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Abstract

We study the existence of positive increasing radial solutions for superlinear Neumann problems in the ball. We do not im-
pose any growth condition on the nonlinearity at infinity and our assumptions allow for interactions with the spectrum. In our
approach we use both topological and variational arguments, and we overcome the lack of compactness by considering the cone of
nonnegative, nondecreasing radial functions of H 1(B).

Résumé

Nous étudions l’existence de solutions radiales positives croissantes de problèmes de Neumann super linéaires dans la boule.
Nous n’imposons aucune restriction de croissance sur la non linéarité à l’infini et nos hypothèses permettent également une in-
teraction avec le spectre. Notre approche combinne des arguments topologiques et variationnels. Nous contournons le manque de
compacité en travaillant dans le cône des fonctions radiales, positives et croissantes de H 1(B).
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1. Introduction

In this paper we are mainly concerned with the semilinear Neumann problem

⎧⎨
⎩

−�u + u = a
(|x|)f (u) in B,

u > 0 in B,

∂νu = 0 on ∂B,

(1.1)

* Corresponding author.
E-mail addresses: denis.bonheure@ulb.ac.be (D. Bonheure), benedetta.noris1@unimib.it (B. Noris), weth@math.uni-frankfurt.de (T. Weth).

1 The author is partially supported by the PRIN2009 grant “Critical Point Theory and Perturbative Methods for Nonlinear Differential Equations”.

© 201 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.2

© 201 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.2
0294-1449/$ – see front matter
doi:10.1016/j.anihpc.2012.02.002

© 201 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.2

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.anihpc.2012.02.002
http://www.elsevier.com/locate/anihpc
mailto:denis.bonheure@ulb.ac.be
mailto:benedetta.noris1@unimib.it
mailto:weth@math.uni-frankfurt.de
http://dx.doi.org/10.1016/j.anihpc.2012.02.002


574 D. Bonheure et al. / Ann. I. H. Poincaré – AN 29 (2012) 573–588
where B is the unit ball in R
N , N � 2. We study the existence of radial solutions of (1.1) under suitable assumptions

on a and f . The problem has been studied extensively in the case where f (u) = up with some p > 1 and a ≡ 1. Note
that in this case there always exists the constant solution u ≡ 1 of (1.1). This already shows that the solvability of (1.1)
depends in a quite different way on the data than in the case of Dirichlet boundary conditions, in which nontrivial
solutions only exist in the subcritical range

p <
N + 2

N − 2
if N � 3 (1.2)

as a consequence of Pohozaev’s identity, see [14]. Note that the subcriticality assumption (1.2) ensures that the prob-
lem (1.1) with f (u) = up is accessible by variational methods, i.e., the (formal) energy functional corresponding to
(1.1) is well defined in H 1(B). Moreover, due to the compact embedding H 1(B) ↪→ Lp+1(B), the existence of a so-
lution to (1.1) follows in a standard way through the mountain pass theorem [2] if a is a positive continuous function
on B . In the critical and supercritical case, namely when (1.2) does not hold, most of the available results on the ex-
istence of positive solutions are devoted to perturbative cases where either a small diffusion constant is added in front
of −�, see [1, Chapters 9 and 10] and the references therein or a slightly supercritical exponent is considered, see
e.g. [8]. The present paper deals with the nonperturbative problem and is therefore more closely related to the recent
works [5,16]. In [5], the authors considered the Neumann problem for the Hénon equation −�u + u = |x|αup , and
they apply a shooting method to prove that this problem admits a positive and radially increasing solution for every
p > 1 and α > 0. Very recently, Serra and Tilli [16] showed the existence of the same type of solutions for problem
(1.1), provided that a is an increasing function such that a(r) > 0 a.e. in B and f ∈ C1([0,∞)) satisfies

f (0) = f ′(0) = 0, f ′(t)t − f (t) > 0 and f (t)t � μF(t) :=
t∫

0

f (s) ds, (1.3)

for t ∈ (0,∞), with some constant μ > 2. These assumptions, which hold for f (u) = up , p > 1, play a crucial role in
the approach of Serra and Tilli, who minimize the energy functional corresponding to (1.1) among nonnegative, radial
and radially nondecreasing functions within the associated Nehari manifold. Reducing to nonnegative and nonde-
creasing radial trial functions in H 1(B) gives rise to boundedness and compactness properties even for supercritically
growing nonlinearities. It is not obvious that restrictions of this type still lead to a solution of (1.1), but Serra and Tilli
could prove this with the help of assumptions (1.3).

The purpose of the present paper is twofold. First, we generalize the results of Serra and Tilli to a wider class of
functions f by means of a new approach based on topological fixed point theory and invariance properties of the cone
of nonnegative, nondecreasing radial functions in H 1(B). In particular, we give a rather short proof of the existence
of an increasing radial solution of (1.1). More precisely, we first establish a priori estimates on the solutions of (1.1) in
this cone and then apply a suitable version of Krasnosel’skiı̆’s fixed point theorem (see [12]). The second aim of this
paper is related to the case a constant, say a ≡ 1, where any fixed point of f gives rise to a constant solution of (1.1).
In this case we will be concerned with the existence of nonconstant increasing solutions. To state our main results, we
now list our assumptions on a and f :

(a) a ∈ C1([0,1],R) is nondecreasing and a0 := a(0) > 0;
(f 1) f ∈ C1([0,+∞),R), f (0) = 0 and f ′(0) = lims→0+ f (s)

s
= 0;

(f 2) f is nondecreasing;
(f 3) lim infs→+∞ f (s)

s
> 1

a0
.

In particular, these assumptions on f allow the nonlinearity to have supercritical growth as well as resonant growth,
i.e. lims→+∞ f (s)/s = λ with λ > 1 being a Neumann eigenvalue of the operator −� + 1 in B , and they are much
weaker than (1.3). In particular, f may have multiple positive fixed points and the quotient f (s)/s may oscillate
between values in an interval of the form [c,∞) with c > 1/a0 for large s, whereas (1.3) forces this quotient to be
strictly increasing. Our first existence result for (1.1) is the following.

Theorem 1.1. Assume (a), (f 1), (f 2), (f 3) and suppose moreover that a(|x|) is nonconstant. Then there exists at
least one nonconstant nondecreasing radial solution of (1.1).
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The existence of solutions for such general nonlinearities f underscore the difference between Dirichlet and Neu-
mann boundary conditions for supercritical elliptic problems, see also the related recent papers [7,9,15]. In contrast
to the method of Serra and Tilli in [16], our approach based on topological fixed point theory does not require the
(formal) variational structure of problem (1.1) and therefore applies to the more general problem⎧⎨

⎩
−�u + b

(|x|)x · ∇u + u = a
(|x|)f (u) in B,

u > 0 in B,

∂νu = 0 on ∂B,

(1.4)

provided that the following assumption holds:

(b) b ∈ C([0,1],R) is nonpositive, and d
dr

(b(r)r) > −1 − N−1
r2 in (0,1).

Theorem 1.2. Assume (a), (b), (f 1), (f 2), (f 3) and suppose moreover that a(|x|) is nonconstant. Then there exists
at least one nonconstant nondecreasing radial solution of (1.4).

In case a is a constant function, say a ≡ 1, assumptions (f 1)–(f 3) imply the existence of u0 > 0 such that f (u0) =
u0, so that u0 is a constant solution of (1.1). Moreover, there exist nonlinearities satisfying (f 1)–(f 3) (with a0 = 1)
and such that the problem⎧⎨

⎩
−�u + u = f (u) in B,

u > 0 in B,

∂νu = 0 on ∂B

(1.5)

only admits this constant solution (see Proposition 4.1 below, where we adapt an argument of [6]). We need the
following additional assumption:

(f 4) there exists u0 > 0 such that f (u0) = u0 and f ′(u0) > λrad
2 .

Here λrad
2 > 1 is the second radial eigenvalue of −� + 1 in the unit ball with Neumann boundary conditions. We

prove the following result.

Theorem 1.3. Assume (f 1)–(f 4) with a ≡ 1. Then there exists at least one nonconstant increasing radial solution
of (1.5).

To our knowledge, this is the first existence result for nonconstant solutions of (1.5) under assumptions (f 1)–(f 4)

and even under the more restrictive conditions (1.3) and (f 4). An inspection of the proof of Theorem 1.3 shows that
we find nonconstant solutions of (1.5) in every order interval of the form [u−, u+], where u− and u+ are ordered fixed
points of f with the property that there exists another fixed point u0 ∈ (u−, u+) such that f ′(u0) > λrad

2 .
We note that the topological fixed point method does not give sufficient information to detect a nonconstant solution

of (1.5), moreover it seems impossible to use the spectral assumption (f 4) within a shooting approach to derive
Theorem 1.3. Therefore we use a variational approach, but this leads to several difficulties. First, the (formal) energy
functional associated with (1.5) is not well defined and of class C1 in H 1(B) under the sole assumptions (f 1)–
(f 4). We overcome this problem by truncating the nonlinearity f and by recovering the original problem by means
of a priori estimates on the solutions. Then we construct a suitable convex subset C∗ of the cone of nonnegative,
nondecreasing radial functions in H 1(B) such that u0 is the only constant solution of (1.5) in C∗, and we show that
this set is positively invariant under the corresponding gradient flow. Then we set up a variational principle of mountain
pass type within C∗, and – using assumption (f 4) – we show that the corresponding critical point is different from u0.
Within this last step, a further problem occurs; the set C∗ has empty interior in the H 1-topology, and even though one
could prove that C∗ ∩ X has interior points in the topology of the smaller space X = C2(B) ⊂ H 1(Ω), the constant
solution u0 is still a boundary point of C∗ ∩ X. Therefore it does not seem possible to use standard Morse theory
(i.e. the calculation of critical groups) to distinguish critical points obtained via deformations in C∗ from the constant
solution u0. In particular, this prevents us from using the techniques in [17], where the authors prove an abstract
mountain pass theorem in order intervals.
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The paper is organized as follows. In Section 2 we introduce the cone of radial, nonnegative, nondecreasing func-
tions and its properties. In Section 3 we obtain a priori estimates on the solutions of (1.1) in the cone, which allows to
prove Theorem 1.1 by applying a suitable fixed point theorem in the cone. In Section 4 we fix a(|x|) = 1 and provide
the proof of Theorem 1.3.

We close the introduction with an open problem. Our construction of the nonconstant solution u of (1.5) provided
in Theorem 1.3 implies that u intersects the constant solution u0. This raises the question whether it is possible to
construct radial solutions with a given number of intersections with u0 provided that f ′(u0) is sufficiently large. More
precisely, we conjecture that there exists a radial solution with k intersections with u0 provided that f ′(u0) > λrad

k .

2. The cone of nonnegative, nondecreasing, radial functions

We will look for solutions to (1.1) and (1.4) in the space of radial H 1 functions in the ball, that we denote by
H 1

rad(B). If u ∈ H 1
rad(B) then we can assume it is continuous in (0,1] and the following set is well defined

C = {
u ∈ H 1

rad(B): u � 0 and u(r) � u(s) for every 0 < r � s � 1
}
.

Observe that if u ∈ C, then u ∈ C(B), and in particular it is a bounded function. In fact, since u is nondecreasing,
we can assume continuity also at the origin by setting u(0) = limr→0+ u(r). Moreover, u is differentiable almost
everywhere and u′(r) � 0 where it is defined.

It is easy to see that C is a closed convex cone in H 1(B), that is

(i) if u ∈ C and λ > 0 then λu ∈ C;
(ii) if u,v ∈ C then u + v ∈ C;
(iii) if u,−u ∈ C then u ≡ 0;
(iv) C is closed for the topology of H 1.

We will refer to C as the cone of nonnegative, nondecreasing functions. Notice also that it is weakly closed in H 1 and
as already mentioned, it has empty interior in the H 1-topology.

As observed by Serra and Tilli in [16], C is a good set when dealing with supercritical equations because of the
a priori bound stated in the following lemma.

Lemma 2.1. There exists a constant C only depending on the dimension N such that

‖u‖L∞(B) � C‖u‖W 1,1(B) for all u ∈ C.

Proof. For every u ∈ C we have ‖u‖L∞(B) = ‖u‖L∞(B\B1/2). Since u is radial and the space W 1,1((1/2,1)) is con-
tinuously embedded in L∞((1/2,1)), we deduce that there exists C > 0, only depending on the dimension N , such
that

‖u‖L∞(B) = ‖u‖L∞(B\B1/2) � C‖u‖W 1,1(B\B1/2)
� C‖u‖W 1,1(B). �

Remark 2.2. Lemma 2.1 implies that the embedding C ⊂ L∞(Ω) is bounded when C is considered with the metric
induced by the H 1(B)-norm. However, this embedding is not continuous if N � 3, since the sequence (un)n ⊂ C
defined by un(x) = |x|1/n satisfies ‖un − 1‖H 1(B) → 0 as n → +∞ and ‖un − 1‖L∞ � 1 for all n. Nevertheless we
have the following continuity property.

Lemma 2.3. Let g : [0,∞) →R be continuous, and let (un)n ⊂ C be a sequence with un ⇀ u weakly in H 1(B). Then
for every p ∈ [1,∞) we have

g ◦ un → g ◦ u in Lp(B) as n → ∞.

Proof. Let p ∈ [1,∞). Suppose by contradiction that – passing to a subsequence – we have

lim inf
n→∞

∫ ∣∣g(un) − g(u)
∣∣p dx > 0. (2.6)
B
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Since un → u in L2(B), we may pass to a subsequence such that un → u a.e. in B . Moreover, by Lemma 2.1 we have
u ∈ L∞(B) and supn∈N ‖un‖L∞(B) < ∞, hence also

sup
n∈N

∥∥g(un) − g(u)
∥∥

L∞(B)
< ∞.

We now infer from Lebesgue’s theorem that

lim
n→∞

∫
B

∣∣g(un) − g(u)
∣∣p dx = 0

but this contradicts (2.6). The claim follows. �
3. Existence of solutions via a topological method

In this section we will prove Theorem 1.2, and we note that Theorem 1.1 immediately follows from Theorem 1.2.
Throughout this section we assume conditions (a), (b) and (f 1)–(f 3). We first recall well-known properties of the
linear differential operator L := −� + b(|x|)x · ∇ + Id.

Lemma 3.1. Let

H(B) := {
v ∈ H 2(B): ∂rv ∈ H 1

0 (B)
}
,

where ∂r denotes the derivative in direction x/|x|. For every w ∈ L2(B), the equation Lv = w admits a unique
solution v ∈H(B), and ‖v‖H 2(B) � C‖w‖L2(B) with a constant C > 0 independent of w. Moreover, if w ∈ Lp(B) for
some p ∈ (2,∞), then v ∈ W 2,p(B). Also, if w ∈ H 1(B), then v ∈ H 3(B).

Proof. The assertions are true by standard elliptic regularity if b ≡ 0. Moreover, since the first order term in L
defines a compact perturbation, L is a Fredholm operator of index zero when considered as a map between the spaces
H(B) → L2(B), H(B) ∩ W 2,p(B) → Lp(B) and H(B) ∩ H 3(B) → H 1(B), respectively. Therefore it remains to
prove the following:

the equation Lv = 0 only admits the trivial solution in H(B). (3.7)

To prove this, let v ∈ H(B) solve Lv = 0, i.e. −�v + v = b(|x|)x · ∇v. Since the map x 
→ b(|x|) is Lipschitz in
B as a consequence of assumption (b), it follows from standard elliptic regularity that v ∈ C2,α(B) for some α > 0.
Moreover, by the strong maximum principle, v neither may attain a positive maximum nor a negative minimum in B .
Since moreover ∂rv = 0 on ∂B , the Hopf Lemma implies that v cannot attain a positive maximum nor a negative
minimum on ∂B . Therefore v ≡ 0, as claimed in (3.7). �

We will prove Theorem 1.2 by applying a suitable fixed point theorem to the operator T : C → H 1(B) defined as

T (u) = v with

{−�v + b
(|x|)x · ∇v + v = a

(|x|)f (u) in B,

∂νv = 0 on ∂B.
(3.8)

Notice that the function x 
→ a(|x|)f (u(x)) is contained in C whenever u ∈ C, since u ∈ L∞(B) by Lemma 2.1. The
first step is of course to prove that T (C) ⊆ C.

Lemma 3.2. Let w ∈ C; then the equation{−�v + b
(|x|)x · ∇v + v = w in B,

∂νv = 0 on ∂B,

admits a unique solution v = T (w), which belongs to C.
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Proof. Since w ∈ C ⊂ H 1(B) ∩ L∞(B), it follows from Lemma 3.1 that there exists a unique solution v in H(B) ∩
H 3(B) ∩ W 2,p(B) (for every p < ∞). Hence v ∈ C1,α(B) and ∂νv = 0 on ∂B . Since the solution is radial (because it
is unique), we may write the equation for v in polar coordinates as

−v′′ +
(

b(r)r − N − 1

r

)
v′ + v = w, v′(0) = v′(1) = 0,

where v′ denotes the derivative with respect to r = |x|. Note that, as a function of r , we have z := v′ ∈ H 2
loc(0,1), so

differentiation yields(
b(r)r − N − 1

r

)
z′ +

([
b(r)r

]′ + N − 1

r2
+ 1

)
z = z′′ + w′.

We point out that the left-hand side of this equation is continuous in (0,1) (since H 2
loc(0,1) ⊂ C1(0,1)), and thus the

continuity of the right-hand side follows. Now suppose by contradiction that z attains a negative local minimum at a
point r0 ∈ (0,1), then at this point we have z′(r0) = 0 and([

b(r)r
]′ + N − 1

r2
+ 1

)
z

∣∣∣∣
r0

< 0

by assumption (b). Therefore, by continuity, there exists a neighborhood U of r0 in (0,1) with(
b(r)r − N − 1

r

)
z′ +

([
b(r)r

]′ + N − 1

r2
+ 1

)
z < 0 in U .

Since w′ � 0 in (0,1), it then follows that z′′ < 0 a.e. in U , which yields that z′ is strictly decreasing in U . This
however contradicts our assumption that z attains a negative minimum at r0. Since moreover z(0) = z(1) = 0, we
conclude that v′ = z � 0 in (0,1), so that v ∈ C. �
Corollary 3.3. The operator T defined by (3.8) satisfies T (C) ⊆ C.

Proof. Observe that if u ∈ C, the assumptions on a(r) and f imply that a(r)f (u) ∈ C. Henceforth, the conclusion
follows from Lemma 3.2. �

In order to apply a fixed point theorem in the cone, we need a priori estimates on the solutions of (1.1) and on the
solutions of a family of auxiliary problems depending on some parameters λ� 0 and 0 < μ � 1.

Lemma 3.4. There exists a constant λ̄ such that the following problem⎧⎨
⎩

−�u + b(r)x · ∇u + u = a(r)f (u) + λ in B,

u � 0 in B,

∂νu = 0 on ∂B,

(3.9)

does not admit any solution in C for λ > λ̄. Moreover, there exists a constant K1 such that every solution u of (3.9)
with 0 � λ� λ̄ satisfies ‖u‖L1(B) � K1.

Proof. By assumption (f 3) there exist M,δ > 0 such that

f (s)

s
� 1 + δ

a0
for every s � M, (3.10)

where a0 = a(0). Let u ∈ C be a solution of (3.9). Since b(r)x · ∇u(x)� 0 by assumption (b), integrating the equation
in (3.9) in B yields∫

B

udx �
∫
B

[
u + b(r)x · ∇u(x)

]
dx =

∫
{u�M}

a(r)f (u)dx +
∫

{u>M}
a(r)f (u)dx + λ|B|

�
∫

a(r)
1 + δ

a0
udx + λ|B| � (1 + δ)

∫
udx + λ|B|.
{u>M} {u>M}
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Therefore

M|B| �
∫

{u�M}
udx � δ

∫
{u>M}

udx + λ|B|

and the lemma is proved. �
From now on, we fix λ̄ as in the previous lemma.

Lemma 3.5. Assume 0 � λ� λ̄. There exist two constants K∞, K2 such that if u ∈ C solves (3.9), then

‖u‖L∞(B) �K∞ and ‖u‖H 1(B) � K2.

Proof. Let u ∈ C be a solution of (3.9). In radial coordinates, the equation for u can be written in the form(
rN−1u′)′ = rN−1(u(r) + b(r)ru′(r) − a(r)f

(
u(r)

) − λ
)
� rN−1u(r).

Therefore

u′(r) � 1

rN−1

r∫
0

u(t)tN−1 dt � 1

rN−1|∂B|
∫
B

udx � K1

rN−1|∂B| ,

with K1 defined in the previous lemma. Since u′ � 0, we deduce from the previous inequality that ‖u‖W 1,1(B) � 2K1,
so that Lemma 2.1 gives the first estimate. As for the estimate of the H 1-norm, we multiply the equation in (3.9) by u

and integrating in the ball yields∫
B

(|∇u|2 + u2)dx =
∫
B

[
a(r)f (u)u − b(r)x · ∇u

]
udx + λ̄

∫
B

udx.

Since u is a priori bounded in W 1,1(B) and L∞(B), the right-hand side is a priori bounded as well, and the a priori
bound in H 1(B) follows. �
Remark 3.6. An inspection of the proofs of Lemmas 3.4 and 3.5 shows the following. First, it is possible to choose

λ̄ := min
{
s � 0: f (t) � t for t � s

}
in Lemma 3.4. Moreover, the a priori bounds in these lemmas only depend on some properties of f and not on the
nonlinearity itself. More precisely, if M > 0 and δ > 0 are fixed, then K1, K2 and K∞ can be chosen independently for
all nonnegative nonlinearities f satisfying (3.10). This will be important in Section 4 where we work with a truncated
problem.

Lemma 3.7. There exists a constant k2 such that for every 0 < μ < 1 and for every solution u �≡ 0 of⎧⎨
⎩

−�u + b(r)x · ∇u + u = μa(r)f (u) in B,

u � 0 in B,

∂νu = 0 on ∂B,

(3.11)

we have ‖u‖H 1(B) � k2.

Proof. By Lemma 3.1, there exists a constant C > 0 such that∥∥−�u + b(r)x · ∇u + u
∥∥

L2(B)
� C‖u‖L2(B) for all u ∈H(B). (3.12)

Assume by contradiction the existence of un �≡ 0, solutions of (3.9) with 0 < μn < 1, such that ‖un‖H 1(B) → 0 as
n → +∞. Then ‖un‖L∞(B) → 0 by Lemma 2.1. By assumption (f 1) we have

f (un(x)) � 1
for all x ∈ B,
un(x) n
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for n sufficiently large, and it then follows from (3.12) that

C2‖un‖2
L2(B)

� μ2
n

∫
B

[
a(r)f (un)

]2 �
(

μna(1)

n

)2 ∫
B

u2
n dx =

(
μna(1)

n

)2

‖un‖2
L2(B)

.

Since un �≡ 0 for every n, this yields a contradiction for n large. �
We now turn to the proof of Theorem 1.1. We are in a position to apply a generalization of a fixed point theorem

by Krasnosel’skiı̆ (see [10,11]) to the operator T defined by (3.8) in the cone C. This theorem is proved by Benjamin
in [4, Appendix 1], but we refer to Kwong [12] where the approach is more elementary. We also quote [3] and [13].

Proof of Theorem 1.1. Let us check the assumptions of the fixed point theorem in [12] (expansive form):

(i) T : C → C by Corollary 3.3;
(ii) T is completely continuous on C. Indeed let {un} ⊂ C be a sequence bounded in H 1(B). By Lemma 2.1 it is

bounded in L∞(B), hence {vn = T (un)} is bounded in H 2(B) by Lemma 3.1. Therefore, by the compactness of
the embedding H 2(B) ↪→ H 1(B), a subsequence of (vn)n converges in the H 1-norm;

(iii) For every λ � 0, for every u ∈ C with ‖u‖H 1(B) = 2K2 (defined in Lemma 3.5) we have u − T (u) �= λ. In fact
notice that u − T (u) = λ if and only if u solves Eq. (3.9), hence this property is a consequence of Lemma 3.5;

(iv) For every 0 < μ < 1, for every u ∈ C with ‖u‖H 1(B) = k2/2 (defined in Lemma 3.7) we have μT (u) �= u. In fact
we have μT (u) = u if and only if u solves Eq. (3.11), hence property (iv) is a consequence of Lemma 3.7.

We then conclude that there exists a fixed point of T in C. Such a fixed point is of course a nonconstant solution of
(1.1) since a is nonconstant. Moreover it is strictly positive and strictly increasing by the maximum principle. This
completes the proof. �
4. Existence of solutions via a variational method

In the case where a is a constant function, say a ≡ 1, the following proposition and remark show that (1.5) may only
admit the constant solution u ≡ u0 in H 1

rad(B). The argument is adapted from [6] where it is shown that if f (u) = up

and p is close to 1, u0 ≡ 1 is the unique solution of (1.5).
Recall that λrad

2 > 1 is the second radial eigenvalue of −� + 1 in the unit ball with Neumann boundary conditions.
Fix δ ∈ (0, λrad

2 ) and let M > 0. By Lemma 3.5 and Remark 3.6, there exists K∞ > 0 such that, if f satisfies (f 1)–
(f 3) and (3.10) with these values of M , δ and a0 ≡ 1, then every solution u ∈ C of (1.5) satisfies ‖u‖L∞(B) � K∞.

Proposition 4.1. Let δ ∈ (0, λrad
2 ) and M > 0. Assume f satisfies (f 1)–(f 3) and (3.10) with a0 = 1. If f ′(s) < λrad

2
for every s ∈ [0,K∞], then (1.5) only admits constant solutions in H 1

rad(B).

Proof. Let u ∈ H 1
rad(B) be a solution of (1.5). We can write u = v + λ for some λ ∈ R and v ∈ H 1

rad(B) satisfying∫
B

v dx = 0 and λrad
2

∫
B

v2 dx �
∫
B

(|∇v|2 + v2)dx.

Multiplying (1.5) by v and integrating by parts, we obtain

λrad
2

∫
B

v2 dx �
∫
B

(|∇v|2 + v2)dx =
∫
B

f (v + λ)v dx

=
∫
B

[
f (v + λ) − f (λ)

]
v dx =

∫
B

f ′(λ + cv)v2 dx,

with some function c = c(x) satisfying 0 � c � 1 in B . Now, since ‖u‖L∞(B) � K∞, we also have ‖λ + cv‖L∞(B) �
K∞, hence f ′(λ + cv) < λrad

2 by assumption. This yields v = 0. �
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Remark 4.2. If, in addition to the assumptions of Proposition 4.1, f only has one positive fixed point, then this fixed
point is the only radial solution of (1.5). This is true e.g. if f is given as f (u) = g(u)u with a strictly increasing
C1-function g : [0,∞) → R satisfying g(0) = 0 and limt→∞ g(t) ∈ (1, λrad

2 ).

In the remainder of this section we will prove Theorem 1.3. For this reason in the following we will assume that
a(r) ≡ 1 and we always assume (f 1)–(f 4) (with a0 = 1). As we already mentioned in the introduction, we shall
find a solution of (1.5) by a minimax technique. This will allow us to prove that it is nonconstant through an energy
comparison. The first step is to consider a truncated problem which can be cast into a variational setting in H 1(B).
We will then recover the original problem through the a priori bounds on the solutions proved in the previous section.

Lemma 4.3. There exist p > 1 satisfying p < N+2
N−2 if N � 3 and a function f̃ satisfying (f 1)–(f 4) and

lim
s→∞

f̃ (s)

sp
= 1, (4.13)

such that if u ∈ C solves −�u + u = f̃ (u) in B with ∂νu = 0 on ∂B , then u solves (1.5).

Proof. Fix M,δ > 0 such that (3.10) holds for f with a0 = 1, i.e.

f (s) � (1 + δ)s for s �M. (4.14)

By Remark 3.6, there exists K∞ > 0 such that, for any nonnegative nonlinearity f̃ : [0,∞) → R satisfying f̃ (s) �
(1 + δ)s for s � M and any solution u ∈ C of the problem

−�u + u = f̃ (u) in B, ∂νu = 0 on ∂B (4.15)

we have ‖u‖L∞(B) � K∞. Now fix s0 > max{K∞,M}, and fix p > 1 with p < N+2
N−2 if N � 3. To define the truncated

function f̃ ∈ C1([0,∞)) we distinguish the following cases.

Case 1: f (s0) = (1 + δ)s0. Then it follows from (4.14) that f (s) touches the line (1 + δ)s from above at s0, so that
the two curves are tangent at s0. Therefore f ′(s0) = 1 + δ and we set

f̃ (s) =
{

f (s) for 0 � s � s0;
f (s0) + f ′(s0)(s − s0) + (s − s0)

p for s > s0.

Then f̃ ∈ C1([0,∞)) satisfies (4.13), and it also satisfies (4.14), so that every solution of (4.15) is also a solution of
(1.5) by the choice of K∞ and s0.

Case 2: f (s0) > (1+δ)s0. Then we may first modify f in a right neighborhood (s0, s0 +ε) of s0, in such a way that
f (s) � (1 + δ)s for s � s0 + ε and f ′(s0 + ε) = 1 + δ. Then we define f̃ as in Case 1 with s0 replaced by s0 + ε. �

In the following, we may also assume that f̃ is defined on the whole real line by setting f̃ ≡ 0 on (−∞,0]. It then
follows by standard arguments from the subcritical growth assumption (4.13) that the functional I : H 1

rad(B) → R

defined by

u 
→ I (u) =
∫
B

( |∇u|2 + u2

2
− F̃ (u)

)
dx,

where F̃ (s) := ∫ s

0 f̃ (t) dt is well defined and of class C2 in H 1(B). Moreover, critical points of I are radial solutions
of (1.5). We look for critical points of I by applying a mountain pass type argument in a suitable subset of C, which
is based on invariance properties of the corresponding flow.

Since the truncated nonlinearity f̃ has a subcritical growth at infinity, the Palais–Smale condition holds. We include
a proof for completeness though this is a standard fact.

Lemma 4.4. The action functional I satisfies the Palais–Smale condition.
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Proof. Let (un)n ⊂ H 1
rad(B) be a sequence with I ′(un) → 0 and such that I (un) remains bounded. It easily follows

from (4.13) there exist R0 > 0 and μ ∈ (2,p + 1) such that f̃ (s)s � μF̃ (s) for s � R0. Hence we have

I (un) − 1

μ
I ′(un)un �

(
1

2
− 1

μ

)
‖un‖2

H 1(B)
+

∫
{un�R0}

(
f̃ (un)un

μ
− F̃ (un)

)
dx.

Since μ > 2, the H 1-norm of the sequence {un} is bounded, hence un ⇀ u weakly in H 1(B) after passing to a
subsequence, where u also is a critical point of I . Using the subcritical growth of f given by (4.13) and the compact
embedding H 1(B) ↪→ Lp(B), it is then easy to see that f̃ (un) → f̃ (u) strongly in the dual space [H 1(B)]′ of H 1(B),
and therefore – regarding −� + Id as an isomorphism H 1(B) → [H 1(B)]′ – we have

un = [−� + Id]−1f̃ (un) → [−� + Id]−1f̃ (u) = u in H 1(B),

as required. �
By assumption (f 4), we may now fix u0 ∈ (0,∞) with f (u0) = u0 and f ′(u0) > λrad

2 . Moreover, since u0 < K∞,
it follows from the proof of Lemma 4.3 that f̃ (u0) = f (u0) = u0 and f̃ ′(u0) = f ′(u0) > λrad

2 . Since λrad
2 > 1, u0 is

an isolated fixed point of f̃ , so we can define

u− := sup
{
t ∈ [0, u0): f̃ (t) = t

}
and

u+ := inf
{
t > u0: f̃ (t) = t

}
.

We point out that u+ = ∞ is possible. Next, we define the convex set

C∗ := {u ∈ C: u− � u� u+ a.e. in B}.
Clearly, C∗ is closed and convex. Moreover we have

Lemma 4.5. Fix c ∈ R and assume that there exist ε, δ > 0 such that ‖∇I (u)‖H 1(B) � δ for every u ∈ C∗ with
|I (u)−c| � 2ε. Then there exists η : C∗ → C∗ continuous with respect to the H 1-topology which satisfies the following
properties

(i) I (η(u)) � I (u) for every u ∈ C∗;
(ii) I (η(u)) � c − ε if |I (u) − c| < ε;

(iii) η(u) = u if |I (u) − c| > 2ε.

Proof. We first show that the operator T defined in (3.8) – with a(r) ≡ 1, b(r) ≡ 0 and f̃ in place of f – satisfies

T (C∗) ⊂ C∗. (4.16)

Let w ∈ C∗ and denote by v ∈ H 1(B) the unique solution of{−�v + v = f̃ (w) in B,

∂νv = 0 on ∂B.

Then v ∈ C by Lemma 3.2, so we only have to prove that u− � v � u+ a.e. in B . Note that h = v − u− satisfies

−�h + h = f̃ (w) − u− � 0 in B and ∂νh = 0 on ∂B.

Here we used the fact that f̃ is nondecreasing and f̃ (u−) = u−. Multiplying this equation with h− and integrating by
parts, we obtain ‖h−‖2

H 1 � 0 and therefore h− ≡ 0, i.e. v � u− a.e. in B . Very similarly, if u+ < ∞, we show that
v � u+ a.e. in B . Hence we conclude that v ∈ C∗ and (4.16) follows.

Next, we take a smooth cut-off function χ : R→ [0,1] such that χ(s) = 1 if |s−c| < ε and χ(s) = 0 if |s−c| > 2ε.
For u ∈ H 1(B) consider the following Cauchy problem
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⎧⎪⎪⎨
⎪⎪⎩

d

dt
η(t, u) = −χ

(
I
(
η(t, u)

)) ∇I (η(t, u))

‖∇I (η(t, u))‖H 1(B)

t > 0,

∂νη(t, u)(x) = 0 t > 0, x ∈ ∂B,

η(0, u) = u.

(4.17)

Since I ∈ C2(H 1(B),R), the normalized gradient vector field appearing in (4.17) is locally Lipschitz continuous and
globally bounded, hence there exists a unique solution η(·, u) ∈ C1([0,+∞),H 1(B)). We set

η(u) := η

(
2ε

δ
,u

)
. (4.18)

Properties (i), (ii) and (iii) are standard, so it remains to prove that η(C∗) ⊂ C∗. To this aim we consider the approxi-
mation of the flow line t 
→ η(t, u) given by the Euler polygonal. The first segment of the polygonal is given by the
expression

η̄(t, u) = u − t

λ
∇I (u) = u − t

λ

(
u − T (u)

)
, t ∈ (0,1),

where λ = χ(I (η(t,u)))
‖∇I (η(t,u))‖

H1(B)
and T is the operator defined in (3.8) (with a(r) = 1). By writing

η̄(t, u) =
(

1 − t

λ

)
u + t

λ
T (u), t ∈ (0,1),

we see that it is contained in C∗ by (4.16) and the convexity C∗. Finally, since the vector field in (4.17) is locally
Lipschitz, the Euler polygonals are known to converge in H 1(B) to the flow line t 
→ η(t, u), which therefore must
be contained in C∗. �
Lemma 4.6. Let τ > 0 be such that τ < min{u0 − u−, u+ − u0}. Then there exists α > 0 such that

(i) I (u) � I (u−) + α for every u ∈ C∗ with ‖u − u−‖L∞(B) = τ ;
(ii) if u+ < ∞, then I (u) � I (u+) + α for every u ∈ C∗ with ‖u − u+‖L∞(B) = τ .

Proof. Suppose by contradiction that there exists a sequence (wn)n ⊂ C of increasing nonnegative functions such that
‖wn‖L∞(B) = wn(1) = τ for all n and lim supn→∞[I (u− + wn) − I (u−)] � 0. Since

I (u− + wn) − I (u−) = 1

2

∫
B

(|∇wn|2 + |wn|2 + 2u−wn

)
dx −

∫
B

(
F̃ (u− + wn) − F̃ (u−)

)
dx

= 1

2

∫
B

|∇wn|2 dx +
∫
B

1∫
0

(
u− + twn − f̃ (u− + twn)

)
wn dt dx

and

s − f̃ (s) > 0 for s ∈ (u−, u0), (4.19)

we then conclude that ‖∇wn‖L2(B) → 0 as n → ∞. Hence the sequence wn converges to the constant solution w ≡ τ

in the H 1-norm. By Lemma 2.3 we therefore conclude that

0 � lim
n→∞

[
I (u− + wn) − I (u−)

] = lim
n→∞

∫
B

1∫
0

(
u− + twn − f̃ (u− + twn)

)
wn dx

=
∫
B

1∫
0

(
u− + tτ − f̃ (u− + tτ )

)
τ dt dx.

This however contradicts (4.19). Hence there exists α1 > 0 such that (i) holds.
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In a similar way, now using the fact that s − f̃ (s) < 0 for s ∈ (u0, u+), we find α2 > 0 such that (ii) holds if
u+ < ∞. The claim then follows with α := min{α1, α2}. �

In the following, we first consider the case

u+ < ∞.

Moreover, we fix τ and α as in Lemma 4.6, and we define

U± :=
{
u ∈ C∗: I (u) < I (u±) + α

2
, ‖u − u±‖L∞(B) < τ

}
. (4.20)

Then we have:

Proposition 4.7. Let

Γ = {
γ ∈ C

([0,1],C∗
)
: γ (0) ∈ U−, γ (1) ∈ U+

}
and

c = inf
γ∈Γ

max
t∈[0,1]

I
(
γ (t)

)
.

Then c � max{I (u−), I (u+)} + α and c is a critical level for I . More precisely, there exists a critical point u ∈ C∗
of I with I (u) = c.

Proof. It follows immediately from Lemma 4.6 that c > max{I (u−), I (u+)} + α. Moreover, Γ is nonempty, since
the path of constant functions

t 
→ (1 − t)u− + tu+ (4.21)

is contained in Γ . Consequently, c < ∞. Assume by contradiction that there does not exist a critical point u ∈ C∗
of I with I (u) = c. By Lemma 4.4, this implies the existence of ε, δ > 0 such that ‖∇I (u)‖H 1(B) � δ for all u ∈ C∗
satisfying |I (u) − c| � 2ε. Without loss of generality, we may assume that 4ε < α. Correspondingly, let η be the
deformation defined in Lemma 4.5, and let γ ∈ Γ be such that maxt∈[0,1] I (γ (t)) � c + ε.

Defining γ̄ : [0,1] → C∗ by γ̄ (t) = η(γ (t)), we then have γ̄ (0) = γ (0) and γ̄ (1) = γ (1) because of Lemma 4.5(iii)
and the fact that I (u±) < c − 2ε by our choice of ε and α. Hence γ̄ ∈ Γ . However, by Lemma 4.5(i) and (ii) we have

max
t∈[0,1]

I
(
γ̄ (t)

)
� c − ε,

contradicting the definition of c. The claim then follows. �
In order to show that the critical value c in Proposition 4.7 does not yield a constant solution of (1.5), it suffices to

show that c < I (u0). To show this, we will now make use of the assumption f̃ ′(u0) > λrad
2 . The strategy is to find a

curve γ ∈ Γ such that maxt∈[0,1] I (γ (t)) < I (u0). This is achieved by suitably perturbing the constant path defined
in (4.21) around u0, moving in the direction of the eigenfunction associated to λrad

2 . We will need a series of lemmas.
Let us start with some simple properties of the eigenfunction associated to λrad

2 .

Lemma 4.8. Let v be an eigenfunction associated to λrad
2 , that is⎧⎨

⎩
−�v + v = λrad

2 v in B,

∂νv = 0 on ∂B,

v radial.

Then v is unique up to a multiplicative factor and we can choose it increasing. Moreover,
∫

v dx = 0.

B
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Proof. By writing the equation for v in radial coordinates we see that it satisfies a Sturm–Liouville problem. Hence
v is unique up to a multiplicative factor, it is monotone and has exactly one zero. By taking −v if necessary, we can
assume it is increasing. We refer to [6] for the explicit form of the eigenfunctions. By integrating the equation for v

we deduce (λrad
2 − 1)

∫
B

v dx = 0, and therefore
∫
B

v dx = 0. �
In the following v will always denote a positive eigenfunction associated to λrad

2 .

Lemma 4.9. Consider the function

ψ :R2 → R, ψ(s, t) = I ′(t (u0 + sv)
)
(u0 + sv).

There exist ε1, ε2 > 0 and a C1-function g : (−ε1, ε1) → (1 − ε2,1 + ε2) such that for (s, t) ∈ U := (−ε1, ε1) ×
(1 − ε2,1 + ε2) we have ψ(s, t) = 0 if and only if t = g(s).

Moreover:

(i) g(0) = 1, g′(0) = 0;
(ii) I (g(s)(u0 + sv)) < I (u0) for s ∈ (−ε1, ε1).

Proof. Since I is a C2-functional, ψ is of class C1 with ψ(0,1) = 0,

∂

∂t

∣∣∣∣
(0,1)

ψ(s, t) = I ′′(u0)(u0, u0) =
∫
B

[
1 − f̃ ′(u0)

]
u2

0 dx <
(
1 − λrad

2

)|B|u2
0 < 0

and

∂

∂s

∣∣∣∣
(0,1)

ψ(s, t) = I ′(u0)v + I ′′(u0)(u0, v) = [
1 − f̃ ′(u0)

]
u0

∫
B

v dx = 0.

Thus the existence of ε1, ε2 and g, as well as property (i), follow from the implicit function theorem. To prove (ii), we
write g(s) = 1 + o(s), so that

g(s)(u0 + sv) − u0 = (
g(s) − 1

)
u0 + g(s)sv = sv + o(s)

and therefore, by Taylor expansion,

I
(
g(s)(u0 + sv)

) − I (u0) = 1

2
I ′′(u0)

[
sv + o(s), sv + o(s)

] + o
(
s2) = s2

2
I ′′(u0)(v, v) + o

(
s2)

= s2

2

∫
B

(|∇v|2 + v2 − f̃ ′(u0)v
2)dx + o

(
s2).

Since ∫
B

(|∇v|2 + v2 − f̃ ′(u0)v
2)dx <

∫
B

(|∇v|2 + v2 − λrad
2 v2)dx = 0,

property (ii) holds after making ε1, ε2 smaller if necessary. �
Lemma 4.10. Let τ be given as in Lemma 4.6, and fix t−, t+ > 0 such that

t−u0 ∈ U−, t+u0 ∈ U+ and u− < t−u0 < u0 < t+u0 < u+, (4.22)

where U± are defined in (4.20). For s � 0 define

γs : [t−, t+] → H 1(B), γs(t) = t (u0 + sv). (4.23)

Then there exists s > 0 such that γs(t±) ∈ U±, γs(t) ∈ C∗ for t− � t � t+ and

max
t−�t�t+

I
(
γs(t)

)
< I (u0). (4.24)
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Proof. We first observe that the function t 
→ I (γ0(t)) has a unique maximum point at 1, since

d

dt
I
(
γ0(t)

) = I ′(tu0)u0 = |B|(tu0 − f̃ (tu0)
)
u0

and tu0 − f̃ (tu0) > 0 in [t−,1) while tu0 − f̃ (tu0) < 0 in (1, t+]. Consider the neighborhood U of (s, t) = (0,1)

found in Lemma 4.9. By continuity, there exists s0 > 0 such that

I
(
γs(t)

)
< I (u0) for every (s, t) ∈ [−s0, s0] × [t−, t+] \ U.

On the other hand, if (s, t) in U is such that t is the global maximum of the function γs , then

0 = d

dt
I
(
γs(t)

) = I ′(t (u0 + sv)
)
(u0 + sv)

and therefore t = g(s) and I (t (u0 + sv)) < I (u0) by Lemma 4.9. Hence (4.24) follows. By (4.22) and since v is an
increasing function, we may choose s ∈ (0, s0) so small such that

γs(t−) = t−(u0 + sv) ∈ U− and γs(t+) = t+(u0 + sv) ∈ U+.

By convexity, we then also have γs(t) ∈ C∗ for all t ∈ [t−, t+]. �
End of the proof of Theorem 1.3 in the case u+ < ∞. Proposition 4.7 provides in C a mountain pass type critical
point of I which, by Lemma 4.3, is a solution of (1.5). As emphasized before, it only remains to prove that c < I (u0),
which implies that the critical point found in Proposition 4.7 is not constant. To this end, we note that Lemma 4.10
implies that – after an affine transformation of the independent variable – the path γs defined in (4.23) belongs to Γ

and satisfies maxt I (γs(t)) < I (u0) for some s > 0. Hence c < I (u0), as claimed. �
Now we consider the case

u+ = ∞.

We then fix τ and α as in Lemma 4.6(i), and we keep the definition of U− from (4.20). In addition, we now set

U+ := {
u ∈ C∗: u� u0, I (u) � I (u−)

}
. (4.25)

Then we have

Proposition 4.11. Let Γ and c be defined as in Lemma 4.7 (with U+ now defined as in (4.25)). Then c > I (u−) + α,
and there exists a critical point u ∈ C∗ of I with I (u) = c.

Proof. It follows from Lemma 4.6(i) that c > I (u−) + α. Moreover, considering again M,δ > 0 such that (3.10)
holds, we find that, for t > M ,

I (t · 1) = |B|
(

t2

2
− F̃ (t)

)
= |B|

(
t2

2
−

t∫
0

f̃ (s) ds

)

� |B|
(

t2

2
−

M∫
0

f̃ (s) ds − (1 + δ)

t∫
M

s ds

)

= |B|
2

(
t2 − 2

M∫
0

f̃ (s) ds − (1 + δ)(t − M)2

)
→ −∞

as t → ∞. Hence, for Λ > 0 sufficiently large, the path [0,1] → C∗, t 
→ u− + Λt of constant functions is contained
in Γ . Consequently, c < ∞. Assume by contradiction that there does not exist a critical point u ∈ C∗ of I with
I (u) = c. By Lemma 4.4, this implies the existence of ε, δ > 0 such that ‖∇I (u)‖H 1(B) � δ for all u ∈ C∗ satisfying
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|I (u) − c| � 2ε. Without loss of generality, we may assume that 4ε < α. Correspondingly, let η be the deformation
defined in Lemma 4.5, and let γ ∈ Γ be such that maxt∈[0,1] I (γ (t)) � c + ε.

Defining γ̄ : [0,1] → C∗ by γ̄ (t) = η(γ (t)), we then have γ̄ (0) = γ (0) and γ̄ (1) = γ (1) because of Lemma 4.5(iii)
and the fact that I (u±) < c − 2ε by our choice of ε and α. Hence γ̄ ∈ Γ . However, by Lemma 4.5(i) and (ii) we have

max
t∈[0,1]

I
(
γ̄ (t)

)
� c − ε,

contradicting the definition of c. The claim then follows. �
Again we need to show c < I (u0) for the critical value c in Proposition 4.7.

Lemma 4.12. Let τ be given as in Lemma 4.6, and fix t−, t+ such that

t−u0 ∈ U−, t+u0 ∈ U+ and u− < t−u0 < u0 < t+u0 < ∞,

where U− is defined in (4.20) and U+ is defined in (4.25). For s � 0 define

γs : [t−, t+] → H 1(B), γs(t) = t (u0 + sv). (4.26)

Then there exists s > 0 such that γs(t±) ∈ U±, γs(t) ∈ C∗ for t− � t � t+ and maxt−�t�t+ I (γs(t)) < I (u0).

Proof. The proof is exactly the same as the one of Lemma 4.10 (using Lemma 4.9). The only difference here is the
new definition of U+. �
End of the proof of Theorem 1.3 in the case u+ = ∞. Lemma 4.12 implies that – after an affine transformation
of the independent variable – the path γs defined in (4.26) belongs to Γ and satisfies maxt I (γs(t)) < I (u0), so that
c < I (u0). Hence the mountain pass type critical point of I in C∗ provided by Proposition 4.7 is not constant. �

We conclude with the remark that the method presented in this section also applies to obtain decreasing solutions
in the subcritical regime assuming for instance the standard Ambrosetti–Rabinowitz condition.

Remark 4.13. Let a(|x|) ∈ C(B) be nonincreasing and strictly positive. Let f satisfy (f 1), (f 2) and assume moreover
that

there exist C > 0, 2 < p < 2∗ such that
∣∣f (s)

∣∣ � C|s|p−1,

there exist R0 > 0, μ > 2 such that f (s)s � μF(s) for every s � R0.

Then the following hold

(i) if a(|x|) is nonconstant, there exists at least one decreasing radial solution of (1.1);
(ii) if a(|x|) = 1 and (f 4) holds then (1.5) admits both an increasing and a decreasing radial solution, which are not

constant.
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