
ur = |Duldiv( == ) inRY x R,. (1.2)
| Du|
Equations like (1.2) admit unique globally defined uniformly continuous solutions in the viscosity sense (see [10,
12,15,17]). Furthermore the invariance properties of (1.2) yield fhat is uniquely defined as a function of the
initial set I'p = {x: u(x, 0) = 0}. The afortiomentioned non-uniqueness phenomena are, however, reflected in the
fact thatI" () can develop non-empty interior, a fact referred to as fattening. In this £4semay not represent
geometrically a hypersurface.
We say that: is has no-interior at timeand level-0 if
a{x: u(x,t)>0}={x: u(x,t):O}. (1.3)
If the above fails, we say thatfattens or it develops interior. When this occurs, there are at least two solutions of
MMC (see Theorem 2.1 of [5]), namely

ar*@)={x:u(x,1)>0} and ar.(r)={x: u(x,1)>0},



P.E. Souganidis, N.K. Yip / Ann. I. H. Poincaré — AN 21 (2004) 1-23 3

which by definition differ from each other at timeIn fact I"'*(z) and I',(¢) are respectively the maximum and
minimum solutions. Although any other solution is trapped in between them, its location is not easily prescribed.
Such a non-uniqueness phenomenon also corresponds to the fact that the solutions of MMC do not depend
continuously on the initial data (in the! topology). Different approximations of the initial curve or surfaces

can lead to solutions which do not stay close to each other. Explicit examples of fattening are given in [3-5,7,12,
18,24], etc. General sufficient conditions fonot to develop fattening are given in [5].

The non-uniqueness issue described above also appears in the study of the convergence of a number of
macroscopic and microscopic models in phase transitions (see [25] for a general overview). A canonical example
is the study of the convergence of the phase field equation for MMC. In this approach, a phase-ordering parameter
¢ evolves according to the Allen—Cahn equation

o — Mg + e %p(p? — 1) =0, (1.4)

wheree > 0 is a small parameter. Given reasonable initial data, as0, ¢ approximates a sharp interface and

the zero level set ap converges to a solution of MMC. This convergence was established past singularities in the
viscosity sense in [13] and later by [16] using varifolds. The result of [13] have been extended to more general
anisotropic motions (see [25] and [6]). However, when the solution to MMC is not unique, it is not clear which
solutiong will converge to.

Given the above approaches to solve MMC, we observe the following hierarchy of solutions:

smooth - limits of c Brakke c zero level-
< flows ) - (AIIen—Cahn (1.4) - <f|ows [9]) - <set of (1.2))’
It would be interesting to understand this hierarchy more quantitatively. This motivates us to search for a selection
principle for the solutions of MMC.

In this work, we incorporate noise to MMC through the level set formulation. There are so far relatively few
mathematical results which can handle in a general setting the stochastic perturbations for geometric motions. One
of the main difficulties is how to combine the nonlinear, usually smoothing, effect of the surface evolutions and
the roughening effect of the noise. In [28,29], variational minimization and stochastic calculus are combined in
the framework of geometric measure theory to construct global solutions for stochastic MMC and dendritic crystal
growth with Gibbs—Thomson condition. Funaki [14] considers a stochastic perturbation of (1.4) and shows that, as
¢ — 0, ¢ converges to a front moving with normal velocity equal to mean curvature plus white noise, as long as the
flow remains smooth and convex. This result is proven in [21] to hold for the generalized stochastic flow globally
in time, i.e. past singularities.

A new theory for “stochastic” viscosity solutions for fully nonlinear second-order PDEs, which include the

geometric PDEs such as (1.2) arising in the level set method, has recently been put forward in [20-23] by Lions
and one of the authors. This theory applies to equations of the form

m
du+ F(D?u, Du,x,t)dt =y H'(Du) o dW,, (1.5)
i=1

where {(Wi(¢): i =1,...,m} is a collection of independent Wiener processes amtknotes the Stratonovich
stochastic differential, and yields the existence, uniqueness and stability properties of the solutions. We describe
briefly in Section 7 the results on stochastic PDES, which are relevant to our analysis.

We apply the machinery developed for (1.5) to study stochastic MMC and to show that for a particular choice
of an initial surface, for which there is non-uniqueness for the MMC, the stochastic motion converges to a unique
deterministic MMC. Our results are formulated both almost surely and in probability. Similar results were also
obtained independently in [11].

This paper is organized as follows. In Section 2 we summarize most of the notation used in the paper. The main
results are stated in Section 3. The definitions of generalized flows and some technical lemmas are presented in
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Section 4. The proofs of the theorems are presented in Sections 5 and 6. Section 7 summarizes the facts about
stochastic viscosity solutions, which are used in the paper.

2. Notation

We summarize here most of the notation which are used often in the paper.

Let O be the collection of open subsets®Y . For any element/ of O, 1y (x) is the characteristic function
of U which equals one fox € U and zero otherwiseiU, IntU, U and U°¢ refer to the topological boundary,
interior, closure and complement bf. For a given topological space, UC(X) andBUC(X) refer to the spaces
of uniformly continuous and bounded uniformly continuous real valued functions respectively. A se|fignse
defined on a locally compact topological spaces said to converge tg' in C(X), if it converges uniformly on
compact subsets df. Given a family of functior{ f: }. >0, the symbolsf* and f. denote to the upper- and lower
semi-continuous limits of the family, i.e.,

frx) = limsup fe(z) and fu(x)= Zﬂrp inf fe(2).

z—>x, e—>0

For any continuous functioyi, we write
oo e
fT@) = sup f(s) and f~(t)= oérs";,f(s)'

0<s <t
We also denote by, (p) and B, the open balls of radius centered ap and the origin(0, 0) respectively. In
addition, B(¢) denotes some general time varying batlg,, with radiusR(r) > 0. When we use this notation,
the exact values of th8(z)’s are not too important — they can be different even wBeér appears in consecutive
mathematical expressions. Finallydenotes a realization of the Brownian motion.

3. The main results

Consider the pair of two touching balldg = B1(p1) U B1(p2), where p1 = (—1,0) and p2 = (1,0). The
boundaryd Up has the shape of a “figures”. As shown in [12] there are at least two generalized fléwgs) and
U, (t) for (1.1) starting fromUp. Using the language of the generalized front propagatittiz) and U* () are
precisely given by

U*@t) =Int{x: u(x,r) >0} and U.(r) = {x: u(x,1) > 0}, (3.1)
whereu € BUC(R? x [0, o0)) is the unique viscosity solution to (1.2) with initial condition such that
Uo={x: u(x,00>0}, dUo={x:u(x,00=0}, and U§={x: u(x,0) <0}.

The fact thatU *(¢) is not equal taU, (¢) is exactly due to the failure of the no-interior condition (1.3).
Geometrically, the first flowU*(¢)},>0 is characterized by the property that it contains the ori@i®) in its
interior for small positive > 0, i.e., there is somB(z) such thatB3(r) C U*(¢). (See Fig. 1.) In this sense, we say

that the figureso opens vertically at the origin.
The second flowU,(1)};>0 is the union of two disjoint balls:

U« (1) = Br1)(p1) U Br(r)(p2),

where the radiu® () = v/ R(0)2 — 2t satisfies the ordinary differential equation:

drR() _ 1 _
& =R RO=1 (3.2)
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Fig. 1. An example of multiple solutions arising from two touching circles.

We say in this case that the figute-opens horizontally.
The situation changes completely, if we considergfer 0, the generalized flow with normal velocity
v, = —K +8W(t, ),
or the stochastic level set evolution
. D
du = |Du|dlv<ﬁ>dt+8|Du|odW(t,a)). (3.3)
u
The following result is obtained in the paper:

Theorem 3.1(Almost sure convergenced)et U¢ (¢, w) be a generalized flow (8.3) starting fromUp. Then, for
almost everyn (with respect to the Wiener measyrase — 0, U*(¢, w) converges td/*(¢) in the sense that, for
allr >0andx e U*(r) UU*(1)°, lim,_ ¢ 1U6(t’w)(.x) = 1u*(t)(x).

Our second result is motivated by the following example of [7]. Consider the initial datum to be two separated
balls Vo = B1(q1) U B1(q2) whereq1 = (—2, 0) andg2 = (2, 0), and consider the generalized flow to

vy = —k +g(1),

or the level-set evolution

(D
Uy = |Du|(dlv<|D—Z|) +g(t)>, (3.4)

whereg(z) is a time varying function chosen so that the two balls enlarge initially, because the vaj(e «f
large enough to offset the shrinking effect due to the curvature term. Howdyedecreases in Its precise form
is chosen to make the two balls touch at some timdt this time, the value of(¢,) equals exactly the curvature
so that the two touching balls begin to separate. There are (at least) two generalized flows.fof he first one,
denoted byW*(z), is similar toU*(z) — the figureso opens vertically. The other one, denotedWyr), is similar
to U, (r) — the figureeo opens horizontally. Similarly to (3.1),*(¢) andV,(¢) can be defined as

Vi) =Int{x: v(x,1) >0} and V.()={x: v(x,1) >0},
wherev € BUC(R? x R, ) is the unique viscosity solution to
v, = —k + g(1),
with initial condition satisfying
Vo= {x: v(x,0)>0}, dVo={x:v(x,00=0}, and V§={x:v(x,0) <0}

The geometric intuition behind this example is that an external force is added to (1.2) to drive the curve into a
configuration (such as two touching balls) so that non-unique solutions can arise. After this moment, the external
force is gradually turned off.
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For the stochastic version we consider the generalized flow to the motion law
v, =—k+g(t)+ eW(t, w),
or the level-set equation

du = |Du|<div<%) +g(t)> dt +¢e|Du|odW (t, w), (3.5)
u

and study the behavior of the solutionsas> 0.
The following result holds.

Theorem 3.2(Uniqueness in Probability Lawl.et Vé(¢, w) be a generalized flow #8.5) starting fromVp. Then

P{a): "molve(t!w)(x) = 1V*(,)(x), t>0andx e V*(I) U V*(t)c}
£—

. 1
= Plot lim Lye)() = 1u, (), 1> 0andx € V() UV | = 2 (3.6)
E—
whereP is the underlying Wiener measure.

Few remarks are in order. The four generalized fléxs U,, V* andV, are all stable solutions. Theorem 3.1
indicates that, in the limit of vanishing white noise, one of the stable solutions is always selected. The heuristic
reason behind this is that under the white noise perturbatiSii, ») will almost surely open vertically for
small positive time and for alt # 0. Once this has happened, the boundary &ft, w) near the origin has high
curvatures, which prevent thé® (r, ») from going back to the “closed” figuree shape.

In Theorem 3.2, we have in essence constructed a unique probability measure on the space of generalized flows
for (3.3). The number 1/2 is actually the probability of the two balls touching each other at some time under the
combined effect of () andd W;. It is also related to the probability of reaching a certain level by some diffusion
process. Once the two balls touch, we can invoke Theorem 3.1. Otherwise, the two balls will just evolve separately
from each other. This explains that our second result cannot be improved to hold in the almost sure sense.

4. The generalized flows and level-set formulations and some technical lemmas

We briefly summarize here the definitions of generalized flows and level-set formulations of front propagation
and state some basic facts. All the definitions and statements below are supposed to hald Henae, whenever
there is no confusion, for notational simplicity we suppressidtiependence.

To this end, we assume thate C(SV x RV\{0} x RN x R,) is degenerate elliptic, i.e.,

if X>Y, thenF(X,p,x,1)<F(,p,x,1), (4.1)
geometric, i.e., foralh > O, u € R,

FOX+up® p,Ap,x,t) =AF(X, p,x,1), (4.2)
and it satisfies

—o0 < F(0,0,x,1) =F*(0,0,x,t) < +00. (4.3)

Furthermore assume that ¢ CO1(R") is positively homogeneous of degree one, i.e., it satisfies for all0,
peRY,

H(\p) =1H(p). (4.4)



P.E. Souganidis, N.K. Yip / Ann. I. H. Poincaré — AN 21 (2004) 1-23 7

The next definition is an extension to the random case of the definition put forward in [6] to study front
propagation in anisotropic environments.

Definition 4.1. A family {S;()};c(.») Of Open subsets dk” is a generalized super-flow (resp. sub-flow) with
normal velocity—(F dt + H dW) if and only if for all xo e R, t € (a, b), r > 0, > 0 and all smooth functions
¢ :RY — R suchthatfx e RV: ¢(x) > 0} C S;(w) N B, (x0), (resp.{x e RY: ¢(x) <0} C S;(w) N B, (x0)) with
|Dg| # 0 on{x e RN: ¢(x) = 0}, there existsig > 0 depending only or and¢ through itsC#-norm in B, (xo)
such that, for alk € (0, hg),

[x eRN: o(x) — h[F*(D%p(x), Dp(x), x, 1) + H(D(x)) Wy — Wp)] +a > 0} N B, (x0) C Sr- (),
(resp.

{x eRY: 9(x) = h[F.(D?p(x), Dp(x), x, 1) — H(D$x)) Wy1s — Wi)] —a < O} N B, (x0) C 5,5 (@)

A family {S;(w)};ew,p) Of open subsets drk¥ is called a generalized flow with normal velocity(F dr +
H dW) if itis both a sub- and super-flow.

We next formulate set evolutions in terms of the level set equations£Lbé the collection of triplets
(I', D*, D7) of mutually disjoint subsets @& such thatl" is closed and>* are open an® = "uDT U D~
For any(I'oU D U Dy) € €, choosarg e BUC(RY) such that

Foz{x: uo(x)zO}, Dé“:{x: uo(x)>0}, Da:{x: uo(x)<0},
and let, a.s inv, u(-, -, ) e BUC(RM x R, ) be the unique solution of the initial value problem
{ () du + F(D?u, Du, x,t)dt + H(Du) odW =0 inRN xRy,
(i) u=ug onRY x {0}.
We set

(4.5)

Ii(w) ={x: u(x,t,w) =0},
D (w) = {x: u(x,t,w) >0}, and
D; () ={x: u(x,t,w) <0}.

It turns out (see, for example, [10,12,17,21]) thBat(w), D;“(a)), D, (w)) is independent of the particular choice
of the initial datunmu,, and only depends ofip, D;{, Dy ). Geometrically, these sets represent the boundary, inside
and outside respectively of some evolving set startir(cf@,tDcJ,r . Dy).

Definition 4.2.Fort > 0 and a.s. imw, let E;(w): € — £ be the map
E((I'o, D, Dy ) (@) = (I (@), D; (), D} ().

The collection{E;},>0(w) is called the generalized level-set evolution with normal veloeity dr + H dW).
Given (I, Dar, Dy) € &, the collection of closed setfl(w)};>0 is called the generalized level-set front
propagation off with normal velocity—(F dt + HdW).

It follows (see [5,6,10,12,15,17,21,23]) that the m@p}, »o0(w) is well-defined and it satisfies, a.s.dn the
semigroup propertiefo =idg andE, s = E; o Es forall ¢, s > 0.

We summarize in the next proposition the relationships between the two definitions above and the connection
to the issue of fattening. Its proof, whéh= 0, can be found in [6]. The stochastic case is discussed in [21].

Proposition 4.3.The following hold, a.s. iw:
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(i) A family{S; };e[0.7) of open subsets &" is a generalized flo\fresp. super- or sub-floywith normal velocity
—(F dt 4+ HdW) if and only if the function(x, ) = 1s, (x) — 155-(x) is a viscosity solutiorfresp. super- or sub-
solution of (4.5)(i).

(i) Let {S:};cr0,r] be a generalized flow andr;, D,+, D; )iefo,71 be the generalized level-set evolution of
(I'n, D, Dy) with normal velocity—(F dt + H dW) such thatDJ = So and Dy = S§. Then, for allz > 0,
D;" ¢ S; ¢ D;" N I. If the no-interior conditior(1.3) holds, thenS, = D;.

The relationship between a given outward normal velocity of a setfaraohd H is the following: If v, =
G(Dn,n, x,t)+ K (n) W denotes the outward normal velocity Gf, then the corresponding andH are given by

F(X,p,x,t)=—|p|G<—<I - p®zp>x, —i,x,t),
|p| |p|

and
H(p) = K(—i>|p|.
Pl
For example, ifv, = —« + g(7) + & W, then (4.5)(i) has the form

du :tr((! - ”|@|’2p)x> dt — g(0)|pldt — €|p| o dW.
P

Given this correspondence betwegrand / and #, in this paper, the phrases “generalized flow to (the motion
law) v,”, “to —(F dt + H dW)” and “to du + F (D?u, Du, x, t) dt + H(Du) d W = 0” all have the same meaning.
One of the most important properties of viscosity solutions is their comparison principle. Below we state this
principle for the equation
du+F(D2u,Du,x,t)dt:leu|o dw;. (4.6)

For the proof we refer to [17], among others, for the determistic case, and to [21] for the stochastic case.

Proposition 4.4.(i) Letu e UC(RY x R,) be a sub-solution and be a discontinuous super-solution @6).
If u(-,0) <v(-,0) onRY thenu(-,t) <v(-,t) onRY x R,. A similar result holds i is a discontinuous sub-
solution andv € UC(RY x Ry) is a super-solution.

(i) Letu and v be respectively an upper-semicontinuous sub-solution and a lower-semicontinuous super-
solution of(4.6)in O x R, whereQ is a bounded subset &". If x < v on (Q x {0})) U (3Q x R,), then
u<vonQ xRy.

The next two propositions are needed in the paper to compare generalized flows.

Proposition 4.5.Let A(¢) and B(t) be respectively generalized sub-flow and super-flod @). If A(0) € B(0)
anddist(d A(0), dB(0)) > 0O, thenA(¢r) C B(¢) forr > 0.

Proof. Fix n > 0, definev(x, 1) = 1p¢) — 11%6, and letu e UC(RN x R, ) be the solution of (4.6) with initial
datum

min(idis“";?“o”, 1) for x € Ao,

up(x,0) = e
! max(— 7"'5“"’,;“(0”, —1) forx e A,

Since the assumptions imply, for sufficiently smglthatu(x, 0) < v.(x, 0), it follows from Proposition 4.4
thatu < v, in RY x R,. Proposition 4.3 then yields that(r) € {u(x, ) > 0} C {v, = 1} = B(t), and hence the
claim. O
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Proposition 4.6. Let {G;(w)};>0 and {H;(w)};>0 be two generalized flows iRZ to the motion law(4.6). Let
0 ={lx|<a(w),y>0anddQ = A~ UA°U A, where, for a positive numbel(w), A~ = {x = —a(w), y > 0},
A= {|x| <a(w),y =0} and AT = {x = a(w), y > 0}. Assume that there exist two positive constdhis) and
b(w) such that, for € (0, T (w)), the following conditions hotd

(1) Go(@w)N Q € Ho(w) N Q,
(ii) dist((0Go(w)) N Q, (0 Ho(w)) N Q) >0,

- _ (4.7)
(i) G (@)N(A"UAT) C Hi(w)N(A~UAT),
(iv) dist((3G;(w)) N (A~ UA™T), (0H;(w)) N (A~ U AY)) > b(w).
If either A C G, (w) or A° C H,(w), then
Gi(w)N Q< Hi(w)N Q. (4.8)

We omit the proof of Proposition 4.6, since it is based on Proposition 4.4 and it is similar to the one of
Proposition 4.5.

We conclude this section with another proposition which gives a quantitative estimate, in terms of the difference
of their normal velocities, of how far interfaces move away from each other. This estimate is a new one and, we
believe, of independent interest. Since the results holds aws.dnce again we suppress this explicit dependence.

Proposition 4.7.Supposetg and Fy are two open subsets & such thatEg € Fo anddist(d Eg, 3 Fo) > 0.. Let
E(¢t) and F (t) be respectively the generalized flowsuto= —« starting fromE(0) = Eg andv, = —« + eW (¢)
starting fromF (0) = Fp. Then, for alls > 0 such that: W~ (¢) < dist(d Eg, d Fp),

E@)CF(t) and dist(dE(r),dF(r)) > dist(dEo, d Fo) + e W (). (4.9)

Proof. 1. We only present here the key steps of the proof and refer to [5] for the justification of some of the
arguments.

2. Consider the functions
0 if x € E(1),
—oco ifxeE@)°
It follows (see the proof of Theorem 2.1 of [5]) thatand v are respectively sub- and super-solutions of (1.1)

and (3.3).
3. Next define the function

+oo ifx e F(t),

u(x,t)Z{ 0 if x e F(t)°.

and v(x,r) = {

p) = sup {u(x,1)—vlx, 1) —lx—yl}.
(x,y)eR2

It is obvious that
p(t) =—dist(dE(t), 0F (1)).

Moreover, standard arguments from the theory of viscosity solutions yield thatisfies
dp < —edW.

Upon integrating we have
—p(t) < —p(0) —eW (),

and hence the claim.O
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5. The proof of Theorem 3.1

The proof of Theorem 3.1 consists of three parts, which we state below in the next three propositions. All the
results below hold for almost al with respect to the underlying Wiener measure. Finglly/,(r, w)}, >0 refers to
a generalized flow to (3.3) starting frobi.

Proposition 5.1 (The Initial Opening).For eache > 0, there exist a timel (w) > 0 and collection of balls
{B(t,w)};>0suchthat, fol < 1 < T} (w), B*(t, w) € U*(t, ). Inaddition, Ty () > ha(w)e?T? , for some positive
numbersiz(w) andy.

Proposition 5.2 (The Uniform Opening)There exist a tim&*(w) > 0 and collection of balls{B(z, w)};>0,
independent of, such that, for € [0, T*(w)], B(t, w) C U (¢, ).

Proposition 5.3(The Limiting Motion).For all # > 0 andx € U*(¢r) U U*(1)¢, liMg—0 Ly=(r,0) (x) = Ly (x).
The main step in the proofs of Propositions 5.1 and 5.2 is the construction of a time dependent open subset
DE(t, w) € R? such that, for € [0, T*(w)] and som&3(z, ),
B(t,®) C D*(t, w) CU(t, w).

In order to make this construction more transparent, we replace the Brownian fidtioyw): ¢ > 0} by a
smooth functiof WV (¢, w): ¢t > 0} such thatW? (0, w) = 0 and lim,_.o W" (z, w) = W (z, w) locally uniformly inz
and a.s irw. In view of the results of [20] and [21], our conclusions follow by letting> 0.

To simplify the presentation, below we suppress the dependeneeign in all the time dependent functions
such asW' (¢, w), U¢ (¢, w), D*(t, w) and B(t, ), but we keep the explicit dependence®rande in all of the
constants.

First we introduce the following definition which will be useful for the proof of Proposition 5.1 below.

Definition 5.4. For fixedR > 1 and 0< r < +/R2 — 1, definel (R) andJ (R, r) to be the open subsets &f (see
Fig. 2)

I(R) = Br(p1) U Br(p2) and J(R,r)=(I(R)+ B,)",
whereU +V ={x+y: xeU, ye U} foranyU, V c R2

The setl (R) is the union of two balls centered@t1, 0) with radiusk > 1. Its boundary (R), which consists
of two circular arcs, is piece-wise smooth with corners locate@,at:+/R2 — 1) on they-axis. The set/ (R, r)

I(R), J(R,r)

Fig. 2. Definitions of/ (R) andJ (R, r).
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is the result of moving 7 (R) inward by distance. Due to the two corners df/ (R), 3J (R, r) consists of four
circular arcs with centers dt-1, 0) and (0, -=+/R2 — 1). The radii of these arcs are respectiv@lyandr. The
conditionr < +/R2 — 1 ensures thatJ (R, r) is a connected curve ari@, 0) is in the interior ofJ (R, r).

For future reference we note the following propertieg ¢R, r):

J(R,0)=1(R),
J(R,r)+Bs=I1(R—r+s) forallr<s, 60
J(R,r)+ By =J(R,r —5) forall0<s <r, :

(J(R,r)+ By) =J(R,r+s) forallr+s<+/R2—1.
We now begin with the

Proof of Proposition 5.1. 1. Let Br()(p1) and Bg)(p2) be the evolutions with normal velocity (3.3) of the two
balls B1(p1) andB1(p2) comprising the initial seb/p. It is immediate that the radiug(s) of the two balls satisfies
the stochastic differential equation

dR(t) = —R(®)"tdt +edw,.

Let X () = R(¢) — 1 be thex-coordinate of the right most point of the balls centerega(see Fig. 3). Then
X (r) solves

dX(t) = dt +edW, with X(0) =0,

X +1
i.e., X (¢) satisfies

t
ds
0

2. SinceW (¢) is continuous andV (0) = 0, there exists a time intervéd, A(w)], independent of, such that
forall e > 0,

1
sup X < >
0<I < A(w)

Hence (5.2) implies that, fare [0, A(w)],
X(t) > -2t+eW(). (5.3)

Fig. 3. lllustration of two circles crossing each other.



12 P.E. Souganidis, N.K. Yip / Ann. I. H. Poincaré — AN 21 (2004) 1-23

The comparison principle for (3.3) yields

B1yx(1)(p1) U Birx ) (p2) S U@).
Therefore, as soon as(z) > 0, the two balls will overlap with each other forcifi(z) to open vertically. We show
below that there exists a short time inter{@l 7y (w)] such that:

(i) there are many timess in [0, T} (w)] at whichX (r) > 0, and
(ii) the setU (r) remains opened vertically during the whole time intef@all’; (w)].

Lemma 5.5.For § € (0,1/2), let y = 48/(1 — 28). Then there exist positive constamtsw), h2(w), and hz(w)
such that, ift € [0, 7§ (»)], whereTs (w) = h3(w)e?”, then
eh1(@)tY? < XT (1), X~ (1) < eha(w)tY?70. (5.4)

Indeed the estimat&* (1) > eh1(w)r¥2*® implies that there are many time's in the interval[0, 75 (w)] at
which X () > 0. This in turn yields (i) above.

3. Proof of Lemma 5.5.3.1. The classical continuity properties of the Brownian motion (see, for example,
Theorem 2.9.23 in [19] and Theorem VIII.6 in [8]) yield the existence of positive constaxts), #2(w) such
that

hi(@)#P <Whe), W) < ha(w) (5.5)
3.2. It follows from (5.3) that, for alt € [0, 7],
XT@) = eW(s) — 25 = eW(s) — 21.
Hence
X)) = eWr (1) — 2t > ehy(w)tV/?T° — 2t = 1127 (ehy(w) — 204279,

If  is restricted so thatrd/2—9 < e¢h1(w), then X T (1) > (2~ Leh1(w))1Y/?1?. Redefiningi1(w) to be Zi1(w) gives
the left-hand side inequality of (5.5). All the other inequalities are proven similarly.
3.3. Finally, fory =4§/(1 — 26), set

I 2/(1-25)
Tf (@) = < 1(a))> 62/(=29) _ o) 2+7 -

4

4. To prove (ii) above we argue as follows: Sinkér) is a smooth function of time, we may assume without
loss of generality, that initiallyx (¢) is increasing and positive. If not, we can always reset the origin of time to be
the first time this is true.

Next, fori > 1, we define, in the time intervg, 7} (w)], two (finite) sequences of timgg} and{s;} such that
(see Fig. 4), fo¥ > 1:

s1=0 and s; <t <sit1,

XT()=X() forrels;,tl,

X(t) < X(#)=X(si+1) forrels,siyal, and
X(t)|[Si-,fi] < X(t)|[5i+1,ti+1]~

5. We define now the sé?(r) as follows:

{ () D@®)=I(1+X (@) fortels;,tilli>y, and

. 5.6
(i) DOY=JA+ X)), X)) — X)) forrely,simllizy- (56)
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sl tl

Fig. 4. Definition ofs;, ; and X*(r).

The above definition together with Lemma 5.5 clearly imply that, ferO< 77 (), there exists (1) € D(1),
such that

B(s;) = Bg, Wwith R; > (es,/°"")
We show below that
D) cU(r) forallte [0, Tf (»)]. (5.7)
6. First we observe thdd(z) is in fact the generalized flow to the motion law
_dX()
dt ’
Indeed in each of the time intervdls, #;1;;>1), X () is increasing. Since

Y25 X (s0).

D(0) = U. (5.8)

Un

X(u)|ue[s,-,t,-] < X(U)|ve[s,-+1,t,-+1]:

the solution to (5.8) is given exactly by (5.6)(i). In the remaining interl@ls; +11i>1;, X (1) < X () = X (si4+1).

It then follows from (5.1) that the solution of (5.8) is given by (5.6)(ii). The maximum principle then yields that
D) CU@) fortels;, ]

7. To prove the same inclusion fore [#;, s;+1] we need the following two lemmas, whose proof will be
presented after the end of the ongoing one.

Lemma 5.6.Fix R > 0,0<r <+ R2—1and letr - «(t) be a smooth function such that0) = 0. Then, for
all ¢ in any connected time interval containifgand such tha® <r —a(t) < vR2 -1, {J(R, 7 — a(t)}i>oisa
generalized flow to

da da
Uy = E or u;= |DM|Z (59)

Lemma 5.7.Let 8(¢) be the solution of
dp
=

Then, for allr such thad < r — B() < VRZ—1, {J(R,r — B(t))};>0 is a generalized sub-flow to the motion by

mean curvaturg¢l.1l)or (1.2).

—(R—r+Bm)™", BO)=0. (5.10)

8. To prove thatD(r) C U(¢) for t € [¢;, s;+1], we discretizdz;, s;1+1] asUj [t + jAt, t; + (7 + 1) At], where
0< j < (sit1 — 1) (Ar)~* and we make use of the above two lemmas in the following way.
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Consider the following Euler approximation scheme of (5.7)
Xo=X(t), andfork >0,
Xoer1= X + (W (1 + 2k + 1) At) — W(ti + 2kAr)),
Xok+2 = Xok+1+ Z(X2k+1, At)
whereZ(a, t) is the solution at time of

—Z(a, 1) Z(0)=0.

dr T T 1ta+Z@.)

Let X2/(t) be the linear interpolation ofX;} satisfying X2/(#; + jAt) = X;. Then, asAt — 0, X2/ (t)
converges ta (¢), uniformly on any finite time interval. This in turn leads to

1D(1)()C):AI;TO1](1+X(tl)!x(tl)_xAt(t))(.x), fOFx ¢ 8.](1+ X(tl),X(tl) _XAI(I)) (511)

Note that, fort € [#;, s;+1], Lemma 5.5 and the fact that(s) < X (¢;) = X (s;+1) Yield that the right-hand side of
the above equality is always defined far sufficiently small.
9. Letu € BUC(R? x R.) be the unique solution to (3.3) with initial datung- , 0) = g¢ € BUC(R?) such that

g2-1 {g>0=U@), {g=0=0U(), and {g<O0}=U(x)".
For 0< ¢ < At, we define the function®’ by

WUt + kAt Hu (x, kAr)(x) for k even
K@ul (x, kAt)(x) for k odd
whereW(s, t) f andKC(¢) f are respectively the solutions of

ut (x, k(A1) +1) = {

. . D .
v =|Dv|W(s+1) and v, =|Dv| d|v<|D—”|), with v(0) = f,
u
The classical Trotter product formula (see Theorem 7.1) yields thats as 0, u2! converges irC(R? x [0, T])
tou.
Next, forn > 0, we consider the functions

At .
PR @D =0(1arxa. xa-x> e — Yarxe o x5 amr)
and
p(x, 1) =n(Lpti4n — 1mc).

Since, forz close toy;, X (1) < X (1;), we can always find) small enough such that(-, 0) < g(-) on R, It then
follows from Lemmas 5.6 and 5.7, Propositions 4.3 and 4.4 thatxfan € R? x [0, At],

PR (x, 2kAt +1) <u(x,2kAt +1) and pA(x, 2k + DAt +1) <u®(x, 2k + DAL +1).
The convergences ¢f*! to p andu® to u lead to
px<u ONRZ X [1;, 5141 — ).
It follows that
D(t+1n) € {x: u(x,1) > 0}.
But, in view of Proposition 4.3, we also have
{x: u(x,t) > 0} CU@) < {x: u(x,t) > O}.
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Hence, fort € [1, si+1 — 1],
Dt +n) cU®).
Finally, asp — 0, the continuity of — D(¢) in ¢, gives the result. O
We continue with the proofs of Lemmas 5.6 and 5.7.
Proof of Lemma 5.6. Let J (¢) evolve according to (5.8) with initial datuth(R, ). If « is nondecreasing ifo, n],

thenJ (1) = Uo + By (. If « is nonincreasing of0, n], thenJ (t) = (U§ + By (). Dividing the time interval into
segments of monotonicity of(¢) and using (5.1) we conclude.

The geometric reason behind Lemma 5.7 is that the radii of the circular arcs centgfehaltp, are shrinking
according to MMC, while the radii of the circular arcs centeredCat:+/ R2 — 1) are expanding so that their
normal velocity is opposite to the one coming from MMC. The rigorous argument is presented below in

Proof of Lemma 5.7. Let the function: be defined by

J(R,r—B0)N{x eR% x| <1} ={(x,y): —1<x <1, —h(x,1) <y <h(x,D)}.
Since
hxx
h g k]
‘S 14h2

andJ(R,r — (1)) is the graph, ifx € R2: |x| < 1}, of A, it follows from the theory of MMC that/ (R, r — B(t))
is a generalized sub-flow for MMC. The conclusion now follows]

Proposition 5.2 asserts thit(r) opens vertically for a time interva0, 7*(w)], which is independent of. The
intuitive reason is that oncE (r) opens vertically, as it follows from Proposition 5.1, the pardof(r) near the
origin has very high curvatures which pal (r) further away in the vertical direction. Thus even under the effect
of white noise perturbationg](¢) can never go back to the figure-shape.

To prove Proposition 5.2, we will construct two comparison sets and use Propositions 4.6 and 4.7 to extend
the time interval during whiclt/ (1) opens vertically, first from0, O(¢2t7)] to [O(e217), O(¢2~*)] and then to
[0(£2~*), O(1)]. These two steps are made precise in the following two lemmas.

Lemma 5.8.For any given constant; € (0, 1/2), there exist positive constardg(w) andh4(w) and collection of
balls {B(#)},>0 such that, for alls € (0, so(w)) andr € [0, ha(w)e?21], B(t) C U ().
Proof. 1. Fix a constang < (0, 1/2) to be specified later and apply Proposition 4.6 to the sets
Fo= {(x, y) € R?: y < |x|} and Eg= {(x, y) e R%: y<|x|— 82_/3},
which satisfy
EoC Fo and dist(dB, dFo) =& # > 0.

Proposition 4.6 yields that, ifs W~ (1)| < €27, then diStdE(r), dF (r)) > dist(d Eg, d Fo) + ¢ W (z). It follows
from (5.5) that, for alk € [0, h4(w)e2~*1] and anys € (0, 1/2), we have

e W™ (1) < eha(w) (ha(@)e? 1) ? 70 < O(w)s?~e1/2~(@1-23,
If B ands are chosen so that
O<a1+26(2—a1) <28, (5.12)
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then, fore sufficiently small,|s W~ ()| < O(w)e2#. This also implies that dist(d E(r), 3 F(r)) 9 during this
whole interval.

2. SinceE(¢) is the solution to the mean curvature flow (1.1) afglis a cone, it follows that (¢) is a self-
similar evolving shape of the form

E@)={(x.y) eR% y <Vif(x/V1) —e* P}, (5.13)

wheref(-): R — R is an even, convex and positive function.
Attime t =T} (w) = ha(w)e?*7, the y-coordinate of the boundayE (1) at x = 0 satisfies, for sufficiently
smalle,

[T (@) f(0) — £27F = O(w)e /2 — £27F > 0. (5.14)
In view of Lemma 5.5, the numbercan be taken to be as small as possible by choosing small edotigince
[, eR% y <O} CEW) CF(1)  fort e [T (w), ha(w)e? ). (5.15)

3. We now apply Proposition 4.6 witH () = U (t + 1), andG(z) = F(¢). Itis clear that (4.7)(i) and (4.7)(ii)
hold, if 0 < n is small enough and = 1/2.
Next consider the set

1 v/3+1 1 V3+1
A= B(«/§l)/4<_§’ T) UB(ﬁl)/4<§, 1

If A evolves accordingto (3.3), it will not disappear before a tifii@), which is independent af. Hence (4.7)(iii)
and (4.7)(iv) also hold for & t < T'(w) andb = (+/3— 1)/8.

4. Fort € [0, T} (w)], Proposition 5.1 yieldd™® c H (r). Hence Proposition 4.6 leads to (4.8) for this same
time interval. Moreover, for € [T} (), ha(w)e?~*1], in view of (5.14) and (5.15), we also hav® < G(¢). Then
Proposition 4.6 again implies (4.8).

Combining all the above, we obtain, foe [0, h4(w)e?~% — 5], thatB(t) < U (t + n). Lettingn — 0 concludes
the proof. O

) C Ho\Go.

The next lemma is needed to conclude the proof of Proposition 5.2.

Lemma 5.9. There existT*(w) > 0, hs(w) > 0, 0 < a2 < 1/2 and balls {B(#)};>0 such that, fort
[hs(w)e®~2, T*(w)], B(t) S U(1).

Proof. 1. Consider the setH (r) = U(t + 1) andG(t) = Br()(0, 1), whereR(z) solves (3.2) and is a small
positive number. It is easy to check that all the assumptions of Proposition 4.6 hold.
2. The lowery-coordinate ob G (¢) atx = 0 solves

y=[1-y0] T +eW@), y(©0 =0,
or in integral form

t

(t)—/ B ew
Y /1 '

For ¢ small enough, there existB*(w) such that|y()| < 1/2 for t € [0 < T*(w)]. It follows that y(z) >
2t + e W (¢). In addition, (5.5) yields that (r)| < h2(w)tY%7% in this same interval. Therefore,

r>e|W()| forzr > Shz(a))[l/z_‘s.



P.E. Souganidis, N.K. Yip / Ann. I. H. Poincaré — AN 21 (2004) 1-23 17

This condition forz is equivalent tor > hg(w)e? 12 = h5(w)e2~%2 for some constants(w) and o =
45 /(1+ 28). Hence, for € [hs(w)e?*2, T*(w)], we havey > ¢ > 0. O

We continue with the

Proof of Proposition 5.2. The conclusion follows by applying Proposition 4.6. Note that, in view of (5.12),
we may assume that 9 oy < «1. Then, fort € [0, ha(w)e?~*1], Lemma 5.8 yields™® € H(r). This leads to
(4.8). Next, for € [hs(w)e?~*2, T*(w)], we havel™® € G(r). Once more Proposition 4.6 implies (4.8). Therefore
G({)N Q C H(t) N Q which implies that3(r) C U (¢ + n). Lettingn — 0 completes the proof. O

To prove Proposition 5.3, we need the following:

Theorem 5.10.Let {K (1)},>0 be a generalized flow t(l.1)starting fromUp. For anyr > 0, letr(r) = v/r? — 2t
and 7, = (7/32)72. If there existsg > 0 such that, for allr < rg and¢ € [0, T} ], B,_r¢) € K(¢) holds, then
K@) =U*@).

The idea of proof is to squeez&(r) betweenl *(¢) and the following a re-scaled versionGf (r)
-4
pU*(—t 5 >§K(r)gU*(t), 0<p<1l46>0,
1Y

where, for any subset of RY, pA = {px: x € A}.

Letting § — 0 and then p— 1 gives the desired result. The right-hand side inclusion is automatic by
Proposition 4.3, while the left-hand side one requires an improved rate of openikigshiomvhich can be obtained
from the hypotheses.

Proof of Theorem 5.10.1. Let § = T, = (7/32)r2. The radius of the balB,_,) at T, is equal tor/4, or
equivalently,./25/7. Hence the rate of vertical opening is given, fesmall, by (2¢/7)%/?. Below we improve
this rate to beV/+/2, whereM can be as large as possible.

2. The maximum principle and the hypotheses yield that, for alO< rg andz € [0, 7],

B i=5;(p1) U By () U B s1—5;(p2) € K ().
It follows that, forr = §, we have
B ;i—25(p1) U B j5577 U B ;1—25(p2) € K(3). (5.16)

Consider the intersection poirt = (x, y) betweeMB@(pz) andaB\/T/7 which, obviously (see Fig. 5),
satisfies

25
P+32=2 and (F—1)2+32=1-2s.

7
It follows that

8o 2 (82
=7 YIVT \T )

and, hence, a5— 0,

==

oo (5.17)
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3. LetG(z) be the generalized flow to (1.1) starting frai0) = {y < |x|tana}, wherea € (0, 5). Similarly to
(5.13),0G(¢) has the self-similar shape

G ={(x,y) eR% y < Vifulx/VD)},

wheref,(-): R — R™ is an even convex function. Hence theoordinate oH G (§) atx = 0 at timer = § is given
by v/5 f«(0).

We apply once again Proposition 4.6 for the motion law (1.1) With) given above andi (r) equal toK (¢t + ).
In view of (5.17), we have that, for aM > 0, there exis$p, a, b > 0 and tarx > M such that the hypotheses of
Proposition 4.6 hold fof" = § < 8o. Moreover, we may assume thAt(0) > M. Hence the following improved
version of (5.16) holds:

B g—25(p1) U Bys12 U B j1—55(p2) < K(26).

Considering again the intersection poiit = (x*, y*) betweend B 7—;(p2) anddBys12 (see Fig. 6), we find
that it is of the form

M?+2
x*:( 2+ )5 and y*=vM25 — x*2~ MsY? ass — 0.

Next we choose = M?2/(M? + 2) — observe thap — 1 asM — co. Then, forM large enough, we have (see
Fig. 6.):

By(=p,0)UB,(p,0) S B g—55(p1) U Bys12 U B j1—55(p2) S K(29).

Fig. 5. Construction of a sub-solution using a wedge.

INCRSD

Fig. 6. Construction of a sub-solution using a re-scaled version of the initial data.
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Since,B,(—p,0) U B,(p,0) = p(B1(p1) U B1(p2)) = pUo, it follows
pUo C K (26). (5.18)

4. Definev(x, ) = 1g 425 — 1 and, forn > 0, letu, € BUC(R? x R) be the solution to (1.2) with
initial datum

K(1+25)°"

min(w, 1) for x e Uy,
un(x,0) = )
max(—w, —1) forxeU§.

To make use of (5.18), we also consider the solutipof (1.2) with initial datumu} (x, 0) = u, (xp~1, 0). Note
that, forallp > 0and O< p < 1,
{x: uy(x,0) > O} = U, {x: uy(x,0)= 0} = 90Uy, {x: uy(x,0) < O} = Ug, and
{x: uf;(x, 0) > 0} = pUo, {x: uf;(x, 0) = 0} = palo, {x: uf;(x, 0) < 0} = pU§.
The fact that digb (oUp), 0K (28)) > 0, yields the existence > 0 such tha’u{j(- ,0) < vs(-,0) onR2. Sincev
is (viscosity) solution to (1.2), Proposition 4.4 implies that< v, in R? x R, and, hence, for > 8,
{x: uf(x,1) >0} S K(r+25) orequivalently {x: ul(x,t—8) >0} < K(@®).

In addition the geometric properties of (1.2) also imply that

{x: uf;(x, t—28)> 0} = {x: u'(l)(x, t—28)> 0}.

Finally, in view of the uniqueness of the viscosity solution of (1.2), we hq\(e, 1) =u1(p~Ix, p~2t). Hence the
inclusion above can be written, fog> §, as

x t—26
{x: u1<—, 5 ) 20} C K(1).
o p

5. Let p anda > 0 be such thap € Int{x: u1(x,7) > 0} and B,(p) C {x: u1(x,t) > 0}. Using this ball as a
comparison set, we deduce the existence of sufficiently smalbQ é, such thatBs, (p) C {x: u1(x,s) > 0} for
s € [t, t + 82]. Then the previous inclusion yields thate K (¢). This implies that/*(¢) = Int{x: u1(x,t) >0} C
K (¢). Finally the inclusionk (¢) € U*(¢) (see [6]) concludes the proof.O

We continue with the

Proof of Proposition 5.3. 1. Letu andu® € BUC(R? x R.) be respectively the solutions to (1.1) and (3.3) with
initial data such that

{x1 u(x,0) >0} = {x: u®(x,0) > 0} = Uy,

{x1 u(x,0)=0} = {x: u°(x,0) =0} = 3Uo,

{x: u(x,0) < O} = {x: uf(x,0) < O} ="U.
Proposition 4.3 yields

[x1u(x,0) >0} U (1) € {x: u®(x,1) >0}

Moreover, in view of the stability properties of the stochastic viscosity solutions (Theorem:7 dnverges in
C(RY,R,) tou. Hence we have:

Luoy=o <liminf 1y <limsuplye ) < Lue)>0-
e—0 e—0
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2. Arguing similarly to the proof of Lemma 5.9 yields that, for all sufficiently smal 0 and te
[r2%e* “ha(w), Tf ()],

Brery (0,1 N{(x,y) eR% |x| <r/4 |yl <r} U@ N{(x,y) eR% |x| <r/4,|y| <r},
wherer®(¢) solves
drf =—(@*)"tdt +edW, with r*(0) = r andr®(Tf (w)) = 3r /4.

It is easy to see (no stochastic calculus needed) that-ag, ré(tr) — r(t) = +/r2 — 2t locally uniformly in¢,
r(t) being the solution té = —r 1. MoreoverT? — T, = 7r/32.
We also have that

By S Brey©@. ) N {(x, y) € RZ: |x| < r/4, Iyl <r}.
Hence it follows, forr € [0, TF] andé > O sufficiently small, that
Br_rey CU(t +6).
Theorem 5.10 and Proposition 4.7 yield the existence ©f(0, 1) and sufficiently smalt such that
L une/o,—28)/p2 200 < Livs e e,0>0) < Lueqry < Lo we (v >0)-
Lettinge — 0, we obtain

Lt urtesp.-20)/09 200 SN L e (r>0) < iMINF Lyee)

<limsuplye ey <limsupliy: uex,n>0p < Lix: uix,r)>0)

e—0 £—

which again gives

Lintee: wee, =0y < liminf Lye ) <limsuplye ) < 1ix: uix,n>0}- |
e—0 e—0

6. The proof of Theorem 3.2

The proof is based on the analysis of the stochastic perturbation of an ordinary differential equation. The idea is
already given in the remarks following the statement of the theorem.

Proof of Theorem 3.2. 1. Consider first the deterministic motion law (3.4), which can be completely characterized
by the motion of the two circle®r)(gq1) and Br«)(g2), and letT, be their extinction time. If the functiot is
defined by

G, X)= _XLJFZ +8(1),
then thex-coordinate of the right most point 818, (¢1), which is given byX (1) = R(¢) — 2, satisfies
dX)=G(t,X())dt, X©O0)=-1, and X(T,)=-2.
For simplicity, we defineX (r) = —2 fort > T,. We assume that and X are smooth functions af and that there
exists a unique time, € [0, T,] such thatX (z,) = 0, i.e.,X () <0 forz € [0, ¢,).

2. Next consider the stochastic motion law (3.5). Theithepordinate of the right most point of the evolving
set, which is denoted b¥,, solves the initial value problem

dX:(t) =G(t, Xe(1))dt +edW,;,  Xe(0)=—1,
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which also has has a unique solution.

Letz; (w) =inf{z: X, () = 0}. The two ballsBg()(g1) andBg()(g2) touch each other if and only if (w) < co.
If this happens, we can invoke Theorem 3.1 to concludeWtiét, ») opens vertically for > 72 (w). Otherwise, the
two balls will never touch. In this casé® (¢, w) is just the union of two separated balls, which evolve independently
of each other.

3. Define the sets

A = {w: there existgo such that for O< ¢ < e9, X, (1) =0 for somer}, and

B = {w: there existgo such that for O< ¢ < o, X. (1) <O for all¢}.

It follows that the claim we are trying to prove is equivalent to

P(A)=P(B)=%. (6.1)
4. To prove the above equality, we wriXe asX.(z, w) = X (¢) + €Y. (¢, ). ExpandingG (¢, X.) aroundX, we
find thatY? satisfies the differential equation
dY, = Gx (1, X (1)) Yo dr + gGXX(t, )Y 2dt +dW,
where¢ is such that
|X (1) —&0)| < |X 1) = Ye(r)].

Since the coefficient af W; is a constant, deterministic theory is sufficient for the analysis of the above equation.
It can be shown, in particular, that, a.sdnass — 0, Y. (¢) converges uniformly ifi0, 7,], to Z(¢) which solves
the following linear stochastic differential equation:

dZ =Gx(t, X)Zdt +dW.

But Z is a (Hélder) continuous Gaussian processes with Holder equ)nen}. Therefore

Plw: Z(ty, w) > 0} = Plw: Z(t,,w) <0} = >

The claim (6.1) will follow as soon as we establish the inclusion
o1 Z@t,) >0} <A and {o: Z(t,) <0} C B.

5. To conclude we remark that

(i) A ={w: there existgg such that for O< ¢ < gq, €Y. () = —X (¢) for somet},
(i) B ={w: there existgg such that for O< ¢ < gq, &Y. (t) < —X(¢) forall r > 0},
(i) Xe(te) =0, —X.(t) >0, and,

(iv) lim._o—e"1X, = 400, uniformly on[0, T,]\(T, — n, T. + n) and ally > 0.

If Z(t,) > 0, in view of the uniform convergence 4t to Z, we haveY,(t,) > 0 for ¢ small enough. Hence
eYe () > — X () =0, which implies (i) above. I1# (z,) < 0, the continuity ofZ in ¢ and the earlier remark yield
that, fort € [0, T.] ande small enoughX.(¢) > e(Z(¢) + ), where 3 = —Z(t,). The uniform convergence of
Y¢ to Z again leads to-¢ 1 X, (1) > Y.(¢) for t € [0, T,] ande small enough. This implies (ii). The proof is now
complete. O
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7. Some of the basic properties of stochastic viscosity solutions

The notion of stochastic viscosity solutions for fully nonlinear, second-order, possibly degenerate, stochastic
partial differential equations such as (3.3) or (3.5) was introduced by P.-L. Lions and one of the authors in [20-23].
Instead of repeating the definition, which is a bit cumbersome, we summarize in the next theorem, which is stated
without proof, some of the key properties of the stochastic viscosity solutions of

{du—i—F(Dzu,Du,x,t)dt:8|Du|oth inRY x Ry, 7.1)
u(-,0)=uo() onRN '
and
— H N
{du—ele|oth inRNY xR, 7.2)
u(-,0)=ug(-) onR¥.

We have:

Theorem 7.1.The following hold a.s. iw:

1. There exists a unique solution {8.1)and(7.2).

2. Let {£&,()}a>0 and {ng(1)}s>0 be two families of smooth functions such thaiaand g — 0, &, andng
converge toW uniformly on compact i and a.s. inw. Let {uq}e>0 and {vg}g-o in BUCRY x R,) be the
solutions ta(7.1) (resp.(7.2))with W replaced by, andng respectively. Ifimgy, g0 [lua (-, 0) — vg (-, O)llc@mny =
0, then, for all 7 > 0, limg g—ollue — vgllc@ny 0,77y = O- In particular, any smooth approximations &f
produce solutions converging to the unique function stochastic viscosity soluiidripfesp.(7.2)).

3.Ase — 0, the solution:® of (7.1) converges irC(R" x R) to the solution: of (7.1)with & = 0.

4.Let St andS" be respectively the solution operators(@fl)for ¢ = 0 and(7.2). Then the function

[t/A1]
ut(,0=8"(t - [r/m])< ]_[ [SF(At)SW(At)]>(p(.)

i=1

converges irC (RN xR, ) and a.s. inw, asAt — 0, to the solution of (7.1)with u(-, 0) = ¢(-) . Here[x] denotes
the largest integers less than or equalto
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