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Abstract

We consider a class of parabolic systems of the type:
uy —diva(x,t, Du) =0

where the vector field(x, ¢, F) exhibits non-standard growth conditions. These systems arise when studying certain classes
of non-Newtonian fluids such as electrorheological fluids or fluids with viscosity depending on the temperature. For properly
defined weak solutions to such systems, we prove various regularity properties: higher integrability, higher differentiability,
partial regularity of the spatial gradient, estimates for the (parabolic) Hausdorff dimension of the singular set.
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Résumé

Nous étudions une classe de systémes paraboliques du type :
uy —diva(x,t, Du) =0

ou le champ vectoriel(x, 7, F) posséde des conditions de croissance non standard. Ces systemes se présentent dans I'étude
de certaines classes de fluides non Newtoniens comme les fluides electro-rhéologiques ou les fluides dont la viscosité dépend
de la température. Nous prouvons différentes propriétés de régularité pour des solutions faibles convenables de tels systémes :
intégrabilité et différentiabilité améliorées, régularité partielle du gradient spatial et estimations pour la dimension de Hausdorff
(parabolique) de I'ensemble des points singuliers.
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1. Introduction

In recent years considerable attention was paid to the mathematical modelling of non-Newtonian fluids. These
are fluids described by a set of equations including a stress tensor depending in a non-linear way by the gradient of
the velocity. One of the first mathematical investigations of such models was carried out by Ladyzhenskayain 1966
(see [17-19]); she considered the following system of equations that are known today as modified Navier—Stokes
equations:

{ u; —diva(D(u)) + D = —div(u Q u) + f,
divu =0,

where D(u)denotes the symmetric part of the gradiént and s the pressure. The main point in the previous
system, as just mentioned, is that the monotone vectordigk? — R® depends in a non-linear way by(i):

in 2 x (0, 7), (1.1)

a(Dw)) ~ (1+ |D(u)|2)pT_2 D(u) + terms with a similar growth (1.2)

wherep > 1. The basic analysis of such systems goes back to Ladyzhenskaya and J.L. Lions (see also [23]). In
particular, Ladyzhenskaya was also able to prove an existence and uniqueness theorem provitibdlongs

to a certain range. Note that to find a set of equations for which uniqueness held was actually her main initial
motivation; indeed, when studying systems as (1.1), she was not thinking of non-Newtoninan fluids at all, instead
she was looking for some alternative model system in Fluid dynamics, being of the opinion that the classical
Navier—Stokes equations are not quite correct even for Newtonian fluids if the gradient of the velocity is large, and
that they should be somehow modified; see also [33] for more comments. Recently, non-Newtonian fluids have
been intensively analyzed by many authors and a considerable literature, related to their behavior, rapidly grew-up;
for an account of the mathematical aspects of the theory see the book [28] (see also [27] and [5] for an updated list
of references and the paper [11] for parabolic systems with non-linear growth). It is clear that for general systems
as (1.1), i.e. without additional structure assumptions guartial C%-regularity of the spatial gradiefu is the

best possible result available, beside an estimate for the Hausdorff dimension of the singular set (the closed subset
outside whichDu is Holder continuous). Indeed, even in the elliptic case, solutions to general elliptic systems

of the form—diva(x, Du) = 0 are not everywhere regular, while estimates for the Hausdorff dimension of the
singular set are available (see for instance [26] for a detailed account of the problem in the elliptic case). It is
anyway important to note that in the case of the usual Navier—Stokes equations a wider and deeper theory has been
developed (see [6,20,34,35]).

A new interesting kind of fluids of prominent technological interest has recently emerged: the so called
electrorheological fluids. These are special fluids characterized by their ability to change in a dramatic way their
mechanical properties when in presence of an external electromagnetic field; for instance they are able to increase
their viscosity by a factor 1000 in a few milliseconds. In the context of continuum mechanics these fluids have been
modelled as non-Newtonian fluids. The basic studies can be found in the papers [29,30] while the fundamental
mathematical analysis for the model can be found in the monograph [31] (see also [32,9]). According to the model
proposed by Rajagopal andi€ka, the system governing an electrorheological fluid looks to the naive eye exactly
as the one in (1.1) apart for the coupling with the external electromagneti&field

curlE=0, divE=0,
u; —diva(x,t,E,Dw) +Dr = —divu®@u) + f in2x(0,T), (2.3)
divu =0.

Here we want to stress the main feature of the previous model: the dependenceaf E is described via a
variable growth exponenindeed in this case the relation in (1.2) is now substituted by:

rE)-2

a(x,1,E,Dw) ~v(x,1,E)(1+ [D@)|?) 2 D(u) + terms with similar growth (1.4)
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that is the exponenp is varying with the electromagnetic field (this describes the changes of viscosity).
Once noted that the system in (1.3) is uncoupled, one can first dbtairr) from Maxwell’s equations so that
p = p(x,t). Thisis going to tell us that actually the vector fielégxhibits non-standard growth conditions:

c1|FI" —ca<a(x,t,F): F<c3|F|"24+c3, 1<yl <yr<+oo,
where

y1=Iinf p(x, 1), y2 = Ssupp(x,t).

The previous ones, i.e. with a gap between the monotonicity and the growth exponents, are known in the literature
as non-standard growth conditions(gf, ¢) type (in this case = y1 andg = y»2) and they have been the object
of an extensive series of papers starting with the counterexamples of Giaquinta and Marcellini [15,24] and the
regularity theory of Marcellini for the scalar case, [25] (see also [10] for an updated list of references). It is
interesting to remark that Zhikov used a similar model to describe the behavior of a conductor influenced in a
somewhat analogous way by the temperature (see [37]).

The first purpose of this paper is to begin the study of regularity issues for the non-stationary system of
electrorheological fluids (1.3) by starting with the model situation of a parabolic system with non-standard growth:

u; —diva(x,t, Du) =0, 15
{c1|F|PW> —cp<alx,t, F): F<ca|FIP®D 4¢3, p(x,t) > 1, (1)
in £2 x (0, T). Indeed we prove partial®® regularity of spatial gradient of weak solutions (defined in a suitable
sense and named Energy Solutions; see Definition 2.1) to system (1.5), see Theorem 2.1. We remark that as far
as partialc%® regularity of the spatial gradient is concerned, this is the first result for parabolic systems, under
non-standard growth conditions. We remark that even in the scalar case, the literature on the issue is not vast and
we mention here the nice paper by Lieberman [22], concerning everywhere regularity of the spatial gradient in the
scalar cas&/ = 1. We also observe that for the sake of brevity and in order to highlight the main ideas, we confined
ourselves to the analysis of homogeneous systems but, in principle, the techniques developed here allow to treat
more general systems with a non-zero right-hand side, provided this satisfies suitable growth assumptions.

Related regularity results in the stationary case can be found in [2,3] (see also [8,1] for the variational case).
Moreover, fluids with viscosity dependence described using non-standard growth conditions have been treated, in
the stationary case, in various settings; see for instance [5,13,14,12,4]; this paper also offers an approach which is
potentially useful to extend such results to the non-stationary case.

Finally we spend a few words about the techniques. In Section 3 we study the problem in cylinderg{where
has small oscillations (“cylinders of the tya®p”). Here we prove an a priori estimate (Theorem 3.1), ensuring
the higher integrability of the spatial gradient @; at this stage an interpolation-iteration procedure tailored
for parabolic problems plays a central role (Lemmas 3.3 and 3.5). This is first done for a priori regular solutions
(Section 3) and then adapted to the original one via approximation (Section 4); here we observe that such an
approximation argument works since the pecufigr)-growth structure of the problem is compatible with the
usual convolution (see Appendix A and Lemma 4.1). In Section 5 we consider a blow up procedure exploited
only in cylinders of the typa2o. The advantage is that we can use the higher integrability to choose a suitable
excess functional involving the maximum pfz) in Qg, allowing to overcome the fact that the problem exhibits
non-standard growth conditions (the use of such a “maximal excess” allows to treat, in a certain sense, the problem
as one with standard polynomial growth). Finally we cover the full cylin@ex (0, T) with small cylinders of
the typeQo, and, using the results in Sections 5, we blow up the solution in each of these, thereby proving partial
regularity in eachpo; the conclusion follows (see the comments in Section 6).
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2. Statements and notations
2.1. Basic notations

In the following$2 will denote a bounded domain R, andQr will be the cylinders2 x (0, T'). Differentiation
with respect to the space variables will be denoted with a comma in lower indices, for exayale; = f, ;. For
functions, vectors fields and matrix fields, respectively, we use the differential opegtoes (£, ;), Dv := (v; ),
divA = (A;;,;), all of which are understood in the sense of distributions; differentiation with respect to the time
variable will be denoted by; or by ;: 8 f = f;. The symbolsL?(£2; R") and W7 (£2; R") stand for the usual
Lebesgue and Sobolev spaces, and will be often abbreviated /@) and W17 (£2), respectively (or evei.”
and W-7). The norm inL”(£2) will be abbreviated ir| - [lp,2. The space€*# are those of functions which
area-Holder continuous in the space variables ghtfidlder continuous in the time variable. We shall keep the
standard notation concerning balls and parabolic cylinders:

B(x,R) := {y eR": |x —y|< R}
0(z, R) = Q((x,1), R) := B(x, R)x ]t — R?, 1.

They will be simply denoted by and Qg respectively when no ambiguity about the center of the ball or the
vertex of the cylinder shall arise; also, except when differently specified, all balls (or cylinders) will have the same
center (vertex). Ib is an integrable function i@ (zo, R) we shall denote its average by:

1

(V)zo,R = m / vdxdt = vdxdt,

Q(z0.R) Q(z0.R)

wherew, denotes the measuremfdimensional unit ball irR"; we shall often abbreviai@),. = (v) g when no
confusion about the vertex will arise.

We shall deal with vector fields depending on many variables, for instance, F) :R"” x R x R"N — R"N;
differentiation with respect to the variable will be denoted by,, as e.g. Ra, while differentiation with respect
to F will be denoted byDf or simply by D, e.g.:Da = Dra.

If A CR" andr € R, we shall denote by, the layer

Al‘ = A X {t}
We recall that the parabolic Hausdorff Meas@eis defined as follows:
o o0
PY(F) = inf: Y R Fcl| 0GR, Ri < 5},
i=1 i=1
Ps(F) :=SupP’(F).
§>0

Finally, in the following, the constant will simply denote an unspecified, positive quantity, possibly changing
from line to line, while only the critical connections will be remarked; more peculiar instances will be denoted by
¢, ¢ and so on. In the rest of the paper we shall use Einstein’s convention on repeated indices.

2.2. Systems and energy solutions

We are given an exponent functipnz € Qr — p(z) € (1, +00) which is Lipschitz continuous with respect to
the space variables af2-Hélder continuous with respect to time (in the followi@g 1), (xo, t0) € QOr), thatis:

|p(x.1) — p(xo, t0)| < L(Ix — xol + |t — 10|P/?), B € (0,1; (2.1)
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moreover we shall assume that:

2n
— <y1< pR) Ly2 < +o0. (2.2)
n+2

Let us observe that the previous lower boundgiand, consequently, am(z), is typical in the theory of nonlinear
parabolic systems and equations.

We shall consider a vector field: (z, F) € Or x R™  a(z, F) € R"V; with abuse of notation, if = (x, 1)
we shall also denote(z, F) = a(x, t, F). We assume that the functiotis F) — a(z, F) and(z, F) — Da(z, F)
are continuous iQ7 x R™ and the following growth and ellipticity conditions are satisfied:

la(z, F)| < L(1+ |FR)PO~Y2, (2.3)
|Da(z, F)| < L(1+ |F?)P@72/2 (2.4)
Da(z, F)A: A> L™ (1+ |F2)PO72/%1 42, (2.5)

forall z € Q7 andA, F e R*™N where 1< L < +o0. According to (2.1), we shall assume the following continuity
property, clearly modeled on the behaviuoudf, F) = (1+ |F|?)(P(©-2/2F:

‘a(L F) — a(zo. F)| < L[(1+ |F|2)(P(z)*l)/2+ (1+ |F|2)(p(zo)fl)/2]
x log(2+ | F1) (1x — xo| + |t — 10/P/?) (2.6)

foranyz = (x,t) andzg = (xo, 1) and for allF € R"V whereg is as in (2.1).
We are now ready to give the definition of Energy Solution:

Definition 2.1. A functionu € L?(Q7; RV) is an Energy Solution to the parabolic system:

o;u —diva(z, Du) =0 2.7)
iff
/|Du|P<Z> dz <400 (2.8)
or
and
/u&tw—a(z,Du):Dwdzzo (2.9)
or

foranyw € C°(Qr; RY).
2.3. Main result
Our main regularity result concerning weak solutions is the following:

Theorem 2.1.Letu be an energy solution of the systé7) under the assumptior{.1)(2.6). There is an open
subsetQ? c Qr such thatbu e C#1-£1/2(09) with any exponeng; < 8 and| Q7 \ Q% =0.

The statement of the previous theorem requires some comments; we see that no bound has been imposed on
the size of the oscillations of the functign(z), that is on the numbey, — y1. This is particularly relevant when
referred to the context of electrorheological fluids. Indeed the size of the numbey; keeps into account the
possible excursions of the functign E), that is of the viscosity of the fluid, when the electromagnetic field
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changes. Of course, the larger the numper y1, the larger the class of fluids that the model is able to cover.
Therefore we allow all possible large valuesyef— y1. This is also seemingly in contrast to what is usually done
in the framework of non-standard growth conditions(pf ¢) type (see [25], for instance) for elliptic systems,
where a bound on the quantigy— p in terms of that ratig;/ p is usually assumed. Indeed it turns out (see [10])
that:

9 c14F

P n
is in general a necessary condition for regularity, whgres in (2.6), is the Holder continuity exponent with
respect to thec-variable. In particulag/p — 1 whenn — +o0o. The point here is that we fully use thegz)-

growth structure of the problem.

3. An a priori estimate

In this section we shall prove an a priori estimate that will be used in the sequel. This estimate is concerned with
solutions to a perturbed system, with “standard” polynomial growth and ellipticity conditions.
First of all let us recall some notations we shall keep for the rest of the section. In the foll@ng
B(Xg, R) x (11, r2) will be a fixed cylinder, withB(xg, R) € 2. Then we shall put:
2n
n—+2

poi= SUpp(Z) < V2, p1= inf p(Z) = Y1i>
0o Qo

while ¢ > max pz, 2} will be a number specified below. Moreovere (0, 1) andv® € CO([t1, £2]; L2 .(£2)) N
Li(t1, to; Wl(l)’é’(.(z; R)) will be the solution to the perturbed parabolic system

/ —v¥0,w + ag(z, Dv®) : Dwdz =0, VYwe CSO(QO; RN), (3.1)
Qo
where
=2
as(z, F):=a(z, F)+e(1+|F|?) Z F. (3.2)

We will assume that the oscillation gfis not too large: precisely, in this section we assume that for som@

—p1<a/2 _— if po>2,
p2—p1<a/ <a<(n+2)n P2
(3.3)
<a/2 min a1 2n if 2
p2—pisa/2<a< B2\ T s D2 <2,
and we set
4
qo:=p1+ ; (3.4)
We also define the numberaccording to:
+a if pp>2
| pzre T p2 (3.5)
24+a if pp<?2,
and therefore in any case, by (3.3),
9>2, qo>gq>p2. (3.6)

The main result of this section is the following a priori estimateufar



E. Acerbi et al. / Ann. I. H. Poincaré — AN 21 (2004) 25-60 31

Theorem 3.1 (A priori estimate).Assume tha{3.3) holds for somex > 0, and let Q(zp, 2I") € Qo; then the
following estimate holds for the functions:

1 51 52
|DvE |9 dz < C'F"+2+C<F> < / | Dve Pt dz,> , (3.7)
0(z0.1°/2) 0(z0.1)
where
8 n+2 4—(g—pn n+2
51 = s §2 =
4—(q@—-—p)(n+2) n 4—(@q@—pD)n+2) n

and the constant depends upofn, y1, y2, L, @) but is independent af and of the solution?.

For the sake of simplicity, from now on we shall suppose that, with a clear abuse (and even ambiguity) of
notations:

Qo=07r:=Ax(0,T); A:=B(xg, R).

The estimate will be reached through a series of lemmas. In the first one we derive a suitable Caccioppoli type
estimate which differs from the usual one due to the non-standard growth conditions we are assuming.

Lemma 3.1. Let ¢, x be two cut-off functions such thate C°(A;RY), 0< ¢ < 1, [Dp| > 1 and x €
w0, 7)), x(0)=0andd x >0.LetQy, := A x (0, 10) andt

P, = Z Dag(z, Dv¥ (2)) DV, (2) : DV, (2),
i=1

2
Io(qv,x):/xsozPedz, Jolg. x) = sup [ x(Oe?x)|Dvf(x,1)| dx.
O<t<tg
Qto 2

Then

2
Io(g, )+ Jo(p, x) <c f (902 + x (0 + IDgl?) ] (1 + [Dv* 22 dz, (3.8)
o
with ¢ = ¢(n, y1, y2, L, @) independent ofs, 1, x, ¢) and of the particular solution®.

Proof. Inthe following we shall make all the computations in some detail since the same procedure will be required
later, in step 3 from Lemma 5.1. It turns out that (recall ¢hat 2):

p)

(14 1Dv ) T D2 Pz < [+(1+ 1D 2) 2 | D20F |Pdz < +oo,
o 0 (3.9)
féIDU‘Equz<+oo

for any parabolic subcylindaf@ € Qr (see for instance [21]). For anye L|1OC(QT; R¥) andi € {1,2, ...,n},and
h # 0 we set (with(x + he;, 1) € Or):

Thf(-xv t) = (Th,if)(-xs t) = f(-x + heis t) - f(-xs t)s

Apfx.t) = (Ani ) 1) = |h|"Hf(x + hei, 1) — f(x,1),
where, as usuale; } denotes the standard basisidf. In the weak formulation (2.9) we replaaeby r_,w, where
0 < h < dist(suppp, 3 Q0)/1000 in order to get:

/ T Orw — Thae(z, Du)Dwdz =0.

or
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If {g,} denotes a family of standard, positive radially symmetric mollifiers, replagingth w, = w * g, in the
previous equation yields:

/ —(Tthu) p0rw + ('L’h (ag(z, Du)))pr dz=0.
or

In the last formulation we let the test functian := ¢ (z,v®), where¢ € C3°(Qo) is a non-negative cut-off
function; this choice yields, after a simple integration by parts:
1

_5/3,¢|(rhv8)p|2dz+/q)(th(ag(z,Dvg)))p:D(thvg)pdz

Or or

=_ /(rh (ac(z, Dve)))p : D¢ ® (thv°),pdz.
or
By (3.9) we can lep — 0 to get:

2
or or or

Now we perform the following choices (x, 1) := % (t) x (t)9%(x) wherex andg are as in the statement afds
continuous function defined as follows: with0rgp < T and O< A < T — g we let

1 g2 & e £ 3
—— | %d|ltpv° |+ | ¢dthac(z, DV°) : Dtyv®dz =— | tha:(z, Dv°): D¢ Q tjv° dz.

1 if t <1,
x(@):=1 affine ifro<r<nn+A,
0 ifro+ A <1t.

With such a choice op, letting A — 0, sincev® € CO([r1, 12]; L%C(Q)), we get that for every e (0, T):

1
E/X(t)wz(X)lrhvg(x,t)|2dx+ / x@?thas(z, Dv¥) : Dyf dz

A O

1
= —2/ x@thae(z, Dv®) : Do ® Thv° + > / a,xg02|thv€|2dz. (3.10)
Qto QtO
Now we splitt,a.(z, Dv®) as follows:
Thag (z, DV°) = [ag(x + hey, t, DV (x + hey, 1)) — ag(x, t, DV° (x + hey, 1)) ]

+ [a5 (x, t, DVE (x + he;, t)) —a; (x, t, DVe(x, t))]

=:Ti(h) + T2(h)
using (2.6) we get:
o, P2=l+a/4
|T1(h)| < clhl(1+ | Du(x + hep)|?) 2 (3.11)
where we used the elementary inequality:
log(2+ 5%) < c(@)(1+ %)%, (3.12)

Remark 1. The use of (3.12) is the only point causing the dependence on the coastarthe estimate of
Theorem 3.1.
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In order to estimat&@» (k) from below, we observe that:
1

To>(h)Dtpv® : DTyt = / D.ag(x,t, Dv® + 0 D1;,v°%) dO Dtjpv° - DTj0°
0

p@)—2

1
>L’l/(1+|Dv€+91hDv€|2) 7= 40 | Dryvt)?
0

p()—2

> YL+ |DvE e, O+ | DV x4+ hei, n)P) 2 DTt (3.13)
wherec = c(n, L, y1, y2) > 0. Finally we introduce a further notation:
B(h) :=[1+|Dv* (x, 0)|* + | Dv* (x + he;, 1)|?].
Using (3.11)—(3.13) in (3.10) we obtain:
/X(t)wz(x)‘thvs(x,t)‘zdx+/x(psz(h)DthvgzDrhvsdz
A Qi
+/x<p2[B(h)L%_2 +eB(h)'Z ]| Duyv’ 2 dz
Qo
<c/ X2 [BW) " + B2 || Doy |0 || Dyl dz
Qi
—i—c/ XB(h)p2_12+a/4[¢2|Dthv€|+2¢|D¢||rhv5|]|h|dz+c/8tx<p2|rhv5|2dz. (3.14)
O, O,

We estimate the terms coming frafin(k) (that is the fifth integral of the previous inequality) in the following way
(using thati De| > 1):

pop—1+a/4 2 e .
xB(h) "7 [¢°|Dtyv’| + 20| Dol |tpv°|] k] dz
O

(2)-2 (2)+o -1

<o / x@*B() "7 | Dy dz + Co / xo?B)F 1P dz + / x@|DePB(h) 2 |14v° |k dz.
Qto Qto Qto
Observe that in the previous estimate we have made crucial use of the fapb thgt; < «/2 (see (3.3)). We
remark that in all the previous estimates the constamtly depends om, y1, y2, L, «. Now we plug-in the last
estimate in (3.14), using Young inequality to manage for the forth integral of (3.14), chaosimgll enough in
the previous relation and finally dividing up t¥|? we obtain, using the definition of the numhgand the fact
thatg > 2 (see (3.5)):

sup [ (092 |si P+ [ P Tahy DA DA d:
O<r<tg
A Qto

2 -1
<c/ X9 D 2[BU) T | Apv* 2+ B 2 | Av* ] + 0210 + 0 x 1B % dz
Qto

and the conclusion follows just lettinig— 0, by (3.9). O
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Lemma 3.2. Let g1 € C3°(A; RM) and x1 € Wh%°((0, T)) be two non-negative cut-off functions such that
x1(0)=0andd; x1 > 0;let0O< 1 < T. Then

/ X195 Dve |90 dz
01

2/n
2
<C[ sup /(1+\Dv8(x,t)| )dX} [Io(wl, x1)+/X1ID<p1|2|Dv8|”1dZ}
t<to, x1()#0
Spt(/)]_ Qto

with ¢ = ¢(n, y1, y2, L) independent ofro, x1, ¢1, €)-

Proof. Let us introduce the following function:

-2
H:= Dy®|HHeo =10 3.15
1+ao| v, a0 5 (3.15)
and note thatg > 0 by (3.6). Using Sobolev’'s embedding theorem, one has the inequality:
n+2
272 2y "
/golH dx <c</|D(¢1H) n+2 dx)
' 2
n+2 n+2
n n n n
< c< / |1 D H |n+2 dx) + c( / |Dp1 H |n+2 dx) =:cAs+cAs. (3.16)
Ay Ay

By Holder inequality we get, using also and recalling that from (3.6) and (3.15) it also follawys- 2 — p1)n/2 =
2, we get
2

72 ; 2- n nT
Ag= [ /(wjz‘(l-’_|Dv8|2)%_|D2U8|2)"+2(|Dv8|2a0(1+|Dv8|2)7ﬂ)n+2dxi|

Ag
@)-2 :
pr2)— n
g(/¢f(1+|Du€|2)T|Dzu€\2dx)< /(1+\Dv8(x,t)|2)dx) : (3.17)
At Sptyy

Moreover, again by Holder inequality and sinde+ ag)(2n)/(n + 2) = (p1n + 4)/(n + 2), we gain
2

n+
2 2 n_ n
A5=(—> ( / (IDg1/21Dv? [P1) 72| Dv¥ |72 dx)
q0
A

t

2
g(/|1)(p1|2|1)v8|1’1dx)( / \Dv‘f(x,t)|2dx> ) (3.18)
A

Sptyy
Integrating on(0, #p) via (3.16), (3.17) and (3.18) we conclude the proof:

0 2
/¢%X1|DU8|quZ<C/X1( /(1+|Dv£(x,r)\2)dx) x (/cpfpg+|D¢1|2|Dv8|"1dx)dr

Qto 0 Spty1 As
2

<C[ sup /(1+‘Dvs(x,t)|2)dx} [lo(fpl, X1)+/X1|D(p1|2|Dv8|p1dzj|. O
O<t<tg, x1(t)#0
Splp1 o
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The next lemma gives a first form of the estimate in Theorem 3.1:

Lemma 3.3.Assume thal” > 0is such that the cylinde@ (zo, I') € Qr. Then

2
1 r_z+l
|Dv® |90 dz < 0[7 / 1+ |Dvf|? dzj| (3.19)
(R—p)? ( )
0(z0.p0) 0(z0.R)
whenevel < I'/2< p < R < I'. In (3.19)the constant = c¢(n, y1, y2, L, @) is independent ofzo, I, p, R, €).

Proof. In Lemma 3.2 we choose the cut-off functions as followsis such thatp1 = 1 in B(xg, p), ¢1 = 0 out of
B(x0, (p + R)/2) and such thatDg1| < c(R — p)~Lin A. As for x1 we let:

R 2
0 ifto—(%) >t,

x1(1) :== R 2215 R 2

1+ (( +,0)/2) 2to Ifto—p2>t>to—(j>,
(R+p)/22—p 2

1 if t > 10— p2.

It obviously follows thatld; x1| < 4/(R — p)2. With such a choice ap; andx; Lemma 3.2 yields:

2/n
IDVE[9dz < ¢ su 14 |Dve (x, 1)|?) dx
p
_ 2
0Go.0) 0= (RED)/D7<1<l0g 0 (R1p)/2)
1
X / Ps(Z)dZ'Fm / |DU£|p1dZ]. (320)
0(z0,(R+0)/2) 0(z0,(R+0)/2)

Now we turn to Lemma 3.1 and we perform a suitable choice of the test fune¢tiand x . We choose in such a
\f/vzﬁy thaty = L in B(xo, 230y, 9 =0 out of B(xo, R) and 1< | Dg| < c(R — p)~ in A. Analogously we pick the
ollowing x:

0 if 1o — R% > 1,
t+R%2—4 R 2
. ki 0 ifio— R2>1>10— (2l
Xx(®) =1 R2— ((R+ p)/2)? 2
2
R
1 ift}to—(%).

Once againd; x| < 4/(R — p)2. With such a choice it follows from Lemma 3.1 that:

P.(z)dz + sup / (14 |Dv*(x, t)|2) dx

—((R 22
0(z0.(R+p)/2) o= (RHPI2<1=10 0 (R4p)/2)

1 P /2
éc[m / (1+|DU |2)q de|

0(z0,R)

Finally, the lemma follows merging this last bound with the one in (3.20).
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The following is restatement of Lemma 6.1 from [16]:

Lemma 3.4.Leth:[I"/2, '] — R be a non-negative bounded function, and4etB, 81 B2 > 0. Assume that for
anyp andR suchthatr'/2< p < R< T

B
R=ph | (R=p)
Then there exists= c(B1, B2), such that

1
h(p) < ﬁh(R)+

h(I"'/2) < A B
(/)\Cm‘f‘m

Lemma 3.5.Assume there are numbers> 1,8 >1, u >0,y > 1,0 € (0, 1) such that

9% <1 (3.21)
Assume thaf € L9%(Q(zo, I')) and:
aes ([ arisyna) (3.22)
S (R—p)H '
0(z0,p) Q(z0,R)

forall p andR suchthatl"/2< p < R < I'. Then there is a constant= c(c1, 91, 8, i, y, n, 0) such that

r(6=0)

(1-6)8 5—y0
|f198 dz < cr 271 4 CM ( / Iflqlv dz) " (3.23)
0(0.1/2) =7 o00r)
Proof. Using Holder inequality we have:
9 8-
s ) (1-6)8 3
/ Mmﬁ<< /Iﬂ“ﬁ>< / mﬂsew>.
0(z0,R) 0(zo.R) 0(z0,R)
Therefore, using (3.22) and the previous inequality, it follows that:
5 ¢ (n+2)y q !
[f17 dzéi[l“" +< / Iflld1>}
/ (R — p)*
0(z0.p) 0(z0,R)
Oy -0y
e[ty c < kR (1-6)s s
< + / | f1923 dz> < / | f192 50 dz) : (3.24)
(R=p)*  (R—p)H
0(z0,R) 0(z0,R)
By (3.22) we can apply Young inequality to get:
1 e +2y
718 g4 <= / ad g4
/ If1dz< 5 /1 Z+(R—p)u
0(z0.0) 0(z0,R)
o pACED)
5 1 5—y0 q18(1-6) 5—y0
+c< ) ( / |f| 57 dz) . (3.25)
R—p

0(z0,0)
Finally the assertion follows applying Lemma 3.4 with the choice:
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§(1-6) V(S(E*Z)
A=ty B:=c< / |f|q15—9 dZ) ’ ,
QO(zo0.1")
S
h(s) := / | £19 dz, B1i=u, B2:= .
§—yb

0(z0,5)

Remark 2. The constant and the quantities appearing in the previous lemma exhibit the following critical behavior:

lim ¢=+o0; (3.26)
0y /5—1
this appears after using Young inequality in (3.24) in order to get (3.25), more precisely the coraté®i5)
becomes unbounded g /6§ — 1. Therefore, when repeatedly applying this lemma, we shall take carg)thiét
stays uniformly bounded away from one, with respect to the parameters involved in the proof.

Proof of Theorem 3.1. We want to apply Lemma 3.5 in the context of Lemma 3.3, therefore in Lemma 3.5 we
perform the following choice of the various quantities involved:

f :=|Dv?|, y:=m+2)/n, w:=2n+2)/n, q1:=q (3.27)
and finally
5. LA
q

Now, as suggested by the statement, we are going to distinguish between thpcaseandp, > 2 checking
in both cases that the choice of the previous quantities allows to apply Lemma 3.5.

Casep < 2. In this case, since; > ,,Z—fz we first obtain that stays uniformly bounded away from 1 with
respect to all the parameters involvéd, p1, p2, ¢). Indeed:

p1+4/n 0 4 4\t
5> Mo+ = 1.
2+4/n3>(n+2+n s g

Let us define as the solution to the equation:

qg(1-19)
§—0

8 =p1, (3.28)

3(g — — p1)d
0 (¢—p1) _nlg—py) _ (3.29)
3q — p1 4
Then we check, in order to apply Lemma 3.5, that (0, 1). Indeed, it turns out that alsbstays bounded away
from 1 (from above, this time) uniformly with respect to all the parameters involved; using in turn (3.29) and (3.3)

it follows:

_n(@—p1) pr+4/n
o 4 24+«

+4/n
@yt

2n 2n p1t+4/n -
[ n+2+<“_<”_n+2>>} TR

2n \2+4+4/n
2— =1 .
< n+2> 2 (3.30)

0<0

<

A AS DS
N
|

A
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It remains to check condition (3.21) that is:

Oy n(@g—p)n+2
s 4 n

<
2 Y1)

n+2 2n 2n -
= 2_ - - = b

2t (e (0 3))]
Py PYI WY
4 n+2

We observe that we have used the fact t;hai> 5 via (3.3). So, keeping into account (3.28), we are now able

to apply Lemma 3.5 obtaining (3.7). The premse valueqca‘ndsz can now be inferred by looking at Lemma 3.5
and the relations included in (3.27), (3.28) and (3.29) .

Remark 3. Here we somehow trace back the dependence of the constants in the previous argumentation. We
observe that the distance-1b is critical for the constant appearing in (3.21), see also Remark 3. Biack then
6y /s stays bounded away from 1. This quantity, indeed, critically depengs en-2% in the sense that:

n+2
0
I - o
y1—>2n/(n+2) )
Consequently, the constant in Theorem 3.1 blows up w;hen» . Therefore assuming thag > 5% we

have that the crucial quantity appearing in (3.21) stays unlformly bounded away frém/d:< b < 1 W|th b
depending onn, y1, y2, L) but not one anda which, in turn, can be fixed a priori depending only oand the

distance - 6y /é; indeed it turns out that:

W _y(-0/5)

T ey 2T 1—ayss

Casepy > 2. As before we observe thastays bounded away from 1:
p1+4/n 4/n—a—(p2— p1) 4/n—4/(n(n +2))
— =1+ >1

p2+a p2+a y2+2/(n(n+2)

where we used both inequalities in (3.3yhen we check that, again defined by (3.28), still belongsi@ 1) and
is uniformly bounded away from 1. Let us observe that:

4 4
< .
m+2n n+2
Using (3.29) and (3.31) it follows that:

S =

)

g—p1i=(p2+a)—p1<2a< (3.31)

ng—pyd _ 48
O<b=—"7 S,
_ptd/n 1
q(n+2) n+ < )
3
) <%
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where, of course, we used the fact that 2. Again we have to check (3.21); using (3.29) and (3.31):

G_ygn(q—pl)n+2<n+2 4n g}’
) 4 n n mn+2)4n "2

and the proof is concluded applying again Lemma 3.5 as in the previous case.

A side benefit of Theorem 3.1 is the following higher differentiability result.

Theorem 3.2.Under the assumptions of Theor&m

p()—2

52
(1+ 1DV %) 2 |Dzv€|2dz<c(n,n,yz,L,s1,F>( / 1+|Dv€|”ldz> :
Q(zo.I'/4) 0(z0.I")

Proof. It suffices to combine estimates (3.7) and (3.8), choosing suitable cut-off func¢ti@m y between
B(xo, I'/4) and B(xo, I'/2) and betweetiro — (I"/4)?, to) and[ro — (I"/2)?, t0), respectively. O

4. An approximation procedure

We shall keep here the notations introduced in the previous section. In the following we shall develop an
approximation procedure aimed to establishing the estimate contained in Theorem 3.1 not only for the fufictions
but directly for the original solution. The proof of this assertion will be achieved via an approximation argument;

a main pointis that the usual smoothing procedure by convolution behaves nicely when the exjgonsmiolder
continuous (see Appendix A).

The main result of the section is the following (local) higher integrability result, extending the one of

Theorem 3.1:

Theorem 4.1.The results and the estimates stated in Theorgrh&nd 3.2 hold for any Energy Solution to
system(2.7) under the assumption®.1)—(2.6) Moreover if Qg := B(Xo, R) x (t1,t2) € Q7 is as in Sectiors,
then

Du € L{® (Qg; R"™V),

loc

2p . .
u € Ligg(t1, 12; Wigw (B(Xo, R); RY))  with p :=min{py, 2}, (4.1)

p)—2

(1+|Dul> =7z |D?u|? € LL (Q0).

loc

We start with a smoothing procedure, letting:

Uy (z) := / wy (2 — 2u(2) dz,
or
with y € (0,1), »,(z) = o} (x)@3(1) wherew) € C§°(R") is a standard mollifier irR" i.e.: &} > 0, supp
®} C B(0,y) and fp, ol (x) dx = 1; as forw? we first let:

0 ifo<zy,

200
wi(t) = cexp< D
0 ifr < -1,

) if —1<t<0O,
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where constant in the previous definition is such tifiato?(r)dt = 1. Then we define, as usuab,ﬁ (1) ==
y 2w2(t/y?), thus spt? € (—y?,0) and [ &2 (1) di = 1.

Now, let us consider the cylinde@o := B(xg, R) x (f1,12) = Bg x (t1,12) € Qr from the statement of
Theorem 4.1. Withy € (0, 1) we consider an increasing continuous functiari0, 1] — R such that:(y) — 0
wheny — 0 and:

)!ig]os(y)/|(Du),,|qdz=0 (4.2)
Qo
(it suffices to take e.g.
. 1
e(y) = 1+y 2+ (fQo |(Du), 4 dz)?
with y > 0).

Keeping fixed our Energy Solutian we look for a functions, : Qo — R with the following properties:

{ wy € C([r1. 12]; L2(Bo; RN)) N LY (11, 12; Wy ! (Bo: RV)), @3
drwy € LT (11, 12: W71 (Bo; RVY), |
wy (-, 11) =0, (4.4)
/[—wy W +ag(y)(z, Duy + Dw,)] : DWdz = /(a(z, Du))y :DWdz VW eC3(Qo;:R"),  (4.5)
Qo Qo
%Hwy(' 1) ”iz(Bo) + / ag(y)(z, Dty + Dwy) : Dwy dz

Box(11,1) (4.6)

< / (a(z, Du))y :Dw, dz fora.ereln, ).
Box(11,1)

We used the notation introduced in the previous section, that is:

2
a2 F) =a(z. F) +e()(1+|F?) 2 F, 4.7)

and the exponent satisfies (3.6).

We remark that for a fixed Energy Solutierand a fixed, > 0 the existence of a solutian, with the properties
stated above is a well established fact [21]. From now avill abbreviate a sequence of positive numbigss >3
such that/, — 0; from time to time we shall pass to a subsequence that will be still denotgdfg shall assume
that O< y < yo:= (1/1000)min{dist(Bo, £2), 11, /71}.

Lemma 4.1.If w, is a solution to problen4.3)—(4.6) then

2
sup Hwy(',t)”Lz(Bo)+/|DvV|p(Z)+8(y)|Dv,,|qdz

n<t<tp
Qo

<c[/1+|Du|”(Z)dz+8(y)/|DuV|qdzj|, (4.8)
Qo

Or

wherev, = w,, + u,, and the constant = c(n, y1, y2) is independent of € (0, 1).

Proof. From (4.6) it follows that for a.e. € (11, 12):
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1 2
EHwV("t)HLZ(BO) + / az(y)(z, Duy + Dwy) : (Duy + Dwy)dz

Box(1,t)
<c / [(a(z, Du))y :Dwy, +agy)(z, Duy + Dwy) : Duy]dz. 4.9
Box(11,t)
On the other hand, writing
ag(y)(z, F):F= (ag(y)(z, F)— ag(y)(Z, O)) - F +a5(y)(z, 0):F

using (2.3)—(2.5) we easily derive also the following estimate:

1 2
Slwy G0l 5y + / 1Dvy |P@ + e(y)| Dv, 19 dz
Qo

< c/ 1+ |(a(z, Du))y||Dwy| + |Dvy |dz

Qo s .
+c/((l+|Dvy|2) 2" +e(y)(1+|Dv, 1) 7 )|Duy|dz. (4.10)
Qo
We recall that, since(z) is Holder continuous we have that (see Appendix A):
/ |Duy (2)|7? dx < c/ 1+ | Du(z)|"? dx < 400, (4.11)
Qo Or

[ late.2), @[ dx < [ faGe Duco) 52
Qo Or

< c/ 1+ |Du(z)|p(Z) dx < 4o00. (4.12)
or

Using (4.2), (4.11), (4.12) we can derive (4.8) from (4.10) using Young's inequality and the lemma is finally
proved. O

Lemma 4.2.1f w, is a solution to probleng4.3)—(4.6) thenI (y) — 0, where
2
I(y):= sup |w, (.0 LBy T /(a(z, Dvy,) —a(z, Duy)) : Dw, dz
n<t<ty
Qo

2 2
+8()/)/(1+|Dvy|) 2 |Dvy|“dz.
Qo

We postpone the proof of the previous lemma to the one of the following corollary:
Lemma 4.3.With the previous notation it follows that, up to extracting a subsequence,

v, > u in Ll(Qo; RN),
Dv, — Du in L"(Qo; R"Y) and a.e. inQo.
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Proof. Indeed from Lemma 4.2 it follows that
wy — 0 inL?(Qo; R"). (4.13)
Now we observe that by (2.5)
B 2 2 p)—2
(a(z, F2) —a(z, F1)): (F2 — F1) > ¢(1+ |F2|* + | F1?) 7 |F2— F1l,

for any F1, F, e R"V, where the constarit depends only ori, y; andn. From this inequality it follows that if
p1 =2 then:

rn=2
/|DwV|p1dz<c/(1+|Dwy|2+|Duy|2) 2 |Dw, |?dz < cl(y). (4.14)
Qo Qo

If p1 <2, instead, we must argue in a different manner, using Holder inequality:

2 2 o\ 2172 11 2 PN Y
/|Dwy|p1dz=/(|Dwy| (14 1Dwy|°+1Duy|?) 77 ) 2 (14 |Dwy|*+|Duy|?) 2 % dz
Qo Qo
i 2zn
2 2 pl__z 2 2 2 2 1 5
< (14 [Dwy |*+|Duy|?) 2 |Dw,|°dz (14 |Dwy |“+ |Duy|?) % dz
Qo Qo
Pl
<c[I(y)]? -0 (4.15)

asy — 0. So in any case we have thAtw, — 0 in LP1(Qq; R"). Finally, keeping into account that, — u

strongly inL% (Q7; RY) and Du,, — Du strongly inL{:(Q7; R"V), the statement follows using (4.13)00

Proof of Lemma 4.2. From (4.6) it is possible to derive the following identity:

t t
1 2 2\ 452 2
§||wy(-,t)||L2(BO)+ (a(z, Dvy) — a(z, Duy)) : Dw, dz +&(y) (1+1Dvy ) 2 |Dv,|°dz

1 Bg 1 Bo

1
o 452
<e(y) (1+1Dvy|?) 2 Dv, : Duy dz

11 Bo

t
+ / /((a(z, Du))y —a(z, Du)) : Dw,, dz

11 Bo

t
+//(a(z, Du) —a(z, Duy)) : Dw, dz

t1 Bg
for all r € (11, 2) and, therefore:
I(y) < 0(11(7/) + D(y) + 13(7/)), (4.16)

where:
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qg—2
2

L(y) ::8()/)/(1—1— |Dv, 1?) 2 |Dv, | Duy | dz,

Qo
L(y) = / |((az, D)), = az, Dw)) | Dwy |dz,
Qo
I3(y) :=/ |la(z, Du) — a(z, Duy)||Dw, | dz.
Qo
By Hoélder inequality we have:

q-1
niy) < (e(y) / 1+|Dvy|qdz> ’ (e(y) / 14 |Duy |f dz)
Qo Qo

and therefordy(y) — 0, by (4.2). Now, withs € (0, 1) we use Young'’s inequality in (4.16) to deduce the estimate:

L(y)+ Ia(y) <8 / |Dw, |”9 +|Dv, |P® dz + cs(Ia+ I5), (4.17)
Qo
where this time we have set:

Q@
1 = [ |(ate. w), —ate. pu | F51 ,
Qo

p(@)
Is(y) 52/ |G(Z, Du) —a(z, Duy)‘ PO-1 gz,
Qo

Observe that, by the results in Appendix A, it follows tligty) + Is(y) — 0 wheny — 0. Finally the statement
follows looking at (4.17) and letting first — 0 and then letting — 0, keeping into account the boundedness
resultin (4.8) and the choice (4.2) ofy). O

Proof of Theorem 4.1. We take a parabolic cylindaP(zo, 2I") € Qo (z0 = (x0, 0)) as in Theorem 3.1; then
we apply the approximation procedure described abow@doAt this stage we can use the a priori estimate of
Theorem 3.1 for each functian, . Indeed by (4.5) it follows that, solves the problem

/—vyfitw +as(z, Dvy) : Dwdz=0 VYwe CSO(QO; RN)
Qo

which is of the type in (3.1). Therefore the a priori estimate in (3.7) is valid fowith a constant that does not
depend ory. Using the result of Lemma 4.3 and the lower semicontinuity of integrals it follows:

|Du|% dz < liminf / |Dv,, |1°dz
14
0(z0,1/2) 0(z0,1/2)

<c1""+2+|imc<i>51< / |Dv, |Prd )5'2
= 14 r 4 ¢

0(z0,1")

1 51 52
:L‘Fn+2+C<F> ( / |Du|p1dz)

Q(zo0,.1")
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and the proof of the higher integrability is finished; now we turn to the higher differentiability part. The estimate
of Theorem 3.2 holds uniformly with respect o From this fact it immediately follows that the sequerieg},
is bounded in

L2(1o — I'?/16, 10; W>2(B(xo, I'/4); RY)),  p:=min{p1,2}

since Dv, — Du strongly in LP1(Q(zo, I'/4); RY), up to (not relabelled) subsequences we have Kifat, —
D2y weakly in L2(Qo: R”ZN). Finally, by well known lower semicontinuity theorems (in faty, converges
strongly,D?v, converges weakly and the integrand is convex with respect thflig argument) and the estimate
of Theorem 3.2 it follows:
p()—2 p@)-2
(14 |Dul®) 2 |D?u|?dz <liminf / (1+|Dvy|?) 2 |D%v,|%dz
Y
0(z0.I"/4) 0(z0.I'/4)

52
<c(n, y1, v2, L, 51, F)( / 1+ |Du|P? dz) .
0(z0.I)
From this (4.1) and (4.1} follow via a standard covering argument:

5. A decay estimate

In this section we consider an Energy Solutioto the system (2.7) i@, under the assumptions described in
Section 2, wher&o = B(xg, R) x (11, 12) € Qr and Qo satisfies all the requirements described in Section 3, in
particular those in Theorem 3.1. Therefore we shall suppose that the numbets ¢, go anda are exactly as
the ones described in (3.3)—(3.5) and (3.6). In this situation we are able to apply Theorem 4.1 (which is actually a
consequence of Theorem 3.1) from Section 4 to gain both higher integrability and higher differentiability for the
spatial gradient ofi. Finally we perform a last reduction, since the result of Theorem 4.1 is only local with respect
to Qo: up to passing to subcylinde® € Qo and proving Propositions 5.1 and 5.2dn we shall suppose that
(4.1) hold globally inQg. Summarizing, we get, essentially by Theorem 4.1, that:

/IDu|q°dz < 400, /(1+ |Dul?)" 7 |D%u|? < +o0. (5.1)
Qo Qo

After such a preliminary discussion we are going to introduce the fundamental quantity, namely an “excess”
functional measuring, in an integral way, the oscillation®afin a small parabolic cylinde®(zo, R). We define,
for any Q(zo, R) € Qo:

U(zo, R) := Ui1(zo0, R) + U2(z0, R),

1 , \2
U1(zo, R) :ZE( ][ |u(z) — (Du)zo g (x — x0) — )z, R| dz)

0(z0,R)
, \ W2
+( ][ |Du(z) — (Du)z r| dz) ,
0(z0,R)
1/2
U2(ZO,R)2=< ][ \Du(z)—(Du)ZO,R\qdz) .
0(z0,R)

Observe that/1(zg, R) makes sense by (5.1), singe> ¢ > 2.
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Let us recall that a regular pointe Q7 for the functionu is a point such that the gradiestu is Holder
continuous for any exponefif < S (with respect to the standard parabolic metric) in a neighborhood of it. A point
which is not regular will be called a non-regular point. The following proposition allows to characterize the regular
points via the excess functionél(zo, R). In the following the exponerg is the one introduced in (2.1).

Proposition 5.1. Assume that conditions of Secti8rare satisfied with respect to a cylindéyp := B(Xo, R) x
(11, 12). Letzo € Qo such that there exists a sequence of rd#ii }ren, Rr \ 0, such that

imU(zo, R\)=0,  sup|(Du)zy r,| < +o0.
k keN
Thenzg is a regular point foru.
A straightforward consequence of the previous result is the following local version of Theorem 2.1

Proposition 5.2.Under the assumptions of Propositi&nl, there is an open subs@® c Qg such thatDu e
CPr-P1/2(Q0) with any exponeng; < 8 and| Qo \ Q° =0.

Proposition 5.1 (and therefore Proposition 5.2) can be proved by a more or less standard iteration argument of
algebraic nature starting from the following decay estimate for the eX¢ess R) (see, for instance, [7]).

Lemma 5.1.Letu be an Energy Solution to systgg7), with Qg as described above; le#f, t and 81 be such
that

0< M < o0, O<t<1, O0<pB1<8B. (5.2)
There exists a positive numbee ¢(M, t, 8) such that if

Q(zo,R) € Qo,  |(Du)gr| <M, Uz, R) <e (5.3)
then

U(zo, TR) < c1(M)t[U (20, R) + RF1], (5.4)

wherec1(M) is a positive constant depending only &h

Proof. Stepl: blow up. As usual when using blow up techniques, we argue by contradiction, therefore we find a
sequence of non-degenerate cylind@(s*, Ry) € Qo (Wherezk = (x*, t*)) such that:

Ak = ][ Dudz, |A¥|<M, (5.5)
O(z*,Ry)
er:=U@E R+ R — 0 (5.6)

but nevertheless:
U5, Ry) > 2c1(M)tey, (5.7)

where the constant; (M) will be chosen later, see (5.16), and will be the one included in (5.4). We proceed by
scaling and introducing the new space—time variables:

x —xk t—tk
= , §i=—,
Y Ry R?

I=(y,s)€ Q1=B1x(-1,0)



46 E. Acerbi et al. / Ann. I. H. Poincaré — AN 21 (2004) 25-60

and the new functions®, defined onQ; according to:
(@) = AR = x) — ) e g,
ex Ry
With such a notation, the following relations easily follow:
UG TR =a Vi), VE@) = Vi@ + V5 (D),

where:
1 ) 1/2 ) 1/2
Vi(T) ::?( ][ [v* — (DY) y — (1) | dl) +( ][ | DvF — (Dvb), | dl) :
Q(7) Q(7)
g1 1/2
Vs (1) =g} (][ |ka—(ka)r|qdl> :
Q(7)

Consequentlyv¥), = 0 and (D#)1 = 0. Moreover, from the definition ofy:

R 1/2 2, 1/2
1=vka) + 2~ > <][|vk|2dl) +(][|ka|zdl) +8f <][|ka|qu)
&k

01 01 01
while (5.7) turns to:

VE(T) > 2c1(M)t.
Regarding the functions, it follows that each one is an Energy Solution to the system:
/(—vkasw +o*:Dyw)dl=0 YweC§(01;RY),

01
where we set

ok = sk_l[a(xk + Ry, *+ R,%s, AR + svak) — a(xk, tk, Ak)]

According to (5.9), sincg > 2, up to not relabelled subsequences:

vk~ in Lz(Ql; RN)

Dvk —~ Dv in Lz(Ql; R”N)
q=2

g’ vk —~0 inL‘i(Ql;RN)
q=2

& Dvk—~0 in Lq(Ql; R”N)

ZkE(xkatk)_) (x*, t*) =IZ% |n Rn XR

Ak — A, in R"N

ekDvk — 0 a.e.inQ;

72Dk |4 — 0 a.e.inQs.

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

Without loss generality we can assume that Q1; (let us just comment that by (5.1t follows that, up to

subsequences,((q’z)/q |Dvi| — 0 a.e. and therefore (5.13¥pllows ).
Using standard lower semicontinuity results for integral functionals, it follows:

(v)1=0, (Dv)1 =0, Al < M, vih <1,

(5.14)
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where forany O< z <1

1 ) 1/2 ) 1/2
V(1) :=;(f|v—(Du)ry—(v),\ dl) +(][|Du—(1)v),| dl) )

0+ 0+
Now we are going to lek pass to the limit in the systems (5.11); in the next step we will prove that the limit

functionv is a solution to the following linear parabolic system with constant coefficients:
ad
/ —vosw + %(Z*, A)Dv:Dwdl=0 VYwe CSO(Ql; RN). (5.15)
01
By (2.4) and (2.5) it follows that the following ellipticity conditions are satisfied:

-1 2 _ Oa 2
c (M, L)|2| <8—F(Z*,A*))»®)\<C(M,L)|)»|,

for any A € R"V, wherec(M, L) = c¢(M) is a bounded constant essentially depending\bronly. Therefore,

taking into account the standard regularity theory for linear parabolic systems with constant coefficients (see [7]),
we conclude that the functianis smooth inQ1 and that there is a constant= c1(M), which from this moment

we choose to appear in (5.7), such that:

V) <caM)tV(QD) <ci(M)r, O<t<l (5.16)
Now if we prove that

Vi) - V(o) (5.17)
this, via (5.10), implies that

V(t) = 2c1(M),

which contradicts (5.16), and the proof will be finished.

We now prove (5.15), while (5.17) will be proved in step 3.

Step2: proof of (5.15). Let us first derive some preliminary estimates. We split the vector field in (5.12) as
follows:

O’k = af =+ aé‘,

where:
ol =g a(x* + Ry, t* + RZs, A¥ + & DVF) — a(xk, 1, A* + &, DVY)],
ok = e a(h, AF + e DVF) —a(, AM).

We obtain some estimates for these objects that will be useful below. Using (2.6), (3.5), (5.5) and (5.9) we have:

lof| < cei PR (1+ | A + e DvF |) Iog(2+|Ak+eva )
<e(M, )Ry P (1+ g DvF|97Y)

(
<M )R (14e, T &7 T DY) (5.18)
so that, by (5.9),

-1 )‘I

/ lok|1 41 — 0, (5.19)
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Forcré‘ we have (using a standard algebraic lemma to treat the second integral):
1
ad
/ 94k, A% 4 66 DVF)DVF db
oF
0

1
(z(zk)—z
<c/(1+|Ak+9nguk|2) 2 46 | DV

0
<e(M)(1+ D] + &0 72 Dok 197, (5.20)

k
|C72|=

From the last inequality and (5.18) we also find:
ok < c(M)[1+ | DVF| + 62| DoF 971
and, with (5.9) and using the fact that- 2, we get
k|71 < e(M). (5.21)

In order to get (5.15), it is clear that it suffices proving that:

d
A :=/crk:Dwdle/%(z*,A*)Dv:Dwdl = I,
01 01
for anyw € C5°(Q1; RY). To this aim we write:

a
Ik:/(’]]f : Dwdl+/(a§ — 8_;2(Zk’Ak)ka) :Dwdl
01 01
da
+/ﬁ(z",A")ka:Dwdl = I} + I+ 12
01

By (5.19) and (5.13) it follows thai! — 0 and £ — Ix. It remains to prove that? — 0. This can be rapidly
seen as follows: fix & o < 1 and determine, by Egorov theorem and (5713)C Q1 suchthatQi\ A| <o and
ex Dv* — 0 uniformly in A; then breaklk2 in two pieces according to:

12 = /(...)d1+/(...)dl=:1,j‘+1,§.
01\A A

Using the uniform continuity oDa on bounded subsets we conclude tiat> 0 (sinceDv* is bounded inL?
and Dw is smooth); in order to tred‘l,f it suffices to observe that, by (5.20) and (5.21):

[} < c(M)|| Dw| / (1+ 1Dk + s,‘j*zu)vkw—l) dl
01\A

1 9=2 1 2 l_%
SC(M)[lQl\AIE-FSkq |Q1\A|5</SZ |ka|qdl> }
1

and keeping into account (5.9) and that 2, we achieve tha&,j1 — 0 letting firstk — +o0 and therr — 0.
Step3: proof of (5.17).
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In the following we shall extract a compactness information from the existence of second spatial derivatives. In
order to do so we shall differentiate the system.

Warning We warn the reader that the following calculations will be, at the beginning, a bit sloppy. Indeed,
in order to proceed in a rigorous way, we should use the same procedure (smoothing plus difference quotient
arguments) introduced for the proof of Lemma 3.1. This would take too much time, yielding only technical changes,
so we shall proceed formally, differentiating the systems rather than taking difference quotients and assuming the
existence ofD,a rather than (2.6), which is just Lipschitz continuity, therefore the existence a,ofMore
precisely we assume that:

p(x)=1

|Deaz. )| < L1+ F) "% log(2+ |F). (5.22)

This additional assumption can be easily removed with extra technical-routine efforts, either, as mentioned
before, following the procedure of Lemma 3.1 or by a simple approximation method based on mollification of
a with respect tox. The only difference with respect to Lemma 3.1 is that since now we are dealing directly
with the original solution, which is, according to definition onlyL&Z(0, T’; L%C(.Q; RM)) function (and not

%0, T): L%C(.Q; RV)) as the approximating solutions of Lemma 3.1), then, where previously we used “sup”,

this will be replaced by “ess sup”. We shall proceed this way for the sake of brevity.
Accordingly, we consider the following differentiated system:

/[uﬁ.asw —ok:Dw]dl=0 vweCF(01R"). (5.23)
01

In the previous formula we take the test function= 3 x %% where 5 is as in the proof of Lemma (3.1),

i

X € W§’°°((—1, 0)) such that; x (r) > 0 and x (r)= 0 in a small right neighborhood 61, while ¢ € W&’q(Bl)
has the property thatDg| > 1; they are usual cut-off functions to be chosen later. As a result of manipulations
similar to the ones at the beginning of Lemma 3.1 we obtain:

2
esssup X ()e?(M| Dk (v, )| dy+/x<ﬂ2Pkdl
—l<s5<

B 01

< (1l + 12l + 1J3)) +C/<p23sX|kaI2dl (5.24)
01
where:

n
P*:=>"Da(x* + Riy. t* + Rfs, A* + & Dv) D : DV,
i=1
n

J1 = —2/ ZgoxDa(xk + Ryy, *+ R,gs, AK +8vak)Dvﬁ- : v)ki ® Dgdl,
0, =1

R n
Jpi=——% / Z‘PZXDxia(xk + Ry, 1* + Rfs, AN + e D) - Dl dl,
er J “ ’

0, =1

R n

J3 = —2—k / Z(prxia(xk + Riy, k4 R,%s, AR 4 8vak) : vkl- ® Dedl.

£k < ’
0, =1
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In (5.24) we are going to use the growth and ellipticity conditions stated in the formulas (2.4), (2.5), (5.22), and we
estimate, asin (3.12):

a/d

log(1+ |A* + ex DVF|?) < c(@) (14 |A* + ex DV |?) (5.25)

Moreover we shall denote(x* + Ry, t* + R2s) = p(—). Using Cauchy-Schwartz and Young inequalities, (5.25)
and the fact thaRy /¢, stays bounded from above, we obtain, witke (0, 1):

esssup X(s)(pz(y)|ka(y,s)|2dl+/X(p2Pkdl

—1<s<0

By Ql
+ [ 1P 14t 4 eDet 27 D2
01
p(=)—
<c/|D(p| (1+ 1A% + ex DV¥| ) A |Dv ||D2vk|dl+c/8,xg02|ka|2dl
Q1 01
2k k k22t k
+— x@ (9| D*V¥| + | Dg| DvF|) (1 + |A* + e, DVF|?) log(2 + | AF + ex Dv¥| )
Q1

/(1+|Ak+8vak|2) e |D2vk| dl+c/8,xg02|ka|2dl
01 01
+c(M,a,o)/x(¢2+|D¢|2)(1+|Du"|+e,‘j‘2|Duk|q)dl
01

Let us observe that the right-hand side of the previous inequality stays bounded form above, by (5.13). We first
chooser suitably small, then the cut-off functiongsande in an appropriate way, and we deduce from the above
the following bound:

k 2 k
esssup | Dv ("S)||L2(B((1+r)/2))+ / P*dl
(/2P0 0((1+0)/2)
k k22972 02 k2
+ / (14 [A* + ex DV"| ) |D v 12dl < e(M)e(T), (5.26)
0((1+1)/2)
where the constantgt) andc(M) blow up ast /1 andM " 400, respectively; both constants are independent

of k e N.. Now, using (5.26), we prove that:
q—2
ez _
Hsk” Dv HL‘JO(Q((1+1)/2)) <c(M)ce(r) (5.27)

with the same dependence of the constants outlined above. According to the notation introduced in Lemma 3.2, we
set:

_ 90239 a_ T __ | Dkt 1 4
oQ = 2 > 0, v .=8kq v, HZTO[O’ 1+O{0=§ p1+; . (528)

Up to the end of this section, all integrals will be madeRxil + t)/2) or on Q((1+ t)/2); since these tend to be
unreadable when used as indices, throughout the section we simply write

B:=B<1ZT), 0= Q(l—i—t)
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Then, using also Sobolev embedding theorem we gain the inequalities:

nt2 2
/szygc(r)[(/mmﬁz dy) +</de) } (5.29)
B B B

while using Holder inequality we get:

</de)2<c</|Da’<|mdy>(/|mk|§dy). (5.30)
B B B

Since 4n < 2, estimate (5.26) leads to the following bound, which is uniform with respe;c&to—(lizf)z, 0):
2
( / H(y,s) dy) < e(M)e(r) f |DT*(y, ) dy, (5.31)
B B

where the constant in the previous inequality is again independént d&f. Summarizing (5.29)—(5.31) and using
in a standard way Hélder inequality, we obtain:

(4=2)q0

r1=2
/szy<C'(M)c(t){8k q [/(1+|Ak+svak|2) 2 |D2vk|2dy:|
B B

2
2-p1n n
x[/(1+|Ak+8kDUk|2) 2 2|Dv"|“°"dy} +/|Dﬁ"|”1dy}
B B

2

2-pq n

<c(M)c(r){/P"dy[/(1+|A"+ekDu"|2)T?|Duk|°‘0"—F|Du"|de}
B B

+/|Dt7k|pl dy}, (5.32)
B

where we have sdt :=n(qo — q)/q > 0. Now we check that:
I <2, I' < aon. (5.33)
Indeed, as for the first of (5.33), we notice thapif < 2 then, sincey > 2:

4
n(@—l) <n(@—l) (?’ill)z<p1+——2> <2
q 2 2 n

On the other hand ip1 > 2 then:

4 4
n(@—l)q(@—l):i—:—gz.
q p1 pin p1

As for the second inequality in (5.33), we observe that:

I <agn < @—1<q—20—1 & 2<q,

q
which is true.
By (5.33), using Holder inequality in (5.32), we get the following estimate, again uniforsnan(—((1 +
1)/2)2,0):
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fHZdygc(M)c(r){/Pkdy(/|ka|2dy)7
B B B

2=pin 2
x [/((1+|Ak+8vak|2) 272 g Dok o) 2T dy:|
B

We are finally ready to prove (5.27). We first observe (2at p1)n/2 + aon = 2; therefore integrating (5.34) on
(—=((1+1)/2)2, 0) we get:

q-2
f(skq IDV)) a1 = /szl
0

Q

2-r

' +/|Dﬁh|”1dy}. (5.34)
B

(5.26)

< c(M)c(t)|:/Pkdl+/1+szZIDUqudli|
o o

(5.13),(5.26)
< c(M)c(z)

and (5.27) is completely proved.
Now we observe that if we lef; := sZ’2|ka|‘i then (5.133 implies thatf; — 0 a.e. while (5.27) implies that
{ fx} is bounded inL90/7 (Q) with go/q > 1; therefore it follows that

s,‘j*zf|1)vk|qd1—> 0,
0
SO
Vi(r) = 0. (5.35)
In order to fully prove (5.17) it remains to prove that

Vi) = V(). (5.36)

To this aim, first we assume thai > 2. Then it follows from (5.26) that:

/|D2vk|2dl <c(M)e(r). (5.37)
0

In the second case we assume< 2 and, again by (5.26), we have the bound:
Pl
2.k k K252 2 k20 ) o
|D%v¥|P1dl < (14 |A* 4+ ex DV |?) 2 |D%"%dl
Q

2-p1

x (/(1+|Ak+gkpd<|2)p21 dl) © <eMe() (5.38)

with the constants independentiofUsing the multiplicative inequality we gain:

A—

1 a
5 71 2
</|ka|rodl> ° <c</|Dzuk|Pld1+/|Duk|Pld1> ' esssup (/Ika|2dy> ,
_ 2
0 0 0 se(—((14+1)/2)4,0) 3
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where
a=n/(n+2), Io=p1i(n+2)/n>2, (5.39)
the last inequality following directly by the lower bound in (2.2). By (5.26) and (5.38) we obtain yet another bound:

/|Duk|F°dl <c(M)e(r). (5.40)
0

Now, in order to gain compactness, we are going to estimate the time derivatives. To do this,dgt (Q7; RM);
we first estimate

0
‘/Gk : Dwdl‘ < / [DwC )] oo g 0" o) 1y 45
0

—((1+71)/2?
0 1
k q !
S cle ”Lq_q_l(Q)( / ||Dw("S)HL°°<B>)
—((147)/2)?
0 1
(5.21) g 4
< (M) / (F2ITICR)] [Ny (5.41)
—((1+1)/2)2

By the usual Sobolev inequality:

I1DwliL=(s) < cllDwlly,2i I'>(@n+2)/2,

(B
we deduce from (5.41) and Eq. (5.11), that:
{9,0" 1 is bounded inL 7T (= ((1+ 1)/2)°, 0; (W2 (Q: RM))). (5.42)

Now, let us consider again separately the previous cases. ¥ 2 then from (5.37) and an Aubin—Lions type
compactness result (see for instance [36], Theorem 2.1, chapter 3) it follows that, up to not relabelled subsequences,

Dv* — Dv in L?(Q;R™). (5.43)
If p1 <2, from (5.38) and again an Aubin-Lions type result, we first obtain that, again up to subsequences,
Dv* — Dv in Lpl(Q;R”N)

and then by (5.40) we get (5.43), again interpolatirfgbetweenL?: and L'®, since by (5.39) it follows that
Io> 2.
In a similar (actually, much easier) way it follows that:

v > v in LZ(Q; R”N). (5.44)
We are ready to finish: indeed (5.43), (5.44) imply (5.36), that togehter with (5.35) completely establish (5.17) and

the proof of Lemma 5.1 is now completex
6. The main result proved

In this section we are going to prove Theorem 2.1. We explain the way we proceed. All the results developed
in Sections 3-5 have been obtained in a particular situation i.e.: in the basic cyflg@especial bound (the one
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described before the statement of Theorem 3.1) for the oscillations of the fupgtinrmeasured in terms of the
size p2 — p1, is valid. In order to use these results for the proof of Theorem 2.1, the first thing we do is reducing to
the previous situation: up to passing to a subcylinder compactly contain@d,iwe shall coverQr with a finite
number of small subcylinders in which the oscillations of the exponent funptignare small enough to meet the
conditions of Theorem 3.1. Then we proceed working in each of these subcylinders, blowing up the solution and
thereby proving partial regularity of the solution in each subcylinder. The final result then follows by a covering
argument.

Proof of Theorem 2.1. We take an increasing sequence of cylind@ys,” Qr such thatQ, € Qr. If we prove

that theDu is partially regular in each of th@; we are clearly done, since in each of them the set of non-regular
points will be negligible (see also the argument below). Therefore we can reduce ourself to prove the statement
of Theorem 2.1 in a singl@;,; such a cylinder will denoted bg. We fix @« = a(n, y1) > 0 according to the
restrictions proposed in Section 3, right-hand side inequalities of (3.3), then we detérmifép(z), a) such

that:

lz1—z21 <8 & |pzr) — p(z2)| <a/2. (6.1)
Then we take a finite covering @ {Qw}, with Q) € Or, such that, by (6.1):
diamQu) <48, 0sG, p(z) <a/2  Vk. (6.2)

Now, eachQ ) is small enough to meet the conditions imposed in Sections 3-5, that is the ones in the left-hand
side inequalities of (3.3), and we can apply Proposition 5.2 to €xgl1 therefore there exists an open subset
Q?k) C Q) such thatDu is Holder continuous irQ?k) with any exponengy < 8 and| Q) \ Q?k)| =0. Then we

set
~0 . 0
0%:={J oy
k

and we observe thabu is Holder continuous inD° (which is obviously open) with any exponeft < 8 and
|0\ Q° =0, thereby proving Theorem 2.10

7. Estimates for the singular set

For the sake of simplicity, in this section we shall assume (5.22).

Remarks on the Integrability of Solutioridere we are going to observe that given a parabolic cylig@er
as considered in Sections 3-5, and therefore with the bounds in (3.3) being in force, the flBétioa- |9 u|
is in certain Lebesgue spatt@‘g‘é(Qo). Let us recall that by the results in Section 4 (and again up to passing to
subcylinders as in Section 5) we have:

/IDu|q°dz<+oo, /(1+|Du|2)p(3—_2|1)2u|2<+oo. (7.1)
Qo Qo
We introduce the following exponents:
gy XA At
2+4/n (p2—2)+ (p1+4/n)
Observe that triviallyt; > 1 while by (3.3) we also havgs > 1. Then we let:
n1 if p2 <2,
Mo = | M2 if p1>2,

min{u1, u2} i p1 <2< p2.
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In any casegup < 2. Now we wish to show that (7.1) implies:
|D%ul + |3u] € L*°(Qo). (7.2)

First we remark that:

|0C(Qo) if p1<2,

|D%u| € _ (7.3)

Indeed, ifp1 > 2 then, obwously
pi)=2

|D?ul?> < (14 |Dul?) 5 |D2u|
If p1 <2 thenalso g < 2 and Young inequality yields:

|D?ul"t = [(1+ |Dul?) = |D2u|(1+|Du| ) P

4
<c[(1+1DuP) 1D+ (14 1Du2)?]
sinceqo = p1+ 4/n = (22— p1)u1/(2— u1) and (7.3) follows by (7.1). Now we show that:
if p2<2,

Lff,i(QT) if p2>2.
In order to establish (7.4) we use the equation:
u; =diva(z, Du) (7.5)

and the fact that, via Theorem 3.2 and (7.1), it can be differentiated (locally) with respect to the space variables.
Using (2.4), (2.6) and (3.12), we obtain:

p)—
|0,u| < [(1+|Du|) Tz |D2u|+(1+|Du|) Iog(1+|Du| 3]

p)=2 -1
<c[(1+|Duf? ) Tz |D2u|+(1+|Du| ) ] (7.6)
whereq has been defined in (3.5). Now, consider the gas€ 2. Then sincep(z) < 2 it also follows that:

|3zu|2<c[(l+|Du|) re |D2u| +1+|Du|2(‘1 l)]

We must check that(@ — 1) < go = p1 + 4/n; recall thaty = 2+ « if p2 < 2 ((3.6)) therefore, using the fact that
2n/(n + 2) < p1 it suffices to show that + o« < n/(n + 2) + 2/n which follows from the upper bound anin
(8.3). So, by (7.1), it follows thab, u| € Lﬁ)c in the casepz < 2. Next, we consider the cage > 2. According to
(7.6) we have, using Young inequality (observe that whga» 2 thenuo < 2):

2 (p(2)—2up p)— 2 (G—1)
|8ul"? < c[(1+ | Dul )74 (1+1Du?) "% D) F + 14 |Dua—b0]
p@)=2 2 (P@)-2pup 1
<c[(1+|Dul ) B |D ul>+ (1+|Dul) =72+ |Du|4"Dr2]. (7.7)

In order to use again (7.1) and making all the terms appearing in the right-hand side of (7.7) integrable, we check
that

(P = 2pz _ (p2—2)p2

2—p2 02— w2

The first inequality follows from the definition gf2. As for the second one:

< qo, (g — D2 < qo.

2
(g—Duz=(p2+a-— 1)% < qo, (7.8)
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which is equivalent top, — p1 + 2o < 4/n that follows immediately from (3.3); therefore all the quantities
appearing on the right-hand side of (7.7) are integrable by (7.1). In turn, by (7.7) wéshave Lfgi(QT) thereby
completing the proof of (7.4). Finally (7.2) follows by (7.3) and (7.4).

We are ready to give a first result for the estimate of the singular set, which is local, in the sense that it gives an
estimate on the singular set when we just looat

Theorem 7.1.Under the previous assumptions on the cylin@grsuppose that

uo(n +2)
g —F——.
n+2-—puo
Then, with the notation of Propositidn2it follows that for anyo > 0

Prt2—poto (Qo\ 00 =0.

(7.9)

Proof. From Proposition 5.1 it follows tha®g \ (Q(} N Qo) C Yo U X1 U X5 where
Xo:= {z € Qo: lim sup|(Du)p| = +oo},
p—0
= {z € Qo: liminf Ui(z, p) > o},
p—0
= {z € 0o lminf U(z, p) > 0},
p—0

therefore it suffices to prove th&,;>_ .+ (2;) =0 fori € {0, 1, 2} for anyo > 0. For X> U X, we observe that
(7.9) implies the following inequality:

1
yz:
U(zo,R><R( ][ |Dzu|“°+|a,u|“°dz+>°dz
0(z0,R)

1_4g
wo 12
+ [R( ][ | D2u|Ho + Iarul“Oder)‘O} . (7.10)
0O(zo,R)
Nest we recall that i C Qg denotes the set of points € Q¢ such that:

lim supR #o—"—2) / | D%u|" + |dul"0 dz > 0,
p—0
0(z0,R)

from a well known measure density result (first developed in the context of elliptic systems, see [26] for comments
and extensions) adapted to the parabolic geometry of rescaled cylinders it féqws,,, (S) = O; therefore, by

(7.9), (7.10) and the same reduction lemma it follows Hato—,.,(X1) = Pu42—,(XZ2) = 0. In a similar way,

via the same measure density arguments it is possible to provBthat,,,+-(X0) =0. O

As stated before, the previous theorem provides an estimate which is local, that is, the size of the singular set
depends on the peculiar choice of the cylinggy, via the numbeyg. In order to get a global estimate for the
singular set we find uniform bounds fag. This is the aim of the next theorem.

Remark 4. Before going on with the proof we make some remarks on the possible choice of the nunftier
clear from the statement of Theorem 3.1 that the constamt(3.7) blows up wherx — 0. Anyway the higher
integrability exponengo, which is the one of the gradient, does not change directly: it remains linkegia the
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same relationgo = p1 + 4/n. The only waygo may depend o appears in the proof of Theorem 2.1; thepe,
changes withQ ), which, in that scheme, depends®n

In the following we shall assume, without loss of generality, that:

2
2L <2 (7.11)
n

Theorem 7.2.Defineu > 1 as follows

- [20n+4/n)  2(y2+4/n) | (1D
= ’ <2 7.12
: | { 2+4/n 27/2—2+4/n} (7.12)
and suppose that
wn+2)
n+2-p 7.13
ve< oo m 713)
Then, for any > 0
Put2—p+o(Qr \ 03) =0. (7.14)

Remark 5. Observe that whep; = y» = p(z) = 2 thenu = 2, as for the usual estimates concerning parabolic
systems with linear growth (see, for instance, [7]).

Proof of Theorem 7.2. The proof will be achieved using Theorem 7.1. Wedfix- 0 and we observe that it suffices
to consider so small that (7.13) continues to hold with— o /2 in the place ofu (observe that the function in
the right-hand side of (7.13) is increasing with respecitjoThen we can finde > 0 satisfying the right-hand
inequalities in (3.3) and such that:
(uw—0/2)(n+2) 2(y2+4/n)

y2+a<n+2—(u—c7/2) and 2y2—2+4/n+ot>u o/2. (7.15)
Now, with respect to such am, we find a covering family of cylindersQ )} as in the proof of Theorem 2.1,
conditions (6.1), (6.2); our aim is to apply the estimate of the singular set stated in Theorem 7.1 in each cylinder
O, With respect to the constapb = 1o(Q«k)) (note thatuo depends on the cylinde® ). Now let us prove
that, in eachQ :

75 if p2(Qw)) <2
m—0/2< § U2 if p1(Q)) =2 = uo(Qw))- (7.16)
min{u, p2} = po  if pr(Quy) <2< p2(Qw))

We prove that the first two inequalities in (7.16) are true for all valugs @nd p», therefore the third one follows.
The first inequality is trivial sinceiy > w always, it remains to check the second:

iy = 290 33 290 _ 240
p2—2+q0 = pita—2+q0 290—2-4/n+«
14 24+4/n—« > 24+4/n—«
20— 2—4/n+« 2p2—2+4+4/n+«
— (7.15)
> 2+4/n—a  2y2+4/n) 27 =02

2o —2+4/n+a 2y —2+4/n+a
It follows that:
(715) (u —o0/2)(n+2) (7.16) po(n+2)
g<y2+a < < —
n+2—(u—0/2) n+2—ug
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therefore we can apply Theorem 7.1 and for eagly (using the notation of Theorem 7.1 witlg = Q) and
0% = Q?k)): Du is Holder continuous irQ?k) and

an+27;L+cr(Q(k) \ Q?k)) < an+2ﬂLo+o/2(Q(k) \ Q?k)) =0
The statement finally follows as at the end of Section 8.
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Appendix A

Here we provide a justification for the crucial inequalities stated in (4.11) and (4.12). In the follawiriy
be the function from (4.11), (4.12) whil@o will be the cylinder considered in Section 4; for the sake of brevity
we assume here th&@o = Q(zo, R). The arguments can be easily adapted from the ones in [10] and are also
a consequence of those developed by Zhikov, but we sketch them here for the sake of the reader. Using Holder
inequality, by the definition of mollification it follows that

|Duy (x, )| <y~ "M D pn = cry =N, (A1)
Now let us define (foy suitably small):

p)/ (xs t) = |nf{l7(ya S): (y7 S) € Q((-x7 t)7 2)’)}
andg, (x,t, F) := |F|Pr*D_ The Holder continuity op(x, 1) implies:

|pCe.t) — py(x,0)| < oy

(with ¢2 independent of’) and so, by (A.1):

g(x, 1, Duy (x, 1)) = | Duy, (x, 1) | PP D Dy, 1] Pr 0

(n+2)

Cery SEPHEDTPED By Py

_1»2(11#»2) B .0

iy | Duy (x, 0|7 (A.2)

<
<c3gy(x,t, Duy(x,1)).

We remark that the constaed is independent of . In turn, the definition ofp,, (x, ) and Jensen inequality give
(recallz = (x, 1)):

Jensen

gy(x,t,DuV(x,t)) < / gy(x,t,Du(Z))a)y(Z—z)dZ

QR+y

< / ¢(z. Du(@)wy (G — 2)dz

QR+y
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= (g(-, Du) *w,)(x,1)
= g('7Du))/(-x7t)'
Therefore, combining the last inequality with (A.2) we come up with

g(x.7, Duy(x,1) < g(, Du)y(x,1);
as a consequence we get (4.11), and the Lebesgue dominated convergence theorem implies that
g(x,t, Du,) — g(x,t, Du) stronglyinL?.

The same argument (considerimg, Du), instead of(Du), ) applies for (4.12); indeed alsa(z)/(p(z) — 1) is
Holder continuous and (4.12) follows in the same way. Again Lebesgue dominated convergence theorem implies
the assertion (immediately before the proof of Theorem 4@)) + Is(y) — O.
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