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Abstract

We present some results on the blow-up phenomenon for the Schrédinger equation in dimension three with a nonlinear term
supported in a fixed point. We find sufficient conditions for the blow-up exploiting the moment of inertia of the solution and
the uncertainty principle. In the critical case, we discuss the additional symmetries of the equation and construct a family of
explicit blow-up solutions.
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Résumé

On présente des résultats sur le phénomeéne de I'explosion pour I'équation de Schrédinger en trois dimensions avec un terme
nonlinéaire concentré en un point fixé. On trouve des conditions suffisantes pour I'explosion en utilisant le moment d'inertie
de la solution et le principe d'indétermination. Dans le cas critique, on met en évidence I'existence de quelques symétries
supplémentaires et I'on construit une famille de solutions explosives explicites.
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1. Introduction

In this paper we study the Schrdédinger equation in dimension three with a nonlinearity concentrated in a fixed
point.

The analysis of the nonlinearity concentratedifixed points was first approached in [2] and [3], in the one-
dimensional case, while, in the three-dimensional case, results on local and global existence of the solution were
givenin [1].

Here we shall go further in the analysis considering the problem of the blow-up in the simpler case of a
nonlinearity located at the origin. The peculiar feature of this class of nonlinear equations is the fact that they
can be reduced to nonlinear Volterra integral equations involving only the time variable and this considerably
simplifies the analysis.

As in the linear case ([4]), the equation in dimension three is more singular than the corresponding equation in
dimension one. In particular the space of finite energy is strictly larger than the Sobolevish@3. Therefore
the usual techniques employed for the analysis of the standard NLSE, such as Sobolev inequalities and uncertainty
principle (see, e.g., [5-9,11]), cannot be directly applied to the problem treated here.

For the convenience of the reader we recall the position of the evolution problem starting from the linear case.

Let H,, « € R, be the Schrédinger operatorirf(R®) with a point interaction of strengti placed at the origin.

It is well known (see, e.g., [4]) that domain and actiontf are given by

D(Hy) = {u € L3(R®) |u = ¢ +qGo, ¢ € HZ(R®), Vo € LA(R®), A¢p e L3(R3), g €C,

l@o(u(X) —qGo(X)) =aq}, (1.1)
Hyu = —Ad, (1.2)
whereG, denotes the Green function
N g VX=X
—X)V=(=A+Ntx=X)=——, A>0. 1.3
GrX=X)=(=A+ 1) (X=X) XX’ (1.3)
For a given smooth real functian’z), ¢ € R, the solution of the linear nonautonomous evolution problem
L0y
|¥= e)¥,  Yl=0=10 (1.4)
can be written in the form (see, e.g., [10])
t
w(t,x)z[U(t)iﬁo](x)+i/ ds U(t — s:X)q(s), (1.5)
0
where
13 13
. a(s)q(s) . [U (s)¥0l(0)
t 4\/—|/d7=4x/_|/d7 1.6
q(t) +4Vxi [ ds s T = (1.6)
0 0
andU (r) is the free unitary group with integral kernel
e
Ut,x—X)= ———. 1.7
(. x=x) (4rir)3/2 (3.7)

Our nonlinear evolution problem is then defined by taking the strength of the interagtipas a function of
the solution itself. Notice that this corresponds to impose a nonlinear boundary condition at the origin (we refer
to [1] for details). We fix
2 yeR, oeR*. (1.8)

a(x)=yz%, z=|q)
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With this choice the nonlinear evolution problem is defined by (1.5) whéreis the solution of the nonlinear
\olterra equation

t t
— lg)*q(s) _, —~ [ [U(s)YPol(0)
0 0

In [1] local existence and uniqueness of the solution of problem (1.5), (1.9) were proven in thé/spledmed
as

V={yeL?R3, ¢y =¢+qGo, ¢ € H5(R?), ¢ €C, V¢ € L*(R%)} (1.10)
={v e L3A(R3), ¥ =1 + 4G, ¢ € HY(R®), geC, 1> 0}. (1.11)

Moreover, thel.2-norm (usually called the mass), and the energy of the solytion= ¢ (1) + ¢(1)Go

2042

E(W0) = [V60)| faga) + 2140 (1.12)

are conserved.

Notice that the spac¥ of finite energy is strictly larger tha# 1(R3) and this is the origin of some technical
difficulties (see [1]).

From the conservation laws of mass and energy, we managed to prove the following result of global existence.

Theorem 1.For any initial datumyg € V, the solution of problenil.5), (1.9)is global in time if eithery > 0 or
o<1

The problem of blow-up arises when the hypotheses of Theorem 1 are not fulfilled. Therefore, from now on
we shall always consider < 0 and o> 1. Moreover, we shall denote withyax = (— T, T*) the maximal time
interval of existence of the solution.

The notion of blow-up for this kind of problems is naturally set looking at Eq. (1.9).

Definition 2. Given the initial datumjg € V, the corresponding solutiofi(r) = ¢ (t) +q (1) Go is called ablow-up
solutionif there exists a finitd,. such that

limsup|q (1)| = oo. (1.13)

t—>T,

Using the conservation of the energy, one sees that the above definition is equivalent to the condition

lim sTup|| V(1) ||L2(R3) = 0. (1.14)
t—T,

It is easily seen that the following blow-up alternative holg$t) is a blow-up solution if and only if it is not a
global solution. Moreover, if"* is finite, thenT, = T*, whereas ifT} is finite, thenT, = —T.

In the former case, we will say that the blow-up occurs forward in time, while in the latter we will say that it
occurs backward in time.

The rest of the paper is organized as follows.

In Section 2 we introduce the moment of inertia and we compute its first derivative.

In Section 3 we find an expression for the second time derivative of the moment of inertia using an approximation
procedure.

In Section 4, exploiting the second derivative of the moment of inertia and a modified version of the uncertainty
principle, we derive a sufficient condition on the initial datum to give rise to a blow-up solution.
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In Section 5 we restrict ourselves to the critical case 1 and show the pseudo-conformal invariance of the
problem.

In Section 6, exploiting the pseudo-conformal invariance and the family of stationary solutions, we construct a
class of explicit blow-up solutions in the critical case.
2. The first derivative of the moment of inertia

Following the line of the proof in dimension one ([3]), we shall introduce the moment of inertia, defined as

() =/|x|2\w(x)\2dx. (2.1)
R3

The first technical result is given in the following lemma.

Lemma 3. If the moment of inertia of the initial daturfy is finite, then the associated solutigr(¢) has a finite
moment of inertia at any time of existence.

Proof. The moment of inertia of a functio$ can be written as

1 .
I(I/f):W/\vkw(k)\zdk, ¥ € L3(R3), (2.2)
R3
where
&(k):/ dx &5y (x) (2.3)
R3

Denotes the Fourier transform ¢f. We make use of the integral representation of the solutigh proven in [1]
(formula (2.20)).

N i N (1) ~ A
Y, k)y=¢€ ||k\2,¢m(k) + |kc|]2+k + fu @, K+ fa.(t,k), A>0, (2.4)
whereyo = pos. + q0G,
.)\’ t
A~ | .
fu@ k)= KB / ds e_"klz(’_s)q(s), (2.5)
0
t
for(t, k) =_m/dse*”k‘2<’*s>q(s). (2.6)
0
Therefore

- I T PP CilkPro 2 2k
Vil (1, k) = —2ikr €K7 g, (k) 4 €7k kaqsm(k)—mq(t)

+ Vi f1(t, K) + Vi fu (2, K). (2.7)

Let us study the r.h.s. of (2.7).
The first term is square integrable singg, belongs toH1(R3); the second term is square integrable as a
consequence of the definition of the moment of inertia. The third term is obviousK(iR®).
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Taking the gradient of 1, (z, k) and of /2, (7, k) we have

t t
A 2ixk ile120r_ —ilkI2(—
kalx(t,k)=—m/dse k=g (s) + |k|2+A/d5e K= (1 — 5)q (s), (2.8)
0 0
t t
R 2k i . 2ik ilKI2(r—s .
kazx(f,k)=m/dse_llk‘2(t_s)cﬂs)+ |k|2+A/dse kI (1t —$)4(s). (2.9)
0 0

Recalling that bothfy, (r) and f2,.(r) belong to HX(R3) and (r — -)g € H**(0, T) (for the proof see [1],
Theorem 6), from (2.8) and (2.9) we conclude tRatf1, (r) and Vi fo, () are both square integrable.

Indeed, the most singular term is the second one in the r.h.s. of (2.9). Following the analysis performed in [1]
(Formulas (2.25) and (2.26)), we can conclude that this term belong&R?®). O

We proceed with the analysis 6ty (¢)), which in the sequel will be simply denoted by), as a function of.
Concerning the first derivative df(¢), we have the following result:

Proposition 4. Given Yo € V with Ip = [padX [Xyo(X)|?, the function(t) = [ps|Xy¥(t,X)|? belongs to
ci([0, 7*)) and

i(t)=§13|mfdk¢(z,k)k-vk1&(t,k). (2.10)
R3

Proof. First we note that the integral in the r.h.s. of (2.10) is finite.
Givent € [0, T*), we introduce a regularized version of the moment of inertia:

1 A 2 2
L(t) = ——— | dk|Vi 9, k)| “e kI, 2.11
(0= s [ AT (2.12)
R3
We preliminarly observe that, from monotone convergence theorem, one has
I(t) =Ilim I.(¢). (2.12)
e—0

Now we compute the time derivative &f.
Applying repeatedly the estimates

4
kP _ itk | g2y 4 KM (2.13)
>
. . 4,2
‘(t+h)e—l|k\2(t+h)_te—l|k\2[| gh(1+|k|2)+|k|#’ (214)
one shows that (see (2.7), (2.8), (2.9))
1, -« R
Z\ka(r+h,k>—vw(r,k>|
2 4 I 2 1 4 i 2|k|
S IKI[2(L+ 1KI%) + 1K1 %At ] [ @or. GO + { 1KIZ + S IKI |vk¢m(k)\+m||q||mo(o,,)
200+ DIKI[ 2+ 2|k [% + [K[*A > 1.4
2+ K12+ Z1k|%h : 2.15
KT Ko T2tk Sk (gl (2.15)

From (2.15) and the inequality
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1 A R
Vil @+ O = Vi . k[
1 A n A A
< Vil 4+ kO = Vil (| ([9iy (¢ + A O]+ [Vicy (1K) (2.16)

we find that%‘kz‘”nvkiﬁ(t + 1, K)[2 — |V (7, k) |?] is estimated by ai! function independent of. Hence
one obtains

. 1 A —
) =7 Re/ dk e ®*e v 0 (2, K) - 8, Vi (1, K). (2.17)
TT
R3
Since
3 Vi (1, K) = —2ikyjr (1, k) — ik [*Vieyr (1, k), (2.18)
one has
. 1 R —
I.(t) = 53 Im/dk D (1, KOk - Viewr (¢, k) e K% (2.19)
T
R3
To prove (2.10) we now remove the regularizing factor.
From
ek =it k) + 20 (2.20)
k|2 + A
with ¢, (1) € HL(R3), we have
R — k =
where we have introduced the notation
8,.(1,K) = s (¢, KK - Vieyr (¢ k)_2|7k|2| (t)\z (2.22)
sz, (T k , (KIZ+ )3 q . .
From the Cauchy—Schwartz inequality, it follows that
2 |k
‘ /dk &n(t, k)‘ < Cillallcogo,i; HA(R3)) + 2||qllco([o,t])/dk K2+ 13 (2.23)
R3 R3

Moreover, for any € [0, t] we have

< llgllcogo,iy

Kk — k "
[ ooz mde e Jaesw (jez e bew))
R3 R3

. k
/dkm(s, k) Vi - <|k|2+)\e_|k2£)" (2.24)
R3

Using divergence theorem one easily shows that the first term is zero. The modulus of the second term in the r.h.s.
of (2.24) gives

— 3— 2¢]k|? 2|k|?
dk t,ke'“g[ -
‘/3 (1) KP+24 (K2 +2)2
R

+ llgllcogo,iy
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1/2 4 1/2
1 K|

< Call#nll coo.11: L2R3)) dkm + Calldallcoqo,n; L2wr3)) dkm

R3 R3

1/2

+ Csllallcoq0.11: 2R3 sZ/dke‘k'ZSL / : (2.25)
([0,¢]; L=(R*)) i (|k|2+)\)2

R

In order to obtain an estimate independent &r the last term in the r.h.s. of (2.25), we observe that

/dk o lkize / dk e-lkPe _ ( )3/2 (2.26)
|k|2-|-)»)2 .

WhICh shows that the last term in (2.25) can be made arbitrarily small.
Now, we note that

t
1(t) = Iim0<18(1//0) + / dsfg(s))

0
t

=1+ |im0/ds/dke*'k‘2€1/}(t,k)k-vkl/}(t,k). (2.27)
£~
0 R3

From (2.23), (2.25) and (2.26) we get an estimaté afniform with respect ta ande.
Then, by the dominated convergence theorem we can interchange the i with the integration. This
concludes the proof of Proposition 40

3. Second derivative of the moment of inertia

For the computation of the second derivative of the moment of inertia we proceed in two steps: we first prove
the result for regular data and then we extend it to data in the space of finite 8hergy

Proposition 5. Given the initial datumyg = ¢o;. + goGy., With ¢g, € S(R3), then the moment of inertia of the
solutiony (1) associated tajo, is an element o€ 2(0, T*) and

I(1) = 8E (o) +4y—!q<r)\2"+2 (3.1)

Proof. As a first step, we shall compute the second derivative of the regularized moment of ip@itiavith
t €[0,T*). Letus choos& suchthat < T < T*.
From Proposition 2.10 and applying the dominated convergence theorem, one concludes

. 1 ~ ~ A ~
=55 Im/dk e RPek . [0, (1. )V (1. K) + P (1. KB VI (1. K) | (3.2)
T
R3

1 ~— 1
=—Req(t)/dke*‘k'%k-w(z,k)+—/dke*‘k'2€|k|2|w(z,k)|2. (3.3)

2n3 3

R3 R3
Let us analyze the first term in the r.h.s. of (3.3). Using the divergence theorem we obtain

/dke"k‘zsk-Vx/}(t,k):/dke“k|2£(—3+2|k|28)1ﬁ(t,k) (3.4)

R3 R3
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while for the second term we have

/dl<e*'k‘2€|k|2|1/7<r,k)|2

/dke ke 112| bz, k) [ +2Req(t)/dke ket k) — |q ()| /dk

Using Egs. (3.4), (3.5) in Eq. (3.3) we have

1
ILt)=— /dke Iki%e k|2 b, k) +53 Req(t)/dke K% (£, k)
R3 R3
+ < Re/ ok e K% k|2 1, k) — g2
v
R3
An explicit computation gives

3/2 NG

dk 1//A t,k e7|k\25 =J:(t)+ 27'[3/ —(t) ,
3/2

3/261( ) n W‘N)

) 2 lke _: d
/dkl//([,k)|k| € _|dth(t)+2| NG

R3
where

t
_g 3 532 /T q(s) 32 90
Je(t) = 873(U () ¥0: ) (0) — 27/2V/—i 0/ ds ——— Narear — 2732/ —i——— N

and

Yo (X) = (271)_3/dk oK) o IkI%e g=ikx_
R3
From (3.6), (3.7) and (3.8) we have

1 _
L(1) = —fdk|k|2|¢(r o[>k’ 4 53 Ra( 0]
R3
—ng
220 mfgmam] - 5 Im[q(w?(r)]
=)+ D)+ Al 4+ (V).
In order to estimate the functiaf, let us recall that, for any > 0

ikl —k|2e| 2 q0
7 3[U (1) 10 (0) = f dk eIk eIk [¢0x(k)+7|k|2+ J

R3

o0
i kI2e 2 21324
— [ dke TP e kI 3o (k) + —4ma /dk
/3 dox (K) m roo
R

IkI2 '

—ik2t e—kzs

k242

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
(3.12)

(3.13)
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Therefore
2713/2|qo
(€2 + 12)1/4

From (3.14) one easily finds the following estimates

873|[U () %0] (0] < lldonll L2me) + +2m2V/alq0l.

2lqol

NG
873|[U (1)0](0)| < ol 23y + 272/ Ig0l + 2773/2%.

873|[U (1) ¥0] (0| < ol L1gs) + 272V AIqol + 27¥

Recalling definition (3.9), from (3.15) and (3.16) one finally has

t

[ < lldorl L1rs) + 272V Aol +4n3/2|‘1_\/0;| + 2n3/2/ds

Ol _ o,

— S

3/2

A 2
[T ()] < g0l 2 r3) + 27V A g0l + 7

We note that the functioh; defined in (3.17) is integrable i@, 7).
Let us consider the equality

(2lgol + 1141l 10, 7y) = h2(0).

t N

I.(1) = I.(0) + I.(0)t + / ds / ds' I, (s"),
0

0

where, following Theorem 4

[:(0)= i'm/dk Jo(kk - Viro(k) ek,
2n3
R3

129

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

We want to take the limit — 0 in Eq. (3.19). The only delicate term is the last one, whigtis given by (3.12).

Applying the monotone convergence theorem, one obtains
![}no(l) = 8“ Vo (S/) || L2(R3)"

Concerningll), we have
1 13 N
. R ’ —/ /
SlanO(II)_ znzglinO/ds/ds Re[q(s")Je(sh].
0 0
From estimate (3.17)

lg(s") e (s"| < llgll = (0,r)h1(s")

and by dominated convergence theorem we obtain

t

H 1 r / N /
lim (1) = ﬁ/ds/ds Re[q(s") Jo(s)].
0 0

(3.21)

(3.22)

(3.23)

(3.24)
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Applying the operatoD, defined by(Dg)(r) = & fo ds %L to both sides of Eq. (1.9), we get

£,
t
O/ds j% + % — 432 (Us(t)0) (0) = —4ﬁn3/2y\q(t)]2“q(t) (3.25)
and hence
Jo() = 8%y [g ()| 4 (1), (3.26)
thus
t s
lim (1) = 4y / ds / ds’|q(sH[*F2. (3.27)
0 0

It is easily seen that ligr,o(Ill) = 0, so we just compute lim, o(1V).
Integrating by parts, we obtain

t 1 1

(V)= —/ds Im[q(s)Je(s)] — —tlm[qo.lg(O)] - —/ds/dswm[mjg(s’)]
0 0 0
= (IVa) + (IVb) + (IVc). (3.28)
Using estimate (3.23) and applying the dominated convergence theorem, one findg(lvMa) = 0. Moreover
from estimate (3.18)

(IVb) < t@eshz(s) (3.29)

(IVe) < t”qonyi#shz(s). (3.30)

From (3.21), (3.27) and the definition of the energy we have
t
|Im /ds/ds A (s)—4t2E(1/fo)+4y—/ds/ds |q(s)|2wr2 (3.31)
0
and then from (3.19) we conclude

2cr+2

1(t) = 8E () +4y— lq ()] (3.32)

This concludes the proof of Proposition 50

In order to extend the above result to an arbitrary element in the space of finite énevgy introduce the
following sequence of-approximating regular functions:

m 3/2 2
5 (x) — <_) - (3.33)
T
and denote
g™ (k) = §0 (k) = e IKI/cAm) (3.34)

For anyg¢o;, € H1(R3) we consider the following approximating sequence:

¢(m) 8(m) ( (’")qm)+%g(’")(5('")*¢ox) (3.35)
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which takes the same form in Fourier space:

1 1 .
¢(m) (m) (5(m) % ¢0A) + 25(1") * ( (m)¢0k)- (3.36)

It is immediately seen thag},” belongs to the Schwarz spags}”’ — ¢o; in HX(R3) and [x|¢"” — [X|¢os in

L2(R3); moreover, from [1], Theorem 8, we know thﬁxY")(t) — ¢, (1) in HY(R3) and|x|¢>(’")(t) — |X|¢,. (1) in

L2(R3), which |mpI|es|x|¢A('")(t) — |X|¥(r) in L2(R3). Using the above approximating procedure we can prove
the following

Theorem 6. For any initial datumyg = ¢o; + oG, With ¢g, € H1(R3), the moment of inertia of the solution
¥ (1) associated tajo, is an element of 2(0, 7*) and

20+2 (337)

I(1) =8E (o) +4y—!q(r)\
Proof. Let ¢” be the sequence defined in (3.35). Let us dendte (1) = ¢\ (1) + ¢ (1)G;. the solution

associated to the initial datum()m) = ¢gf) + oG, and letl ™ (1) be the corresponding moment of inertia.
We first prove thaf ™ (0) and/ ™ (0) converge td (0) and (0) respectively.

Indeed
1 = 10 < [[ X166 |7 229, = 11603 22|
(m) 2
+ %Wd /dk (Vk¢ (k) — Vo (K)) - K+ 12| (3.38)
R3

Due to the convergence of the approximating sequence and the Cauchy—Schwarz inequality W& @wve>
1(0) form — 0.
Concerning/ ™ (0), from Formula (2.10), we have

|1™(0) — 1(0)| <

dk 47 (K - Vil (k) — f dk%(k)k-vkém(k)‘

R?’ R3
|q0] / k 2 (m) 2
—| | dk Ay k)—V k
+53 K2+ [V, (K) — Vigoa (k)]
R3
|0l KPP oo .
+ 90 [ ks 967 0 — dou )] (339)
R3
= (V) + (VI) + (VII). (3.40)
From the convergence of the approximating sequence it follows
(V) < 4/(Vos, x¢o) L2@3) — (Véor, XPon) 2gs)| — 0 form — oo. (3.41)
Moreover integrating by parts one obtains
90l / KI? 432 | 2y A
V)< —=| | dk——= k) — k
(V1) 53 (KIZ+ )2 (¢> (k) — por (k)
R3

< Hqol M1 Va5 — Vo[ 2zs). (3.42)
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where we applied the Cauchy—Schwarz inequality and we defined

2 (k| + 31)2
M= | i 1 (349

For the last term in (3.40) we have
(VI) < 8lq0l M2 g — o | 23, (3.44)
where we applied the Cauchy—Schwarz inequality and we denoted

MzzfolkL (3.45)
2= K2+t '
R

Taking the limitm — oo in both sides of the equality
1 t s
106y = 1 (0) + 11 (0) + 42E (y{™) + 4y —— :L 1 / ds / ds’|¢ " (sH| 2 (3.46)
o2
0 0

and using (3.41), (3.42), (3.44), we obtain

t s

) -1
1(t) = 1(0) +¢1(0) + 4¢2 lim E(w((;"))+4y”— lim /ds/ds’|q<’">(s’)|2"+2. (3.47)
m— 0o o+ 1m—oo
0 0

Since the energy functional is continuouslinandq ™ converges tg in H34(0, T) and therefore irC°(0, T)
(see [1]), we finally obtain

t N

I(t):1(0)+ri(0)+4t2E(wo)+4yZ—;1 ds / ds'|q(s") 7" 2 (3.48)
0 0

which implies

. —1 .
i(t) = 8E (o) + 4yZ—+1 () |Z 2 (3.49)

This concludes the proof of Theorem 60

4. Sufficient condition for the blow-up

Using Theorem 6 and a modified version of the uncertainty principle, we can now state the result on the existence
of blow-up solutions.

Theorem 7.Lety <0, 0 > 1 andvo = ¢ + q0G ., With ¢, € HE(R3), |X|vo € L2(R3), E(¥) < 0.
Then the corresponding solutiain(z) is a blow-up solution for both > 0 andr < 0.

Proof. Using the identity

2 N
lg122 s = —5 Re f dx 200X - Vg (x) (4.)
R3



R. Adami et al. / Ann. |. H. Poincaré — AN 21 (2004) 121-137 133

for g € L2(R3), gx- Vg € L1(R3), the conservation of the2-norm and Schwartz inequality we have

190220, = [V O} 2z,

2 _ 2 -
< 5‘/dX¢(T,X)X-V¢A(I,X) +é’q(t)"/dxw(t7X)X'VG)L(X)
R3 A

2 2
<SO) V)| yogs, + =|a D[ WD) | L2s IX - VGl 2me)
3 R "3 (R?)

2 4
= S(0)* V00 29, + 3A—¢17_4 la )| I1¥oll 2z, ( /

1/2
dr(1+ r)ze”)
0

2 257
= SU0) 2|V 25, + Sz [0 1ol 2es) (4.2)

From the definition ofp; and¢, one has

14+ e VAXI(/2]x| — 1)

\% =V 4.
., X) =V (t,X) +q(t) pE: (4.3)
Therefore
[ V010 2053, < 2| VOO 5 23 + 2/AMs|g ()], (4.4)
where
1 [d
M3z=— / —77[1+ e‘ﬁ”(n - 1)]2. (4.5)
4 n
0
From (4.2) and the definition of the energy
16 [y - 407
1ol 72, < 310)[15(1//0) + GLH|q(r>|z 2, «/XM3|q(t)|2} T 100122 gs)- (4.6)

Let us consider the evolution for> 0.

From Theorem 6 we know that either the solution ceases to exist at &'tirsach that supq 7+ [1(1)| > 0 or
there existy, < oo such that lim_, 7, I(t) =0.

In the former case the blow-up alternative guarantees the occurrence of the blow-up. In the latter case assume
that there is no blow-up if0, 7], i.e., |¢ (¢)| remains bounded ifD, 7,]. Then, givem. > 0, from (4.6), we have:

24/5m

||1/f0||i2(R3) < W||¢0||L2(R3)||C]||L°°(0,TC)' (4.7)

The r.h.s. of (4.7) can be made arbitrarily small choogimsgitably large, so we get a contradiction. Therefore the
solution blows up if0, 7.] and in particulafd, = T*.
The same argument can be repeated for the backward problem and this concludes the proof of Thearem 7.

5. Additional symmetries in the critical cases = 1

From Theorem 7 and from [1], Theorem 12, we know that 1 is the lowest power for which the system
exhibits blow-up solutions.
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For the convenience of the reader we rewrite Eq. (1.9yfer1

t
Iq(s)l %q(s) . [U (s)¥0](0)
qt) +4vr yof 7@ _4\/m0/d57m ) (5.1)

Following the literature on the standard nonlinear Schrédinger equation (see, e.g., [5,6] and references therein), we
shall call the case witlhr = 1 the critical case for the Schrédinger equation with a nonlinearity concentrated in a
point.

In this section we shall go deeper in the analogy with the standard NLSE showing that additional symmetries
are shared by the critical cases.

In particular we show that the system is endowed with the dilation and gauge symmetries, which, put together,
give the pseudo-conformal invariance law.

Proposition 8. Let us considery (), solution to the problen(il.5), (5.1) associated to the initial datumg in the
domain of finite energy .
Then,

(1) ¥e(t,x) =32y (e, ex) is the solution associated to the initial datupj (x) = e3/2yo(eX).

- xi2
) v .0 =(F¥? d 4(t+T> ¥ (57, 257) is the solution associated to the inital datuhj (x) = &9 Yo (X).

Proof. We start with the dilation symmetry. We first recall that the free Schrddinger evolution is endowed with
such a symmetry. Then, we only discuss the second term in (1.5).
After rescaling the variable, it is immediately seen that

/d [U(S)I//o 0) _f/d [U(S)I/fo](o)‘ (5.2)

Vet —s

Therefore from (5.1) we have

&2t

t
o I(J(S)I 2q() = [U(5)Y51(0)

whereg solves (5.1) for the initial datunfo. We now defing;®(r) = /eq(¢%t) and, after rescaling the variable
in the integral term in the L.h.s. of (5.3), we find thgtsolves (5.1) for the initial datun.
Recalling that

s ,
U<t et x) e3U (et — 5'; eX) (5.4)
we conclude
&2t
/ ds U(r — 53 X)g°(s) = /2 / ds’ U(82t —s";eX)q(s") (5.5)

which completes the proof of point (1).
The gauge symmetry is proven along the same line.
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We first consider Eq. (5.1). Since the free Schrédinger evolution fulfils gauge invariance, we have

Fwevdio T re \TY
0 —
/ds Vi—s  Vit+T / dS[U(SWO](O)(T +1 S) (5-6)
0 0

and, from (5.1)

\fq(t>+4/ /d |q<s)| q(s) _4J—/d U(S)t%](O) 5.7)
JE—s

where we defined = Tt /(T +1).
Introducing the functiog” defined as

g’ (1) = f;q(f) (5.8)

and using the change of variable= T's/(T — s) in the integral term in the I.h.s. of Eq. (5.7), we show thét
solves Eq. (5.1) for the initial datum .
Concerning the interaction term in formula (1.5) we notice that

Ts' T —s'\¥? . 2 Tt TX
Ulr——"—:x) = u ear y -5 : (5.9)
T —s' T+t T—i—t T+t
and then
t 3/2 ) Tt/(T+t)
T x| Tt TX
UG —s5:0q7 ) = () daim / ds'U o 5.10
/s( 5:X)q" (s) (TH) s T THq() (5.10)
0 0

which concludes the proof of Proposition 81

Corollary 9 (Pseudo-conformal invariancé)nder the same hypotheses of Proposiahe following symmetry
law holds if ¥ (¢, X) is the solution assolciated to the initial datufg(x), then
o ‘4(|;‘2,) 1 X
T
(t,X) = , 5.11

is the solution associated to the initial datum

giar 1 |x]
‘ﬂpco( )_ T3/2 1//<T T)

Proof. The pseudo-conformal transformation can be seen as the composition of a dilation with a gauge
transformation. Let us consider the initial datymo(x) = ¥ (T~1,x) and the corresponding solutian (¢, X) =

(T~ 41,%). Applying a dilation toy o with parametefl ~1, we obtainy,0(x) = T-%/?y/(T 1, T~1x). The
solution corresponding to the initial datug g is theny(t, x) = T~ 3/21,0(T*1 + T2, T~1x). Now, it suffices

to apply a gauge transformation with parameteff to v o to obtainy! ,, and to find that the corresponding

solution is given by .. O

pcO?
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6. A class of explicit blow-up solutions

Here we introduce a family of explicit blow-up solutions for Egs. (1.5), (5.1). We follow the analogous
contruction used for the standard NLSE (see, e.qg., [6]), i.e., the explicit solutions are obtained starting from a
family of stationary solutions and applying a pseudo-conformal transformation. In contrast with the standard case,
for our system it is possible to write explicitely the entire family of stationary solutions.

Definition 10. A solution of the system (1.5), (5.1) of the form

V£, ) =€ Y0, (X), weR, (6.1)
is called a stationary solution.

The family of stationary solutions is characterized in the following proposition.

Proposition 11.The entire family of stationary solutions for the probléhb), (5.1)is given by

I VL N N
o _ dn dot (62)
st VArly| 4r|X|

withneR,w >0,y <O0.

Proof. Since the evolution of the functianis given byg;, () = ei“”qo,st, the problem for the stationary solutions
reduces to

t
€905 = U)o, +iqost / ds€ U —s; -, (6.3)
0
7 gos A U 0
ei‘“’qo,st+4«/Hy|qo,szlzqo,szofdsm :4«/5([03%. (6.4)

We notice that problem (6.3), (6.4) corresponds to the equations for the bound states for the linear problem, with
a delta interaction whose strength equals y |qo s |°. For such a problem the family of bound states consists in
the one dimensional linear space (see, e.g., [4])

e47roc|X|

Vi (£, X) = N &' a <0, w=167%2, N eC. (6.5)

4 (x|’
In the nonlinear framework we have the additional conditiog y|qo,s,|2 which, put together with the relation
qo.st = N, gives

o4 e Volx
VArly] 4m|x|

The uniqueness of the family of stationary solutions follows from the uniqueness of the family for the
corresponding linear problem.o

Ve (1, X) = € (6.6)

Remark 12.The same proof holds also for arbitraryIn that case, the entire family of stationary solution is given
by

\/5 i|1/(2f7) e Volxi

, 0. 6.7
47 |X] ~ 6.7

_ Aot
Ysr(£,X) =€ |:4rr|y|
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Remark 13. The stationary solutions exhibited in Proposition 11 have the dafmeorm and the same energy. In
fact,

[ 2ge) = (3272171) (6.8)

E[y"°n)]=0. (6.9)

Applying the pseudo-conformal transformation to the family of stationary solutions exhibited in Proposition 11,
we obtain the following result, whose proof is trivial.

Theorem 14.The following family of function&Z’c“”T consists of blow-up solutions for the probl¢in5), (5.1)

wl/4 e VOXI[(T=1)

Z’Cw’T(t’X)Z(sné%\/W%mm (6.10)
Remark 15. The solutions given in Theorem 14 satisfy

[V O ogsy = (32771 (6.11)

E[y>T 0] =0. (6.12)

Therefore these blow-up solutions do not fulfil the hypotheses of Theorem 7. Indeed they only blow-up in one
direction of time.

Notice that the quantity3272|y|)~1 is the minimal norm that a solution must possess in order to blow-up
(see [1], Remark 4).

Remark 16. All the explicit blow-up solutions exhibited in Theorem 11 have the same blow-up rate. We observe
that, in general, the characterization of the possible blow-up rates is an open problem.

Remark 17.1t is also possible to prove the existence of solutions ifmorm larger than (6.11) which blow up
only in one direction of time. Indeed, we start from a solut®() whose interval of existence (s- Ty, T*), with
both T, andT* finite.

Now, we apply to the initial datun¥p a gauge transformation with paramelgrwhere O< T < T*, obtaining
the functionZ] . Itis then immediately seen that the interval of existence for the sol@&ibo@) associated t&]
is given by(—T, T /(T + Ty), +00).
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