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Abstract

We characterize the relaxation of the perimeter in an infinite dimensional Wiener space, with respect to the weak L2-topology.
We also show that the rescaled Allen–Cahn functionals approximate this relaxed functional in the sense of Γ -convergence.
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1. Introduction

Extending the variational methods and the geometric measure theory from the Euclidean to the Wiener space has
recently attracted a lot of attention. In particular, the theory of functions of bounded variation in infinite dimensional
spaces started with the works by Fukushima and Hino [21,22]. Since then, the fine properties of BV functions and
sets of finite perimeter have been investigated in [4,5,3,1,11]. We point out that this theory is closely related to older
works by M. Ledoux and P. Malliavin [25,26].

In the Euclidean setting it is well known that the perimeter can be approximated by means of more regular func-
tionals of the form∫ (

ε

2
|∇u|2 + W(u)

ε

)
dx

when ε tends to zero, in the sense of Γ -convergence with respect to the strong L1-topology [28,27]. An important
ingredient in this proof is the compact embedding of BV in L1.

A natural question is whether a similar approximation property holds in the infinite dimensional case. The main goal
of this paper is answering to this question by computing the Γ -limit, as ε → 0, of the Allen–Cahn-type functionals
(see Section 2 for precise definitions)

Fε(u) =
∫
X

(
ε

2
|∇H u|2H + W(u)

ε

)
dγ.
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In a Wiener space with a Hilbert structure there are two possible definitions of gradient, and consequently two dif-
ferent notions of Sobolev spaces, functions of bounded variation and perimeters [4,1]. In one definition the compact
embedding of BVγ (X) in L1

γ (X) still holds [4, Th. 5.3] and the Γ -limit of Fε is, as expected, the perimeter up to a
multiplicative constant. We do not reproduce here the proof of this fact, since it is very similar to the Euclidean one.
A more interesting situation arises when we consider the other definition of gradient, which gives rise to a more
invariant notion of perimeter and is therefore commonly used in the literature [21,22,4]. In this case, the compact
embedding of BVγ (X) in L1

γ (X) does not hold anymore. In particular sequences with uniformly bounded Fε-energy

are not generally compact in the (strong) L1
γ -topology, even though they are bounded in L2

γ (X), and hence compact

with respect to the weak L2
γ (X)-topology. This suggests that the right topology for considering the Γ -convergence

should rather be the weak L2
γ (X)-topology.

A major difference with the finite dimensional case is the fact that the perimeter function defined by

F(u) =
{

Pγ (E) if u = χE

+∞ otherwise

is no longer lower semicontinuous in this topology, and therefore cannot be the Γ -limit of the functionals Fε . The
problem is that the sets of finite perimeter are not closed under weak convergence of the characteristic functions.
However, it is possible to compute the relaxation F of F (Theorem 4.6), which reads:

F(u) =
{∫

X

√
U2(u) + |Dγ u|2 dγ if 0 � u� 1

+∞ otherwise.

Such functional is quite familiar to people studying log-Sobolev and isoperimetric inequalities in Wiener spaces [6,7,
10].

Our main result is to show that the Γ -limit of Fε , with respect to the weak L2
γ (X)-topology, is a multiple of F

(Theorem 5.3). The proof relies on the interplay between symmetrization, semicontinuity and isoperimetry.
The plan of the paper is the following. In Section 2 we recall some basic facts about Wiener spaces and functions of

bounded variation. In Section 3 we give the main properties of the Ehrhard symmetrizations. We also prove a Pólya–
Szegö inequality and a Bernstein-type result in the Wiener space (Propositions 3.12 and 3.5), which we believe to be
interesting in themselves. In Section 4, we use the Ehrhard symmetrization to compute the relaxation of the perimeter
(Theorem 4.6). Finally, in Section 5 we compute the Γ -limit of the functionals Fε (Theorem 5.3) and discuss some
consequences of this result.

2. Wiener space and functions of bounded variation

A clear and comprehensive reference on the Wiener space is the book by Bogachev [8] (see also [26]). We follow
here closely the notation of [4]. Let X be a separable Banach space and let X∗ be its dual. We say that X is a Wiener
space if it is endowed with a non-degenerate centered Gaussian probability measure γ . That amounts to say that γ is
a probability measure for which x∗�γ is a centered Gaussian measure on R for every x∗ ∈ X∗. The non-degeneracy
hypothesis means that γ is not concentrated on any proper subspace of X.

As a consequence of Fernique’s Theorem [8, Th. 2.8.5], for every x∗ ∈ X∗, the function R∗x∗(x) = 〈x∗, x〉 is in
L2

γ (X) = L2(X,γ ). Let H be the closure of R∗X∗ in L2
γ (X); the space H is usually called the reproducing kernel

of γ . Let R, the operator from H to X, be the adjoint of R∗ that is, for ĥ ∈H,

Rĥ =
∫
X

xĥ(x) dγ

where the integral is to be intended in the Bochner sense. It can be seen that R is a compact and injective operator. We
will let Q = RR∗. We denote by H the space RH. This space is called the Cameron–Martin space. It is a separable
Hilbert space with the scalar product given by

[h1, h2]H = 〈ĥ1, ĥ2〉L2
γ (X)

if hi = Rĥi . We will denote by | · |H the norm in H . The space H is a dense subspace of X, with compact embedding,
and γ (H) = 0 if X is of infinite dimension.
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For x∗
1 , . . . , x∗

m ∈ X∗ we denote by Πx∗
1 ,...,x∗

m
the projection from X to R

m given by

Πx∗
1 ,...,x∗

m
(x) = (〈

x∗
1 , x

〉
, . . . ,

〈
x∗
m,x

〉)
.

We will also denote it by Πm when specifying the points x∗
i is unnecessary. Two elements x∗

1 and x∗
2 of X∗ will be

called orthonormal if the corresponding hi = Qx∗
i are orthonormal in H . We will fix in the following an orthonormal

basis of H given by hi = Qx∗
i .

We also denote by Hm = span(h1, . . . , hm) 	 R
m and X⊥

m = Ker(Πm) = H⊥
m

X , so that X = R
m ⊕ X⊥

m . The map
Πm induces the decomposition γ = γm ⊗ γ ⊥

m , with γm, γ ⊥
m Gaussian measures on R

m, X⊥
m respectively.

Proposition 2.1. (See [8].) Let ĥ1, . . . , ĥm be in H then the image measure of γ under the map

Π
ĥ1,...,ĥm

(x) = (
ĥ1(x), . . . , ĥm(x)

)
is a Gaussian in R

m. If the ĥi are orthonormal, then such measure is the standard Gaussian measure on R
m.

Given u ∈ L2
γ (X), we will consider the canonical cylindrical approximation Em given by

Emu(x) =
∫

X⊥
m

u
(
Πm(x), y

)
dγ ⊥

m (y).

Notice that Emu is a cylindrical functions depending only on the first m variables, and Emu converges to u in L2
γ (X).

We will denote by FC1
b(X) the space of cylindrical C1 bounded functions that is the functions of the form v(Πm(x))

with v a C1 bounded function from R
m to R. We denote by FC1

b(X,H) the space generated by all functions of the
form Φh, with Φ ∈FC1

b(X) and h ∈ H .
We now give the definitions of gradients, Sobolev spaces functions of bounded variation. Given u : X → R and

h = Rĥ ∈ H , we define

∂u

∂h
(x) = lim

t→0

u(x + th) − u(x)

t

whenever the limit exists, and

∂∗
hu = ∂u

∂h
− ĥu.

We define ∇H u : X → H , the gradient of u by

∇H u =
+∞∑
i=1

∂u

∂hi

hi

and the divergence of Φ : X → H by

divγ Φ =
+∞∑
i=1

∂∗
hi

[Φ,hi]H .

The operator divγ is the adjoint of the gradient in L2
γ (X) so that for every u ∈ FC1

b(X) and every Φ ∈ FC1
b(X,H),

the following integration by parts holds:∫
X

udivγ Φ dγ = −
∫
X

[∇H u,Φ]H dγ. (1)

The ∇H operator is thus closable in L2
γ (X) and we will denote by H 1

γ (X) its closure in L2
γ (X). From this, formula

(1) still holds for u ∈ H 1
γ (X) and Φ ∈ FC1

b(X,H).

Following [21,4], given u ∈ L1
γ (X) we say that u ∈ BVγ (X) if∫

|Dγ u|H = sup

{ ∫
udivγ Φ dγ ; Φ ∈FC1

b(X,H), |Φ|H � 1 ∀x ∈ X

}
< +∞.
X X
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We will also denote by |Dγ u|(X) the total variation of u. If u = χE is the characteristic function of a set E we will
denote Pγ (E) its total variation and say that E is of finite perimeter if Pγ (E) is finite. As shown in [4] we have the
following properties of BVγ (X) functions.

Theorem 2.2. Let u ∈ BVγ (X) then the following properties hold:

• Dγ u is a countably additive measure on X with finite total variation and values in H (we will note the space of
these measures by M(X,H)), such that for every Φ ∈ FC1

b(X) we have:∫
X

u∂∗
hj

Φ dγ = −
∫
X

Φ dμj ∀j ∈ N

where μj = [hj ,Dγ u]H .
• |Dγ u|(X) = inf lim{∫

X
|∇H uj |H dγ : uj ∈ H 1

γ (X), uj → u in L1
γ (X)}.

Proposition 2.3. Let u = v(Πm) be a cylindrical function then u ∈ BVγ (X) if and only if v ∈ BVγm(Rm). We then
have ∫

X

|Dγ u|H =
∫
Rm

|Dγmv|.

Proposition 2.4. [Coarea formula [4].] If u ∈ BVγ (X) then for every Borel set B ⊂ X,

|Dγ u|(B) =
∫
R

Pγ

({u > t},B)dt. (2)

In Proposition 3.12, we will need the following extension of Proposition 2.4.

Lemma 2.5. For every function u ∈ BVγ (X) and every non-negative Borel function g,∫
X

g(x)d|Dγ u|(x) =
∫
R

( ∫
X

g(x)d|Dγ χEt |(x)

)
dt (3)

where Et := {u > t}.

Proof. The proof of this lemma mimic the standard proof in the Euclidean case [14, Th. 2.2]. By [20, Ch. 1, Th. 7]
we can write g as

g =
+∞∑
i=1

1

i
χAi

where the Ai ⊂ X are Borel sets. Using the coarea formula (2), we then get∫
X

g(x)d|Dγ u|(x) =
+∞∑
i=1

1

i
|Dγ u|(Ai) =

+∞∑
i=1

1

i

∫
R

|Dγ χEt |(Ai) dt

=
∫
R

( ∫
X

+∞∑
i=1

1

i
χAi

d|Dγ χEt |(x)

)
dt

=
∫
R

∫
X

g(x)d|Dγ χEt |(x) dt. �

In [4] it is also shown that sets with finite Gaussian perimeter can be approximated by smooth cylindrical sets.
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Proposition 2.6. Let E ⊂ X be a set of finite Gaussian perimeter then there exists smooth sets Em ⊂ R
m such that

Π−1
m (Em) converges in L1

γ (X) to E and Pγ (Π−1
m (Em)) = Pγm(Em) converges to Pγ (E) when m tends to infinity.

Note that, for half-spaces, the perimeter can be exactly computed [4, Cor. 3.11].

Proposition 2.7. Let h = Rĥ ∈ H and c ∈R then the half-space

E = {
x ∈ X: ĥ(x) � c

}
has perimeter

Pγ (E) = 1√
2π

e
− c2

2|h|2
H .

3. The Ehrhard symmetrization

The Ehrhard symmetrization has been introduced by Ehrhard in [18] for studying the isoperimetric inequality in a
Gaussian setting. We recall the definition and the main properties of such symmetrization.

Definition 3.1. We define the functions Φ and α by

Φ(x) = 1√
2π

x∫
−∞

e− t2
2 dt and α(x) = Φ−1(x);

we then let U(x) = Φ ′ ◦ α(x) = 1√
2π

e− α2(x)
2 .

Notice that Φ(t) is the volume of the half-space {ĥ(x) < t} and that U(x) is the perimeter of a half-space of
volume x.

Lemma 3.2. Let ĥ1, ĥ2 ∈H, with |h1|H = |h2|H = 1, and suppose that there exist C1,C2 ∈R such that

{ĥ1 < C1} ⊂ {ĥ2 < C2}.
Then ĥ1 = ĥ2.

Proof. Assume by contradiction ĥ1 �= ĥ2 then,

γ
({

ĥ1(x) < C1
}∩ {

ĥ2(x) � C2
})= Π

ĥ1,ĥ2
�γ

({
(x, y) ∈R

2 , x < C1 and y � C2
})

which is positive since γ is non-degenerate. �
We now define the Ehrhard symmetrization.

Definition 3.3. Let E ⊂ X and let m ∈ N. The Ehrhard symmetral of E along the first m variables is defined as (see
Fig. 1):

E∗ :=
{ {(x, xm, x⊥

m) ∈ R
m−1 ×R× X⊥

m: xm < α(Em−1χE(x))} if m > 1

{x ∈ X: 〈x∗
1 , x〉 < α(γ (E))} if m = 1.

The interest of this symmetrization is that it decreases the Gaussian perimeter, while keeping the volume fixed.

Proposition 3.4. Let E be a set of finite perimeter and E∗ be an Ehrhard symmetral of E, then

γ
(
E∗)= γ (E), (4)
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Fig. 1. The Ehrhard symmetrization.

Em−1χE∗ = Em−1χE and

Pγ

(
E∗)� Pγ (E). (5)

In particular, we have the isoperimetric inequality

Pγ (E) � U
(
γ (E)

)
,

with equality if and only if E is a half-space.

For the proof we refer to [7,10], and to [4, Remark 4.7] for the extension to infinite dimensions.
We can also prove a stronger result which is a kind of Bernstein Theorem in this setting.

Proposition 3.5. The half-spaces are the only local minimizers of the Gaussian perimeter with volume constraint.

Proof. Let E ⊂ X be a local minimizer of the (Gaussian) perimeter and let v = γ (E). This means that, for every
R > 0 and every set F of finite perimeter, with γ (F ) = v and E�F ⊂ BR (where BR denotes the ball of radius R

centered at 0), we have

Pγ (E) � Pγ (F ).

If E is not a half-space then, by Proposition 3.4, there exists η > 0 such that

Pγ (E) � U(v) + η.

Let αR be such that

γ (E ∩ BR) = γ
({〈

x∗
1 , x

〉
< αR

}∩ BR

)
.

We have that αR tends to α(v) when R goes to infinity and Pγ ({〈x∗
1 , x〉 < αR}) tends to Pγ ({〈x∗

1 , x〉 < α(v)}). Letting

FR = ({〈
x∗

1 , x
〉
< αR

}∩ BR

)∪ (
E ∩ Bc

R

)
we get

U(v) + η � Pγ (E) � Pγ (FR) � Pγ

({〈
x∗

1 , x
〉
< αR

}∩ BR

)+ Pγ

(
E ∩ Bc

R

)
� Pγ

({〈
x∗

1 , x
〉
< αR

})+ Pγ (BR) + Pγ

(
E ∩ Bc

R

)
� Pγ

({〈
x∗

1 , x
〉
< α(v)

})+ ε(R)

= U(v) + ε(R),
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where we used various time the inequality (see [23])

Pγ (E ∪ F) + Pγ (E ∩ F) � Pγ (E) + Pγ (F )

and where ε(R) is a function which goes to zero when R goes to infinity. We thus found a contradiction. �
Remark 3.6. In the Euclidean setting, half-spaces are the only local minimizers of the perimeter only in dimension
lower than 8 (see [23]). Notice also that if we drop the volume constraint, half-spaces are no longer local minimizers
for the Gaussian perimeter, since there are no nonempty local minimizers.

In the sequel we will also need another transformation which from a finite dimensional function gives an Ehrhard
symmetric set whose sections have volume prescribed by the original function. More precisely:

Definition 3.7. Given a measurable function v :Rm → [0,1], we define its Ehrhard set ESm(v) ⊂ X by

ESm(v) := {(
x, xm+1, x

⊥
m+1

) ∈R
m ×R× X⊥

m+1: xm+1 < α
(
v(x)

)}
.

Given a measurable cylindrical function u : X → [0,1] depending only on the first m variables, that is, u = v ◦ Πm

for some v :Rm → [0,1], we set

ESm(u) := ESm(v).

The link between Ehrhard sets and Ehrhard symmetrization is the following:

Proposition 3.8. Let E be a set of finite perimeter and E∗ be its Ehrhard symmetrization with respect to the first
(m + 1) variables, then

E∗ = ESm

(
Em(χE)

)
.

In the next proposition we compute the perimeter of Ehrhard sets. It slightly extends a result in [15].

Proposition 3.9. Let u ∈ BVγm(Rm) with 0 � u� 1, then

Pγ

(
ESm(u)

)=
∫
Rm

√
U(u)2 + |Dγmu|2 dγm

where∫
Rm

√
U(u)2 + |Dγmu|2 dγm =

∫
Rm

√
U(u)2 + |∇u|2 dγm + ∣∣Ds

γ u
∣∣(X)

and Dγ u = ∇uγ + Ds
γ u is the Radon–Nikodym decomposition of Dγ u.

Proof. By [15, Th. 4.3] the result holds for u ∈ H 1
γm

(Rm). We will show by approximation that the same holds for
u ∈ BVγm(Rm).

Let E = ESm(u), then we can find sets En such that γ (En�E) → 0 and Pγ (En) → Pγ (E) as n → +∞, and all
the En have smooth boundary and are Ehrhard symmetric. Thus, for every n ∈ N, there exists a smooth function un

such that 0 � un � 1, En = ESm(un), un → u in L1
γm

(Rm), and

Pγ (En) =
∫
Rm

√
U(un)2 + |Dγmun|2 dγm.

Since, by Proposition 4.4, the functional
∫

m

√
U(u)2 + |Dγmu|2 dγm is lower semicontinuous in L1

γ (Rm), we get

R m
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Pγ (E) = lim
n→∞Pγ (En)

= lim
n→∞

∫
Rm

√
U(un)2 + |Dγmun|2 dγm

�
∫
Rm

√
U(u)2 + |Dγmu|2 dγm.

The other inequality follows as in [15]. Let Ẽ = Πm+1(E) ⊂ R
m+1 and observe that γm+1(Ẽ) = γ (E) and

Pγm+1(Ẽ) = Pγ (E). By Vol’pert Theorem [2, Th. 3.108] there exists a set B ⊂ R
m such that for every x ∈ B ,

νẼ
m+1(x,α(uE(x))) exists and is not equal to zero, where νẼ

m+1 denotes the last coordinate of the unit external normal
to ∂∗Ẽ. By [15, Lemma 4.4], γm-almost every x ∈ B is a point of approximate differentiability for u. By Lemmas 4.5
and 4.6 of [15] we then have

Pγm+1(Ẽ) = Pγm+1(Ẽ,B ×R) + Pγm+1

(
Ẽ,Bc ×R

)
�
∫
B

√
U(u)2 + |∇u|2 dγm +

∫
Bc

|Dγmu| +
∫
Bc

U(u) dγm.

As γm(Bc) = 0, we find that∫
B

√
U(u)2 + |∇u|2 dγm +

∫
Bc

|Dγmu| =
∫
Rm

√
U2(u) + |∇u|2 dγm + ∣∣Ds

γm
u
∣∣(Rm

)
and thus Pγ (E) = Pγm+1(Ẽ) �

∫
Rm

√
U(u)2 + |Dγmu|2 dγm. �

The last transformation that we consider is the analog of the Schwartz symmetrization in the Gaussian setting, and
was first introduced by Ehrhard in [19].

Definition 3.10. Let u ∈ X → R be a measurable function and let m ∈ N be fixed. We define the m-dimensional
Ehrhard symmetrization u∗ of u as follows:

• for all t ∈R we let E∗
t be the Ehrhard symmetrization of Et := {u > t} with respect to the first m variables;

• we let u∗(x) := inf{t : x ∈ E∗
t }.

As (4) implies γ ({u∗ > t}) = γ ({u > t}) for all t ∈ R, from the Layer Cake formula it follows that, if u ∈ L2
γ (X),

then u∗ ∈ L2
γ (X) and∫

X

∣∣u∗∣∣2 dγ =
∫
X

|u|2 dγ. (6)

Indeed, we have

∫
X

|u|2dγ = 2

+∞∫
0

t γ
({u > t})dt − 2

0∫
−∞

tγ
({u < t})dt

= 2

+∞∫
0

tγ
({

u∗ > t
})

dt − 2

0∫
−∞

tγ
({

u∗ < t
})

dt

=
∫
X

|u∗|2 dγ.
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Lemma 3.11. Let u,v : X → [0,+∞) belonging to L2
γ (X), then∥∥u∗ − v∗∥∥

L2
γ (X)

� ‖u − v‖L2
γ (X). (7)

Proof. The proof is a straightforward adaptation of the analogous proof for the Schwartz symmetrization [24, Th. 3.4].
Recalling (6) with p = 2, we have only to show that∫

X

uv dγ �
∫
X

u∗v∗ dγ. (8)

Again by the Layer Cake formula we have

∫
X

uv dγ =
+∞∫
0

+∞∫
0

∫
X

χ{u>t}(x)χ{v>s}(x) dγ (x) dt ds.

Thus (8) would follow from the same inequality for sets, that is,

γ (A ∩ B) � γ
(
A∗ ∩ B∗). (9)

Let xm ∈R
m and assume that∫

X⊥
m

χA(xm + y)dγ ⊥
m (y) �

∫
X⊥

m

χB(xm + y)dγ ⊥
m (y)

then by definition of the Ehrhard symmetrization we have

B∗ ∩ (
xm + X⊥

m

)⊂ A∗ ∩ (
xm + X⊥

m

)
and therefore∫

X⊥
m

χA∗(xm + y)χB∗(xm + y)dγ ⊥
m (y) =

∫
X⊥

m

χA∗(xm + y)dγ ⊥
m (y)

=
∫

X⊥
m

χA(xm + y)dγ ⊥
m (y)

�
∫

X⊥
m

χA(xm + y)χB(xm + y)dγ ⊥
m (y).

This inequality also holds if
∫
X⊥

m
χB(xm + y)dγ ⊥

m (y) �
∫
X⊥

m
χA(xm + y)dγ ⊥

m (y) so that finally

γ
(
A∗ ∩ B∗)=

∫
Xm

∫
X⊥

m

χA∗(x + y)χB∗(x + y)dγ ⊥
m (y)dγm(x)

�
∫

Xm

∫
X⊥

m

χA(x + y)χB(x + y)dγ ⊥
m (y)dγm(x)

= γ (A ∩ B)

which gives (9). �
As for the Schwartz symmetrization, a Pólya–Szegö principle holds for the Ehrhard symmetrization.
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Proposition 3.12. Let u ∈ H 1
γ (X), let m ∈ N and let u∗ be the m-dimensional Ehrhard symmetrization of u. Then

u∗ ∈ H 1
γ and∫

X

∣∣∇H u∗∣∣2
H

dγ �
∫
X

|∇H u|2H dγ. (10)

Moreover, if m = 1 and equality holds in (10), then

u = ũ
(
ĥ(x)

)
for some ĥ ∈H,

and ĥ can be chosen to be a unitary vector.

Proof. In [19, Th. 3.1], inequality (10) is proven for Lipschitz functions, in finite dimensions. We extend it by ap-
proximation to Sobolev functions.

We can assume u � 0, since we have (u±)∗ = (u∗)±, where u±, (u∗)± denote the positive and negative part of u

and u∗, respectively.
Let un ∈ FC1

b(X) be positive functions converging to u in H 1
γ (X), then by (7), u∗

n converges to u∗ in L2
γ (X) and

thus by the lower semicontinuity of the H 1
γ (X) norm we have∫

X

∣∣∇H u∗∣∣2
H
� lim

n→∞

∫
X

∣∣∇H u∗
n

∣∣2
H
� lim

n→∞

∫
X

|∇H un|2H =
∫
X

|∇H u|2H .

We now turn to the equality case for one-dimensional symmetrizations. For this we closely follow [10] and give an
alternative proof of (10), based on ideas of Brothers and Ziemer [9] for the Schwartz symmetrization.

Let u ∈ H 1
γ (X) and μ(t) = γ ({u > t}) = γ ({u∗ > t}). By the coarea formula (3), for all t ∈ R we have

μ(t) = γ
({u > t} ∩ {∇H u = 0})+

+∞∫
t

( ∫
{∇H u �=0}

1

|∇H u|H d|Dγ χEτ |
)

dτ.

Hence

−μ′(t)�
∫

{∇H u �=0}

1

|∇H u|H d|Dγ χEt | for a.e. t ∈ R. (11)

Since u∗ is a function depending only on one variable, arguing as in [14] we get

d

dt
γ
({

u∗ > t
}∩ {∇H u∗ = 0

})= 0 for a.e. t ∈ R.

As u∗ is monotone we have that |∇H u∗|H is constant on {u∗ = t} ∩ {∇H u∗ �= 0}. Observe also that, being u∗ one-
dimensional, {u∗ = t} has a well defined meaning. We thus find:

−μ′(t) = Pγ ({u∗ > t})
|∇H u∗|{u∗=t}

for a.e. t ∈R,

which implies, recalling (11),

Pγ ({u∗ > t})
|∇H u∗|{u∗=t}

�
∫

{∇H u �=0}

1

|∇H u|H d|Dγ χEt | for a.e. t ∈R. (12)

Let us note that as in [10, Lemma 4.2], using (3) with g = χ{∇H u=0} we find∫
X

χ{∇H u=0}|∇H u|H dγ = 0 =
∫
R

∫
X

χ{∇H u=0} d|Dγ χEt |(x) dt

and thus for almost every t ∈ R,∫
χ{∇H u=0} d|Dγ χEt |(x) = 0.
X
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This shows that for almost every t ∈ R, ∇H u(x) �= 0 for |Dγ χEt |-almost every x ∈ X and thus∫
{∇H u �=0}

1

|∇H u|H d|Dγ χEt |(x) =
∫
X

1

|∇H u|H d|Dγ χEt |(x) for a.e. t ∈ R. (13)

By (3), (5), (12) and (13), we eventually get∫
X

∣∣∇H u∗∣∣2 dγ =
∫
R

∣∣∇H u∗∣∣{u∗=t}Pγ

({
u∗ > t

})
dt

=
∫
R

Pγ ({u∗ > t})2

(
Pγ ({u∗>t})

|∇H u∗|{u∗=t} )
dt

�
∫
R

Pγ ({u > t})2∫
X

1
|∇H u|H d|Dγ χEt |(x)

dt

�
∫
R

∫
X

|∇H u|H d|Dγ χEt |(x) dt

=
∫
X

|∇H u|2H dγ.

As a consequence, if equality holds in (10), then equality holds in the Gaussian isoperimetric inequality, that is,

Pγ (u > t) = Pγ

(
u∗ > t

)
for a.e. t ∈R.

This implies that almost every level-set of u is a half-space, i.e. for almost every t ∈ R there exists ĥt ∈ H such that
{u > t} = {ĥt < α(μ(t))}, and without loss of generality we can assume that |ht |H = 1. Such half-spaces being nested,
by Lemma 3.2 we have that ĥt does not depend on t and thus u(x) = v(ĥ(x)). �
Remark 3.13. We notice that the fact that equality in (10) implies that u is one-dimensional is a specific feature of
the Gaussian setting, and the analogous statement does not hold for the Schwartz symmetrization in the Euclidean
case [9]. Indeed, this property is a consequence of the fact that Gaussian measures, differently from the Lebesgue
measure, are not invariant under translations.

4. Relaxation of perimeter

In this section we compute the relaxation of the perimeter functional

F(u) :=
{

Pγ (E) if u = χE

+∞ otherwise

with respect to the weak L2
γ (X)-topology. The fact that F is not lower semicontinuous can be easily checked by taking

the sequence En = {〈x∗
n, x〉 < 0}. Indeed, the characteristic functions of these sets weakly converge to the constant

function 1/2, which is not a characteristic function, while the perimeter of En is constantly equal to 1/
√

2π .
We will show that the relaxation of F is equal to

F(u) :=
{∫

X

√
U2(u) + |Dγ u|2 dγ if 0 � u� 1 γ -a.e.

+∞ otherwise

where∫ √
U2(u) + |Dγ u|2 dγ =

∫ √
U2(u) + |∇H u|2H dγ + ∣∣Ds

γ u
∣∣(X)
X X
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with Dγ u = ∇H udγ + Ds
γ u. Observe that the functional F already appears in the seminal work of Bakry and

Ledoux [6] and in the earlier work of Bobkov [7] in the context of log-Sobolev inequalities. This functional has
been also studied in [10]. See also [4, Remark 4.3] where it appears in a setting closer to ours.

Let us first recall the definition of the lower semicontinuous envelope of a function (see [16] for more details).

Definition 4.1. Let X be a topological vector space. For every function F : X → R, its lower semicontinuous envelope
(or relaxed function) is the greatest lower semicontinuous function that lies below F .

When X is a metric space, the following characterization holds.

Proposition 4.2. Let X be a metric space. For every function F : X → R, the relaxed function F is given by

F(x) = inf
{

lim
n→∞

F(xn) : xn → x
}

x ∈ X.

We now show a representation formula for F which is reminiscent of the definition of the total variation and of the
nonparametric area functional (see [23]). We start with a preliminary result.

Lemma 4.3. Let g ∈ L∞(X) with g � 0, let μ ∈ M(X,H), and define

f̃ (g,μ) :=
√

g2 + |h|2H dγ + ∣∣μs
∣∣,

where μ = hγ + μs . There holds

f̃ (g,μ)(X) = sup
Φ∈L1

μ(X,H)

ξ∈L1
μ(X)

{ ∫
X

[Φ,dμ]H +
∫
X

g ξ dγ : |Φ|2H + |ξ |2 � 1 a.e. in X

}
. (14)

Proof. The proof is adapted from [17].

Notice first that, for (λ,p) ∈ R × H , the function f (λ,p) :=
√

λ2 + |p|2H defines a norm on the product space

R × H . Moreover, if we let fλ(p) :=
√

λ2 + |p|2H , then the convex conjugate of fλ is f ∗
λ (Φ) = −λ

√
1 − |Φ|2H . We

divide the proof into three steps.

Step 1. Let

M(g,μ) = sup
Φ∈L1

μ(X,H)

{ ∫
X

[Φ,dμ]H +
∫
X

g

√
1 − |Φ|2H dγ : |Φ|H � 1 a.e. in X

}
.

We will show that

M(g,hγ ) =
∫
X

f (g,h)dγ. (15)

By definition of convex conjugate, it is readily checked that M(g,hγ ) �
∫
X

f (g,h)dγ . We thus turn to the other
inequality. By definition of the Bochner integral, for every δ > 0, there exist hi ∈ H and Ai ⊂ X with Ai disjoints
Borel sets and i ∈ [1,m] such that if we set

θ =
m∑

i=1

χAi
hi

then |θ − h|L1
γ
� δ. Analogously there exists ηi ∈ X such that setting

g̃ =
m∑

χAi
ηi
i=1
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we have |g̃ − g|L1
γ
� δ. By the observation at the beginning of the proof and the triangle inequality we get∣∣f (g̃, θ) − f (g,h)

∣∣� ∣∣f (g̃ − g, θ − h)
∣∣� |g̃ − g| + |θ − h|H .

For every i, by definition of convex conjugate, there exists ξi ∈ H with |ξi |H � 1 such that

f (ηi, hi) � [ξi, hi]H + ηi

√
1 − |ξi |2H + δ.

From this, setting Φ =∑m
i=1 χAi

ξi we have∫
X

f (g,h)dγ �
∫
X

f (g̃, θ) dγ + 2δ

=
m∑

i=1

∫
Ai

f (ηi, hi) dγ + 2δ

�
m∑

i=1

∫
Ai

[ξi, hi]H + ηi

√
1 − |ξi |2H dγ + 3δ

=
∫
X

[Φ,h]H + g̃

√
1 − |Φ|2H dγ + 3δ.

Since |g̃
√

1 − |Φ|2H − g

√
1 − |Φ|2H | � |g̃ − g| we find∫

X

f (g,h)dγ �
∫
X

Φ · h − g

√
1 − |Φ|2H dγ + 4δ � M(g,hγ ) + 4δ.

Since δ is arbitrary we have M(g,hγ ) = ∫
X

f (g,h)dγ .

Step 2. The proof proceeds exactly as in [17] and we only sketch it. Recalling (15), it remains to show that

M
(
g,hγ + μs

)= M(g,hγ ) + ∣∣μs
∣∣(X).

One inequality is easily obtained, since

M
(
g,hγ + μs

)= sup
Φ

∫
X

[Φ,h]H dγ +
∫
X

Φ · dμs +
∫
X

g(x)

√
1 − |Φ|2H dγ

�
(

sup
Φ

∫
X

[Φ,h]H dγ +
∫
X

g(x)

√
1 − |Φ|2H dγ

)
+
∫
X

∣∣dμs
∣∣

= M(g,hγ ) + ∣∣μs
∣∣(X).

For the opposite inequality, let δ > 0 be fixed then there exist Φ1 and Φ2 such that

M(g,hγ ) �
∫
X

[Φ1, h]H dγ +
∫
X

g(x)

√
1 − |Φ1|2H dγ + δ

∣∣μs
∣∣(X)�

∫
X

[
Φ2, dμs

]
H

+ δ.

Taking Φ equal to Φ2 on a sufficiently small neighborhood of the support of μs and equal to Φ1 outside this neigh-
borhood, we get

M(g,hγ ) + ∣∣μs
∣∣(X)�

∫
X

[Φ,h]H dγ +
∫
X

g(x)

√
1 − |Φ|2H dγ +

∫
X

[
Φ,dμs

]
H

+ Cδ � M
(
g,hγ + μs

)+ Cδ

which gives the opposite inequality.
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Step 3. In order to conclude the proof, it is enough to notice that for every Φ ∈ L1
μ(X,H), with |Φ|H � 1, we have

sup
ξ∈L1

μ(X)

{ ∫
X

[Φ,dμ]H +
∫
X

gξ dγ : |Φ|2H + |ξ |2 � 1 a.e. in X

}

=
∫
X

[Φ,dμ]H +
∫
X

g

√
1 − |Φ|2H dγ. �

Proposition 4.4. Let u ∈ BVγ (X) then

F(u) = sup
Φ∈FC1

b (X,H)

ξ∈FC1
b (X)

{ ∫
X

(
udivγ Φ + U(u)ξ

)
dγ :

∣∣Φ(x)
∣∣2
H

+ ∣∣ξ(x)
∣∣2 � 1 ∀x ∈ X

}
. (16)

Proof. We apply Lemma 4.3 with μ = Du and g = U(u). Since μ is tight [4], the space FC1
b(X,H) is dense in

L1
μ(X,H) so that we can restrict the supremum in (16) to smooth cylindrical functions Φ , ξ . �

Remark 4.5. Since U is concave, the duality formula (16) is not sufficient to prove that F is lower semicontinuous
for the weak L2

γ (X)-topology. It shows however the lower-semicontinuity of F in the strong L2
γ (X)-topology.

We now prove that F is the lower semicontinuous envelope of F .

Theorem 4.6. F is the relaxation of F in the weak L2
γ (X)-topology.

Proof. Let us first notice that F takes finite values only on functions of the closed unit ball of L2
γ (X) which is

metrizable for the weak convergence. Therefore the relaxation and the sequential relaxation in the weak topology
of L2

γ (X) coincide.

Let χEn be a sequence of sets weakly converging in L2
γ (X) to u ∈ BVγ (X), with uniformly bounded perimeter. We

shall show that

lim
n→∞

Pγ (En) � F(u).

Notice that, by weak convergence, we necessarily have 0 � u� 1 a.e. on X.
For all n � 1 and k � 2, we let Ek

n be the Ehrhard symmetral of En with respect to the first k variables. Recalling
the notation of Section 3, we have

Pγ

(
Ek+1

n

)
� Pγ (En) and Ek+1

n = ESk(EkχEn).

As
∫
X

|DγEk(χEn)|H � Pγ (En) and Ek(χEn) depends only on the first k variables, by the compact embedding of
BVγk

(Rk) into L1
γk

(Rk) we can extract a subsequence from Ek(χEn) which converges strongly to uk := Ek(u). From

this we get that Ek+1
n = ESk(EkχEn) tends strongly to Ek+1 := ESk(u

k). By the lower semicontinuity of the perimeter
we then have

lim
n→∞

Pγ (En) � lim
n→∞

Pγ

(
Ek+1

n

)
� Pγ

(
Ek+1).

For every ϕ ∈ FC1
b(X), with ϕ depending only of the j � k first variables, there holds∫

X

χEk+1(x)ϕ(x) dγ (x) =
∫
X

uk(x)ϕ(x) dγ (x) =
∫
X

u(x)ϕ(x) dγ (x),

which implies that the sequence χEk+1 tends weakly to u. In order to conclude the proof it remains to show that

lim Pγ

(
Ek+1)= F(u).
k→∞
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Notice that, by Proposition 3.9, there holds

Pγ

(
Ek+1)= F

(
uk
)
.

For every Φ ∈FC1
b(X,H) and ξ ∈ FC1

b(X), depending on the first k variables and such that the range of Φ is included
in Hk , by Proposition 4.4, we have∫

X

(
uk divγ Φ + U

(
uk
)
ξ
)
dγ =

∫
X

(
udivγ Φ + U(u)ξ

)
dγ � F(u).

Taking the supremum in Φ , ξ and recalling (16), we then get

F
(
uk
)
� F(u) for all k.

Repeating the same argument with uk+1 instead of u, we obtain that F(uk) is nondecreasing in k. Therefore there
exists �� 0 such that

lim
k→∞F

(
uk
)= lim

k→∞Pγ

(
Ek+1)= �� F(u).

Assume by contradiction that � < F(u). Then there exists δ > 0 such that F(uk) � F(u) − δ for all k, hence there
exist N ∈ N, Φ ∈FC1

b(X,H) and ξ ∈FC1
b(X), depending only on the first N variables, such that∫

X

(
uk divγ Φ + U

(
uk
)
ξ
)
dγ � F

(
uk
)
� F(u) − δ �

∫
X

(
udivγ Φ + U(u)ξ

)
dγ − δ

2
,

but for k > N we have∫
X

(
uk divγ Φ + U

(
uk
)
ξ
)
dγ =

∫
X

(
udivγ Φ + U(u)ξ

)
dγ

which leads to a contradiction. �
Remark 4.7. Theorem 4.6 provides an example of a nonconvex functional, namely F , which is lower semicontinuous
for the weak L2

γ (X)-topology. We also know that semicontinuity does not hold for general functional of the form

J (u) =
∫
X

f (u,Dγ u)dγ

since if we take for instance f (u,p) :=√
g2(u) + |p|2 with g such that g(1/2) > U(1/2) and g(0) = g(1) = 0, then,

letting un := {〈x∗
n, x〉 < 0}, we have un ⇀ u = 1/2 weakly in L2

γ (X), so that

J (u) = g

(
1

2

)
> U

(
1

2

)
= 1√

2π
= lim

n→∞
J (un).

One could wonder what are the right hypotheses for a functional of this form to be lower semicontinuous with respect
to the weak topology.

5. Γ -limit for the Modica–Mortola functional

Let us briefly recall the definition of Γ -convergence. We refer to [16] for a comprehensive treatment of the subject.

Definition 5.1. Let X be a topological space, and let Fn : X → R be a sequence of functions. The Γ -lower limit and
the Γ -upper limit of the sequence Fn is defined as(

Γ − lim
n→∞

Fn

)
(x) = sup

U∈N (x)

lim
n→∞

inf
y∈U

Fn(y)(
Γ − lim

n→∞Fn

)
(x) = sup lim

n→∞ inf
y∈U

Fn(y)

U∈N (x)
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where N (x) denotes the set of all open neighborhoods of x in X. When the Γ -lower limit and the Γ -upper limit
coincide, we say that the sequence Fn Γ -converges.

As for the relaxation, if X is a metric space we have a sequential characterization of the Γ -convergence.

Theorem 5.2. Let X be a metric space. A sequence of functions Fn Γ -converges to F : X → R if and only if the
following two conditions hold:

• for every sequence xn converging to x, it holds limn→∞ Fn(xn)� F(x)

• for every x ∈ X there exists a sequence xn converging to x with limn→∞Fn(xn)� F(x).

Let now W ∈ C1(R) be a double-well potential with minima in {0,1}, that is, W(t) � 0 for all t ∈R, and W(t) = 0
iff t ∈ {0,1}. A typical example of such potential is W(t) = t2(t − 1)2.

For any ε > 0 we define the functionals Fε : L2
γ (X) → [0,+∞] as

Fε(u) :=
{∫

X
( ε

2 |∇H u|2H + W(u)
ε

) dγ if u ∈ H 1
γ (X)

+∞ if u ∈ L2
γ (X) \ H 1

γ (X).

We are ready to prove our main Γ -convergence result.

Theorem 5.3. When ε tends to zero the functionals Fε Γ -converge, in the weak topology of L2
γ (X), to the functional

cWF , where cW = ∫ 1
0

√
2W(t) dt .

Proof. Notice first that the Γ -limit does not change if we restrict the domain of Fε to the functions u ∈ H 1
γ (X) such

that 0 � u � 1. This follows from the following two facts:

– for all u ∈ H 1
γ (X), letting ũ = min(max(u,0),1), we have Fε(ũ) � Fε(u);

– Fε(u) �
∫
X

W(u)
ε

dγ for all u ∈ H 1
γ (X), which implies that the Γ -limit is concentrated on the functions u ∈ L2

γ (X)

such that u(x) ∈ {0,1} for a.e. x ∈ X.

Since the restricted domain is contained in the unit ball of L2
γ (X), which is metrizable for the weak L2

γ (X)-topology,
by Theorem 5.2 the Γ -limit and the sequential Γ -limit of Fε coincide.

We now compute the Γ -liminf of Fε .
Let uε ∈ H 1

γ (X) be such that 0 � uε � 1 and Fε(uε) � C for some C > 0, then ‖uε‖L2
γ (X) � 1. As a consequence,

there exists a weakly converging subsequence, still denoted by uε . Letting u be its weak limit, from 0 � uε � 1 we
get 0 � u� 1. Using the coarea formula (2), we obtain the estimate

Fε(uε) =
∫
X

(
ε

2
|∇H u|2H + W(u)

ε

)
dγ

�
∫
X

√
2W(uε) |∇H u|H dγ

=
1∫

0

√
2W(t)Pγ

({uε > t})dt.

Fix now δ > 0. From the fact that γ ({δ � uε � 1−δ}) → 0 as ε → 0, it follows that, for every sequence tε ∈ [δ,1− δ],
then functions χ{uε>tε} tend weakly to u in L2

γ (X). For every ε > 0 let us choose tε ∈ [δ,1 − δ] such that

1−δ∫ √
2W(t)Pγ

({uε > t})dt �
( 1−δ∫ √

2W(t) dt

)
Pγ

({uε > tε}
)
.

δ δ
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Then, by Theorem 4.6 we have

lim
ε→0

Fε(uε) � lim
ε→0

( 1−δ∫
δ

√
2W(t) dt

)
Pγ

({uε > tε}
)
�
( 1−δ∫

δ

√
2W(t) dt

)
F(u).

Since δ is arbitrary we get the Γ -liminf inequality.
The Γ -limsup is done similarly to the (Euclidean) finite dimensional case [28,27]. Since F is the relaxation of F

in the weak L2
γ (X)-topology and since we can approximate sets of finite perimeter by smooth cylindrical sets by

Proposition 2.6, for every u ∈ BVγ (X) with 0 � u � 1 there exists a sequence En of smooth cylindrical sets with
χEn converging weakly to u and such that Pγ (En) tends to F(u). This shows that we can restrict ourselves to smooth
cylindrical sets for computing the Γ -limsup of Fε .

Let m ∈ N and E = Π−1
m (Em), where Em ⊂R

m is a smooth set with finite Gaussian perimeter, and let

dH (x,E) := d
(
Πm(x),Em

)
where d(x,Em) is the usual distance function from Em in R

m. Notice that

dH (x,E) = min
{|x − y|H ; y ∈ E, x − y ∈ H

}
,

moreover dH is differentiable almost everywhere with |∇H dH (x,E)|H = 1.
Let δ > 0, αδ := max{W(t): t ∈ [0, δ] ∪ [1 − δ,1]} and define Wδ,Hδ : [0,1] →R as

Wδ(t) :=
⎧⎨⎩

αδ if 0 � t � δ

W(t) if δ � t � 1 − δ

αδ if 1 − δ � t � 1.

Hδ(t) :=
t∫

0

1√
2Wδ(s)

ds.

Finally let ηδ be the usual truncated one-dimensional transition profile defined as

ηδ(t) :=
⎧⎨⎩

0 if t � 0

H−1
δ (t) if 0 � t � Hδ(1)

1 if t > Hδ(1).

Observe that ηδ is a Lipschitz function which verifies
η′2
δ

2 = Wδ(ηδ). We then set

uε(x) := ηδ

(
dH (x,E)

ε

)
.

We finally have

Fε(uε) =
∫
X

(
ε

2
|∇H uε|2H + W(uε)

ε

)
dγ

�
∫
X

(
ε

2
|∇H uε|2H + Wδ(uε)

ε

)
dγ

=
∫
X

ε

2
η′

δ
2
(

d(Πm(x))

ε

)( |∇H d(Πm(x))|
ε

)2

+ 1

ε
Wδ

(
ηδ(d(Πm(x)))

ε

)
dγ

=
∫
Rm

[
1

2
η′

δ
2
(

d

ε

)
+ Wδ

(
ηδ

(
d

ε

))) |∇d|
ε

dγm

=
Hδ(1)∫ (

η′
δ

2
(t)

2
+ Wδ

(
ηδ(t)

))
Pγm

({d > εt})dt.
0
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The proof is completed since for every t ∈ [0,Hδ(1)], Pγm({d > εt}) tends to Pγm(Em) as ε → 0, and

Hδ(1)∫
0

(
η′2

δ (t)

2
+ Wδ

(
ηδ(t)

))
dt =

1∫
0

√
2Wδ(t) dt.

Thus we have

lim
ε→0

Fε(uε) �
( 1∫

0

√
2Wδ(t) dt

)
Pγm(Em),

which gives the desired inequality letting δ → 0. �
Remark 5.4. As in the Euclidean case, a similar result can be proven for the volume constrained problems. In this
case, the proof of the Γ -liminf is exactly the same as in Theorem 5.3, and the Γ -limsup is also very similar. The only
difference comes from the fact that we have to adapt the recovery sequence to have the right volume, and this can be
done as in [27] by slightly translating ηδ .

We now state some simple implications of the Γ -convergence result.

Proposition 5.5. Let m ∈ [0,1] and uε be a minimizer of

min∫
X udγ=m

∫
X

(
ε

2
|∇H u|2H + W(u)

ε

)
dγ (17)

then uε = vε(ĥε(x)) for some ĥε ∈ H with |hε|H = 1 and some vε minimizer of the one-dimensional problem

min∫
R

v dγ1=m

∫
R

ε

2
v′2 dγ +

∫
R

W(v)

ε
dγ1. (18)

in particular, vε (strongly) converges to the characteristic function of a half-line.

Proof. For every u ∈ H 1
γ (X), by Proposition 3.12, we have

∫
X

u∗ dγ = ∫
X

udγ and Fε(u
∗) � Fε(u), with equality

only if u is of the form u(x) = v(ĥ(x)) for some ĥ ∈ H with |h|H = 1. Using that ĥ is the limit in L2
γ (X) of linear

functions of the form R∗x∗
i , it is readily seen that ∇H ĥ = h, and thus we get

Fε(u) =
∫
X

(
ε

2
v′(ĥ(x)

)2 + W(v(ĥ(x)))

ε

)
dγ =

∫
R

(
ε

2
v′2 dγ +

∫
R

W(v)

ε

)
dγ1.

Therefore problem (17) reduces to the one-dimensional problem (18).
Using the compact embedding of H 1

γ1
(R) in L2

γ1
(R) (see [4, Th. 4.10]) and the direct method of the calculus of

variations, we get that (18) has a minimizer. Moreover, by the Γ -convergence of the one-dimensional functionals in
the strong L2

γ1
(R)-topology towards the a multiple of the perimeter (which can be obtained exactly as in the classi-

cal Modica–Mortola Theorem since compact embedding of BVγ1(R) in L1
γ1

(R) holds), we find that every sequence
of minimizers vε of (18) has a subsequence strongly converging towards the characteristic of the half-line of mea-
sure m. �

We finally give another convergence result for the prescribed curvature problem in case of uniqueness of minimiz-
ers.

Proposition 5.6. Let g ∈ L2
γ (X), then the following assertions are equivalent:
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• the functional

Fg(E) = Pγ (E) +
∫
E

g dγ (19)

has a unique minimizer in the class of sets of finite perimeter;
• the functional

Fg(u) = F(u) +
∫
X

ug dγ (20)

has a unique minimizer in BVγ (X).

Moreover, when this holds the two minimizers coincides. Finally, if uε is a sequence in H 1
γ (X) satisfying

sup
ε

(
Fε(uε) +

∫
X

uεg dγ

)
� C

for some C > 0, then uε has a subsequence strongly converging to χE in L2
γ (X), where E is the common minimizer

of (19) and (20).

Proof. We first notice that the problem (19) always has a solution. Indeed, arguing as in [12], if En is a minimizing
sequence for (19), it has a subsequence weakly converging to some u ∈ BVγ (X). By the lower semicontinuity of the
total variation and the coarea formula we then have

inf
E

(
Pγ (E) +

∫
E

g dγ

)
�
∫
X

|Dγ u|H +
∫
X

ug dγ =
1∫

0

(
Pγ

({u > t})+
∫

{u>t}
g(x)dγ (x)

)
dt

and thus the sets {u > t} minimize Fg for almost every t . As F is the relaxation of the perimeter we have that the
minimum values in (19) and (20) are the same and thus any minimizer of Fg is also a minimizer of Fg . This shows
that if uniqueness does not hold in (19) then it does not hold in (20), too. Now, if u is a minimizer of Fg , applying the
coarea formula once again we get

inf
E

Fg(E) = Fg(u) �
∫
X

|Dγ u|H +
∫
X

ug dγ =
1∫

0

(
Pγ

({u > t})+
∫

{u>t}
g(x)dγ (x)

)
dt.

As above, this implies that {u > t} solves (19) for almost every t . Therefore, if the minimizer of Fg is not a character-
istic function, then uniqueness does not hold neither in (19) nor in (20). This proves the first part of the proposition.

The second statement easily follows from Theorem 5.3. Indeed, as the functionals Fε(u) + ∫
X

ug dγ Γ -converge
to Fg in the weak L2

γ (X)-topology, for every sequence uε bounded in energy, there exists a subsequence weakly
converging to χE (where E is the unique minimizer of (19) and (20)). However, by the lower semicontinuity of the
norm,

m
1
2 � lim

ε→0
‖uε‖L2

γ (X) � ‖χE‖L2
γ (X) = m

1
2 .

Thus ‖uε‖L2
γ (X) converges to ‖χE‖L2

γ (X), which implies the strong convergence of uε . �
Remark 5.7. In [13], we provide an example of functionals for which uniqueness of minimizers holds, namely

Pγ (E) +
∫
X

(g − λ)dγ

where g : X → R is convex and λ ∈ (0,+∞) is large enough.
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