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Abstract

A classical result of J6rgens, Calabi and Pogorelov states that any strictly convex smooth fumdtiodet D2x) = constant
in R" must be a quadratic polynomial. We establish the following extension: any strictly convex smooth funetitim
det(D?u) being 1-periodic in each variable must be the sum of a quadratic polynomial and a function which is 1-periodic in
each variable. Given any positive periodic right-hand side, the existence and uniqueness of such solutions are well known.
© 2004 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
Résumé

Selon un théoreme classique de Jorgens, Calabi et Pogorelov, toute solution réguliére et strictement convexe de I'équation
det(D?u) = constante dang” doit étre égale & un polyndme quadratique. On démontre le résultat suivantinifonction
réguliére et strictement convexe telle que(@¥) est 1-périodique par rapport a chaque variable, alast la somme d’un
polynéme quadratique et d’une fonction 1-périodique par rapport & chaque variable. Etant donnée une fonction périodique et
positive f, I'existence et I'unicité des solutions de detu) = f est un probléeme bien connu.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

* Corresponding author.
E-mail addressyyli@math.rutgers.edu (Y.Y. Li).
1 partially supported by National Science Foundation Grant DMS-0140388 and G-37-X71-G4.
2 Partially supported by National Science Foundation Grant DMS-0100819 and a Rutgers University Research Council Grant.

0294-1449/$ — see front matt@n004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
doi:10.1016/j.anihpc.2003.01.005



98 L. Caffarelli, Y.Y. Li/ Ann. I. H. Poincaré — AN 21 (2004) 97-120

0. Introduction

Solutions of Monge—Ampere equations with periodic right-hand side appear in several contexts of geometry and
applied mathematics: when lifting the equation from a Hessian manifold, in problems of optimal transportation,
vorticity arrays, homogenization, etc. One question is the existence and uniqueness of periodic solutions. The basic
converse question, from the point of view, for instance, of homogenization, is the classification of entire solutions:
Let f be a positive periodic function and letbe an entire solution of deb?u) = f, is u the sum of a quadratic
polynomial and a periodic function? The answer is “yes” and this is the main purpose of the present work. Note that
a particular case is the classical theorem of Jorgens, Calabi and Pogorelov [17,10,21] which asserts that classical
convex solutions of

detD’u)=1, inR" (1)

must be quadratic polynomials. A simpler and more analytical proof, along the lines of affine geometry, of the
theorem was later given by Cheng and Yau [12]. The first author extended the result for classical solutions to
viscosity solutions [3]. Trudinger and Wang proved [22] that the only open convex s@2bsER” which admits
a convexC? solution of det(Bu) = 1 in £2 with lim,_, 3o u(x) = oo is 2 = R". In an earlier paper [7], we
proved that for any convex viscosity solution of d@fu) = 1 outside a bounded subset &f, n > 3, there
exist ann x n real symmetric positive definite matriA, a vectorb € R” and a constant € R such that
limsup,|- Ix|"2(u — [%x/Ax + b - x + c]) < co. Existence of classical solutions to Dirichlet problem for
Monge—Ampére equations was studied by Caffarelli, Nirerberg and Spruck in [8].

Description of our results: In the present paper we extend the theorem of Jérgens, Calabi and Pogorelov to

detD%u)= f, inR", ()

where f is a positive periodic function.
Let f € COR") satisfy

f(x)>0 VxeR", Q)
and, for someuy, ..., a, > 0,
f(x+aje)=f(x), VxeR" 1<i<n, 4)

wheree; = (1,0,...,0),...,e,=(0,...,0,1).
We are interested in convex solutions of (2), i.e., solution$ (2) satisfying

(D%u) >0, inR". (5)
We establish

Theorem 0.1. Let f € C*(R"), 0 < «a < 1, satisfy(3) and (4), and letu € C2(R") be a convex solution of2).
Then there exish € R” and a symmetric positive definitex n matrix A with det(A) = anK” 0,41 f, such that

vi=u —[3x'Ax + b - x] is a;-periodic inith variable, i.e.,

v(x +aie)) =v(x), VYxeR" 1<i<n. (6)
Some remarks:
Remark 0.1. The theorem of J6gens, Calabi, and Pogorelov is an easy consequence of the above theorem.

Remark 0.2. Let f be a bounded positive function@f (R"), 0 < o < 1, and letx € CO(R") be a convex viscosity
of (2). Thenu € C%2*(R™).
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Remark 0.3. Because of the affine invariance, Theorem 0.1 still holds when the periodicity assumption is assumed
in anyn linearly independent directions, instead of in the.. ., e, directions.

Remark 0.4. By the affine invariance of the problem, we only need to establish Theorem Qi1#$ot Vi and for
f satisfying in addition

/ f=1 @)
[0,1]"

Remark 0.5. We believe that Theorem 0.1 holds for any convex viscosity solutionder the weaker hypothesis
that f € L*°(R"), (4) holds a.e., and & infr: f < Sup: f < 00.

The existence and uniqueness (modulo constants) of solutions to periodic Monge—Ampére equations were
studied by the second author.

Theorem 0.2 [20]. Let T" be a flat torus,f € C*°(T") be a positive function, and let be a symmetric positive
definiten x n matrix satisfying

det(A) = ][ f ®)
’ﬂ"ﬂ
Then there exists ae C°°(T") satisfying

detA + D%v) = f, onT", (9)
(A+ D?*) >0, onT". (10)

Moreover, condition8) is necessary for the solvability dB), and solutions of(9) and (10) are unique up to
addition of constants.

Remark 0.6. If the smoothness assumption pfin Theorem 0.2 is weakened o€ C5*(T"), k >0, 0< a < 1,

there exists a solution € C¥*2%(R"). For k > 4, the method in [20] is applicable; forQ k < 3, this can be
established by a smooth approximationfobased on th€?¢ theory of the first author in [2], together with the

€9 estimate of solutions in [20]. A different proof of Theorem 0.2 was given by the first author in [4]. Monge—
Ampeére equations on Hessian manifolds were studied in Cheng and Yau [11] and Caffarelli and Viaclovsky [9].
We plan to pursue some extensions of Theorem 0.1 in such a more general setting.

An auxiliary result: in our proof of Theorem 0.1, we need a homogenization type estimate. It states that a
solutionw of the Monge—Ampeére equation with periodic right-hand side differs from the corresponding safution
with constant right-hand side, a power of the diameter of the lattice.QLet R" be a convex open subset
satisfying

B1C O C By, (11)
and letw € C%(0) N C*(0) denote the convex solution of
{det(Dzw) =1, ino,
w=0, onado.
Letes, ..., e, ben linearly independent vectors I®*, and letg € CO(R") be a positive function satisfying

gx +e)=gx), VxeR" 1<i<n, (12)
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fe=1 (13)

£2;

and

where$2; = {x e R" | x =}, t;e;, 0<1; < 1} is the fundamental domain for the periodicity.
We consider

{dewzw) =g, ino, (14)
w =0, onao.

We give an estimate to the™ norm of|w — w| on O:

Theorem 0.3. Letey, ..., e, € R” and O C R" be as aboveg € CO(R™) be a positive function satisfying.2)
and(13), and letw € C%(0) N C°(0) be the convex viscosity solution (if4). Then for some constangis C > 0,
depending only on and the upper bound gf, we have

lw =Wl o) < C Y lleillP. (15)
i

Remark 0.7. It is easy to see that we only need to establish Theorem 0.3 with an additional hypothesis that
g € C*°(R"). The reason is that once we have estimate (15) with the conStardependent of the smoothness

of g, we can approximatg by smoothg; and obtain estimate (15) far;, the convex solution with respect ¢g,

and then letj go to infinity. For the same reason, estimate (15) only requires the regulargtypefL°, while
solutionw is in the viscosity sense.

Remark 0.8. In view of a lemma of F. John (see, e.g., [148, C O C B, can be replaced bB,, C O C B,,,
0 < r1 <rz < 00, and then constanggandC in Theorem 0.3 depend also enandr;.

Our paper is organized as follows. In Section 1, we establish Theorem 0.3. The first ingredient of our proof is
the power deterioration of all derivatives of solutions to Monge—Ampére equations with constant right-hand side
(Lemma 1.1), which we prove by modifying the Pogorelov estimates together with4Reestimates of Evans
and Krylov and the Schauder theory. We have found out recently, that step 1 of Lemma 1.1 is a particular case of
a theorem of Chou and Wang in [13]. The second ingredient is the use of the periodic corrector (Theorem 0.2). In
Section 2 we establish Theorem 0.1. The first step in our proof is to capture the quadratic behavior of the entire
solution (Proposition 2.1). This follows from the general iteration scheme of the first author developed in [2],
together with Theorem 0.3. Our second step is to establisb®atound for the second derivatives of the entire
solution (Proposition 2.2). This is achieved by an application of the theory on the linearized Monge—Ampére
operators developed by Caffarelli and Gutiérrez, with the help of the quadratic behavior of the solution obtained in
the first step. More specifically, we make use of

Theorem 0.4 [6]. Let O be a convex open subset®f satisfyingB1 C O C B,, n > 2, and letp € C2(0) be a
convex function satisfying, for some constangnd A,

0<x<detD?p) < A<oo, inoO,
¢ =0, ondo.

Assume that € C2(0) satisfies

a,'.,'wij>0, w>=0, inoO,
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wherea;; = det(D?%¢)¢" is the linearization of the Monge—Ampére operatoralhen, for any > s > 0,

max w<C w,
x€0, dist(x,00)>r
x€0, dist(x,00)>s

whereC dependsonly on, 1, A, r ands.

Remark 0.9. This type of inequality is known in the literature as local maximum principle (see, e.g., p. 244 of [16]).
In our case, it follows by noting that Theorems 1 and 4 in [6] are valid for supersolutions, and thus, the measure part
of the proof of Lemma4.1 in [6] applies to subsolutions. The details then follow exactly those of Theorem 4.8 in [5].

The third step in our proof of Theorem 0.1 is to captureRsngu (Proposition 2.3), where\gu denotes the
second incremental quotient efande is any period ofs. By the first two steps, the second incremental quotient
Agu is a subsolution for some uniformly elliptic operator. This step is then achieved by an appropriate use of the
estimates of Krylov and Safonov on the second incremental quotientkaf conclude the proof of Theorem 0.1,
we make use of the periodic corrector and the Harnack inequality of Krylov and Safonov.

1. Proof of Theorem 0.3

In this section we prove Theorem 0.3. We first show that solutions with constant right-hand side deteriorate,
together with all their derivatives, as a power of the distance to the boundary. This combines a modification of
Pogorelov estimates [21] together with the th& interior estimates of Evans and Krylov [15,18] and Schauder
estimates.

Lemma 1.1. Let O c R” be an open convex subset satisfyigc O C B, and letu € C%(0) N C%0) be a
convex solution of

det(D?)=1, ino,
u=0, onao.
Then, for some positive constauls and 8, depending only on andk,
|DFu(x)| < Crdistix, 90)™P, xeo0,k=12,....

Proof. Stepl. Second derivative estimates. This is a modification of the original proof of Pogorelov [21]. For
Reader’s convenience, we include the proof. U§|(1|g|2 -1 and%(|x |2 —n2) as comparison functions, we have,

by the maximum principle, tha%”—z2 <ming u < —%.
We deduce from the above, using the convexity aind the fact that = 0 on 9 O, that

1
u(x) < I dist(x,00), VxeO. (16)
n

By a barrier argument (see, e.g., Lemma 1 in [1] or Lemma 6.1 in [7]), we have, for any @ 1, that
—Cdist(x,00)?", xe€ 0, n>3,
u(x) = _
—Cdist(x,00)%, xe0, n=2.

Here and in the followingC denotes various positive constants depending only @amenn > 3, and depends
only ona whenn = 2.
Fors > 0, let

0'={xe0|ux)<-3s},

17)
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and letw = u + 5. By (17),
§"2/C, n>=3,
ste/c, n=2.
It follows from the above and the convexity efthat
Cs@=m/2 in0', n=3,
cs@ b/ ino’, n=2
Also w is strictly convex and satisfies
{del(Dzw) =1, ino/,
w=0, onao’.
For simplicity, we will only treat the case > 3 since the case = 2 can be handled the same way.
DefineM > 0 by

-2 2
M — max{|w|w,€" 11172},
0/

dist(0’,30) > {

[Vw| = |Vul| é{

By a translation of coordinates, the maximum is achievedeat)0. Making the following affine transformation
i (0
Hent Do i
xXi=xj, 2<j<n

and then rotating % ..., x;, variables, we may assume without loss of generality that(0)) diagonal.
Let

§n— 2 2
h :=log(—w) + logw11 + 5 w1
Thenh has a local maximum at O withf = 4(0). It follows that
w
pp= 20 P -2 =0, at0 1<i<n, (18)
w o w1
and, at0
2 2
Wi; W — W W11;iW11 — W5,
hij = — >+ “ > Wiy 5202 + 8" 2ww; <0, 1<i<n.
w Wiy
SoatO,
2
W11lii w11i _2 _2 Wiii
0> —_— — + 8" w11+ 8wy .
S St s () Wy
It follows that at 0,
w? 2
w W11ii w w w
5" 2|w|w11<n+2 - L g ST Pl 302 (19)
|w|wu wi1 ; Wi wiq ; Wi - wu

Applying 9 to the equatlon ofv, we have
Z w'wi;j =0,
L]
where(w'/) denotes the inverse matrix 6f;;). In particular,
Y _o ata (20)

Wi
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Applying 91 to (20), we have

Z W11ii + Z al

w]_,,—o at 0

A calculation shows that at 0, we have

1<i,j<n

Putting (22) into (21), we have, at 0, that
2

Wilii _ Wi
E = E 81 w]_,, = E .
Wi T WiiWjj

Using (23) and (20), we deduce from (19) that, at O,

2
_|wl Wy

wll

w2 |w
D 5
; |wlw;; w11 i>2

8" 2|w|w11 <n+ Z

|w|wu wllej

2

By (18), we have, at 0, that

2 2
<—l> :( l—l—S" Zwlwl,) , 1<i<n.
w w11

Write

2
> lz( L
— lwlw; |w|w11 wijj

2

2
wy |w] Wiy

w11Wjj

lwlwir w1z >z

Putting the above into (24), we have

2 2
_ w w Wiy
§" 2|w|w11<n+—1+u§ _
lwlwir — wig 5 wiwj,

]z

2 2
w w Wy;
) S L B o e T/
lwlwir  wi1 (5 Wii W

It follows that

5n72 ’zw%/Z < ne{S"’Zw%/Z +

lw|w116”"
lw|wi1€

Therefore

C
-2
8" GMSC-FW,

W1
Wi Wjj

w11

n—+

w%ésn—Zwi

225"
n=2y2/2

|w]

2
Wyg

2
wy
lewl

|w

o

JZz2,i

2
wy

lwlwiy

2
Wy;j

Wi Wjj

-8 2|w|wlz

Wiii

103

(21)

(22)

(23)

(24)
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which implies

M < L

5n72

Thus

luaa] = [waa] < = in 0",
where

0"={xe 0 |wkx)<-8}={xe0|ux) <-25}.
Sincex direction is chosen arbitrarily, we have

|D?u| < ino”.

8n—l’
Now for anyx € O, set§ = |u(x)|/2. We deduce from the above and (16) that
|Du(x)| < €8 < C dist(x, 80) .

The second derivative estimate is established:for3. As mentioned earlier, the second derivative estimate for
n = 2 case can be proved essentially the same way.

Step2. Now we establish higher order derivative estimates, combining the estimates of Evans and Krylov with
a normalization argument. Fare O, letd := 1 dist(x, d0). Without loss of generality/ < 1/2. Set

v(y)=u(x+y)—u(x)—Du(x)-y, yeBy.
By the equation of: and the second derivative estimates:pfve have, for some positive constaintdepending
only onn,
de(D?v(y)) =1, ye Ba,
and
d"
c
So for some positive constants andaz depending only om, r1 andrs,

C
1< (D) < ool yeBa.

By C {y [v(y) < da?’} C By)2.
By a lemma of F. John, there exists some affine transformatios ay + b with det(a)= 1 such that
Br C A(£2) C Byr,
where$2 = {y | v(y) < d*3}. Since|Bgez| < |2 = |A(£2)| < |Bg/2|, we haved®2/n < R < d /2.
Let

w(E) = — (v(A~H(R2)) — d*2), zeO::%A(.Q).

R2
Thenw is a strict convex solution of
detD?w)=1, ino,
satisfying
w=0, onado.
We also know that

w(z) =minw,
o

wherez = 1 A(0).
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By the usual comparison argument and some barrier function argument, we know that

w(z) <—C, and distg,00)> %
whereC > 0 is some number depending only @nBy the Pogorelov estimates, Evans and Krylov estimates and
Schauder estimates, we have

|DFw(@)| < Ck, ).
Since

D2w(Z) = (a_l)tDzv(O) (a_l),
and sincg D2v(0)) > C~1d*1 ] and(D?w(z)) < CI, we havela Y (1) < Cd—11,i.e., |a~ | < Cd—*/2. On

the other hand, dét) = 1, so we havela|| < Cd—"~D21/2 The higher derivative estimates then follow from the
above estimates ¢D*w(z)|. Lemma 1.1 is established O

Now we prove the homogenization estimate: The main idea consists in showing that, if large, the maximum
of the difference betweew andw occurs far from the boundary, in the region wharés regular, and we may
use there the periodic corrector plus a small quadratic polynomial to make auacuper (sub) solution of the
equation satisfied by.

Proof of Theorem 0.3. By Remark 0.7, we may assume without loss of generality ghatC>°(R"). Our proof
makes use of Lemma 1.1 and Theorem 0.2. Throughout the proof, and unless otherwis@;stated(0, 1) and
C; > 1 denote various positive constants depending only and the upper bound @f Let

m = max|w — .
o0

By a barrier function argument,
—C1dist(x,00) <w, w<O. (25)

In particularm < C1.
We will only treat the case

m =maxw — w) >0,
0

since the other case can be handled similarly.
Letx € O be a maximum point ofy — w:

m=w(x) — w(x).
By (25),
dist(x, 90) > puym*/P1, (26)
Let

ulx)=wkx)+
Then

(u —w)(x) =m.
On the other hand, since

|u_w|<g, on o, (27)
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we have
_ m
u—w)< 9 onao.

So for some interior point € O,

(u—ﬁ)(i):mg:lx(u—@)}m. (28)
By (28) and (27),

W—BE > - DE - ">

w—w)Xx) = wu—wE 9”9

It follows, by (25), that
dist(x, 00) > pim*/P1. (29)

Here the values ofi1 and; are possibly smaller than previous values.
Let& € C*°(R") be the unique solution of

de[(Dz[%x’Dzw(i)x + «‘E(x):|> =g(x), xeR",
satisfying
<D2[%x/D2w(i)x +$(x):|> >0, xeR",

E(x+e)=£E(x), xeR" 1<i<n,

and
/ £=0.
£2;

The existence and uniquenesgdbllows from Theorem 0.2.

Claim.
1€ 1| ooy < Com™2 ) " |lei |12, (30)
i

Proof. Let
1 N2 n
px) = Ex D w(x)x + &(x), xeR",
and for any fixedy € R” and 1< i < n, let
h(t)y=§&(y +te;), teR.
Since(D?%p) > 0in R", we havegt—zzw(y +te;) > 0 fort € R. Consequently,
W'(0) > =] D*W(D)e; = —llei |? | D?0 (@) | = —Calle; [Pm 7.

Sincer is a periodic function of period 1, we can argue as in [20]flef—1, 0] be a point wheré’ = 0. For all
0 <t <s <1, we have, by the above lower boundidf, that

N N

7
h(s) = h(t) = / W (1) dry = / / B () dradry > —4Cs|je; |2m 5.
t ro7
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The above estimate, together with the fact thas 1-periodic, implies that the oscillation @fis bounded by
4C5|&;|2m—P3. Sinceh is 1-periodic, the oscillation of is bounded by @5||¢;|2m P23, and the estimate (30)
follows easily. O

Sincex is an interior maximum point of — w, we have

(D?(u—w)(®) <O,

0 < (D?w(®)) < (D*W(®)) — (31)

1.
(6n)?
Let

v(x) = W(x) +E(x) — lx — %2

R
(6n)2 (12ny

Then

w(x) — v(x) = u(x) — <w(x) +EQ) + (121’1)2 v — i|2).

By (29) we can fing8z andC3 such that
B,53,c,(X) C O,
and
|D3w(x)| < Cam™P2, Vx e B3y (%).
Thus, we can find largefs andC4 such that

Bmﬁ4/c4(i) - Bmﬁs/c3 (),

— 1
(D?v(x)) = <D2w(x) + D?E(x) — a zn)zl)

< <Dzw()z) +n?Cam™P3|x — X1 + D% (x) — (162—’:)21)
3
25 (3 2 n°C3  Ba—pay _ 6m )
< <D wx)+ DE(x) + Ca m 1 (12n)21
< (D*W(X) + D*(x)), Vx € Bpy ¢, ().

It follows that for everyx € B, 4, ¢, (X) with (D?v(x)) >0, we have
det( D?v(x)) < def D?w(¥) + D?¢(x)) = g(x) = det( D?w(x)). (32)
Now

(w —V)(E) =u(¥) — W(F) - &)
> (u—w)(F) — Com™2 Y " |le; 1%,

Since(u — w)(x) is the maximum value af — w, we have, for alk € aBmﬁ4/C4()Z), that
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L) = (U — ) — E) — T — F 12
(w—v)(x) =@ —w)(x) —&(x) (12n)2|x x|
1+284
DG 2 2o m
< (u —W)(&) + Cam Xijne,n e
If
1+284
—p2 q2s M
2Com Xijne,n > Tonc?

we are done. Otherwise,
(w—v)(x) <(w—v)(Xx), Vxe 8Bm,s4/c4()2).

Let x1 € B, ,c,(X) be an interior maximum point ofv — v, then (D?v(x1)) = (D?w(x1)) > 0 and
det(D?v(x1)) > det(D?w(x1)). This violates (32). Theorem 0.3 is established

2. Proof of Theorem 0.1

In this section we prove Theorem 0.1. We follow the three steps sketched in the introduction.
Stepl. Modulo an affine transformation, the behaviouddt infinity is %|x|2:

Proposition 2.1. There exist some x n symmetric positive definite matrix with det A) = 1, and some positive
constantg andC, such that

<ClxP8, Vix|>1 (33)

(x) 1/1‘\
u(x) — 5x'Ax

We can always normalize so that
u(@0=0 and ©u>0 inR". (34)
By Lemma2.1in[7],

u(x)

It e @
ForM > 0, let

2y = {x eR"; ulx) < M}.
By Propositions 2.4, 2.5 in [7],

CIMV?2 <12yl <CcM™? forall M >1 (36)

for some positive constaxit depending only om, maxz: f and mink: f.
By a normalization lemma of John—Cordoba and Gallegos (see [14]), there exists some affine transformation

Apy(x)=ayx +by,
with det(ay) = 1 such that

Br C Ay (2m) C Bur, (37)
for someR = Ry, > 0. It follows from (36) that

cIWWM<R<CVM, (38)
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whereC > 1 depends only on, maxg: f and ming» f.
By Proposition 2.6 in [7],

2nR > dist(an (2p/2), dam(2y)) = C7'R,
and consequently
Br/c Cam(£2u) C Banr,
whereC > 1 depends only on, maxg: f and mirg» f.
For convenience, we make a normalization to unit size. Let
1 1 1
uy(x) = ﬁ”(a/w (Rx)), x €0y = EaM(QM)'
By (40),
B1/c C Oy C Byy.
Itis clear that

1
up (0) = 25u(0) =0,

detf(D2up (x)) = f(ay (Rx)), x € Oy,
and by (38),

umlyon =% e[ct c]
Then, by the convexity af 5,
O<uy <C inOy.
Let
E = lkier+ - +kney; ki, ...k, are integersk? + - -+ k2 > 0},
and
Ej={e€E; e=kie1+ - +knen, kil < j}.

Fore c E, let

e= EaM(e)

be the grids corresponding éofor functionu .

Lemma 2.1. For some positive constandsand C, depending only on, maxg: f andming: f,

lell < CR e, VeckE.
Proof. For anyx € 90y, we have, by [1],
L P
um 2.x = CMM X),
from which we deduce

s Luoy, vzt
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(39)

(40)

(41)

(42)
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Consequently, for some positive constafit€” depending only om, maxg: f and mim» f,

u() <Clylf, V¥yl=1. (43)
For Ae € 382y, we have, by (43),

M =u(re) < ClrelP.

On the other hand, sinc%aM()»e) €00y C By,, we have

- 1
[Alllell = ’Ea/w(?»e) < 2n.

Lemma 2.1 follows from the above two inequalitiesa

Let £ be the convex solution of
detD%)=1, Ou,
E=4, A0y.
Proof of Proposition 2.1. Given Theorem 0.3, the proof of Proposition 2.1 follows from the general iteration
scheme of the first author in [2]. A proof can also be found in [7], see Propositions 3.1, 3.2 and (41) there; the only
difference is thatluy — &L (0,,) < CR~1is known there instead dffit sy — & lL=0,) < CR™® which we have
here. But the modification of the proof is very minoi
One consequence of Proposition 2.1 is that for some positive corstant
lamll, laptll < C, VM >1. (44)
Let
F(D%u) = det(D%u)"",

and

oF
Fij(D%u) = —.
’ au,-j

A consequence of the concavity Bfis the following

Lemma 2.2. Let f satisfy(4) (with a; = 1), and letu satisfy(2). Then for every € E,
Fjj (Dzu(x))aij [u(x +e)4+ulx—e)— 2u(x)] >0 onR". (45)

Remark 2.1. For (45) to hold, we only need thdtis e-periodic and: satisfies (2).
Proof of Lemma 2.2. By the concavity ofF, the equation ofi, and the periodicity off, we have
1 1
F(D*w(x)) > E[F(Dzu(x +e)) + F(D%u(x —e))] = E[f(x +eo)+ fx—e)] = fx),

wherew(x) := 3[u(x +e) + u(x — e)1.
On the other hand, by the concavity Bfand the equation af,
F(D*w) < F(D%u) + Fij(D?u)d;j(w — u) = f + Fij(D*u)d;j (w — u).

The lemma follows immediately from the above two inequalities.
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Step2. L*° estimate of the Hessian of

Proposition 2.2. There exists some positive constansuch that

I
ZFg(D%mm)gcv, Vx € R". (46)

For nonzer@ € R", we introduce a notation for the second incremental quotient:
u(x +e)+ulx —e)— 2u(x)
llell
where||e|| denotes the Euclidean norm af

The following lemma is a consequence of Theorem 0.4, a result of Caffarelli and Gutiérrez on the linearization
of the Monge—Ampére operator.

9

Agu(x) =

Lemma 2.3. For r > 0 ande € E, there existd\p, depending om, r and ||e||, such that for allM > Mo,

Asuy <C, (47)
x€0y, distx,00y)>r
and
0< A2up(x)<C, Vxe Oy, anddist(x, d0y) > r, (48)
whereC depends only on, r, maxg: f andming: f.

Remark 2.2. We emphasize that the consta@htn Lemma 2.3 does not depend 1.

Proof of Lemma2.3. Lete € E, Agu M 1S positive since is strictly convex follows from the strict convexity af
By Lemma2.1)¢e| — 0 asM — oo. So, there existd/p such that fotM > My, |¢| < r/8. LetL be a line parallel
to e, we have, by Lemma A.1 in Appendix A, that
Auy <C, VM > Mo,
LN{x€0yy, dist(x,00y)>r/4}

whereC depends on, r, maxg: f and mimk. f. Estimate (47) follows by integrating the above over all such lines.
To prove (48), we observe thaj, satisfies

0 < min f < detD%uy) = (A, (Rx)) < maxf < oo,
By Lemma 2.2w := A2uyy satisfies
aij(x)w;j(x) 20, xe Oy and dist(x,dQy) >r/2,

where g;; is the linearization of the Monge—-Ampeére operatoruat. Estimate (48) follows from (47) and
Theorem 0.4, with replaced by-/2. O

Lemma 2.4.
y :=supsup A2u(y) < co. (49)
ecE yeR"

Proof. Fore € E andy e R", letx = %aM(y). TakeM large so thay € £2y/2, we have, by (39),

. 1
dist(x,00y) > I
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for some constant depending only o, ming: and max-» f. Then by (48) and (44),

_llam(@)|?

AZu(y) = e AZuy(x) < Clayl’<C. O

The following lemma is a consequence of Lemma 2.1 in [7].

Lemma2.5. For » > 0andr > 2, letu € C2((—3,3)" 1 x (—r, r)) satisfy
(D%u) >0, de(D?u)>x, in(=3,3"1x(-rr),

and
0<u<l in(=22)".

Then, for some positive constaiit= C(n) > 0,

A
maxu (0, s)" > <% - 1).

Isl<r
The next lemma is a consequence of the Pogorelov estimate.

Lemma 2.6. Letg € C*(B1) be a positive function, and lete C*(B1) N C°(B1) be a convex function satisfying
detD?v) =g, onB,

and
v(0) =0.

We assume that
O<u<v <M_l, onoBj.

Then for someg € (0, 1) andC > 0, depending only on, u, min,;1 g,and lgllcacs,): We have that

|D?v| < C, 0nB,,.

Remark 2.3. In the above lemmaB; can be replaced by any bounded open sul¥sehencC, ro will depend on
dist(0, 0£2) and dianis2).

Proof of Lemma 2.6. We only need to show that there exists some0, depending only op, such that

Boi C {x € B1; v(x) < u/2}. (50)
Indeed letv(x) = /2, by the convexity ob,

v(x) > v(X) + Vo) (x —X), VxeBi. (51)
In particular,

0=v(0) > v(¥) — Vu(¥)x,
i.e.,

%:v(i) < |Vo@®|IE. (52)
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Takingx € d By such thatVuv(x) andx — x point the same direction, we have, by (51) and (52),
@) = @) + [Ve@)||x — x| > % + |Vo@)] (21— 1x]). (53)
It follows from (52) and (53) that

-1
W N e 1
—<V <—— .
> |Vo(x)||x] 105 ||

Clearly|x| > 3r for somer dependingonly om. 0O
Now we give the

Proof of Proposition 2.2. Forx € R”", let
i(2) =u(z+x) — [u(x) + Vu(x)z].
Then
#0)=0, #>0 inR"
Since

supsup AZii(z) = supsup A2u(y) <y,
ecE zeR" ecE yeR"

we have (using sypg AEﬁ(O) < y and the convexity oir)

supii < C(n)yr?, V1<r <oo.

B,

On the other hand, faf € 3B, we have (using sypy A2i(z/2) < y)

[z [z [z 2
—+e|+tul=z—e) - - )< , VY .
u<2 e) u<2 e) ZM(Z) ylell ecE

It follows, by the convexity ofi and the fact tha& (0) = 0, that

ii(z) < 2u(%) L Cm)y <) +Chm)y, Vze % +(=2,2)".

Applying Lemma 2.5 tai(z/2 + -)/(ii(z) + C(n)y) (modulo a rotation, i.e., think df/|z| ase,), we have (recall
thati(0) = 0)
(@)= max a(é +s§>n > <M - 1) (@@ + Cmyy)".
lsi<lzl/2 \2 Iz Cm[u@)+yI"

If ii(z) <y, then
o rmings f
@ ”n( Cmy" _1>'

Fix some suitably large, depending only on, y and mirk: f, such that

7/" rm|anf_1 21,
Cmy"
we havei(z) > 1. So, for suchr, we have

minz > min{y, 1}.
minu {y.1}
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Since
det(D%i(2)) = f(z +x — [x]),
where[x] denotes the integer part of We have, by Lemma 2.6, that
|D2u(x)| = |D?a(0)| < C ().
Since 0< min f < det(D?u) < maxf < oo, estimate (46) follows from the aboven
Step3. To capture syp: A2u fore € E:
Proposition 2.3.

/

A
SupAgu = e—;, Vec E. (54)
R lell

First, two lemmas:

Fora>1, let
A
u(x) = u()sz), x e R".
We denote

_1 /A
Q(x)—ix X.

Lemma27.ForO< g8 <1,

u* —> 0 in C&)’f(R") asi — oo.

Proof. By Proposition 2.1,
u* > Q0 in C%C(R") as\ — oo.

On the other hand, by Proposition 2.2, we have, for some conStartependent of, that
|D2u*| < C, onR"

Lemma 2.7 follows immediately. O
We will need a standard result for subsolutions of uniformly elliptic equations (see, e.g., Lemma 6.3 in [5]).

Lemma28.Let0< i < A <o0,and
M < (aij(x)) < AI, onBy.
Assume that
ajj(x)vij =0, onBy,
v<1l onBy,
and, for some, © > 0,

Hv<1—e}N By
| B1|
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Then, forsom& =C(n, A, A, &, u) > 0,

v<1l— Cil, on By/>.
Now we give the

Proof of Proposition 2.3. Let
SUAZ 5 e'Ae
o= cu, =—.
Rr llell?

By (49),«a < co. Leté = A~ 1e, we know

0<AZu*(x)<a, xeRM (55)
It follows from Lemma A.2 and the Lebesgue dominated convergence theorem that

lim /Ag A:/ﬂ=ﬂ|31|. (56)

r—00

By By

In particular, by (55) and (56 > 8. We want to prove that = 8. Suppose the contrary,

o> B. (57)
It follows from (56) that

. o+ ,3 2 A o+ ,3 . 2 a

“;njip(THAéku > 5 N B1 gAILmOO ASu” = B|Bi|.

1

Consequently, for large,
A2y > 2lN B
(Afu* > @+p /AN B _

X )

| B1|
where, by (57)u = %(1 - fTﬁﬁ) > 0. Or, equivalently, for large,
{AZu* < (@ + B)/2} N B -

=

| B1|

_2_

Applying Lemma 2.8 taw = R

Agu)‘, we have, for som€ > 0,

supAZu* <a—C71,  forlargex.
By

It follows that

o= SupAgu = lim supA2u* <a,
R~ A—00 Bi2 €

a contradiction. O

We are about to complete the proof of Theorem 0.1: chéas®” so that
wler) =w(—er), 1<k<n,
where

wkx)=ulx)—Q0x)—>b-x.
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Clearly,w(0) = 0, and, by Proposition 2.3§§kw <O0for1<k <n. Then, by LemmaA.3,
w(jer) <0, V1<k<n, Vj=0,+1,+2, ....
Since

Sup| Dzw(x)| < 00,
xeR"

it follows from (58) that
wer) <C, V1I<k<n, LeR.

By Theorem 0.2 and Remark 0.6, there exists a unigae&€2¢ (R") satisfying
de(D*(Q+9)=f. D*Q+g) >0,
gx +e)=gx), Vi<k<n, xeR",

| «=o

[0,1]"
Set

and

h=w-—g.
We will show thats is a constant oiR”.
Since

de(D*(Q+9) =f = <(DQ+g)<CI, inR",

Al ~

and

det{(D?(Q +w)) = f, é <(D*(Q +w))=(D*u) < CI, inR",

h=(0+w)—(Q + g) satisfies
ajj(x)3;;h=0, IinR",
where the coefficientgy;; (x)) satisfies, for some constants<G < A < oo, that
M < (aij(x)) < AL, Vx eR™
Soh is an entire solution to a uniformly elliptic equation.
Theorem 0.1 will follow from the following
Lemma 2.9.

Suph < oo.
Rn

Proof. Let
M;i= sup h(x), i=12,....

x€[—i il
Suppose the contrary of (60), we have

11— 00

(58)

(59)

(60)

(61)
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Then we can show that for some constant
My <4My-1+C, Vi=12,....
Indeed, letkq, ..., k,) € [—m,m]". Define

|1 ifk;isodd
=0, if k; is even

Let
kiter kn, e,
e= e, .
2 2
Since
A2h(e) = A%w(e) <0,
we have

h(ki£e1, ..., kn £ en) = h(2e) = h(2e) + h(0) < 2h(e) < 2M(n+1)/2]+1-
Since Sug. |D?h| < oo, it follows from the above that for som@ independent of,
hka, ..., kn) < 2Min+1y/2141 + C.
It follows that
My < 2Mion+1)/21+1 + C.
Replacingn by [(m + 1)/2] 4+ 1 in the above, we have
Miom+1)/2141 < 2Mim+3) /4141 + C.
Takingm = 2/ and using (2 4+ 3)/4] + 1< 2~1fori > 3, we have
My < AMj3i 434141 < AMpi-1 + 3C.
Estimate (62) is established.

Let
H;(x) = h;i:), xe[-1,17".
By (59),

C
Hi(Qe)<—, 1<k<n, i=12,....
Mzi

By (62), for some positive constaqt,
_ Mzi—l Mzi - C 1

max H;,= > —, forlargei.
[—1/2,1/2) My 4M, 8

117

(62)

(63)

(64)

We know that: satisfies an uniformly elliptic equation, so daés(with ellipticity constants independent of

By the definition,
and,

h(0
Hi(O)z%—)O, asi — oo.

21
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Since 1— H; is non-negative, we have, by the Harnack inequality of Krylov and Safonov [19], that

[78%%79]}1(1 — H)<C(1-H;j(0)=C(1+0(1)<2C,

and there exists somefa < 1 and Hsuch that

. 3 37"
H;— H in C“([—Z, Z} > along a subsequenc¢e-> co.

By (64),
max H > 1 (65)
12,12 ~ 8
and by (63),
3
H(her) <0, 1<k<n, I)»Iéz- (66)
We also know that
H(0) = lim H;(0)=0. (67)
1—>00

SinceA2h < 0 fore € E, we have
A5 H; <0, YeeE.

Since the convergence &f; to H is uniform, we know from the above that is concave

Now H is a concave function satisfying (65), (66) and (67). Mored¥és the uniform limit of{ H;}, for which
a uniform Harnack inequality holds. This leads to contradiction. Indeed, &inseconcave and (0) =0, let/(x)
be a linear function such that- # > 0 in (—%, %)”. Sincel — H is the uniform limit of{{ — H;}, the Harnack
inequality applies té — H as well, thud — H = 0. By (66), H = = 0 which contradicts to (65). Lemma 2.9 is

established. O

Finally the
Proof of Theorem 0.1. Since is an entire solution to a uniformly elliptic equation and, by Lemma 2.9,
h is bounded from above, it then follows from the Harnack inequality thas a constant. Theorem 0.1 is
established. O
Appendix A

LemmaA.l Letg € C2(—1, 1) be a strictly convex function, and l8t< |#| < ¢. Then

A2g(x) >0, V|x|<1-2s, (A1)
and
1-2¢
2 C
Ajg < ;05(‘(71,1)& (A.2)
—1+2¢

whereC is some universal constant, andg_1,1)g :=SUP_ 1,1 18(s) — g(®)|.

Proof. For—-1<a<b <1,
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b b 1
1 d
/A%g:—2//—[g,-(x+sh)+g(x—sh)]dsdx
a 0

h ds
1 1 b+sh a+sh
:E/[ / g'(y)dy— / g'(y)dy} ds. (A.3)
0 b—sh a—sh
By the convexity ofg,

C
max |g'(x —os _ .
e €|g( )| < G-1,1)8

Lemma A.1 follows easily from the aboven
Our next lemma is elementary.

LemmaA.2. Letg; convergest@ in C1[—1, 1], g € C3(—1, 1), and|h;| - 0. Thenforall-1<a < b < 1,
b

b
lim /A;Zl’,gi =g'(b)—g'(a)=/g/’.
l*)

a

a

Proof. By (A.3),

1 1 b+sh; a+sh;
/Ah gz—h—/[ / gi(y)dy — / g,‘(y)dy} ds
a 0 b—sh; a—sh;
By the C! convergence of; to g,
1 1 a+sh; 1 1 b+sh;
lim —/ / |g§(y)—g(y)|dyds+—/ / |8/ —g]| ] =0.
i—00 h,’ hi
0 a—sh; 0 b—sh;
It follows that
b 1 1 b+sh; a-+sh;
lim /Aﬁgi = lim —/[ / g (ydy— / g/(y)dy} ds = g'(b) — g'(a).
i—00 ! i—oo hj
a 0 b—sh; a—sh;

Lemma A.2 is established.O

LemmaA.3. Letg € CO(R), g(0) =0, g(1) = g(—1), and A2g(x) < Ofor all x € R. Then
gm+1)<gm), g(—m—1) <g(—m), forall non-negative integer:. (A.4)

Consequentlyg (m) < O for all integerm.

Proof. Since the hypothesis is satisfied alsodty-x), we only need to establish the first inequality in (A.4). For
every integek, we have

glk+ 1)+ gk — 1) — 2g(k) = A2g(k) <O. (A.5)
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Takek =0 in (A.5), we have
2g(1)=g(1) +g(-1) <2g(0)=0.

So the first inequality in (A.4) holds forr = 0. We prove (A.4) by induction. Assuming that the first inequality
in (A.4) holds form — 1 for somemn > 1, takek = m in (A.5), we have

gm+1)+g(im — 1) <2g(m) < g(m) + g(m — 1).
Sog(m + 1) < g(m), i.e., the firstinequality in (A.4) holds forn. O
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