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Abstract

We present some results on the blow-up phenomenon for the Schrödinger equation in dimension three with a nonli
supported in a fixed point. We find sufficient conditions for the blow-up exploiting the moment of inertia of the solutio
the uncertainty principle. In the critical case, we discuss the additional symmetries of the equation and construct a
explicit blow-up solutions.

Résumé

On présente des résultats sur le phénomène de l’explosion pour l’équation de Schrödinger en trois dimensions ave
nonlinéaire concentré en un point fixé. On trouve des conditions suffisantes pour l’explosion en utilisant le moment
de la solution et le principe d’indétermination. Dans le cas critique, on met en évidence l’existence de quelques s
supplémentaires et l’on construit une famille de solutions explosives explicites.
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1. Introduction

In this paper we study the Schrödinger equation in dimension three with a nonlinearity concentrated in
point.

The analysis of the nonlinearity concentrated inn fixed points was first approached in [2] and [3], in the o
dimensional case, while, in the three-dimensional case, results on local and global existence of the solut
given in [1].

Here we shall go further in the analysis considering the problem of the blow-up in the simpler cas
nonlinearity located at the origin. The peculiar feature of this class of nonlinear equations is the fact th
can be reduced to nonlinear Volterra integral equations involving only the time variable and this consi
simplifies the analysis.

As in the linear case ([4]), the equation in dimension three is more singular than the corresponding equ
dimension one. In particular the space of finite energy is strictly larger than the Sobolev spaceH 1(R3). Therefore
the usual techniques employed for the analysis of the standard NLSE, such as Sobolev inequalities and un
principle (see, e.g., [5–9,11]), cannot be directly applied to the problem treated here.

For the convenience of the reader we recall the position of the evolution problem starting from the linea
LetHα , α ∈ R, be the Schrödinger operator inL2(R3) with a point interaction of strengthα placed at the origin

It is well known (see, e.g., [4]) that domain and action ofHα are given by

D(Hα) = {
u ∈ L2(

R
3) | u = φ + qG0, φ ∈ H 2

loc

(
R

3), ∇φ ∈ L2(
R

3), φ ∈ L2(
R

3), q ∈ C,

lim
x→0

(
u(x)− qG0(x)

)= αq
}
, (1.1)

Hαu = −φ, (1.2)

whereGλ denotes the Green function

Gλ(x − x′) = (−+ λ)−1(x − x′) = e−√
λ|x−x′|

4π |x − x′| , λ � 0. (1.3)

For a given smooth real functionα(t), t ∈ R, the solution of the linear nonautonomous evolution problem

i
∂ψ

∂t
= Hα(t)ψ, ψ|t=0 = ψ0 (1.4)

can be written in the form (see, e.g., [10])

ψ(t,x) = [
U(t)ψ0

]
(x)+ i

t∫
0

ds U(t − s;x)q(s), (1.5)

where

q(t)+ 4
√
π i

t∫
0

ds
α(s)q(s)√

t − s
= 4

√
π i

t∫
0

ds
[U(s)ψ0](0)√

t − s
(1.6)

andU(t) is the free unitary group with integral kernel

U(t,x − x′) = ei |x−x′|2
4t

(4π it)3/2
. (1.7)

Our nonlinear evolution problem is then defined by taking the strength of the interactionα(t) as a function of
the solution itself. Notice that this corresponds to impose a nonlinear boundary condition at the origin (w
to [1] for details). We fix

α(z) = γ zσ , z = ∣∣q(t)∣∣2, γ ∈ R, σ ∈ R
+. (1.8)
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With this choice the nonlinear evolution problem is defined by (1.5) whereq(t) is the solution of the nonlinea
Volterra equation

q(t)+ 4
√
π iγ

t∫
0

ds
|q(s)|2σq(s)√

t − s
= 4

√
π i

t∫
0

ds
[U(s)ψ0](0)√

t − s
. (1.9)

In [1] local existence and uniqueness of the solution of problem (1.5), (1.9) were proven in the spaceV , defined
as

V = {
ψ ∈ L2(

R
3), ψ = φ + qG0, φ ∈ H 1

loc

(
R

3), q ∈ C, ∇φ ∈ L2(
R

3)} (1.10)

= {
ψ ∈ L2(

R
3), ψ = φλ + qGλ, φλ ∈ H 1(

R
3), q ∈ C, λ > 0

}
. (1.11)

Moreover, theL2-norm (usually called the mass), and the energy of the solutionψ(t) = φ(t) + q(t)G0

E
(
ψ(t)

)= ∥∥∇φ(t)
∥∥2
L2(R3)

+ γ

σ + 1

∣∣q(t)∣∣2σ+2 (1.12)

are conserved.
Notice that the spaceV of finite energy is strictly larger thanH 1(R3) and this is the origin of some technic

difficulties (see [1]).
From the conservation laws of mass and energy, we managed to prove the following result of global ex

Theorem 1.For any initial datumψ0 ∈ V , the solution of problem(1.5), (1.9)is global in time if eitherγ > 0 or
σ < 1.

The problem of blow-up arises when the hypotheses of Theorem 1 are not fulfilled. Therefore, from n
we shall always considerγ < 0 and σ� 1. Moreover, we shall denote withImax = (−T∗, T ∗) the maximal time
interval of existence of the solution.

The notion of blow-up for this kind of problems is naturally set looking at Eq. (1.9).

Definition 2. Given the initial datumψ0 ∈ V , the corresponding solutionψ(t) = φ(t)+q(t)G0 is called ablow-up
solutionif there exists a finiteTc such that

lim sup
t→Tc

∣∣q(t)∣∣= ∞. (1.13)

Using the conservation of the energy, one sees that the above definition is equivalent to the condition

lim sup
t→Tc

∥∥∇φ(t)
∥∥
L2(R3)

= ∞. (1.14)

It is easily seen that the following blow-up alternative holds:ψ(t) is a blow-up solution if and only if it is not a
global solution. Moreover, ifT ∗ is finite, thenTc = T ∗, whereas ifT∗ is finite, thenTc = −T∗.

In the former case, we will say that the blow-up occurs forward in time, while in the latter we will say t
occurs backward in time.

The rest of the paper is organized as follows.
In Section 2 we introduce the moment of inertia and we compute its first derivative.
In Section 3 we find an expression for the second time derivative of the moment of inertia using an approx

procedure.
In Section 4, exploiting the second derivative of the moment of inertia and a modified version of the unce

principle, we derive a sufficient condition on the initial datum to give rise to a blow-up solution.
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In Section 5 we restrict ourselves to the critical caseσ = 1 and show the pseudo-conformal invariance of
problem.

In Section 6, exploiting the pseudo-conformal invariance and the family of stationary solutions, we con
class of explicit blow-up solutions in the critical case.

2. The first derivative of the moment of inertia

Following the line of the proof in dimension one ([3]), we shall introduce the moment of inertia, defined

I (ψ) =
∫
R3

|x|2∣∣ψ(x)
∣∣2 dx. (2.1)

The first technical result is given in the following lemma.

Lemma 3. If the moment of inertia of the initial datumψ0 is finite, then the associated solutionψ(t) has a finite
moment of inertia at any time of existence.

Proof. The moment of inertia of a functionψ can be written as

I (ψ) = 1

(2π)3

∫
R3

∣∣∇kψ̂(k)
∣∣2 dk, ψ ∈ L2(

R
3), (2.2)

where

ψ̂(k) =
∫
R3

dx eik·xψ(x) (2.3)

Denotes the Fourier transform ofψ . We make use of the integral representation of the solutionψ(t) proven in [1]
(formula (2.20)).

ψ̂(t,k) = e−i|k|2t φ̂0λ(k)+ q(t)

|k|2 + λ
+ f̂1λ(t,k)+ f̂2λ(t,k), λ > 0, (2.4)

whereψ0 = φ0λ + q0Gλ

f̂1λ(t,k) = iλ

|k|2 + λ

t∫
0

ds e−i|k|2(t−s)q(s), (2.5)

f̂2λ(t,k) = − 1

|k|2 + λ

t∫
0

ds e−i|k|2(t−s)q̇(s). (2.6)

Therefore

∇kψ̂(t,k) = −2ikt e−i|k|2t φ̂0λ(k)+ e−i|k|2t∇k φ̂0λ(k)− 2k
(|k|2 + λ)2

q(t)

+ ∇k f̂1λ(t,k)+ ∇k f̂2λ(t,k). (2.7)

Let us study the r.h.s. of (2.7).
The first term is square integrable sinceφ0λ belongs toH 1(R3); the second term is square integrable a

consequence of the definition of the moment of inertia. The third term is obviously inL2(R3).
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Taking the gradient off̂1λ(t,k) and off̂2λ(t,k) we have

∇k f̂1λ(t,k) = − 2iλk
(|k|2 + λ)2

t∫
0

ds e−i|k|2(t−s)q(s)+ 2kλ
|k|2 + λ

t∫
0

ds e−i|k|2(t−s)(t − s)q(s), (2.8)

∇k f̂2λ(t,k) = 2k
(|k|2 + λ)2

t∫
0

ds e−i|k|2(t−s)q̇(s)+ 2ik
|k|2 + λ

t∫
0

ds e−i|k|2(t−s)(t − s)q̇(s). (2.9)

Recalling that bothf1λ(t) and f2λ(t) belong toH 1(R3) and (t − ·)q ∈ H 3/4(0, T ) (for the proof see [1]
Theorem 6), from (2.8) and (2.9) we conclude that∇k f̂1λ(t) and∇k f̂2λ(t) are both square integrable.

Indeed, the most singular term is the second one in the r.h.s. of (2.9). Following the analysis performe
(Formulas (2.25) and (2.26)), we can conclude that this term belongs toL2(R3). ✷

We proceed with the analysis ofI (ψ(t)), which in the sequel will be simply denoted byI (t), as a function oft .
Concerning the first derivative ofI (t), we have the following result:

Proposition 4. Given ψ0 ∈ V with I0 = ∫
R3 dx |xψ0(x)|2, the function I (t) = ∫

R3 |xψ(t,x)|2 belongs to
C1([0, T ∗)) and

İ (t) = 1

2π3
Im
∫
R3

dk ψ̂(t,k)k · ∇kψ̂(t,k). (2.10)

Proof. First we note that the integral in the r.h.s. of (2.10) is finite.
Givent ∈ [0, T ∗), we introduce a regularized version of the moment of inertia:

Iε(t) = 1

(2π)3

∫
R3

dk
∣∣∇k ψ̂(t,k)

∣∣2 e−|k|2ε. (2.11)

We preliminarly observe that, from monotone convergence theorem, one has

I (t) = lim
ε→0

Iε(t). (2.12)

Now we compute the time derivative ofIε .
Applying repeatedly the estimates

∣∣e−i|k|2(t+h) − e−i|k|2t ∣∣� |k|2h+ |k|4h
2

, (2.13)

∣∣(t + h)e−i|k|2(t+h) − t e−i|k|2t ∣∣� h
(
1+ |k|2)+ |k|4h2t

2
, (2.14)

one shows that (see (2.7), (2.8), (2.9))

1

h

∣∣∇kψ̂(t + h,k)− ∇kψ̂(t,k)
∣∣

� |k|[2(1+ |k|2)+ |k|4ht]∣∣φ̂0λ(k)
∣∣+(

|k|2 + 1

2
|k|4h

)∣∣∇k φ̂0λ(k)
∣∣+ 2|k|

(|k|2 + λ)2
‖q‖L∞(0,t )

+ 2(λ+ 1)|k|
|k|2 + λ

[
2+ 2|k|2 + |k|4h

|k|2 + λ
+ 2+ |k|2 + 1

2
|k|4ht

]
‖q‖W1,1(0,t ). (2.15)

From (2.15) and the inequality



126 R. Adami et al. / Ann. I. H. Poincaré – AN 21 (2004) 121–137

the r.h.s.
1

h

∣∣∣∣∇kψ̂(t + h,k)
∣∣2 − ∣∣∇kψ̂(t,k)

∣∣2∣∣
� 1

h

∣∣∇kψ̂(t + h,k)− ∇kψ̂(t,k)
∣∣(∣∣∇kψ̂(t + h,k)

∣∣+ ∣∣∇kψ̂(t,k)
∣∣) (2.16)

we find thatexp(−|k2|ε)
h

||∇kψ̂(t + h,k)|2 − |∇kψ̂(t,k)|2| is estimated by anL1 function independent ofh. Hence
one obtains

İε(t) = 1

4π3 Re
∫
R3

dk e−|k|2ε∇kψ̂(t,k) · ∂t∇kψ̂(t,k). (2.17)

Since

∂t∇kψ̂(t,k) = −2ikψ̂(t,k)− i|k|2∇kψ̂(t,k), (2.18)

one has

İε(t) = 1

2π3 Im
∫
R3

dk ψ̂(t,k)k · ∇kψ̂(t,k)e−|k|2ε. (2.19)

To prove (2.10) we now remove the regularizing factor.
From

ψ̂(t,k) = φ̂λ(t,k)+ q(t)

|k|2 + λ
(2.20)

with φλ(t) ∈ H 1(R3), we have

ψ̂(t,k)k · ∇kψ̂(t,k) = ĝλ(t,k)+ q(t)
k

|k|2 + λ
· ∇k φ̂λ(t,k), (2.21)

where we have introduced the notation

ĝλ(t,k) = φ̂λ(t,k)k · ∇kψ̂(t,k)− 2|k|2
(|k|2 + λ)3

∣∣q(t)∣∣2. (2.22)

From the Cauchy–Schwartz inequality, it follows that∣∣∣∣
∫
R3

dk gλ(t,k)

∣∣∣∣� C1‖φλ‖C0([0,t ];H1(R3)) + 2‖q‖2
C0([0,t ])

∫
R3

dk
|k|2

(|k|2 + λ)3
. (2.23)

Moreover, for anys ∈ [0, t] we have∣∣∣∣
∫
R3

dk q(t)
k

|k|2 + λ
· ∇k φ̂λ(s,k)e−|k|2ε

∣∣∣∣� ‖q‖C0([0,t ])
∣∣∣∣
∫
R3

dk ∇k ·
(

k
|k|2 + λ

e−|k|2εφ̂λ(s,k)
)∣∣∣∣

+ ‖q‖C0([0,t ])
∣∣∣∣
∫
R3

dk φ̂λ(s,k)∇k ·
(

k
|k|2 + λ

e−|k|2ε
)∣∣∣∣. (2.24)

Using divergence theorem one easily shows that the first term is zero. The modulus of the second term in
of (2.24) gives∣∣∣∣

∫
3

dk φ̂λ(t,k)e−|k|2ε
[

3− 2ε|k|2
|k|2 + λ

− 2|k|2
(|k|2 + λ)2

]∣∣∣∣

R
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t prove

e

� C3‖φλ‖C0([0,t ];L2(R3))

( ∫
R3

dk
1

(|k|2 + λ)2

)1/2

+ C4‖φλ‖C0([0,t ];L2(R3))

( ∫
R3

dk
|k|4

(|k|2 + λ)4

)1/2

+ C5‖φλ‖C0([0,t ];L2(R3))

(
ε2
∫
R3

dk e−|k|2ε |k|4
(|k|2 + λ)2

)1/2

. (2.25)

In order to obtain an estimate independent ofε for the last term in the r.h.s. of (2.25), we observe that∫
R3

dk e−|k|2ε |k|4
(|k|2 + λ)2

<

∫
R3

dk e−|k|2ε =
(

π

2ε

)3/2

(2.26)

which shows that the last term in (2.25) can be made arbitrarily small.
Now, we note that

I (t) = lim
ε→0

(
Iε(ψ0)+

t∫
0

dsİε(s)

)

= I0 + lim
ε→0

t∫
0

ds
∫
R3

dk e−|k|2εψ̂(t,k)k · ∇kψ̂(t,k). (2.27)

From (2.23), (2.25) and (2.26) we get an estimate ofİε uniform with respect tos andε.
Then, by the dominated convergence theorem we can interchange the limitε → 0 with the integration. This

concludes the proof of Proposition 4.✷

3. Second derivative of the moment of inertia

For the computation of the second derivative of the moment of inertia we proceed in two steps: we firs
the result for regular data and then we extend it to data in the space of finite energyV .

Proposition 5. Given the initial datumψ0 = φ0λ + q0Gλ, with φ0λ ∈ S(R3), then the moment of inertia of th
solutionψ(t) associated toψ0, is an element ofC2(0, T ∗) and

Ï (t) = 8E(ψ0) + 4γ
σ − 1

σ + 1

∣∣q(t)∣∣2σ+2
. (3.1)

Proof. As a first step, we shall compute the second derivative of the regularized moment of inertiaIε(t), with
t ∈ [0, T ∗). Let us chooseT such thatt < T < T ∗.

From Proposition 2.10 and applying the dominated convergence theorem, one concludes

Ïε(t) = 1

2π3 Im
∫
R3

dk e−|k|2εk · [∂t ψ̂(t,k)∇ψ̂(t,k)+ ψ̂(t,k)∂t∇ψ̂(t,k)
]

(3.2)

= 1

2π3 Req(t)
∫
R3

dk e−|k|2εk · ∇ψ̂(t,k)+ 1

π3

∫
R3

dk e−|k|2ε|k|2∣∣ψ(t,k)
∣∣2. (3.3)

Let us analyze the first term in the r.h.s. of (3.3). Using the divergence theorem we obtain∫
3

dk e−|k|2εk · ∇ψ̂(t,k) =
∫

3

dk e−|k|2ε(−3+ 2|k|2ε)ψ̂(t,k) (3.4)
R R
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while for the second term we have∫
R3

dk e−|k|2ε|k|2∣∣ψ̂(t,k)
∣∣2

=
∫
R3

dk e−|k|2ε|k|2∣∣φ̂(t,k)
∣∣2 + 2 Req(t)

∫
R3

dk e−|k|2εψ̂(t,k)− ∣∣q(t)∣∣2∫
R3

dk
e−|k|2ε

|k|2 . (3.5)

Using Eqs. (3.4), (3.5) in Eq. (3.3) we have

Ïε(t) = 1

π3

∫
R3

dk e−|k|2ε|k|2∣∣φ̂(t,k)
∣∣2 + 1

2π3
Req(t)

∫
R3

dk e−|k|2εψ̂(t,k)

+ ε

π3 Re
∫
R3

dk e−|k|2ε|k|2ψ̂(t,k)− 2

π3/2
√
ε

∣∣q(t)∣∣2. (3.6)

An explicit computation gives∫
R3

dk ψ̂(t,k)e−|k|2ε = Jε(t) + 2π3/2q(t)√
ε
, (3.7)

∫
R3

dk ψ̂(t,k)|k|2 e−|k|2ε = i
d

dt
Jε(t)+ 2iπ3/2 q̇(t)√

ε
+ π3/2

ε3/2 q(t), (3.8)

where

Jε(t) = 8π3(U(t)ψ0ε
)
(0)− 2π3/2

√−i

t∫
0

ds
q̇(s)√

t − s − iε
− 2π3/2

√−i
q0√
t − iε

(3.9)

and

ψ0ε(x) = (2π)−3
∫
R3

dk ψ̂0(k)e−|k|2ε e−ik·x. (3.10)

From (3.6), (3.7) and (3.8) we have

Ïε(t) = 1

π3

∫
R3

dk |k|2∣∣φ̂(t,k)
∣∣2 e−|k|2ε + 1

2π3 Re
[
q(t)Jε(t)

]

− 2

√
ε

π3/2
Im
[
q(t)q̇(t)

]− ε

π3
Im

[
q(t)

dJε
dt

(t)

]
(3.11)

≡ (I)+ (II) + (III )+ (IV). (3.12)

In order to estimate the functionJε, let us recall that, for anyλ > 0

8π3[U(t)ψ0
]
(0) =

∫
R3

dk e−i|k|2t e−|k|2ε
[
φ̂0λ(k) + q0

|k|2 + λ

]

=
∫

3

dk e−i|k|2t e−|k|2εφ̂0λ(k)+ 2π3/2q0√
ε + it

− 4πλq0

∞∫
dk

e−ik2t e−k2ε

k2 + λ
. (3.13)
R 0
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Therefore

8π3
∣∣[U(t)ψ0

]
(0)
∣∣� ‖φ̂0λ‖L1(R3) + 2π3/2|q0|

(ε2 + t2)1/4 + 2π2
√
λ|q0|. (3.14)

From (3.14) one easily finds the following estimates

8π3
∣∣[U(t)ψ0

]
(0)
∣∣� ‖φ̂0λ‖L1(R3) + 2π2

√
λ|q0| + 2π3/2 |q0|√

t
, (3.15)

8π3
∣∣[U(t)ψ0

]
(0)
∣∣� ‖φ̂0λ‖L1(R3) + 2π2

√
λ|q0| + 2π3/2 |q0|√

ε
. (3.16)

Recalling definition (3.9), from (3.15) and (3.16) one finally has

∣∣Jε(t)∣∣� ‖φ̂0λ‖L1(R3) + 2π2
√
λ|q0| + 4π3/2 |q0|√

t
+ 2π3/2

t∫
0

ds
|q̇(s)|√
t − s

≡ h1(t), (3.17)

∣∣Jε(t)∣∣� ‖φ̂0λ‖L1(R3) + 2π2
√
λ|q0| + 2π3/2

√
ε

(
2|q0| + ‖q̇‖L1(0,T )

)≡ h2(t). (3.18)

We note that the functionh1 defined in (3.17) is integrable in(0, T ).
Let us consider the equality

Iε(t) = Iε(0)+ İε(0)t +
t∫

0

ds

s∫
0

ds′Ïε(s′), (3.19)

where, following Theorem 4

İε(0)= 1

2π3 Im
∫
R3

dk ψ̂0(k)k · ∇kψ̂0(k)e−|k|2ε. (3.20)

We want to take the limitε → 0 in Eq. (3.19). The only delicate term is the last one, whereÏε is given by (3.12).
Applying the monotone convergence theorem, one obtains

lim
ε→0

(I) = 8
∥∥∇φ(s′)

∥∥
L2(R3)

. (3.21)

Concerning(II) , we have

lim
ε→0

(II) = 1

2π2 lim
ε→0

t∫
0

ds

s∫
0

ds′ Re
[
q(s′)Jε(s′)

]
. (3.22)

From estimate (3.17)∣∣q(s′)Jε(s′)
∣∣� ‖q‖L∞(0,T )h1(s

′) (3.23)

and by dominated convergence theorem we obtain

lim
ε→0

(II) = 1

2π2

t∫
ds

s∫
ds′ Re

[
q(s′)J0(s

′)
]
. (3.24)
0 0
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Applying the operatorD, defined by(Dg)(t) = d
dt

∫ t

0 ds g(s)√
t−s

, to both sides of Eq. (1.9), we get

t∫
0

ds
q̇(s)√
t − s

+ q0√
t

− 4
√

iπ3/2(U3(t)ψ0
)
(0)= −4

√
iπ3/2γ

∣∣q(t)∣∣2σ q(t) (3.25)

and hence

J0(t) = 8π3γ
∣∣q(t)∣∣2σ q(t), (3.26)

thus

lim
ε→0

(II) = 4γ

t∫
0

ds

s∫
0

ds′∣∣q(s′)
∣∣2σ+2

. (3.27)

It is easily seen that limε→0(III ) = 0, so we just compute limε→0(IV).
Integrating by parts, we obtain

(IV) = ε

π3

t∫
0

ds Im
[
q(s)Jε(s)

]− ε

π3
t Im

[
q0Jε(0)

]− ε

π3

t∫
0

ds

t∫
0

ds′ Im
[
q̇(s′)Jε(s′)

]
≡ (IVa)+ (IVb)+ (IVc). (3.28)

Using estimate (3.23) and applying the dominated convergence theorem, one finds limε→0(IVa) = 0. Moreover
from estimate (3.18)

(IVb) � t
|q0|
π3 εh2(ε), (3.29)

(IVc) � t
‖q0‖L1(0,T )

π3 εh2(ε). (3.30)

From (3.21), (3.27) and the definition of the energy we have

lim
ε→0

t∫
0

ds

s∫
0

ds′Ïε(s′) = 4t2E(ψ0)+ 4γ
σ − 1

σ + 1

t∫
0

ds

s∫
0

ds′∣∣q(s′)
∣∣2σ+2 (3.31)

and then from (3.19) we conclude

Ï (t) = 8E(ψ0) + 4γ
σ − 1

σ + 1

∣∣q(t)∣∣2σ+2
. (3.32)

This concludes the proof of Proposition 5.✷
In order to extend the above result to an arbitrary element in the space of finite energyV , we introduce the

following sequence ofδ-approximating regular functions:

δ(m)(x) =
(
m

π

)3/2

e−m|x|2 (3.33)

and denote

g(m)(k) = δ̂(m)(k) = e−|k|2/(4m). (3.34)

For anyφ0λ ∈ H 1(R3) we consider the following approximating sequence:

φ
(m)
0λ = 1

δ(m) ∗ (g(m)φ0λ
)+ 1

g(m)
(
δ(m) ∗ φ0λ

)
(3.35)
2 2
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ove

n

which takes the same form in Fourier space:

φ̂
(m)
0λ = 1

2
g(m)

(
δ(m) ∗ φ̂0λ

)+ 1

2
δ(m) ∗ (g(m)φ̂0λ

)
. (3.36)

It is immediately seen thatφ(m)
0λ belongs to the Schwarz space,φ

(m)
0λ → φ0λ in H 1(R3) and |x|φ(m)

0λ → |x|φ0λ in

L2(R3); moreover, from [1], Theorem 8, we know thatφ
(m)
λ (t) → φλ(t) in H 1(R3) and|x|φ(m)

λ (t) → |x|φλ(t) in

L2(R3), which implies|x|ψ(m)
λ (t) → |x|ψλ(t) in L2(R3). Using the above approximating procedure we can pr

the following

Theorem 6.For any initial datumψ0 = φ0λ + q0Gλ, with φ0λ ∈ H 1(R3), the moment of inertia of the solutio
ψ(t) associated toψ0, is an element ofC2(0, T ∗) and

Ï (t) = 8E(ψ0) + 4γ
σ − 1

σ + 1

∣∣q(t)∣∣2σ+2
. (3.37)

Proof. Let φ(m)
0λ be the sequence defined in (3.35). Let us denoteψ(m)(t) = φ

(m)
λ (t) + q(m)(t)Gλ the solution

associated to the initial datumψ(m)
0 = φ

(m)
0λ + q0Gλ, and letI (m)(t) be the corresponding moment of inertia.

We first prove thatI (m)(0) andİ (m)(0) converge toI (0) andİ (0) respectively.
Indeed∣∣I (m)(0)− I (0)

∣∣� ∣∣∥∥|x|φ(m)
0λ

∥∥2
L2(R3)

− ∥∥|x|φ0λ
∥∥2
L2(R3)

∣∣
+ 1

2π3 |q0|
∣∣∣∣
∫
R3

dk
(∇k φ̂

(m)
0λ (k) − ∇k φ̂0λ(k)

) · k
(|k|2 + λ)2

∣∣∣∣. (3.38)

Due to the convergence of the approximating sequence and the Cauchy–Schwarz inequality we haveI (m)(0) →
I (0) for m → ∞.

Concerningİ (m)(0), from Formula (2.10), we have

∣∣İ (m)(0)− İ (0)
∣∣� 1

2π3

∣∣∣∣
∫
R3

dk φ̂
(m)
0λ (k)k · ∇k φ̂

(m)
0λ (k)−

∫
R3

dk φ̂0λ(k)k · ∇k φ̂0λ(k)

∣∣∣∣
+ |q0|

2π3

∣∣∣∣
∫
R3

dk
k

|k|2 + λ
· [∇k φ̂

(m)
0λ (k) − ∇k φ̂0λ(k)

]∣∣∣∣
+ |q0|

π3

∣∣∣∣
∫
R3

dk
|k|2

(|k|2 + λ)2

[
φ̂
(m)
0λ (k)− φ̂0λ(k)

]∣∣∣∣ (3.39)

= (V)+ (VI )+ (VII ). (3.40)

From the convergence of the approximating sequence it follows

(V) � 4
∣∣(∇φ

(m)
0λ ,xφ(m)

0λ

)
L2(R3)

− (∇φ0λ,xφ0λ)L2(R3)

∣∣→ 0 form → ∞. (3.41)

Moreover integrating by parts one obtains

(VI) � |q0|
2π3

∣∣∣∣
∫
R3

dk
|k|2 + 3λ

(|k|2 + λ)2

∣∣∣∣(φ̂(m)
0λ (k)− φ̂0λ(k)

)

� 4|q0|M1
∥∥∇φ

(m) − ∇φ0λ
∥∥

2 3 , (3.42)
0λ L (R )
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xistence
where we applied the Cauchy–Schwarz inequality and we defined

M2
1 ≡

∫
R3

dk
(|k|2 + 3λ)2

|k|2(|k|2 + λ)4
. (3.43)

For the last term in (3.40) we have

(VII ) � 8|q0|M2
∥∥φ(m)

0λ − φ0λ
∥∥
L2(R3)

, (3.44)

where we applied the Cauchy–Schwarz inequality and we denoted

M2
2 ≡

∫
R3

dk
|k|4

(|k|2 + λ)4
. (3.45)

Taking the limitm → ∞ in both sides of the equality

I (m)(t) = I (m)(0)+ t İ (m)(0)+ 4t2E
(
ψ

(m)
0

)+ 4γ
σ − 1

σ + 1

t∫
0

ds

s∫
0

ds′∣∣q(m)(s′)
∣∣2σ+2 (3.46)

and using (3.41), (3.42), (3.44), we obtain

I (t) = I (0) + t İ (0)+ 4t2 lim
m→∞E

(
ψ

(m)
0

)+ 4γ
σ − 1

σ + 1
lim

m→∞

t∫
0

ds

s∫
0

ds′∣∣q(m)(s′)
∣∣2σ+2

. (3.47)

Since the energy functional is continuous inV andq(m) converges toq in H 3/4(0, T ) and therefore inC0(0, T )

(see [1]), we finally obtain

I (t) = I (0) + t İ (0)+ 4t2E(ψ0)+ 4γ
σ − 1

σ + 1

t∫
0

ds

s∫
0

ds′∣∣q(s′)
∣∣2σ+2 (3.48)

which implies

Ï (t) = 8E(ψ0) + 4γ
σ − 1

σ + 1

∣∣q(t)∣∣2σ+2
. (3.49)

This concludes the proof of Theorem 6.✷

4. Sufficient condition for the blow-up

Using Theorem 6 and a modified version of the uncertainty principle, we can now state the result on the e
of blow-up solutions.

Theorem 7.Let γ < 0, σ � 1 andψ0 = φ0λ + q0Gλ, with φ0λ ∈ H 1(R3), |x|ψ0 ∈ L2(R3), E(ψ0) < 0.
Then the corresponding solutionψ(t) is a blow-up solution for botht > 0 andt < 0.

Proof. Using the identity

‖g‖2
L2(R3)

= −2

3
Re
∫

3

dxg(x)x · ∇g(x) (4.1)
R
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m

for g ∈ L2(R3), gx · ∇g ∈ L1(R3), the conservation of theL2-norm and Schwartz inequality we have

‖ψ0‖2
L2(R3)

= ∥∥ψ(t)
∥∥2
L2(R3)

� 2

3

∣∣∣∣
∫
R3

dxψ(t,x)x · ∇φλ(t,x)

∣∣∣∣+ 2

3

∣∣q(t)∣∣∣∣∣∣
∫
R3

dxψ(t,x)x · ∇Gλ(x)

∣∣∣∣
� 2

3

(
I (t)

)1/2∥∥∇φλ(t)
∥∥
L2(R3)

+ 2

3

∣∣q(t)∣∣∥∥ψ(t)
∥∥
L2(R3)

‖x · ∇Gλ‖L2(R3)

= 2

3

(
I (t)

)1/2∥∥∇φλ(t)
∥∥
L2(R3)

+ 4
√
π

3λ1/4

∣∣q(t)∣∣‖ψ0‖L2(R3)

( ∞∫
0

dr(1+ r)2 e−2r

)1/2

≡ 2

3

(
I (t)

)1/2∥∥∇φλ(t)
∥∥
L2(R3)

+ 2
√

5π

3λ1/4

∣∣q(t)∣∣‖ψ0‖L2(R3). (4.2)

From the definition ofφλ andφ, one has

∇φλ(t,x) = ∇φ(t,x)+ q(t)
1+ e−√

λ|x|(
√
λ|x| − 1)

4π |x|2 . (4.3)

Therefore∥∥∇φλ(t)
∥∥2
L2(R3)

� 2
∥∥∇φ(t)

∥∥2
L2(R3)

+ 2
√
λM3

∣∣q(t)∣∣2, (4.4)

where

M3 ≡ 1

4π

∞∫
0

dη

η2

[
1+ e−√

λη(η − 1)
]2
. (4.5)

From (4.2) and the definition of the energy

‖ψ0‖4
L2(R3)

� 16

9
I (t)

[
E(ψ0)+ |γ |

σ + 1

∣∣q(t)∣∣2σ+2 + √
λM3

∣∣q(t)∣∣2]+ 40π

9
√
λ

‖ψ0‖2
L2(R3)

. (4.6)

Let us consider the evolution fort > 0.
From Theorem 6 we know that either the solution ceases to exist at a timeT ∗ such that supt∈[0,T ∗) |I (t)| > 0 or

there existsTc < ∞ such that limt→Tc I (t) = 0.
In the former case the blow-up alternative guarantees the occurrence of the blow-up. In the latter case

that there is no blow-up in[0, Tc], i.e., |q(t)| remains bounded in[0, Tc]. Then, givenλ > 0, from (4.6), we have:

‖ψ0‖2
L2(R3)

� 2
√

5π

3λ1/4 ‖ψ0‖L2(R3)‖q‖L∞(0,Tc). (4.7)

The r.h.s. of (4.7) can be made arbitrarily small choosingλ suitably large, so we get a contradiction. Therefore
solution blows up in[0, Tc] and in particularTc = T ∗.

The same argument can be repeated for the backward problem and this concludes the proof of Theore✷

5. Additional symmetries in the critical caseσ = 1

From Theorem 7 and from [1], Theorem 12, we know thatσ = 1 is the lowest power for which the syste
exhibits blow-up solutions.
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For the convenience of the reader we rewrite Eq. (1.9) forσ = 1

q(t)+ 4
√
π iγ

t∫
0

ds
|q(s)|2q(s)√

t − s
= 4

√
π i

t∫
0

ds
[U(s)ψ0](0)√

t − s
. (5.1)

Following the literature on the standard nonlinear Schrödinger equation (see, e.g., [5,6] and references the
shall call the case withσ = 1 the critical case for the Schrödinger equation with a nonlinearity concentrate
point.

In this section we shall go deeper in the analogy with the standard NLSE showing that additional sym
are shared by the critical cases.

In particular we show that the system is endowed with the dilation and gauge symmetries, which, put to
give the pseudo-conformal invariance law.

Proposition 8.Let us considerψ(t), solution to the problem(1.5), (5.1), associated to the initial datumψ0 in the
domain of finite energyV .

Then,

(1) ψε(t,x)= ε3/2ψ(ε2t, εx) is the solution associated to the initial datumψε
0(x) = ε3/2ψ0(εx).

(2) ψT (t,x)= ( T
T+t

)3/2 ei |x|2
4(t+T ) ψ( tT

t+T
, xT
t+T

) is the solution associated to the inital datumψT
0 (x) = ei |x|2

4T ψ0(x).

Proof. We start with the dilation symmetry. We first recall that the free Schrödinger evolution is endowe
such a symmetry. Then, we only discuss the second term in (1.5).

After rescaling the variables, it is immediately seen that

t∫
0

ds
[U(s)ψε

0](0)√
t − s

= √
ε

ε2t∫
0

ds
[U(s)ψ0](0)√

ε2t − s
. (5.2)

Therefore from (5.1) we have

√
εq
(
ε2t
)+ 4

√
επ iγ

ε2t∫
0

ds
|q(s)|2q(s)√

ε2t − s
= 4

√
π i

t∫
0

ds
[U(s)ψε

0](0)√
t − s

, (5.3)

whereq solves (5.1) for the initial datumψ0. We now defineqε(t) ≡ √
εq(ε2t) and, after rescaling the variables

in the integral term in the l.h.s. of (5.3), we find thatqε solves (5.1) for the initial datumψε
0 .

Recalling that

U

(
t − s′

ε2
;x
)

= ε3U
(
ε2t − s′; εx

)
(5.4)

we conclude

t∫
0

ds U(t − s;x)qε(s) = ε3/2

ε2t∫
0

ds′ U
(
ε2t − s′; εx

)
q(s′) (5.5)

which completes the proof of point (1).
The gauge symmetry is proven along the same line.
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gauge

g

We first consider Eq. (5.1). Since the free Schrödinger evolution fulfils gauge invariance, we have

t∫
0

ds
[U(s)ψT

0 ](0)√
t − s

=
√

T

t + T

tT /(t+T )∫
0

ds
[
U(s)ψ0

]
(0)

(
T t

T + t
− s

)−1/2

(5.6)

and, from (5.1)

√
t ′
t
q(t ′)+ 4

√
π it ′
t

t ′∫
0

ds
|q(s)|2q(s)√

t ′ − s
= 4

√
π i

t∫
0

ds
[U(s)ψT

0 ](0)√
t − s

, (5.7)

where we definedt ′ ≡ T t/(T + t).
Introducing the functionqT defined as

qT (t) ≡
√

t ′
t
q(t ′) (5.8)

and using the change of variables′ = T s/(T − s) in the integral term in the l.h.s. of Eq. (5.7), we show thatqT

solves Eq. (5.1) for the initial datumψT
0 .

Concerning the interaction term in formula (1.5) we notice that

U

(
t − T s′

T − s′ ;x
)

=
(
T − s′

T + t

)3/2

ei |x|2
4(T+t) U

(
T t

T + t
− s′; T x

T + t

)
, (5.9)

and then

t∫
0

ds U(t − s;x)qT (s) =
(

T

T + t

)3/2

ei |x|2
4(T+t)

T t/(T+t )∫
0

ds′ U
(

T t

T + t
− s′; T x

T + t

)
q(s′) (5.10)

which concludes the proof of Proposition 8.✷
Corollary 9 (Pseudo-conformal invariance).Under the same hypotheses of Proposition8 the following symmetry
law holds: if ψ(t,x) is the solution assolciated to the initial datumψ0(x), then

ψT
pc(t,x) = e−i |x|2

4(T−t)

(T − t)3/2
ψ

(
1

T − t
,

|x|
T − t

)
(5.11)

is the solution associated to the initial datum

ψT
pc0(x) = e−i |x|2

4T

T 3/2
ψ

(
1

T
,
|x|
T

)
.

Proof. The pseudo-conformal transformation can be seen as the composition of a dilation with a
transformation. Let us consider the initial datumψ1,0(x) = ψ(T −1,x) and the corresponding solutionψ1(t,x) =
ψ(T −1 + t,x). Applying a dilation toψ1,0 with parameterT −1, we obtainψ2,0(x) = T −3/2ψ(T −1, T −1x). The
solution corresponding to the initial datumψ2,0 is thenψ2(t,x) = T −3/2ψ(T −1 + T −2t, T −1x). Now, it suffices
to apply a gauge transformation with parameter−T to ψ2,0 to obtainψT

pc0, and to find that the correspondin

solution is given byψT
pc . ✷
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6. A class of explicit blow-up solutions

Here we introduce a family of explicit blow-up solutions for Eqs. (1.5), (5.1). We follow the analo
contruction used for the standard NLSE (see, e.g., [6]), i.e., the explicit solutions are obtained starting
family of stationary solutions and applying a pseudo-conformal transformation. In contrast with the standa
for our system it is possible to write explicitely the entire family of stationary solutions.

Definition 10. A solution of the system (1.5), (5.1) of the form

ψst (t,x)= eiωtψ0,st (x), ω ∈ R, (6.1)

is called a stationary solution.

The family of stationary solutions is characterized in the following proposition.

Proposition 11.The entire family of stationary solutions for the problem(1.5), (5.1)is given by

ψ
η,ω
st = eiη eiωt ω1/4

√
4π |γ |

e−√
ω|x|

4π |x| (6.2)

with η ∈ R, ω > 0, γ < 0.

Proof. Since the evolution of the functionq is given byqst (t) = eiωtq0,st , the problem for the stationary solution
reduces to

eiωtψ0,st = U(t)ψ0,st + iq0,st

t∫
0

ds eiωsU(t − s; ·), (6.3)

eiωtq0,st + 4
√
π iγ |q0,st |2q0,st

t∫
0

ds
eiωs

√
t − s

= 4
√
π i

t∫
0

ds
[U(s)ψ0,st ](0)√

t − s
. (6.4)

We notice that problem (6.3), (6.4) corresponds to the equations for the bound states for the linear proble
a delta interaction whose strength equalsα = γ |q0,st |2. For such a problem the family of bound states consis
the one dimensional linear space (see, e.g., [4])

ψst (t,x)= N eiωt e4πα|x|

4π |x| , α < 0, ω = 16π2α2, N ∈ C. (6.5)

In the nonlinear framework we have the additional conditionα = γ |q0,st |2 which, put together with the relatio
q0,st = N , gives

ψst (t,x)= eiωt ω1/4

√
4π |γ |

e−√
ω|x|

4π |x| . (6.6)

The uniqueness of the family of stationary solutions follows from the uniqueness of the family fo
corresponding linear problem.✷
Remark 12.The same proof holds also for arbitraryσ . In that case, the entire family of stationary solution is giv
by

ψst (t,x)= eiωt
[ √

ω

4π |γ |
]1/(2σ)e−√

ω|x|

4π |x| , ω > 0. (6.7)
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Remark 13.The stationary solutions exhibited in Proposition 11 have the sameL2-norm and the same energy.
fact, ∥∥ψη,ω(t)

∥∥
L2(R3)

= (
32π2|γ |)−1

, (6.8)

E
[
ψη,ω(t)

]= 0. (6.9)

Applying the pseudo-conformal transformation to the family of stationary solutions exhibited in Propositi
we obtain the following result, whose proof is trivial.

Theorem 14.The following family of functionsψη,ω,T
pc consists of blow-up solutions for the problem(1.5), (5.1)

ψη,ω,T
pc (t,x) = eiη ei ωt

T −t
ω1/4

√
4π |γ |

e−√
ω|x|/(T−t )

4π
√
T − t|x| . (6.10)

Remark 15.The solutions given in Theorem 14 satisfy∥∥ψη,ω,T
pc (t)

∥∥
L2(R3)

= (
32π2|γ |)−1

, (6.11)

E
[
ψη,ω,T

pc (t)
]= 0. (6.12)

Therefore these blow-up solutions do not fulfil the hypotheses of Theorem 7. Indeed they only blow-up
direction of time.

Notice that the quantity(32π2|γ |)−1 is the minimal norm that a solution must possess in order to blow
(see [1], Remark 4).

Remark 16.All the explicit blow-up solutions exhibited in Theorem 11 have the same blow-up rate. We ob
that, in general, the characterization of the possible blow-up rates is an open problem.

Remark 17. It is also possible to prove the existence of solutions withL2 norm larger than (6.11) which blow u
only in one direction of time. Indeed, we start from a solutionΞ(t) whose interval of existence is(−T∗, T ∗), with
bothT∗ andT ∗ finite.

Now, we apply to the initial datumΞ0 a gauge transformation with parameterT , where 0< T < T ∗, obtaining
the functionΞT

0 . It is then immediately seen that the interval of existence for the solutionΞT (t) associated toΞT
0 ,

is given by(−T∗T /(T + T∗),+∞).
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