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Abstract

We consider immersions admitting uniform representations as a A-Lipschitz graph. In codimension 1, we show compactness for
such immersions for arbitrary fixed A < co and uniformly bounded volume. The same result is shown in arbitrary codimension
for A < %.
© 2012 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

1. Introduction

In [14] J. Langer investigated compactness of immersed surfaces in R admitting uniform bounds on the second
fundamental form and the area of the surfaces. For a given sequence f!: X! — R3, there exist, after passing to a
subsequence, a limit surface f : ¥ — R3 and diffeomorphisms ¢ : ¥ — X7, such that f o ¢ converges in the
C!-topology to f. In particular, up to diffeomorphism, there are only finitely many manifolds admitting such an
immersion. The finiteness of topological types was generalized by K. Corlette in [6] to immersions of arbitrary di-
mension and codimension. Moreover, the compactness theorem was generalized by S. Delladio in [7] to hypersurfaces
of arbitrary dimension. The general case, that is compactness in arbitrary dimension and codimension, was proved by
the author in [4].

The proof strongly relies on a fundamental principle which we like to describe in the following. A simple con-
sequence of the implicit function theorem says that any immersion can locally be written as the graph of a function
u : B, — RF over the affine tangent space. Moreover, for a given A > 0 we can choose r > 0 small enough such that
| Dullcocp,y < A If this is possible at any point of the immersion with the same radius r, we call f an (r, )-immersion.

Using the Sobolev embedding it can be shown that a uniform L”-bound for the second fundamental form with
p greater than the dimension implies that for any A > O there is an r > 0 such that every immersion is an (r, A)-
immersion.

Inspired by this result, it is a natural generalization to investigate compactness properties also for (r, A)-immersions
with fixed r and A; this is the topic of the present paper. In the proof of the theorem of Langer it is essential that A can
be chosen very small. Then, using the local graph representation over B,, all immersions are close to each other and
nearly flat. These properties are used repeatedly, for example for the construction of the diffeomorphism ¢'.
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Here, we would first like to show compactness of (7, A)-immersions in codimension 1 for any fixed A. We do not re-
quire any smallness assumption for A. Moreover, we do not only consider immersions with graph representations over
the affine tangent space, but also over other appropriately chosen m-spaces. Let ' (r, 1) be the set of C!-immersions
f:M™ — R"*! with 0 € f(M), which may locally be written over an m-space as the graph of a A-Lipschitz func-
tion u : B, — R (the precise definitions of all notations used in this paper are given in Section 2). Here all manifolds
are assumed to be compact. Moreover, let S\l, (r, A) be the set of immersions in ! (r, 1) with vol(M) < V. Similarly,
we define the set F°(r, 1) by replacing C'-immersions in §'(r, ) by Lipschitz functions. We obtain the following
compactness result:

Theorem 1.1 (Compactness of (r, A)-immersions in codimension one). The set S\I, (r, A) is relatively compact in
50, 2) in the following sense:

Let f': M! — R"*! be a sequence in §, (r, 1). Then, after passing to a subsequence, there existan f : M — R"+!
in 3°(r, ) and a sequence of diffeomorphisms ¢ : M — M', such that f' o ¢' is uniformly Lipschitz bounded and
converges uniformly to f.

Here the Lipschitz bound for f’ o ¢’ is shown with respect to the local representations of some finite atlas of M.
For these representations, we obtain a Lipschitz constant L depending only on A. As an immediate consequence of
Theorem 1.1 we deduce the following corollary:

Corollary 1.2. There are only finitely many manifolds in S‘I, (r, A) up to diffeomorphism.

The situation is slightly different when considering (7, A)-immersions in arbitrary codimension. For the construc-
tion of the diffeomorphisms ¢’ one uses a kind of projection in an averaged normal direction v. In higher codimension,
the averaged normal v cannot be constructed as in the case of hypersurfaces. We will give an alternative construction
involving a Riemannian center of mass. However, for doing so we have to assume here that A is not too large. Let
&11, (r, 2) and F°(r, A) be defined as above, but this time for functions with values in Rt for a fixed k. We obtain the
following theorem:

Theorem 1.3 (Compactness of (r, A)-immersions in arbitrary codimension). Let A < % Then 3"{, (r, 1) is relatively

compact in F°(r, 1) in the sense of Theorem 1.1.

As in Corollary 1.2, we deduce for A < % that there are only finitely many manifolds in §L, (r, 1) up to diffeomor-

phism. Surely, the bound A < % is not optimal; at the end of Section 6 we will discuss some possibilities how to prove
the theorem for bigger Lipschitz constant.

In [14] and [4] any sequence of immersions with L?-bounded second fundamental form, p > m, is shown to be also
a sequence of (r, A)-immersions (for some fixed » and X). The same conclusion holds in many other situations, where
the geometric data (such as curvature bounds) ensure uniform graph representations with control over the slope of the
graphs. Hence it seems natural to unearth the compactness of (7, A)-immersions as a theorem on its own. In any general
situation, where compactness of immersions is desired (e.g. when considering convergence of geometric flows), only
the condition of Definition 2.2 in Section 2 has to be verified. If in addition some bound for higher derivatives of the
graph functions is known (or for instance a C 0.2_bound for Du), with methods as in [4] one easily derives additional
properties of the limit, such as higher order differentiability or curvature bounds. Hence, Theorems 1.1 and 1.3 can be
seen as the most general kind of compactness theorem in this context.

2. Definitions and preliminaries

We begin with some general notations: For n =m + k let G, ,, denote the Grassmannian of (non-oriented) m-
dimensional subspaces of R". Unless stated otherwise let B, denote the open ball in R of radius ¢ > 0 centered at
the origin.

Now let M be an m-dimensional manifold without boundary and f : M — R" a C!-immersion. Let ¢ € M and
let T, M be the tangent space at g. Identifying vectors X € T, M with f,X € TyHR", we may consider T; M as an
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m-dimensional subspace of R". Let (T, M )™ denote the orthogonal complement of T,M in R", that is
R"=T,M & (T,M)*
and (T, M )1 is perpendicular to Ty, M. We may define the tangent-space field

M — Gy,
q—T;M, 2.1)

and the normal-space field

vi:M— Gy,
g~ (T,M)™. 2.2)

2.1. The notion of an (r, A)-immersion

We call a mapping A : R" — R" a Euclidean isometry, if there is a rotation R € SO(n) and a translation T € R",
such that A(x) = Rx + T for all x € R".

For a given point g € M let A; : R” — R" be a Euclidean isometry, which maps the origin to f(g), and the
subspace R x {0} C R™ x R* onto f (q) + t5(q). Let m : R" — R™ be the standard projection onto the first m
coordinates.

Finally let U, , C M be the g-component of the set (7 o A;l o f)~1(B,). Although the isometry A, is not uniquely
determined, the set U, , does not depend on the choice of A, .

We come to the central definition (as first defined in [14]):

Definition 2.1. An immersion f is called an (7, A)-immersion, if for each point ¢ € M the set A;l o f(Uyg) is the
graph of a differentiable function u : B, — R* with | Du||co¢p,y < A.

Here, for any x € B, we have Du(x) € RE>m 1n order to define the C%-norm for Du, we have to fix a matrix norm
for Du(x). Of course all norms on R¥*"” are equivalent, therefore our results are true for any norm (possibly up to
multiplication by some positive constant). Let us agree upon

m 3
1Al = (Zlajlz)
j=1

for A= (ay,...,ay) € R**™_ For this norm we have lAllop < |IA]l for any A € R¥*™ and the operator norm || - llop-
Hence the bound || Dul|co(p,) < A directly implies that u is A-Lipschitz. Moreover the norm || Dul|co(p,, does not
depend on the choice of the isometry A,.

2.2. The notion of a generalized (r, A)-immersion

For any (r, 1)-immersion f : M — R” and any g € M, we have a local graph representation over the affine tangent
space f(q) + tr(g). It is natural to extend this definition to immersions with local graph representations over other
appropriately chosen m-spaces in R".

For a given g € M and a given m-space E € G, let Ay g : R" — R" be a Euclidean isometry, which maps the
origin to f(g), and the subspace R” x {0} C R™ x R* onto f(¢) + E.

Let UE, C M be the g-component of the set (7 o A;IE o f)~1(B,). Again the isometry A, g is not uniquely

determined but the set U fq

does not depend on the choice of A, g.

Definition 2.2. An immersion f is called a generalized (r, A)-immersion, if for each point ¢ € M there is an
E = E(q) € Gy, such that the set A;IE of (qu) is the graph of a differentiable function u : B, — R* with
||D”||C°(B,) < A.
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Obviously every (r, A)-immersion is a generalized (r, A)-immersion, as we can choose E(gq) = t7(q) for any
qeM.

For fixed dimension m and codimension k we denote by § L(r, 1) the set of generalized (r, A)-immersions f : M —
R™*K with 0 € f(M), where M is any compact m-manifold without boundary. For V > 0 we denote by ., (r, 1) the

set of all immersions in F!(r, 1) with vol(M) < V. Here the volume of M is measured with respect to the volume
measure induced by the metric f*geyci. Note that M is not fixed in these sets (in order to obtain a set in a strict set
theoretical sense one may consider every manifold as embedded in R" for an N = N (m)). The condition 0 € f (M)
can be weakened in many applications to f(M) N K # @ for a compact set K C R Tk,

The notion of a generalized (r, A)-immersion has one major advantage: As the definition does not make use of
the existence of a tangent space, it allows us to define similar notions for functions into R” which are not immersed.
For a given E € G, ;, the set qu can be defined for any continuous function f : M — R". Moreover the condition
| Dullco(p,y < A in the smooth case corresponds to a Lipschitz bound of the function u. Hence the following definition
can be seen as the natural generalization to continuous functions:

Definition 2.3. A continuous function f is called an (r, A)-function, if for each point ¢ € M there is an E = E(q) €
G.m, such that the set A(;EE of (qu) is the graph of a Lipschitz continuous function u : B, — R¥ with Lipschitz
constant A.

We additionally assume here, that E can be chosen such that f is injective on U fq. This property is not implied by
the preceding definition, if one reads the latter word for word.

We shall always consider (r, A)-functions defined on compact topological manifolds (without boundary). Using
the local Lipschitz graph representation, any such manifold can be endowed with an atlas with bi-Lipschitz change of
coordinates. If the Lipschitz constant of the graphs is sufficiently small (and hence the coordinate changes are almost
isometric with bi-Lipschitz constant close to 1), by the results in [ 13] there exists even a smooth atlas. In our case, the
limit manifold both in Theorems 1.1 and 1.3 will be smooth.

Finally, we define the set 39, 0 by replacing generalized (r, A)-immersions in § L, ) by (r, A)-functions.

2.3. Geometry of Grassmann manifolds

For k,n € N with 0 < k < n let G, ; again be the set of (non-oriented) k-dimensional subspaces of R”.

The set G, x may be endowed with the structure of a differentiable k(n — k)-dimensional manifold, see e.g. [15].
Moreover there is a Riemannian metric g on G, being invariant under the action of Q(n) in R". It is unique up to
multiplication by a positive constant (and — again up to multiplication by a positive constant — the only metric being
invariant under the action of SO(n) in R” except for the case G4 2). For more details we refer the reader to [16].

In general, if (M, g) is a Riemannian manifold, the induced distance on M is defined by

d(p,q) =inf{L(y) | y :[a, b] = M piecewise smooth curve with y (a) = p, y(b) =q}. (2.3)

Here L(y) := f ab |‘2—)t' (t)| dt denotes the length of y. If M is complete, by the theorem of Hopf—Rinow any two points
P, q € M can be joined by a geodesic of length d(p, ¢). This applies to the Grassmannian as G, i is complete.

Now suppose that E, G € G, i are two close k-planes; this means that the projection of each onto the other
is non-degenerate. Applying a transformation to principal axes, there are orthonormal bases {vy, ..., vt} of E and
{wy, ..., wg} of G such that

(v, wj) =8;jcost; with§; € [0, %)
for 1 <1, j < k. For given k-spaces E and G, the 6y, ..., 6 are uniquely determined (up to the order) and called

the principal angles between E and G. Under all metrics on G, x being invariant under the action of Q(n), there is
exactly one metric g with

k 3
d(E,G) = (Zeﬁ)
i=1
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for all close k-planes E and G, where d denotes the distance corresponding to g, and 6y, ..., 6; the principal angles
between E and G as defined above; see [2] and the references given there. We shall always use this distinguished
metric.

We will need the following estimate for the sectional curvatures of a Grassmannian:

Lemma 2.4. Let max{k,n — k} > 2. Let K(-,-) denote the sectional curvature of G, and let X,Y € T, G, ; be
linearly independent tangent vectors for a P € G . Then

0<K(X,Y)<2.

Proof. For min{k,n — k} = 1 all sectional curvatures are constant with K (X, Y) = 1. For a proof see [16, p. 351]. For
min{k,n —k} >2 wehave 0 < K(X,Y) <2by[17, Theorem 3]. O

The injectivity radius of G,  is % (see [2, p. 53]). A subset U of a Riemannian manifold (M, g) is said to be
convex, if and only if for each p, g € U the shortest geodesic from p to g is unique in M and lies entirely in U. For
the Grassmannian G, , any open Riemannian ball B, (P) around P € G, ; with ¢ < % is convex; see [8, p. 228].

2.4. The Riemannian center of mass

The well-known Euclidean center of mass may be generalized to a Riemannian center of mass on Riemannian
manifolds. This was introduced by K. Grove and H. Karcher in [9]. A simplified treatment is given in [13]. See
also [11]. We like to give a short sketch of this concept.

Let (M, g) be a complete Riemannian manifold with induced distance d as in (2.3). Let  be a probability measure
on M, i.e. a nonnegative measure with

w(M) = / dp=1.
M
Let g be a pointin M and B, = B,(g) a convex open ball of radius ¢ around g in M. Suppose
sptu C By,
where spt 1 denotes the support of . We define a function

P: EQ — R,
P(p) = / d(p.x)* dp(x).
M

Definition 2.5. A g € EQ is called a center of mass for w if

Pg) = inf / d(p, )? dp ().

PEBy
The following theorem asserts the existence and uniqueness of a center of mass:

Theorem 2.6. If the sectional curvatures of M in B, are at most k with 0 < k < oo and if ¢ is small enough such that
0< %m{’l/ 2 then P is a strictly convex function on B, and has a unigue minimum point in B, which lies in B, and

is the unique center of mass for .
Proof. See [13, Theorem 1.2] and the following pages there. O

In the preceding theorem, we do not require the bound « to be attained; in particular all sectional curvatures are
also allowed to be less than or equal to 0. The same applies to the following lemma:
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Lemma 2.7. Assume that the sectional curvatures of M in B, are at most k with 0 <k < 00 and ¢ < %JTK_I/Z. Let
W1, 2 be two probability measures on M with sptuy C By, sptua C B, with centers of mass q1, q2 respectively.
Then for a universal constant C = C(k, 0) < 00

dq1.q) < C/d(fh,X)dlMl ),
M

where |1 — 2| denotes the total variation measure of the signed measure L1 — [L3.
Proof. Let P;(p) = %fMd(p,x)2 dui(x) fori =1, 2. By Theorem 1.5.1 in [13], with

C=C(k,0):=1+ (/(1/2,9)_1 tan(ZKI/ZQ), (2.4)
we have for all y € B, the estimate

d(q1.y) < Clgrad Py(y)].
Using sptu; C By, by Theorem 1.2 in [13] we have

grad Py (y) = — / exp; ! () dpai (), 25)
BQ

where expy_1 : By — Ty M is considered as a vector valued function.
Moreover, as ¢; is a center of mass,

grad Py (g2) = 0.

Then by the arguments of [11, Lemma 4.8.7] (where manifolds of nonpositive sectional curvature are considered), we
have

d(q1,92) < C|grad Py (¢2)|

= C‘ fexp;zl x)duy(x)
BQ

=C‘ / expy,' (1) dpu1(x) — / expy,' () dpa(x)
BQ BQ

< [ dtgrx)din - i)
M

where we used |exp;21 (x)] =d(q2, x) and sptu; C B, in the last line. O
2.5. Basics for the proof

We like to fix some further notation and to deduce some basic facts that are needed in the proof.

First of all let us simplify the notation. For a given (r, A)-immersion f : M — R™*! and for every ¢ € M we can
choose an E; € G, 1, with the properties of Definition 2.2. This yields a mapping £ : M — G y41,m, g = E,4. For
every (r, A)-immersion we choose and fix such a mapping £. So every given (r, A)-immersion f can be thought of as

apair (f, &), even if £ is not explicitly mentioned in the notation. With A, ¢(,) and Uf ‘;q) as in Definition 2.2, we set
Ag = Ageq)
andforO0 <o <r
— €@
Upg =Upyq .

However, all properties shown below for U, , are true for any admissible choice of £.
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As an analogue to Lemma 3.1 in [14] we obtain the following statement, where f is assumed to be a generalized
(r, A)-immersion here:

Lemma 2.8. Let f: M — R™+ be an (r, \)-immersion and p,q € M.

a) f0<o<rand peUyy, then|f(q) — f(p)| < (1+A)o.
b) If0 <o <rand$=[3(1+A)]1 "o and Us 4 N Us,, # 9, then Us , C Up 4.

Proof. a) Pass to the graph representation, use the bound on the C°-norm of the derivative of the graph and the
triangular inequality.
b) Let x € Us  and y € Us g N Us. . With ¢, :=7 0 A o f we have

log O <[ ) = f @]
<[f@ = fD|+[fP) = fD|+[f ) = f(@)]
<3(1+2)8
=0.
Hence Us,p C ¢, '(B,). But Us,, U Us 4 is a connected set containing ¢, hence included in the g-component of
(pq_l(BQ), thatis in U, 4. We conclude Us , C Uy y. O

Now let r, A > 0 be given. For [ € Ny define §; := [3(1 + )17 'r. For an (r, })-immersion f:M— Rm+L by
Lemma 2.8 b) we have the following important property:

If p,g € Mand Us,,, , N Us,,, , #9, then Us,,, , C Us, 4. (2.6)

If f: M — R"*!is an (r, »)-immersion and p € M, we may use the local graph representation to conclude that the
set f(Uy,p) is homeomorphic to the ball B,. Hence we may choose a continuous unit normal v, : U, , — S" with
respect to f|U, ,. If ¢ € M is another point and v, : U, , — S™ a continuous unit normal on U, ;, we note that v,
and v, do not necessarily coincide on U, , N U, ,. However, we have the following statement:

Lemma 2.9. Let f : M — R"*! be an (r, A)-immersion and p,q € M. Let vyt Usy p = S, vy : Us; g — S™ be
continuous unit normals. Suppose Us, p N\ Us, 4 # 0. Then exactly one of the following two statements is true:

o v, (x) =vy(x) for every x € Us, p NUs, 4,
o v, (x) = —vy(x) for every x € Us, , N Us, 4.

Proof. Choose a & € Us,,, N Us, 4. First suppose that v,(§) = v,(§). As U,,,, is homeomorphic to B, and con-
nected, there are exactly two continuous unit normals on U, ,. Let v be the one with v(§) =v,(&). Let W = {x €
Us,,p: v(x) =vp(x)}. Then W is a nonempty subset of the connected set Us, ,. Moreover W is easily seen to be open
and closed in Us,, . Therefore W = Us, , and v, =v on Us, . As Us, 4 C Uy, p by (2.6), the preceding argumen-
tation can also be applied to v,. With v(§) = v,(§) = v,(§) we conclude v, =v on Us, ,. Hence v, =v =, on
Us,,p N Us, 4, as in the claim above. If v, (§) = —v,(§), a similar argument yields v, = —v, on Us, , NUs, 4. O

Remark 2.10. The statement of the preceding lemma might seem to be obvious at first sight. However one can think
of a Mobius strip covered by two open sets U and V, each of which is homeomorphic to B,, such that U NV has
exactly two components. If we choose continuous unit normals vy, v, on U, V respectively, we have v; = v, on one
of the components, and vi = —v;, on the other. Such a behavior of the normals is excluded by Lemma 2.9, irrespective
whether Us, , N Us, 4 is connected or not.

We need the notion of a §-net:

Definition 2.11. Let Q ={q1, ..., g5} be a finite set of points in M and let 0 < § < r. We say that Q is a §-net for f,
if M = Uj‘:l Us,q;-
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Note that every §-net is also a §’-netif 0 <8 <& <r.

The following statement is a bit stronger than Lemma 3.2 in [14]. It bounds the number of elements in a §-net by
an argumentation similar to that in the proof of Vitali’s covering theorem. Simultaneously, similarly to Besicovitch’s
covering theorem, it gives a bound (which does not depend on the volume) how often any fixed point in M is covered
by the net. More precisely, we have the following lemma:

Lemma 2.12. Forl € N, every (r, A)-immersion on a compact m-manifold M admits a &;-net Q with

101 < 877 vol (M),

|{q e€eQ: pe U,gz,q}} < [3(1 + k)]aﬂ)m for every fixed p € M.

Proof. Letg) € M be an arbitrary point. Assume we have found points {g1, ..., gv} in M with the property Uy, 4, N
Usy,y,q0 =¥ for j # k. Suppose Us, 4, U- - -UUs, 4, does not cover M. Then choose a point g, 1 from the complement.
Then Us, ;¢ N Us;, 1.9, =9 for k < v, as otherwise Us,, | 4,.; C Us g, by (2.6). As

S
vol(M) > Z vol(Us,,.,.q;)

> L™ (Bs,,)
j=1

2 saﬂl k)
this procedure yields after at most 811”1’ vol(M) steps a cover.
For the second relation let p € M. Let Q = {q1, ..., g5} be the net that we found above. Moreover let Z(p) =

{q € Q: p €Us,,}. By Lemma 2.8 b) we have

U Us, g CUs, p-
q€Z(p)

Hence we may estimate as above

vol(Us,,p) > Z vol(Us,,,.q)
qE€Z(p)

>|Z(p)|8] L (BY). 2.7)
As the immersion is an (r, A)-immersion, we have
vol(Us, p) < (1 + )81 L™ (By). (2.8)
Combining (2.7) and (2.8), we estimate

Z(p)| < A+1)"878
— 3lm(1 + )\)(l‘l’l)m,

which implies the statement. O

We would like to emphasize that the second estimate in the preceding lemma does not depend on the volume
vol(M). This will be necessary in order to obtain estimates for Lipschitz constants and for angles between different
spaces depending only on A but not on vol(M).

Definition 2.13. Let f : M — R”*! be an (r, A)-immersion. Let / € N and let Q = {q1, ..., g5} be a §;-net for f. For
1e{0,1,...,1}and j €{1,..., s} we define

Z,(j)={1 <k <s: Us,q; NUs,q # 9}
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For vy, vo € R™T1\{0} let <t(vy, v2) denote the non-oriented angle between v| and v, that is

0< (v, ) <,
(vi, 1)
[villva]

<(v1, vp) = arccos

We consider the metric space (S, d), where S™ C R"*+! is the m-dimensional unit sphere and d the intrinsic metric
on S™, that is

d(,)=<(,). (2.9)

For A C S™ and x € S™ let dist(x, A) = inf{d(x, y): y € A}. For ¢ > 0 let B,(A) = {x € S": dist(x, A) < o}.
Moreover let S C P(S™) denote the set of closed nonempty subsets of S™. We denote by d3; the Hausdorff metric
on S, given by

d’;.[iSXS—)R>0,
(81, 82) > inf{o > 0: S C Bo(S2), S2 C By(S)}.

We will need the following well-known version of the theorem of Arzela—Ascoli for the Hausdorff metric (see [,
p. 125]):

Lemma 2.14. Let (X, d) be a compact metric space and A the set of closed nonempty subsets of X. Then (A, dy) is
compact, i.e. every sequence in A has a subsequence that converges to an element in A.

We will have to estimate the size of some tubular neighborhoods. To do this we need to introduce some more
notation. Suppose we are given ¢ > 0 and u € Cl(BQ) with ”Du”CO(BQ) < A. Moreover let T € CI(BQ,]R’"“) be

a mapping with |T'(x)| =1 for all x € B,. Suppose that T is L-Lipschitz for an L with 0 < L < oco. Let w: EQ —
Gpy1,1, g — span{T(g)}. Finally, let v : B, — S™ be a continuous unit normal with respect to the graph x —
(x,u(x)). We consider a vector bundle E over B,, given by

E={(x,y) € By x R ye w(x)}.
For ¢ > 0 let

E*={(x,y)€E: |yl <e}CE.
Moreover we define a mapping

F:E — R™1
(x,y)—~ (x,u(x))+y, (2.10)

where y € w(x).

Lemma 2.15 (Size of tubular neighborhoods). Let y < % and & = %cos y. With the notation as above, assume that

<(T(p),v(q)) <y foreveryp,q€ By. (2.11)

Then the following are true:

a) The mapping F|E® is a diffeomorphism onto an open neighborhood of {(x, u(x)) e R x R: x € B,}.
. 2
b) Let o :=min{§ cosy, %}. Then

Bo({(x,u(x)) eR" xR: x € E%}) C F(E®),

where B, (A) = {x € R™t1: dist(x, A) < o} for A C R™"*! with dist the Euclidean distance.
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{(z,u(z)) e R™ xR :z € B,}

F(EF)

B, ({(w,u(m)) ER™xR:z EE%})

B

~

)
BQ

Fig. 2.1. Tubular neighborhood around a graph.

The trivial but long proof is carried out in detail in Appendix A. (See Fig. 2.1.)
Finally we like to define a metric for graph systems. First of all let

& ={(Aj,uj)}_: Aj:R"*" - R" ! is a Euclidean isometry, u; € C'(B,)}.

Every Euclidean isometry A : R”*! — R”+! splits uniquely into a rotation R € SO(m + 1) and a translation 7' €
R™+1 If || - || denotes the operator norm and if I" = (Aj, ”.i)§=1 €6, I'=(Aj, ﬂj)‘;.:l € 6%, we set

0(, ) : 6 x 6° - R,
s
our, My = Z(uRj = Ryl +1T; = Tj| + lluj — iijllcocg,y)- (2.12)
j=1

This makes (&°, 9) a metric space.
3. Transversality and tubular neighborhoods

In this section we like to construct lines in R”*!, that intersect each (appropriately restricted) immersion f?
transversally — even in the case, that the Lipschitz constant A of the graph functions is large. This yields local tubular
neighborhoods around f' and is the crucial step in the proof.

Let r > 0 and 1,V < oo. Let f!: M' — R™*! be a sequence of (r, \)-immersions as in Theorem 1.1. By
Lemma 2.12 we can choose 8s-nets Q' = {¢!, ..., qi;} for M' with s’ < 85" vol(M') and with

{geQ': pe Uéz’q}] <[3a1 +A)]6m for every fixed p € M. 3.1

As vol(M') <V, we may pass to a subsequence such that each net has exactly s points for a fixed s € N.
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Foreveryi e N,1€{0,1,...,5}and j € {1, ..., s} we have

ZI(H) cP({L,....s}).

Hence, by successively passing to subsequences, we may assume that Z f (j) does not depend on i. Denote it by Z,(j).

To simplify the notation, for 0 < o <r we set U é = UZ) g
4j

Moreover, we choose for every i € Nand every j € {1, ..., s} acontinuous unit normal vj : Ur" i~ S™ with respect

to f! |Ur", i Let these normal mappings be fixed from now on.
We set

Sj- = V;(Ué.,j) c S™,

where the closure is taken with respect to the metric defined in (2.9).
For each fixed j, this yields a sequence (S}) ien in S. By Lemma 2.14, passing to a further subsequence (if need
be), we can assume
Sj- — S} in (S,dy) asi — oo

for each fixed j € {1, ..., s}, where S} € S. In particular for every j

(Sj')ieN is a Cauchy sequence in (S, dy). (3.2)

By (3.2) we may choose another subsequence such that for every j
1
dy (S5, 8%) < % — yarctan) forallk,/ €N. (3.3)

To each qj. € Q' we may assign a neighborhood Uri’ ja Euclidean isometry A; and a differentiable function

uS.:B, — R as in Definition 2.2. This yields the corresponding graph systems I'! = (A?,u;)jzl e &°. As
||Du§- llcocp,y <2 and as fi(M?") is uniformly bounded, a subsequence of (I'');en converges in (&°,9). In partic-

ular

(I'"),oy is a Cauchy sequence in (&*,9). (3.4)
Let constants L, y and o be defined by
L:=[3(1+ 1], (3.5)
y =g T jarctank, (3.6)
cos’y
= 3.7
CT oL+ N (3.7)

By (3.4) we may pass to another subsequence such that
o(rk, r')y <30+ +n] "o forallk,leN. (3.8)

For i =1 we sometimes suppress the index 1 and write for instance ¢; and u ; instead of qjl. and ui For the immer-
sion f!,let &' : M! — G4 1.n be a mapping as explained above. We set Ej:= 51((]}) € Gy41,m (this means E; is
an m-space for the point q} € M" as in Definition 2.2).

Our next task is to find a mapping @ : M! — G, 1.1, which defines the direction in which we project from f!(M")
onto f!(M') in order to construct diffeomorphisms ¢’ : M' — M’ . First we would like to give a local construction.
In Lemma 3.5 we will show that w is even globally well defined. The construction is similar to that in [14], but more
involved.

We choose a C*°-function g : Rxo — R with the following properties:

. g(t)=lf0rt<871,
e 0< g() < 1forre[d 1],
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e g(t)=0fort>1,
e —2< g (t)<Oforallt>0.

We note that 57] =[3(1+ A)]_1 < %, hence such a function g exists.
Let

Z:M' > P({1,....s}),
qr— {lgkés: qualz’k}.
By (3.1) we have

1Z(g)| <[BA+21)]"" foreveryqeM'. (3.9)
For every k € {1, ..., s} we choose a unit vector wy that is perpendicular to the subspace Ej defined above. Let these
vectors wq, ..., wy be fixed from now on.

Nowlet j e{l,...,s},q € U613,j and k € Z(g). Lemma 2.8 b) yields
1
U81 iCU
In particular f!(U 811 j) is the graph of a A-Lipschitz function on a subset of E. This implies

either <I(wk, vjl- (qj)) <arctanA or <I( Wk, V; (qJ )) arctan A. (3.10)
Set
b= { Wk, if <z(w;f, v(} (¢j)) < arctan A, 3.11)
—wg, otherwise.
If we replace the point ¢; by any other point p € U, 511, i the relation (3.10) will still be true. As v 11 is continuous and

U 811 j is connected, we easily conclude
<I(vk, v}(p)) LarctanA for every p € Uall,j’ 3.12)

where vy, is the fixed vector defined in (3.11). We finally define a function

.77l m—+1
S.U53’j—>]R ,

- Y (If @ - f' (qk>|>

keZ(q) %2

Lemma 3.1. The following inequalities hold:

a) 1S(q)| = (1+ 1)~ forevery q € Ual3 Iz

b) <(S(q), vj.(p)) < % + %arctan)»for every q € U<813,j and every p € Ucél,j'

Proof. a) Letqg € U;3 Ir .As Q'isadsnetfor f!, thereisake{l,...,s} withq € U814,k' By Lemma 2.8 a) we have

1£1(q) — £ (qx)| < 83, hence
'@ a0l % _8

52 52 r '
By the definition of g this yields
(Ifl(q) — fl(Qk)|)
gl————=)=1.
Y3
Now let/ € Z(g). By (3.12) we have <(v;, v; '(g)) < arctan 1. Hence
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(vi,vj (@) = il |v}(@)] cos(<(vi, v} (@)))
> cos(arctan A)
—(1+22)7
>(1+0""

We note that ¢ € U 3]4’ « in particular implies k € Z(g). Finally we estimate
S(@)| = (S(@). vj (@)
1 _ sl 1 _rl

& 1eZ(g)\(k} %2
TN gl
><1+ Z g(lf @—r (CII)|))(1+)L)I
)
leZ(@\ k)
>1+0"N

b) Letg € Uslw. and p € U(él’j' By (3.3) there isa p’ € Uall,j with

; 1
<I(vjl- (p/), v}(p)) < % ~5 arctan A. (3.13)
By (3.12), every v, with k € Z(g) lies in the cone

C= {v e R™ 1\ {0} <I(v, vjl- (p/)) < arctank}.
By the definition of S, also the non-zero vector S(g) lies in C, i.e.

<(S(q). v} (p)) <arctani. (3.14)
Using the triangular inequality, we conclude by (3.13) and (3.14) that

i T 1
<(S(g), vi(p)) < 213 arctani. O

By Lemma 3.1 a) the mapping S does not vanish on U 513 i We define T by normalizing S, that is

77l m+1
T.USM-—)R ,

S(q)
1S(q)]
Identifying Uy, ; with Bs, by means of the diffeomorphism 7 o A/Tl o f':Uj, ; — Bs,, we may consider T and S

as mappings defined on the ball Bs,. We show, that T considered as mapping on Bg, is Lipschitz with respect to the
Euclidean norm:

Lemma 3.2. The mapping T : Bs, — R™*1 is L-Lipschitz with L = [3(1 + 1)]%m+4~1,

Proof. Let x, y € Bs,. Then there are unique p, g € U613,j with 7w o A;] ofi(p)=x,mo A;] oflg)=y.

Letke Z(p)\ Z(g). Then p € Ualw. N Ualz,k' Lemma 2.8 b) implies Ualw C Uall,k’ so0 in particular g € Uall,k' Now
assume | £1(q) — £1(q)| < 2. With g = 0 A o f1 this implies ¢ (¢) € Bs,. Hence ¢ € Uallykﬁwk’l(B(gz) =Uj, -
But this contradicts k ¢ Z(q). Therefore | f!(¢) — f'(gx)| > 62 and hence g( W‘”g%) = 0 by the definition of g.

The same argument shows g('fl(p)a;zfl(q’)') =0foralll € Z(g)\ Z(p).

Using the preceding considerations, ||g/||C0(]R>0) <2and |Z(p)| < [3(1+ 1)1, |Z(g)| < [3(1 + 210", we esti-
mate as follows: -
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1 _rl 1 _rl
s s =| g(lf (p)5 f (qk)|>vk_ 3 g(lf (q)(S f (qm)W’
keZ(p) 2 1€2(q) 2
B 1Y (p) — )l 1Y (@) — £ (g0l
= > | — ) el ) [
keZ(p)UZ(q) 2 2
, LY p) = a1 @) — flgnl
D I L
keZ(p)UZ(q)
2
< ) sif'w»-rlal
keZ(p)UZ(q)

<ABA+V]" (@) = (o 0)]
<43+ 0] A+l -yl

By Lemma 3.1 a) we have |S(z)| > (1 + 2)~! for every z € U813,j' Hence

S S

_ 6m+2 2 —1y,.
|T(x) =T = S0l IS0 <431+ )] A4+ 1) Hx —y|
<BA+n]" -y, o

Remark 3.3. Of course, T is also Lipschitz as a mapping on U 61; j with respect to the metric induced by f!. The esti-
mate of the Lipschitz constant gets even better in this case. Moreover, we note that in the preceding lemma L depends
on r. However, we will see that the Lipschitz constant of f’ o ¢' does not depend on r in the end.

We set

w:Us, ;= Gmy1.1,
g — span{S(q)},

which is well defined as S(g) # 0 by Lemma 3.1 a).
We like to explain how w locally forms a tubular neighborhood around f!:
For that we consider the mapping

8k - Ualz,k — R,
<Ifl(q) - .fl(CIk)I>
q— 8 I —
2

As g is smooth and g(r) = 0 for ¢ > 1, it is easily seen that g; can be extended to a smooth function gz : M' — R
by setting gx = 0 outside U 5127 - This implies that S : U, 5‘3, i~ R™+1 is differentiable, even if the sum in the definition

of S depends on Z(gq). Hence also T = % is differentiable. Moreover Lemma 3.2 says that T is L-Lipschitz with
L =[3(141)]®"**~1 and by Lemma 3.1 b) we have

T 1
(T (p), v}(q)) < 7+ Earctan)» forall p,q € Ualw».
Finally, after a rotation and a translation, f (U 513’ j) may be written as the graph of a C!-function u} : Bs; — R. Letus
introduce some more notation:
We consider a vector bundle E; over U 513’ i given by
Ej= {(x.y) € Uslw- x Ry e o(x)}

with bundle projection 7. We may identify the zero section of E j with U 3]3 j For ¢ > 0 let
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Ef={(x,y)€Ej: |yl <&} CEj.
Finally we define a mapping
Fjléj—)Rm+1,
(., y) = fx)+y, (3.15)

where y € o (x).
Lemma 3.4. Let ¢ = % cosy, where L and y are as in (3.5), (3.6). Then the following are true:

o F; |E‘9 is a dzﬁ”eomorphism onto an open neighborhood of f! (Ualg j),
oF|U511—f| [y
e for each fibre E; = 771 (q) it holds Fj(E,) = w(q).

2
Moreover for o = % we have the inclusion
171
By (f'(Us, ) € Fi(E5).

Proof. This is just a reformulation of Lemma 2.15. Note that
cos y

-3
m<[3(1+)\.)] r—83,

CO§2

hence o = min{% 5 Cos Y, 2L(1+A)} = 2L(1+yk) O

Up to this point we have constructed for each j € {1, ..., s} a tubular neighborhood locally around f (Uy, ! ) Since
the mapping S depends on j, we should write more accurately S; instead of S. In the same way we should wrlte wj
instead of w. However, we can show that w is globally well deﬁned More precisely we have the following lemma:
Lemma 3.5. Let j,ke{l,...,s}. Then

wj=wr on U(Sl&j N U(Sl3,k'
In particular there is a smooth mapping w : M' — Gy1,1 with w|U813’j =wj foreach j €{l,...,s}.
Proof. Let j,k € {1,...,s}. For g € Uj, ; N Us, , we show that either S;(¢) = Sk(¢) or S;(q) = —Sk(g), which

implies the statement.
Letg € Ué1 N U1 x and [ € Z(g). Lemma 2.8 b) implies

Us ;CU..
Us, x CUY
As in (3.10) we conclude
(either <(wy, v; (q] ) <arctan A or <{(—wy, v (q])) arctan 1)
and
(either <t(wy, vy ! (qx)) < arctan . or <(—wz, vy (qk)) arctan 1).
We define vectors as in (3.11), the first time depending on j, the second time on k:
by im { wy, if < (wy, v} (¢;)) < arctan A,
—wj, otherwise,

; { wy, if < (wy, v,: (qr)) < arctan X,
k,l =
—w, otherwise.
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Then

1,y _ £l
S;(q) = Z g(lf (q) 52f (CH”)UN

leZ(q)

and

1oy gl
Se(q) = Z 8<M>W<,l~

8
1eZ(9) 2
1_ 1 1 1 1_ 1 1 1
By Lemma 2.9, we have V; =1 on U81,j N U(S],k’ orv; =—v; on an. N Ual,k' Let us first assume
=y onvu! nu! (3.16)
Vj —vk 81,j 51,]{' .

Since g € Ualw N Ual%k, we conclude with Lemma 2.8 b)
1 1 1 1

Us,,j CUs, x> Us; k CUs,
in particular

lgj.qx} C U3, ;UUS, , CUS 0US L (3.17)
By (3.12) together with (3.17) we have

(v, v} (gr)) < arctan A, (3.18)
by (3.16), (3.17) and (3.18) moreover

<(vj 1, vi(gr)) < arctan . (3.19)
We already know that vj; = v ; or v;; = —vg 4, thus (3.19) allows us to conclude that
vj,l = Vk,I-

Since this is true for all / € Z(g), we conclude S;(g) = Si(g) and hence w;(q) = wi(q).
If vjl. = —v,l on U(Sll,j N Uzsll,k’ one similarly concludes v;; = —vy; for all I € Z(q). This implies S;(g) = —Sk(q)
and hence again w;(q) = wr(g). O

4. Intersection points and definition of ¢’
In this section we like to show that for p € M ! the line f!(p) + w(p) intersects each appropriately restricted
immersion f(M") in exactly one point. Using this, we are able to give a definition of the mappings ¢’ : M' — M'.

Each ¢’ will be shown to be a diffeomorphism. Moreover, it will be shown that 7 o ¢’ is uniformly Lipschitz bounded.

Lemma 4.1. For p € Ual2 i the line f1(p) + w(p) intersects the set f"(Uél j) in exactly one point. This point lies in
11w, p.

Proof. Let p € Uélw. First we show that fl(p) + w(p) intersects fi(ng’j). By Lemma 3.1 b) we have

. T 1 ,
<1(T(p), v}(q)) < 1 + 3 arctan A for every ¢q € U5l|,j' 4.1

Let G ={(x,y) € Uéz,j x R™*1: y e w(p)}. We note here that w(p) does not depend on x. Let the function F be
defined by

F:G— R"H
x, )= fx)+y, 4.2)
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where y € w(p). With arguments as in Lemma 3.4, using (4.1) and the fac_t that w(p) is constant, we conclude that
F(G) forms a tubular neighborhood around f* (Ug ), and moreover By (f* (Ug ) C F(G) with ¢ asin (3.7).

We would like to show that f (Ul 55 ]) C B, ( f (U 5 )) For that let p’ € Ul 55, Then there is a unique x € Bs, with
f (pH= AJ (x, uj (x)). Moreover there is a unique ¢’ e U63 j with f qH= A’] (x, uj(x)). We estimate

[£1(@") = 1 (P)] = 4] (x.u0) = A} (xuj(0)|
’R (x, u; (x))+Tl (x u; (x)) T-1’
< RY (x, 1 (x0)) = R (x, u(0) |+ R (x, 1§ () = R (x, uj(0)) | + | T] — T} |
= R} (o (0) = (o ()| + | (R} = Rj) (v, uj0) [ + | T = T |
<|u5~(x)—u}-(x)|+‘|R;—Rj|||(x,u-(x))|+|T;—Tj|

U+O'+O'
<_ —_— —_—
33 3
:U’

where in the sixth line we used |(x,u}(x))| < (1 4+ 2)r and o(I"'Y, ') < [3(1 + A)(1 + )]~ o which follows
from (3.8). Hence f!(U 51 1) C Bo (f{(U é; j ), ie. fLU 51 .) lies within the tubular neighborhood defined above.
But this means that thereisa g € Ué - such that f1(p) +w(p) equals f'(q) +w(p). Hence f!(p) +w(p) intersects
fl(Uéz,,) in the point f'(q).

It remains to show that f 1(p) + w(p) intersects f i(Ugl! j) in not more than one point. By (4.1) we have
<UT (p), vi.(q)) < % for every g € Uﬁil,j' By the definition of w this implies R+l = Tyi (q) ® w(p) for every
qeU <§1, i As f!is an (r, \)-immersion, we conclude by Lemma A.l in Appendix A that f!(p) + w(p) intersects
f (Uélyj) in at most one point. O

The following lemma will be needed in order to show that the mappings ¢’ are well defined:

Lemma 4.2. Let p € U813,j N U(SI3 - Let Sy be the intersection point of L (p) + w(p) with f"(Ué1 j), and Sy the
intersection point of f'(p) + w(p) with f"(Ué1 o) Finally let o) € Ué'l’j with fi(o1) = S1, and 0> € Uél,k with
fi(az) = 8>. Then o1 = 0.

Proof. By Lemma 4.1 we have S, € f’(U; 1)> hence s € Ug k- Aspe Ua N Ua _k» We have in particular Ual
Uaz,k # () and hence Uaz,k C U(;w by Lemma 2.8b). By Lemma 4.1 the set f (p) + w(p) has exactly one pomt of

intersection with f U gl j). We conclude 01 =0p. O

Now we are able to define the mappings ¢ : M' — M. Let p € M'. Then p € Uy, ; for some j. The line
fY(p) + w(p) intersects (U} 5 ]) in exactly one point §,. Moreover there is exactly one p01nt op € Ui 51,) with

fi(op) =S, Weset ¢ (p) := op. The mappings ¢ are well defined by Lemma 4.2. Clearly we have f' o ¢’ (p) =
We like to show that each ¢’ is a diffeomorphism. For that we follow in parts the argumentation of [4]:

Lemma 4.3. Each of the mappings ¢ : M' — M is surjective.

Proof. Let g € M'. As Q' is a 84-net for f, thereisa j € {1 .,s} withg € U(34 . By Lemma 3.4, for ¢ = L cosy
the set F (Es) forms a tubular neighborhood around flw 53 J) and moreover By (f1 (U 51 ) CFj (E;) with o as
in (3.7). W1th (3.8) and an estimation completely analogous to that in the proof of Lemma 4. 1 one shows f'(U é ) C
B, (fY(U 54 /)) Hence, for every g € Ug thereis a p € U} . with fi(q) € f'(p) + @(p). By the definition of P

33.j
this yields ¢' (p) =¢q. O
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Lemma 4.4. Each of the mappings ¢' : M' — M is injective.

Proof. First we note that for every j € {1,...,s} we have ¢/ (U 315’ j) cu 3"4’ i This is shown by the same arguments
as in Lemma 4.1. Moreover, by the proof of Lemma 4.3, we know that f"(U§4’j) CF; (Ej). Using that 0'isa
8s-net for f!, we conclude f! o ¢'(x) € Fj(Ex N ES) for every x € U513,j (where E, = 7#71(x)). As FjIES is a
diffeomorphism, we conclude that ¢’ is injective on U 513’ i

For showing global injectivity, let x, y € M! with x # y. As Q! is a 85-net for f!, there are j, k with x € Uals,j C

1 1 1
Us; .,ye Uas,k - Ua4,k~

84,j

Case 1. USIM. N U814,k =0.

By the considerations at the beginning of this proof, we have ¢’ (x) € U§4’j, d'(y) e U§4’k. As U514»j N Ub]4,k =0,
we also have U§'4’j NUj, . = 9. This implies ¢/ (x) # ¢' ().

Case2.Uj, ,NUs , #0.

By Lemma 2.8b) we have U 514, «CU 313, i By the considerations of above, ¢’ is injective on U(Sl’;, Iz Again we
conclude ¢/ (x) # ¢/ (y). O

Corollary 4.5. Each mapping ¢' : M' — M' is a diffeomorphism.

Proof. As in Lemma 4.4 we have f' o ¢'(x) € F;(Ex N E %) for every x € U 31% ;- Using a trivialization of the trivial

bundle E j» one easily concludes that f Topl: M — R™*! is an immersion (see also [4]). Moreover, the mapping ¢
is surjective by Lemma 4.3, and injective by Lemma 4.4. We conclude that ¢’ is a diffeomorphism. O

Finally we would like to prove that the reparametrizations f i o ¢' are uniformly Lipschitz bounded. As above, for
je{l,...,s} we can consider f' o ¢'|U 513’ j also as a mapping defined on Bs,. This mapping shall be denoted by

fi :Bs, — R+

Lemma 4.6. Let j €{1,...,s}. Let fi 1By, — R™*1 be the local representation of f' o ¢! |U81H. as explained above.
Then f i is A-Lipschitz for a finite constant A = A(L).

Proof. Let x, y € Bs,. Then there are unique pt1, (47 € R such that
flo=Euj@)+mT@, ) =uie)+umTo).

By the construction of the mappings ¢’ we have |u1], |u2| < &, where & = %cosy <r.Let E € Gyyy1,m be the
m-space perpendicular to 7'(x). We define an affine subspace E = (x, u}(x)) + E. Let 7 : R"t! - E denote the

orthogonal projection onto E. As
ﬁ((x, u} (x)) + ,uT(x)) = (x, u}(x))
for any ¢ € R, we may estimate as follows:
7 (f1@) =7 ()| = |7 ((x, u;0) + mi T @) = 7 (v, uf0)) + 2T ()]
= 7 ((r ub @) + 2T ) = 7((y. ub () + 12T )|
<o) = (v uj ) + p2(T ) = T ()]
<lx =yl + uj () —uj)| +r|Tx) = T ()|
<A4+A+rL)x —yl. 4.3)
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By Lemma A.1 together with Lemma 3.1 b), the set f*(U 51, j) is the graph of a function # on an open subset U of E.
In the same manner, f/ (U gz’ j) is the graph of the same function restricted to a subset V € U. Again by Lemma 3.1b),

on convex subsets of U the function i is A’-Lipschitz with A’ = tany, where y is as in (3.6). Let ¢ > 0 be small
enough, such that B,(§) C U for any & € V (where here B, (§) denotes an open ball in E).

Now assume |x — y| < ﬁ. By Lemma 4.1 we have fi (2) € ]”"(U(;2 j) for any z € Bs,. Hence by (4.3) the
points ﬁ(fi (x)) and ﬁ(fi (»)) lie both in the convex subset B, (fr(fi (x))) of U. We conclude

|l = Fron] =@ @), a7 (@) - @(F ). a@(F o))
<A +tany)(I+A+7rL)x —y|. 4.4)

If x, y € Bs, are arbitrary points, let N € N with N > IJ”\TJ”LM — y|. We define x, = x + 125~ € Bs, fort =0,..., N.
Then, using a telescoping sum and (4.4), we have

N—-1
17 = Fo| <Y |7 @) = fle]
=0
< 4tany)d+Ar+rL)x —y|.

By the definitions of L and y, the quantities L and y depend only on A. Hence f i is A-Lipschitz with A = A(L) =
(I+4+tany)(14+A4+rL). O

Remark 4.7. If we choose some of the constants more carefully, we can give a better bound for A in the preceding
lemma. Choosing the right hand side in (3.3) extremely small, we can replace y by a number y which is slightly greater
than arctan A. Moreover, we can choose ¢ with |u1], |2| < € so small, that the term &L can almost be neglected. With
these constants, we finally obtain A = (1 +tany)(1 + X +¢eL) <2(1 + k)z. In particular, A does not depend on the
dimension m here, although L depends on m.

Finally, by Lemma 4.6, we may pass to a subsequence such that f’ o ¢’ converges uniformly to a limit function
f:M" — R™1 As limit manifold we define M := M. Thus the limit manifold is a compact differentiable -
manifold.

5. The limit function lies in F°(r, 1)

Up to this point we have found a subsequence and diffeomorphisms ¢ : M! — M’ , such that f o ¢' is uniformly
Lipschitz bounded and converges uniformly to an f : M' — R™*! In this section we will show that the limit function
f lies in FO(r, ).

For that we have to show, that for each point g € M there is an E = E(q) € G 41.m» such that f is injective on
qu and the set A;lE of (qu) is the graph of a Lipschitz continuous function u : B, — R with Lipschitz constant X.

Soletq € M'. Letq' = ¢'(q) € M. Aseach fisan (r, A)-immersion, there are E' € G,, 1., such that for each i
the set (A"qi’Ei)_l o fi(Uf;i) is the graph of a differentiable function u’ : B, — R with || Du! llcoem,y < A

Passing to another subsequence, we may assume

u' — u uniformly,

E' — E for the metric d defined in (2.3),

as i — 0o, where u : B, — R and E € G,;,11 . In particular, u is Lipschitz continuous with Lipschitz constant A.
Let A, g be a Euclidean isometry, which maps the origin to f(g), and the subspace R x {0} C R™ x R onto
f(g) + E. Then we have in any case A, g({(x,u(x)): x € B,}) C f(Ml).

To finish the proof, we show that f is injective on U, and that A;IE o f(UF,) is the graph of the function u. This

is true, if and only if for every o with O < ¢ < r the function f is injective on U éf p and the set A;IE o f(U ZE ) is the
graph of the function u|B,.
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We first show the graph property. Let a o with 0 < o < r be given. Let ¢ > 0 with ¢ < min{gp, r — o}. Moreover,

let Ué, C M be the g-component of the set (7 o A;,.]E,. o flod")~1(By). Again, Uéfq C M! is the g-component of
(ro A;IE o £)71(By). By the definition of U’, we have A;fEi o flog!(U)) = {(x,u(x)): x € By}. As A;{E,. ofio

¢ — A;lE o f uniformly, we conclude by the definitions of Ué and Uéfq that Ué_g C Uéfq C Ué+£
large, in particular

{(x, ui(x)): x€ By} C A;il,Ei o f! oci)i(Uqu) c{(x, ui(x)): X € Byt
Letting i — 0o, we obtain

{(x, u(x)): X € BQ,E} C A;’IE o f(Uéfq) C {(x,u(x)): X € Bg+g}.

for i sufficiently

As this is true for every ¢ > 0 with ¢ < min{p, r — o}, we conclude by the definition of Uéfq that A;IE o f(qu) =
{(x,u(x)): x € B,}. This is the desired graph property.

Similarly, one shows that f is injective on U QE’ q- Wehave f(x) = limj o0 flo@! (x) forall x e U Lf 4> and moreover
UE, C U, fori sufficiently large. The functions f’ o ¢’ are injective on Uy, and it holds A;,I’E, o flo¢ (Upy,) =
{((x,u' (x)): x € Boye}. Using Ai i — Ag g, one easily concludes that A;]E o f and hence also f is injective
onUp,.

This shows that the limit function f lies in °(r, A).

6. Compactness in higher codimension

In the final section we want to prove Theorem 1.3, that is compactness of (r, A)-immersions in higher codimension
with A < %. Our main task here is to give an analogous construction of the averaged normal projection for arbitrary
codimension. For that we shall use a Riemannian center of mass, which was introduced in Section 2.

So let f be a sequence as in Theorem 1.3 with A < %. For all objects of the preceding sections that are defined
also in arbitrary codimension, we shall use precisely the same notation. We note that Lemmas 2.8 and 2.12 are true
also in higher codimension. For ¢ € M' we set

q._ Ifl(q)—fl(qj)|>
Aj .—g<—82 .

As in the proof of Lemma 3.1 a) we conclude that there is a k € Z(g) with AZ = 1. For each j € {1,...,s} let
N; € G i be the k-space perpendicular to E ;. We define for each g € M ! a probability measure g on G i by

-1
= 2 #) X o,

Jj€Z(q) J€Z(q)

where §y denotes the Dirac measure on G, ; supported at N € G, x.
Moreover, let

v:M' - Gk,
g (T,M")"
be the normal-space field of f! as defined in (2.2). Now consider
P: E%(v(q)) — R,
P = [ dp.0?dng o,
Gk

where E% (v(g)) C Gy is the closed ball of radius % around v(q). Here the radius is measured with respect to the
canonical distance d on G,  as defined in (2.3).
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Lemma 6.1. For every g € M it holds sptug C B% v(g))-

Proof. By the definition of p, it is sufficient to show that N; lies in Bf_z(v(q)) for every j € Z(q). Solet j € Z(q).

By the definition of Z(g) we have g € U 612 i We deduce that N; is the graph of a linear function /& over v(q)

with || Dh|| = (Zf-;] |8,-h|2)% <A< %. Let 61, ..., 6 be the principal angles between N; and v(g). After a suitable

rotation we may assume that tan®; = |9;h| for every i € {1,...,k}. Using 6 < tan6 for 0 € [0, Z), we estimate
_ vk g2y k Lk 241 1 L

d(Nj,v(g) = Qi1 07)2 < Qi (tan6;))2 = (D _;_; 18;2]7)? <A < 3 < {5. Hence N; lies in Bz (v(g). O

In particular we have sptu, C B z (v(g)). Hence we conclude by Lemma 2.4 and Theorem 2.6, that there is exactly
one center of mass N(q) € Bz (v(g)) C Gy k for pg. In this way we may define a mapping

N:M1—>Gn,k,

g N(q).

An important property of the averaged normal N constructed in this way is its differentiability. It is needed in order
to obtain diffeomorphisms ¢’ : M' — M'. We will show that N is in CX if the function f! is in C¥ (here we denote
by k the degree of differentiability, and by k the codimension). First, for functions defined on manifolds, we need the
following variation of the implicit function theorem:

Lemma 6.2. Let M be a smooth m-manifold, (N, g) be a smooth Riemannian n-manifold and f : M x N — R be a
mapping. For every fixed x € M, assume that

hy :N—>R, hy=f(x,)
is in C2(N) and is strictly convex. Let k > 1 be an integer. Denoting by grad h, the gradient of the fixed function h,

defined above, assume that

H:MxN—TN, (x,y) gradh,(y)

is in CX(M x N, TN). Let (xg, Yo) € M x N be a point with H (xq, yo) =0 € Ty, N.
Then there are open neighborhoods U C M of xo and V C N of yo, and moreover a function F € CX(U, V), such
that {(x,y) e U x V: H(x,y)=0€TyN} ={(x, F(x)): x € U}.

Proof. Let ¢ : Uy — ¢(U)) be a coordinate chart of M with xg € Uy, and let ¢» : Vi — ¢2(V}) be a coordinate chart
of N with yg € V. For fixed x € M, in the local coordinates ¢» we have

n
gradh, = Y g"0;hyd;, (6.1)
ij=1
and, with the corresponding Christoffel symbols Fllj‘ = %Z;’Zl gkl(a,- gj1 + 9jgii — 18ij), the components of the

Hessian Dizj he=0;0jhy — Y p_, Fi’; Orhy. If we assume ¢, to be Riemannian normal coordinates centered in yg, we
obtain

D}k (y0) = 9;9hx (y0)- (6.2)

Let us now consider the local representations of 4, and f in the coordinates ¢, and @1 x @7 respectively. We denote
these representations simply by 4, and f again. Moreover, we identify xo and yg with ¢ (xo) and @2 (yo) respectively.
The condition on £, to be strictly convex means that the Hessian D?h, is positive definite in every point. Hence,
by (6.2), the Hessian matrix D?h,( yo) of the local representation is positive definite, in particular

D?hyy(yo) is invertible. (6.3)

The Jacobian Df may be considered as a mapping Df : 2 — R™" where 2 = ¢ (U1) x ¢2(V1) CR™ x R*. We
write Df = (D f, Dy f) € R™ x R" and consider the mapping D, f : 2 — R". Similarly, for the Jacobian of D, f,
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we write D(Dy f) = (Dx(Dy f), Dy(Dy f)) e R"*™ x R"*". As Dy, f (x0, yo) = Dhy,(yo) and as H (xo, yo) =0, we
conclude

Dy f (x0, y0) = 0. (6.4)
Similarly, as Dy (Dy f)(x0, Yo) = Dzhx0 (y0), we know by (6.3) that

Dy(Dy f)(x0,y0) 1is invertible. (6.5)

The assumption on H to be in ck implies by (6.1) that also Dy f : 2 — R" is in CX. Hence we may use (6.4), (6.5)
and apply the usual implicit function theorem to the function D, f. From this we deduce the statement. O

Using the preceding lemma, we are able to deduce that the mapping N is differentiable:

Lemma 6.3. Let N : M' — G, be the averaged normal corresponding to f': M ' R", as constructed above.
Assume that f' € CX(M',R") forak > 1. Then N € CX(M", G, 1).

Proof. Letg, e M !'be a point. We show that N is C* in a neighborhood of q,-Let W C M ! be an open neighborhood
of g, with v(W) C B% (v(g,y))- By Lemma 6.1 we have sptu, C B% (v(q,)) for every g € W; this will be implicitly
used in the following argumentation. Let

G:W x Bz (v(gy)) — R,

(q,p) / d(p,x)*duy(x).
Gn.k

Moreover, for fixed g € W let hy, : B% (v(gy)) = R, hy :=G(q, -). By this definition, A, is smooth on B% (v(g,)) and
by Theorem 2.6 strictly convex. We denote by grad &, the gradient of the fixed function A, and define

H:W x Bz (v(gy)) — TB%(v(qO)), (q, p) > gradhy(p).
With (2.5) and the definition of ., we calculate

—1
H(q,p)=—2< Z xg) Z )\j.exp;l(zvj). (6.6)

J€Z(q) JEZ(q)

As Af = g(W) and by the definition of g, the mapping ¢ > A7 is in CKif f is in CX. Moreover, as for
every j € Z(q) the mapping p — exp;l(N j) is smooth, we conclude that H is in Ck. Note that g is smooth with
g(1) =0, hence H is C* even if the sums in (6.6) depend on Z(q).

As N(q) € B% (v(q,)) is the center of mass for u,, we have H(q, N(q)) = 0 for every g € W, in particular
H(qu N(%)) =0.

Now we are in a position to apply Lemma 6.2. We conclude that there are open neighborhoods U C W of ¢,
V C B% (v(g,)) of N(q,), and a function F € CX(U, V) with {(x,y)eU xV: H(x,y) =0} ={(x, F(x)): x eU}.
By Theorem 2.6 we deduce, that N coincides with F on U. Hence N is in CkonU. O

Remark 6.4. In particular, the preceding lemma shows that the averaged normal N can be used for the projection
in the case of immersions with L”-bounded second fundamental form, which was the case considered in [4]. For an
(r, A)-immersion f € C Kk the normal vpisin C k=1 while the averaged normal N isin C k In particular, the averaged
normal of a C!-immersion is differentiable and forms locally a tubular neighborhood around the immersion. Thus it
is possible to construct diffeomorphisms ¢’ : M! — M’ using the averaged normal. However, if one likes to show
convergence as in [14] and in [4], we require N even to be in C 2. For that purpose, an additional smoothing of f is
unavoidable; this was also performed by Langer (see the first paragraph on p. 229 in [14], where a C!-perturbation is
made in order to smooth the immersion). On the other hand, a pure smoothing argument would not suffice to prove
Theorems 1.1 and 1.3. As in general the limit is not even differentiable, one has to project from £ (M) for a fixed
and sufficiently large ig. The averaged normal is needed then in order to estimate the size of the tubular neighborhood.
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As in the case of codimension 1, we may consider the restriction of N to U 513 jasa mapping defined on Bs,. As an
analogue of Lemma 3.2 we show the following statement:

Lemma 6.5. If we consider G, as a metric space with the geodesic distance d, the mapping N : Bs; — G, i is
L-Lipschitz with L = 412m+6,~1,

Proof. Let x,y € Bs,. Then there are unique p,q € Ualw. with 7 o A;l o fiip)=x,mo A;l o fl(g) =y. By

the arguments at the beginning of the proof of Lemma 3.2, one shows Af =0for j € Z(g) \ Z(p) and )\3 =0 for
Jj€Z(p)\ Z(g). Again as in Lemma 3.2, we estimate

A2 =20 <361+ 1)°r ! |x — y|
< 72r—1|x -yl (6.7)
where we used A < 7. Now we note that ZkeZ(p)UZ(q) > 1and ZkeZ(p)UZ(q) 2> 1. Moreover |Z(p) U Z(q)| <

2[3(1+ A1) <2 46’" for A < by (3.9). Using all this, we obtain

~1 ~1
(Za) -(ZH) |« & w-a
keZ(p) keZ(q)

keZ(p)UZ(q)
<9492~ x —y). (6.8)
Using (6.7) and (6.8), one easily concludes
-1 -1
‘( > )\,’j> Af-( > ,\Z) <1042 e — y). (6.9)
keZ(p) keZ(q)
Now assume k € Z(p). Then U1 in U51 & 7 ¥, hence U 5 C « by Lemma 2.8b). This implies g € Ual - By

a calculation as in Lemma 6.1 we deduce Ny € B (v(q)) We conclude that both sptu, and sptu, are a subset of
B (v(q)) This enables us to apply Lemma 2.7 w1th w1 =pp and pp = fug.
With Lemma 2.7, the definitions of 1, and g, and (6.9) we estimate

d(N (), N(y)) < C / d(N(@).2) dlitp — g|2)

Gn,k
-1 —1
=C > d(N(q),Nj)( > Af) A‘}’—( > xg) 24
JEZ(p)VZ(q) keZ(p) keZ(q)
<C-10-492 N d(N(g). Nj)r '|x —y|
JEZ(PUZ(g)
< 412mH6,-1 ), —yl,

where in the last line we used d(N(q), N;) < Z, |Z(p) U Z(q)| <2-4%" and C =1+ (k'/%0) " tan(2x1/20) < 16
fork =2and o =% by 24). O

Now the remainder of the proof is analogous to the case of codimension 1. First we note that by the preceding
lemma one easily derives an estimate for the size of the tubular neighborhood around f' formed by N. This is
done by using elementary geometry in much the same way as in Appendix A (where the case of codimension 1 is
considered); as we assumed A to be small and hence N nearly to be perpendicular to !, it is even easier here as
we can estimate rather roughly (and do not need an analogue of Lemma 3.1 b) for that). Moreover, we can show the
existence and uniqueness of intersection points of f!(p) + N(p) with an appropriate restriction of f/(M") by the
fixed point argument of [4]. To show surjectivity of ¢’ one uses the estimate for the size of the tubular neighborhood
and shows that f%(M") lies within this neighborhood. The rest of the proof is the same as in the case of codimension 1.



568 P. Breuning / Ann. I. H. Poincaré — AN 29 (2012) 545-572

The question arises, whether compactness in higher codimension, that is Theorem 1.3, can also be shown for an
arbitrary Lipschitz constant A (as in the case of codimension 1). Surely, the bound A < % is not optimal. One could try
to find the largest possible bound for A, and — in the case that it is finite — to give a counterexample for immersions
exceeding this bound. We would like to suggest two possibilities for extending the construction in this section to
immersions with Lipschitz constant larger than the ones considered here: First, as proposed in the remark on p. 511
in [13], one could use another definition for the center of mass, which allows one to define centers in larger balls. The
second is to find a center of mass not in a convex ball, but in a larger convex subset of G, x. Such kind of subsets of
Grassmannians have been detected by J. Jost and Y.L. Xin in [12].
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Appendix A. Size of tubular neighborhoods

In this appendix we like to prove Lemma 2.15, that is we estimate the size of a tubular neighborhood around a graph
depending on different quantities such as angles and Lipschitz constants. We shall use the notations introduced in the
paragraph preceding Lemma 2.15. For a general treatise on the existence of tubular neighborhoods see [5] and [10].
Moreover, in Lemma A.1 we will show a result needed for proving that the projection in Section 4 has at most one
point of intersection with an appropriate subset of f'(M').

Proof of Lemma 2.15. a) We like to start with the following initial consideration:

Let g € B,. Let f(x) = (x,u(x)) and t/(q) € Gyu41,m be the tangent space at g as in (2.1). In particular 7¢(q)
is an m-space in R+ perpendicular to v(g). Furthermore let K C 74(g) be a 1-dimensional subspace of 7/(q). Let
p € By andlet o < % be the smaller angle enclosed by the lines w(p) and K. From (2.11) we deduce

T
0525—)/>0. (A.1)
Now let us come to the main part of the proof:
Let x, y € B, be points with x # y. Without loss of generality we may assume x — y € R! x {0} c R™. By the
mean value theorem there isa z € {(1 —)x +ty: 1 € (0, 1)} C B, with

u(x) —u
fu(z) = 110
X1 —N
where x1, y; are the first coordinate of the vectors x, y respectively. Let {ey, ..., e, } be the standard basis of R”. We

set

K :=span{(e1, d1u(z))} C 1/ (2).

Let o < 5 be the smaller angle enclosed by the lines w(y) and K. By (A.1) we have « > 5 — y. In particular
the smaller angle between w(y) and the line through (x, #(x)) and (y, u(y)) is greater than or equal to % — y (see
Fig. A.1).

Let 71 ((x, u(x))) denote the orthogonal projection of (x, u(x)) onto F({y} X w(y)) = (y, u(y)) + w(y). Then

(e, () — 7 (3, u@))) | = | (x, u) = (v, u(y))|sin<% - y)

>| — | i — —
Z | X sSin

=|x — y|cosy. (A.2)

Now we distinguish two cases:
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(¥, u(y)) + w(y)

/

(2, u(@)))

{(z,u(z)) : x € B,N (R* x {0})}

)

) B,N (R x {0})

~

T Y \
line through (z,u(z)) and (y,u(y))

Fig. A.1. Calculation of the distance between (x, u(x)) and TL’J‘((X, u(x))). Note that, unlike the rest of the figure, the line (y, u(y)) + w(y) does
not necessarily lie in the plane ®R! x {0}) x R c R+,

Case 1.
[(x, u(x)) + a)(x)] N [(y, u(y)) + a)(y)] =0. (A.3)
In this case we do not need any further estimations.
Case 2.
[(x, u()) + o) ] N [(y,u() + o] #0. (A4)
We now have to consider the following two subcases 2.i and 2.ii:

. 1
2.4. The case [x — y| < 7.

Let 6 = <(T'(x), T (y)). By the assumption (A.4) we have 6 > 0. Using |T (x)| = |T (y)| = 1, we estimate

9 = 2arcsin(w>
2
. (L
< 2arcs1n(—|x — y|>
2
z (A5)
< —. .
2

Now let & € R™+! denote the intersection point of (x, u(x)) + w(x) with (y, u(y)) + w(y). (See Fig. A.2.)
Then, using (A.2) and (A.5),

(e, u(x)) — (e, u(x)))]
sin@
lx — y|cosy

(e u) —&] =

~ sinQarcsin(k [x — y|))
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(v, u(y)) + w(y)
/

(2, u(2)))

L

Fig. A.2. Calculation of the distance between (x, u(x)) and &. Again, (y, u(y)) + w(y) does not necessarily lie in (Rl x {0}) x RL

1 cosy
= T
V1=5le—y?
1
> —COS Y.
2 14

2.ii. The case [x — y| > %
Let & be as in Case 2.i. Then (A.2) directly implies

1
|(x, u(x)) —&| > T cosy.

Let ¢ = %cosy. Summarizing Case 1, Case 2.i and 2.ii, we conclude that F is injective on E®. Applying

well-known results from elementary differential topology, we deduce that F|E? is a diffeomorphism onto an open
neighborhood of {(x, u(x)) € R" x R: x € B,}. This proves part a) of Lemma 2.15.

b) Let 3(F (E?)) denote the boundary of F(E?) in R™+1 where & = %cos y asinparta). Let x € 1_9%. We have to
show

dist((x, u(x)), B(F(Ea))) >0
2
with ¢ =min{§ cos y, %} as in Lemma 2.15b).
Solet ¢ € 3(F(E®)) C R™*!. Then there are two cases:

Casel. . = (y,u(y)) +0 foray e B, and a v € w(y) with || =e.

We distinguish two subcases 1.i and 1.ii:

cosy

1.i. The case |x — y| § m

As u is A-Lipschitz, we have

(6, 1)) = (v, u()]| < (L +1)]x =yl
(1+A)cosy

{——mF7F———.
L1+ A+cosy)
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Then

(v, ) = ¢| > & = (3, uM)] = | (x4 () = (3, u )]
(14+A)cosy
B L+ A+cosy)
cos? y
- L1+ Xx+cosy)’

> —cCcosy

L

cosy

1.ii. The case |x — y| > L(IFitcosy) "

Again let 71 ((x, u(x))) be the orthogonal projection of (x, u(x)) onto (y, u(y)) + w(y). With (A.2) we estimate

(e u @) = £| = | (x, u@) =7 ((x, ux)))|
> |x — y|cosy

Loy (A.6)
L(1+A+cosy)
Both in Case 1.i and Case 1.ii we have
|(x.u() —¢| > _cos’y (A7)
2L+ 1)

Case 2. =(z,u(z)) +vforaz € dB, and v € w(z) with [u| <e.

As x € l_?% we have |x — z| > %. Considering the orthogonal projection onto (z, u(z)) + w(z), we estimate as
in (A.6)

(6, u() — ¢| > gcosy. (A8)
With (A.7) and (A.8) we have in any case
2
|(x,u0) —¢| > min{%cosy, %}

This proves part b) of Lemma 2.15. O

Lemma A.l. Let f : M" — R"*! be an (r, 1)-immersion, g € M and 0 < o < r. Let w € Gyy1,1 with R™! =
17(p) @ w forall p € Uy . Then for every x € R™*! the set x + w intersects fWUy,q) in at most one point.

Proof. After a rotation and a translation we may assume f(Up,) = {(y,u(y)): y € By} with a C!l-function
u: B, — R. Suppose the assertion of the lemma is false. Then there is an x € R™*1 such that x + w intersects f WUo,q9)
in (v, u(y)) and in (z, u(z)) with y # z. We may assume y — z € R' x {0} ¢ R”. With the same argument as in the
paragraph after (A.1) we conclude that there is a & € {(1 —#)y +tz: t € (0, 1)} C B, with w = span{(ey, d1u(§))}.
Moreover there is a unique ¢ € U, ; with T4(¢) = span{(e1, 01u(§)), ..., (em, 3,u(§))}. Hence w C t7(¢). But this
contradicts R"*! = Tr(p)@owforall pelU,,. O
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