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Abstract

In this paper we construct classical solutions of a family of coagulation equations with homogeneous kernels that exhibit the
behaviour known as gelation. This behaviour consists in the loss of mass due to the fact that some of the particles can become
infinitely large in finite time.
© 2012 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper we prove existence of solutions of the classical coagulation equation for which the mass is not
conserved in time. The coagulation equation reads as:

%(t,x)= olf1t, x), x=>0,1>0, (1.1)
1 X o0
Q[f]=5fl<(x—y,y)f(t,x—y)f(t,y)—/K(x,y)f(t,x)f(t,y)dy, (1.2)
0 0
f(x,0)= folx), x>0, (1.3)

where the kernel K whose specific form will be precised later, satisfies K (x, y) = K(y,x) = 0.
The solutions of (1.1)—(1.3) satisfy formally, assuming that Fubini’s Theorem can be applied, the mass conservation

property:

d o
o /xf(t,x)dx =0. (1.4)
0

However, it is well known that for a large class of homogeneous kernels K (x, y) solutions of (1.1)—(1.3) satisfying
(1.4) cannot exist globally in time (cf. [3,5,12,17]). More precisely, there exist solutions of (1.1)—(1.3) that preserve the
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total mass of the particles fooo xf (¢, x)dx during a finite time interval 0 < r < T < oo, but the mass is not preserved
for arbitrarily long times. This phenomenon is usually termed as gelation.
In this paper we will restrict our attention to the study of kernels with the form:

K(x,y)=(xy)?, l<i<2. (1.5)

The range of exponents in (1.5) is the one in which changes of mass of order one can be expected in times of order
one. Global weak solutions of (1.1) have been obtained in [14].

The main goal of this paper is to construct classical solutions of (1.1)—(1.3) exhibiting gelation. We will assume
that the initial data behaves as a suitable power law for large values of x, and therefore that the loss of mass takes place
since t = 0. In particular, in the classical solutions obtained in this paper, it will be possible to compute a detailed
asymptotic behaviour of the solution f (¢, x) as x — oo, as well as the flux of mass escaping to infinity. The solutions
obtained will be local in time, since we cannot avoid the possibility of discontinuities in the fluxes at infinity for
positive times.

The results obtained in this paper rely heavily in the estimates obtained in the papers [8,9], where some related

linear coagulation models were studied. In particular we have obtained very detailed estimates for the fundamental
+4

solution of the linear coagulation equation that results linearizing (1.1)—(1.3) around the power law fx)=x"72

in [8]. On the other hand, we have introduced in [9] some natural functional spaces to study the linearized version

of (1.1)—(1.3) that results considering small deviations of a bounded initial data fy(x) behaving asymptotically as
342

X~ 2 as x — oo. Both the fundamental solution in [8] and the functional framework introduced in [9] will be used

extensively in this paper.
The power law f(x) = P plays a crucial role in study of solutions of Eqs. (1.1)—(1.2) having particle fluxes

to infinity. Indeed, it has been explained in [8] that f(x) can be thought as a singular solution of (1.1)—(1.2) yielding
a nonzero flux of particles from bounded regions to infinity. Therefore, it is natural to expect that the solutions of
(1.1)—(1.2) in which particles escape towards infinity must behave asymptotically for large values as K f(x) where
K > 0 provides a measure of the particle flux towards infinity. It is likely that solutions with the asymptotics f (x, t) ~
A(t)x™% as x — oo with @ > HT’\ A(t) > 0 might exist, at least locally in time, but they would not have a nontrivial
flux of particles towards x = co. In other words, those solutions would be mass preserving, differently from the
solutions considered in this paper whose main characteristic is that they lose mass. More precisely, we remark that
the solutions obtained in this paper are defined in a time interval 0 < ¢ < T, they are globally bounded, and behave
asymptotically as K f (x), henceforth they have a finite mass M (¢) = fooo xf(x,t)dx for each time ¢ > 0. Moreover,
we have also dd—ﬂt/l (t) < 0. Solutions of the coagulation equation with a decreasing amount of mass are usually thought
in the physical literature as “post-gelation” solutions in which part of the mass escapes towards an infinitely large
particle or “gel”.

Notice that solutions behaving as f(x,#) ~ A(f)x~* as x — oo with a < HTA A(t) > 0 and having finite mass,
cannot be expected because the flux of particles towards x — oo would be infinitely large and this would result in the
instantaneous vanishing of the mass M (¢).

The coagulation equation is one among a large family of kinetic equations exhibiting particle fluxes for homoge-
neous solutions. Several examples can be found in [2]. A rigorous construction of solutions exhibiting loss of mass for
small values of the energy for the so-called Uehling—Uhlenbeck equation (or quantum Boltzmann equation) has been
obtained in [6,7]. The type of methods used in those papers is closely related to the ones used in this paper, although
there are some technical differences.

In both cases (coagulation and Uehling—Uhlenbeck) we can think that the obtained solutions are mass preserving
measure valued solutions having a singular part at some distinguished point and a regular part that is described by the
integro-differential equations. In the case of coagulation the singular part of the measure (or gel) would be supported at
x = 00, and in the case of Uehling—Uhlenbeck such atomic measure (or Bose—Einstein condensate) would correspond
to a macroscopic fraction of particles with zero energy. A natural question that arises in both cases, and in general
in the study of equations with particle fluxes is to understand the interaction between the singular measure and the
regular part of the measure. For the solutions obtained in [6,7] and in this paper we assume that the regular part of
the measure is not affected by the singular part. However, it is well known that such interaction could be nontrivial.
For instance, in the case of coagulation models, explicit examples for the kernel K (x, y) = x - y show that different
solutions can be expected if there is interaction between the singular part and the regular part or if such interaction
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does not exist (cf. [11,22]). In [1] it is proved that different evolutions can be obtained for discrete systems of particles
whose evolution is obtained as suitable limit processes which involve, either truncations of the kernel K (x,y) =
x -y, or a finite number of interacting particles. For more general kernels it is known that different dynamics can
arise for different mass preserving regularizations of the kernel K (x, y) after passing to the limit where gelation
can occur (cf. [4,10]). In the case of Uehling—Uhlenbeck the computations and physical arguments in [13,19,20]
suggest the existence of solutions of this equation exhibiting nontrivial interactions between the regular part of the
particle distribution and the Bose—FEinstein condensate. We also remark that in [15,16] a construction of global mass
preserving weak solutions for the Uehling—Uhlenbeck system has been given. Such a construction begins regularizing
the collision kernel for small energies and pass to the limit in the cutoff parameter. It is not known if the solutions
constructed in [15,16] are the same as the ones in [6,7]. In all these problems a detailed understanding of the physical
regularizations yielding cutoff mechanisms plays a crucial role (cf. also [21] for a discussion about these problems).

The plan of this paper is the following. In Section 2 we describe the functional framework used to prove the main
theorem of this paper and state the main result. Section 3 gives a general sketch of the strategy of the proof. Section 4
summarizes some results that have been proved in [8,9] that will be used in this paper. Section 5 contains some
auxiliary technical results concerning the functional spaces as well as the fundamental solution g(z, x; 1) studied
in [8]. Section 6 provides some estimates for the nonlinear term. Section 7 describes the asymptotics of the solutions
of some linear equations as x — oo in a detailed manner. Finally Section 8 explains the fixed point argument that
concludes the proof of the theorem.

2. Functional framework and main result

In this paper we will choose the initial data in (1.3) satisfying fo € C 3(RT). We will assume also, as in [9], that
the function fj is close to a power law for large x. To this end we define:

A—1 2.1
r=—. .
2
We fix also § > 0 satisfying § < min{r, Z_T)‘ }. We will then assume that fj has the form:
Di§(x) D& (x)
S = A0+ L0+ @, A =2EE p ZPE (22)
x 2z x 2 tr
S1,2(0) = fi(x) + fa(x) (2.3)
where D; > 0, D, € R and:
& € C™[0, 00), Ex)=1 forx>1 and &(x)=0 if0<x<1/2, £'(x) >0, 2.4)
k=0,1,2,3,4, (2.5)

k
< 9
115 001 (x + 1) B Hr+k+s

for some B > 0. The following auxiliary function will be used repeatedly:

ho(x) = fo(x) — fi(x) = fa(x) + f3(x). (2.6)
Notice that (2.2)—(2.5) imply:

(1 E4) o] + (1L+ y T+ ) )] + (1 4+ 3 F 7 2) g )] + (1 + 35473 [mg ()] < CB
2.7)

for some C > 0. We will assume in the rest of the paper that C is a generic constant that can change from line to line
and that might depend only on Dy, D>, B, A and § unless some additional dependence is written explicitly. Moreover,
we will assume without loss of generality that D; = 1, since this parameter can be absorbed in a rescaling of 7.

For any interval I C (0, +00) we will denote as L> (1) the usual Lebesgue space of square integrable functions. For
any o > 0 we denote as H° (I) the usual Sobolev space W %(I). The corresponding norms will be denoted || - || 12
and || - || go. Dealing with functions depending on variables x and ¢ we will write H or Lt2 in order to indicate the
argument with respect to which the norm is taken.

In order to define suitable functional spaces we define, for any 7 > 0, R > 0 (see Fig. 1):
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Fig. 1. Two cubes of the kind appearing in the norms N, , and Noo defined below.

min(to+R_<)‘_l)/2,T) 1/2
A—1 _ 2
Nz;o(f;to,R)=<R 7 +20-] / ||D;’f(t>||Lz<R/z,zR>df) » 020,

fo

T 12
_ 2
M, (f; R) = (Rzo 1/” Dgf(t)”Lz(R/Z,ZR) dt) , 020,
0

min(tg+R~*~D/2 1) 1/2
Al 2
Noo(f5 20, R) = (R 2 | f®] L®(R/2,2R) dt) ’

0]
T

Moo(f;R)=(/

12

2
Hf(t)||L°°(R/2,2R)dt> :
0

Then, for any o > 0 we define the following norms:

Ifllvg ,cry = sup RIMao(f: R)+ sup RIMyo(f:R)
0<R<1 0<R<1

+ sup sup RPNa.o(f; 10, R)+ sup sup RPNa.o(f; 10, R),
0<to<T R>1 0<to<T R>1

I fllx, )= sup RIM(f;R)+ sup sup R”Neo(f;1t0, R),
0<R<1 0<to<T R>1

Ifllg.p = sup {x?]f)|} +sup{x?|fo)|}.
0<x<1 x>1

Iflle = sup flfll3 55 + ||f||y§3%k(r)

0<r<

and the following spaces:
Yo (T)={f: I fllyg ) < 00}, Xgp(T)={f: I flx, 1) <00},
Erio ={f1 I fllo < 00}
Throughout this paper we will assume that

oe(1,2).

Zo

2.8)

(2.9)

(2.10)

@2.11)

2.12)

Therefore, Sobolev embeddings imply Y7 ,(T') C X4, ,(T). Actually such embeddings would take place assuming

1

the weaker condition o > 5. The main reason for the choice of o as in (2.12) is purely technical, and it is due to
the fact that the theorem proved in [9] to solve a suitable linearized problem (cf. for instance (3.5)) requires such a
regularity. It is likely that using the “almost half-derivatives” that we introduce now would be possible to weaken the

condition on o to % < 0 < 1 both for the results of [9] and this paper (cf. Remark 6.4 in [9]).
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We will solve (1.1)—(1.3) using a functional space that measures in a natural way the regularizing effects of the
coagulation equation as x — oo that have been studied in [9]. Let € C®°(R™) be a cutoff function satisfying n(x) = 1
forx e (%, 3), n(x)=0forx ¢ (%, 4). Given f € C(R"), 1o € [0, T], R > 1 we define:

FRry (0, X) = n(RX) f (to + 6 R~*D/2 RX) (2.13)
and:
min(fy+R~*~D/2T)

1/2
/’ﬁR,to(Qvk)|2QR,a(k)dkd9> (2.14)
R

D=

g
[f1,* =sup sup RP
R>10<10<T :
0

where Qg o (k) = (1+ [k[**)(1 + min{[k|, R}),

o:)
I .0 =1fllg2 HO +1f1p% + sup WAz, +1fllvg (1)
Z],YZ(T) L>((0,T); HZ (0,2)) p 5. %.p( )

0<t<T
.1
ZyAm = Ifl 1 <oo). (2.15)
Z, ()

The intuition behind these spaces is the following. As it has been seen in [9] the main terms in the coagulation
equation for solutions that are close to the power law x~*%" as x — 00 can be thought as a perturbation of the half-
derivative operator. However, since the integral operator Q[ f] in (1.2) is an integral operator Eq. (1.1) cannot be
expected to have smoothing effects. Nevertheless, it has been seen in [9] that Eq. (1.1) has some kind of regularizing
effect due to the fact that the right-hand side of (1.1) can be thought, for solutions close to x5 as x — 00 as the
half-derivative operator, if we restrict ourselves to incremental quotients with length x larger than one. This is the
source of the regularizing effects that will be studied using the functionals (2.114), (2.15).

In order to gain some intuition about the spaces X, ,(T), Y; p(T), Z;;E (T) it is useful to think about them as
functions that can be estimated like x 77 as x — oo and x~¢ as x — 0 in the case of the spaces X, ,(T), Y;p(T) and

3. i3 . . N . L .
X7 2 in the case of Z;‘, *(T). Concerning regularity, the functions in X, ,(7') are estimated pointwise, the functions

1
in Y;{ »(T) have o derivatives in space and the functions in Z; 2(T) have almost (o + %) derivatives in the sense of
the definition (2.14).
The main result of this paper is the following:

Theorem 1. Suppose that fy satisfies (2.2)—-(2.5), o is as in (2.12) and K is as in (1.5). Then, there exists a classical
-1
solution f € Z;f of (1.D—=(1.3) with f; € L*®((0, T) x R*). Moreover, this solution is unique in the class of functions
2
satisfying:
f(t,x) =)»(t)f;‘()c)x_3%A +h(t, x) (2.16)

1 _ _
with A € C[0,T], A(¢) >0, h € Z;’Z(T), limy_, ¢ || 2] o} = 0, where p = 3%’\ +S6with0 <38 <r,and T small
enough. S

Remark 2. Assumptions (2.2)—(2.5) seem a very strong condition. However, this condition is analogous to the type of
compatibility conditions that must be assumed solving boundary value problems in order to obtain smooth solutions,

or also to assume that the initial data has as many derivatives appear in the equation solving a parabolic problem. We
notice that the assumptions (2.2)—(2.5) just state how close must be the initial data fo(x) to the power law Dlx_3%A
as x — oo. It is likely that (2.2)—(2.5) could be weakened to the form fo(x) = Dl)c_S%A + O(X_S%A_‘S) as x — oo for

some § > 0. However, to prove this would require to obtain some delicate regularizing effects that we have preferred to
avoid in this paper that is already rather technical. The specific value of  will play a role in the proof of Proposition 20
(cf. Remark 31) as well as in the proof of Proposition 29.
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Remark 3. The splitting of the function f (¢, x) as in (2.16) just separates the part of f (¢, x) giving the power law

. _ 3+ . . .
asymptotics A(f)x~ 2 as x — oo from the terms which are smaller as x — co. The cutoff function &(x) in the first
term has been introduced in order to avoid singular terms at x = 0.

We also prove that the mass of the solutions in x € (0, 00) constructed in Theorem 1 is strictly decreasing.

Theorem 4. Suppose that f, A and T are as in Theorem 1. Then:

djgt(t) — %([xf(t,x)dx) =27 (L))" <0
0

forallt € (0, 7).
3. General strategy of the proof

The general plan that we will use to prove Theorem 1 is the following. We look for a solution of (1.1)—(1.3) in the
form:

Sf(t,x) =A@) folx) + h(z, x) (3.1)

where fy is the initial data (cf. (1.3)) and /& will be a small perturbation for short times. The function A is a differen-
tiable function to be prescribed satisfying A(0) = 1. Then A, A solve:

he = ML o [h] + QIR + (L)) QL fol — A fo(x) 3.2)

where the linear operator L is as in [9]:

Lplhl = f (x = M2 folx — Wy 2h(y) dy
0

—xM2 fo(x) / Y2h(y)dy — x**h(x) f Y2 fo(y) dy. (3.3)
0 0

.1
Our strategy is to solve (3.2) by means of a fixed point argument for a suitable operator 7 defined in 22’7 (T)
with r as in (2.1), o as in (2.12) and T sufficiently small (cf. (2.15)). It is convenient first, in order to apply the
well-posedness results in [9] to introduce a new time scale. We will assume in all the paper that |A(f) — 1] < % We
can then define a new time scale t and a new function A by means of:

dt =A(t)dt, t=0 atr=0, A(t) = A(1). (3.4)
Then (3.2) becomes:
he =Lt + 2 A 01f0 - A fo)
T fo AT T

where we will write A (¢, x) = h(t, x) by convenience.

1 -~ .
Given h € Zg’ 2(T) and A € C'([0, T]) we will define i = h[A] as the unique solution of:

- = Qlh]
he =Ly h]+ erA(T)Q[fo]—Arfo(X) (3.5)

in £7.,. The existence of such a solution will be a consequence of the results in [9]. In order to apply such results we

will need to show that Q[ fol, Q[h] € Y (2+S)(T)' In the case of Q[ fo] this will be a consequence of (2.6), (2.7). In
2

s
order to derive this property for Q[4] we will use the decay and regularity properties of the functions & € Zg’ (T).
The details will be given in Section 6.
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After obtaining h = h[A] we proceed to determine A (7). To this end we will argue as follows. The asymptotic
behaviour of & as x — oo is given by:
T
iz, x) ~ [g[r; h, A]— /a(f - s)At(s)ds}r“T‘ asx — 00, 0< 1< T, (3.6)
0

where a(-) is a function depending on fy and G[-; i, A] a functional that will be precised later (cf. Propositions 26,
29 and Lemma 34 for a precise formulation of this result).

The asymptotics (3.6) will be obtained using the properties of the fundamental solution constructed in [9]. In order
to close the fixed point argument, we need to choose A(t) in such a way that h(t,x) = o(x_%) as x — oo. This
can be achieved assuming that A solves the equation:

/a(t — A (s)ds —G[t;h, A]=0, 0<rt
0

N

T. (3.7)

A detailed analysis of the function a(t) (see Section 8.2) will allow to transform (3.7) in something more like a
first order Volterra integral equation:

T
a(0)A(r) — / Z—Z(t —$)A(s)ds —a(r) —G[t; h, A]=0, 0<t<T, (3.8)
0
with a(0) = 1. This equation can be solved by means of a standard fixed point argument, and this gives the desired
A that will be denoted as A. We then define T[h] = h[A]. Notice that T[h](z, x) = o(x_%) as x — 00. Actually,
amore careful analysis of (3.5), (3.8) shows that T [h] € Z;;% (T). Moreover, the operator 7 is contractive in Z;;% (T)
if T is sufficiently small and with a suitable choice of §.

4. Summary of some of the results in [8,9]

We recall in this section several results that have been obtained in [8,9] and that will be used repeatedly in this
paper.

In order to study the asymptotic behaviour of h defined in the previous section, we will need some properties of
the semigroup defined by the operator:

L(h) = / [(x = MG (x — y) = xM2G () ]y *h(y) dy
0

o0

%
+ /[(x — 9 Phix — y) — X2 (0)]y T dy —x 3 /ymh(y) dy —2+/2x"T h(x) 4.1)
0

X
2

where G(x) = 31+,\ . We have studied in [8] the solution of the following problem:
Xz

0rg(t,x) =LIgl(r,x), x>0,7>0, g(0,x,x0)=25x—xp). (4.2)
In particular we have proved there the following results:
Theorem 5. (Cf. Theorem 3.8 in [8].) There exists a unique solution g(z,-,xg) € C*°R") of (4.2) that has the
following properties. There exist €1 > 0 and ¢ > 0 depending only on A such that, for any 0 < ¢ < g1 the following

statements hold.
The function g(t, -, xo) has the following self-similar structure:

1 =lox
g(rvxv x()) = —g<fx02 s T 1) (43)
X0 X0
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Forall t > 1:

2 2
g(r,x, ) =1"Tei(p) + (7, p), p=1*Tx 4.4)
with:
aip + 0:(p7 T ), 0<p<l
p1(p) = - ’ S 4.5)
ap” T + 0o~ 1) p>1,
where ay, ap are two explicit constants,
3 2 3
bi(D)p~2 4+ 01 2p~ 212 0<p<l,
0r(T. p) = 1(T)p o ( i P 3H) P (4.6)
by(T)p~ 2 + 0T 2p7 2 772), p>1,
2
where by, by € are two continuous functions such that |by(t)| + |b2(7)| < Ct 1~ %2
For 0 <t <1 we have:
a3 4 b3(0)x 3 + O(rx"3H), 0<x< i,
gt )= | @t by Lo ), k>3, @7
05( IH; ) fort2<|x—1|<%
lx—1]27°¢

where a3 is an explicit numerical constant and b3, by are continuous functions such that |b3(t)| + |bs(7)| < Ct'+e2,
Moreover:

liII(l) tzg(t, 1412y, 1) =¥ (x) wuniformly on compact subsets of R
t—

where the function W is given by:

2 exp(_xg/z)
U(y)=———F>— forx >0, U(x)=0 forx <O. 4.8)
T x32

Remark 6. The functions O, (-) depend on ¢.

Remark 7. Notice that (4.5)—(4.7) imply the existence of a function ® = ®(r) and ¢ > 0 such that:

_ 34 _3th
gz, x, ) —O@x 7 |<Crx™ 7, < x>1, (4.9)
ICR R BCI e o P C—— ) (4.10)
where
< 1+4¢ <
@(T)z{autfﬁ(r), |b4(t)I\Ct7@f\l, @10
at AT +by(1), |ba(r)| < CT 4177, 72> 1.

We will need improved estimates for g(z, x, 1). More precisely we need to compute the next order in the expansion
of g as x — oo. To this end we obtain the representation formulas for the function g(z, x, 1) that we have obtained in
the proof of Lemma 7.10 of [8].

Theorem 8. (Cf. Lemma 5.1 in [8].) The function g(t, x, 1) described in Theorem 5 can be written as g(t,x,1) =
G(t, X), x =X with:

. _2iv )
Gz, X) = — Y@L 2y / ay— " p(AY
2r (A —1) V(ML A—1
Im(Y)=—y, 2
' VETET [ 2iY
TR / dE &iEX / ay YE)T F( : ) (4.12)
a(h—1) VE+Y) A—1

Im(§)=p Im(Y)=-y1
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where (8 — 3+)‘) > 0 and y) > 0 are sufficiently small. The function V(&) is given by:

2i 1 1 241 342
V(E) =¢eXp _T log(_@(n)) inGE—n) ~4mn d77 ) /31 E\—F—F )
A—1 I —e T I+e 2 2
Im(§)=p1
2Vl (Gin+1+%)

, lim arg(—®(n))=—
Iin+ 4 Re(n)—00 e )

Q) =—
On the other hand we have proved the following results in [9]:

Theorem 9. (Cf. Theorem 2.1in [9].) For any o € (1, 2), §>0and any fo satisfying (2.6), (2.7) there exists T > 0
such that forall u €'Y, the Cauchy problem

3/2 248
he =Ly h)+p, h(0)=0 (4.13)
has a unique solution h in Er.,. Moreover ||h|le < Cllpllye for some positive constant C dependingon T, o, §

3/2,(2+5)
aswellas A, B and y in (2.6), (2.7) but not on L.

Theorem 10. (Cf. Theorem 2.2 in [9].) For any o € (1,2), § > 0 and for any fy satisfying (2.6), (2.7), the solution of
the Cauchy problem (4.13) obtained in Theorem 9 satisfies

[h1’, E\cnunw

3/2,245

for some positive constant C depending on T, o, § as well as A, B and y in (2.6), (2.7) but not on .
This is a regularity result proved in [9] that will be used repeatedly in the following:
Theorem 11. (Cf. Theorem 3.1 in [9].)

(i) Suppose that Q € L*(0,1; H? (1/2,2)), P € L*(0, 1; H ™ '/*(1/2,2)) with o € (1/2,2), k € (0,1] and f €
L®((1/4,2) x (0,1)) N L2(0 1; HY2(1/4,2) n HY0, 1; L3(1/4,2)) is such that f =0 ifx < 1/8 or x > 4
and satisfies

B
B—J; =kTe rR(Mypf)+ QO+ P

forall x € (1/4,2),t € (0,1) and f(x,0) =0. Then:

||f||L,2(0,1;H;’(3/4,5/4)) < C(” Q“L,Z(O,I;H,E’(I/Z,Z)) + J ”P”L,Z(O,I;Hf*l/z(l/Z,Z)) + ||f||L°°((1/4,2)><(0,1))>

for some positive constant C independent of ¢ and R.
(ii) Suppose that Q € L2(0, Tnax: H (1/2,2)), P € L2(0, Tmax: HY ~/%(1/2,2)), f € L®((1/4,2) x (0, Tmax)) N

Cr (0, Thmax; H. 1/2(1/4 2)) for some Tax > 0 is such that f = () if x < 1/8 or x > 4 and satisfies
af
o = TerRMypf)+Q+P—a(x,t)f, xe(1/4,2), t>0, (4.14)
f(x,00=0 (4.15)

for some function a € L°°(0, Trax; H°(1/2,2)), a > A > 0. Then, for all T € [0, Tnax — 11:

sup

min(7 41, Tiyax)
0T < Tinax (

12
2
||f(t)||H<’(3/4,5/4) d’)
T
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min(T+1,Tmax) 1/2
( ||Q(I)H?1tr(1/2,2) dt)

<C  sup
0T < Tmax a
C min(7'+1, Tiyax) 1/2
2
+— sup ||P(t)|| o—1/2 dt
2 0<T<7‘1nax< " (1/2.2)

T
+ CIl fIlLo°((17/4,2) % (0, Tonax)) - (4.16)

>iii) Suppose that for some Tmax > 0, Q € LIZ(O, Tmax; HY (1/2,2)), f € L*®((1/4,2) x (0, Tmax)) N Ct1 (0, Trax;
Hxl/2(1/4, 2)) is such that f =0ifx < 1/8 or x > 4 and satisfies (4.14), (4.15) with P =0 and ¢ =0. Then

min(7 41, Tmax) 1/2
( f /|ﬁ(k,t)|2|k|2“ min{ k|, R}dk)
T R

<C sup

min(7 41, Tiyax)
0T < Tmax (

1/2

2
low HHU(I/M) dl) + Cll L0 ((1/4,2) % (0, Tomax)) (4.17)
T

where F(x,t) =n(x)f(x,1), n € C* is a cutoff satisfying n(x) =1 ifx € (%, %) andn(x)=0ifx ¢ (%, %). The
constant C is independent of R.

5. Some auxiliary results
In this section we collect two estimates that will be used in the proof of Theorem 1.
5.1. Remarks about notation

We will use in the arguments several different symbols. Specific letters have been reserved for quantities with
precise meanings. We write them shortly here as a guide for the reader.

The letter r = % will denote the first order correction to the asymptotics of fy as x — oo (cf. (2.1)—(2.5)). We
will use § to denote the exponent of the second order correction of fp as x — oo. It will be assumed in the whole
paper that § < min{r, Z_T)‘ }.

The parameter § characterizes the functional space where the solution of the equation will be obtained (cf. Theo-
rem 1). It will be always assumed that § < min{r, §}. We will use also the notation p = 3%)‘ + 6.

The symbols &’s will be used for the fundamental solution associated to g; = L[g] (cf. Theorem 5).

We use o to denote the spatial regularity of the solutions. We assume o € (1, 2).
o)
5.2. A general estimate for the functions in Z,"* (T)

Lemma 12. Suppose that ¢ € Z;; : (T) foro € (1,2), p > 0. Let us define:
t
w(t,x)=/¢(s,x)ds, xeRYT, 0<r<T. (5.1
0
Then, there exists C > 0 independent of T, ¢ such that:

lol .1 <4Tloll .1 . (5.2)
Z, () Z, 2(T)

P
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Proof. Due to (2.15) to estimate ||| o} we need to obtain bounds for ||l 2¢0,7): He(0,2)) [a)];;i,
Z,2(T) T

SUPo</<T |||a)|||% » lwllyg (r). Using (5.1) and Cauchy—Schwartz we obtain:
. 30

loll 220, 7y: 12 0,20 < TNl L2 (0, 7); Hg 0.2))- (5.3)
Using (2.10):

<T . 4
s llolly, <TUly,, (5:4)

To estimate ||a)||y<37 (ry we need to control Na.,(w; 19, R), Ma,s (w; R) (cf. (2.8), (2.9)). Using again Cauchy—
2P

Schwartz inequality we arrive at:

No.o (@; 10, R) <NTNao (¢: 10, R), R > 1, Mo (w; R) <NTMy.o(¢:R), R<1. (5.5)

.1
Finally we can estimate [a)];’ % using also Cauchy—Schwartz for each value of R (cf. (2.14)):

. .1
[0l > <VTIgl, > (5.6)
where we use that 1y + GR_w (cf. (2.13)) is bounded by T. Combining (5.2)—(5.5) we obtain (5.2). O

5.3. Improved estimates for g(t, x, 1)

We will need to compute detailed asymptotics for the function g(z, x, 1) in Theorem 5 as x — oo, since the main
corrective terms coming from the asymptotics of g(z, x, 1) have the same order of magnitude as the ones due to the
natural sources in the problem for the approach indicated in Section 3.

Proposition 13. Let g(t, x, 1) be as in Theorem 5. Suppose that Tt > 1. Then:

2 2

gt,x, =1 Tpi(p) + ¢2(t, p), p=T1>Tx
with:

1) =a2p™ T tasp” T 4 0(p~ ) ps, (5.7)
for some g1 > 0. Moreover:

2
021, p) = ba(0)p ™ + 0, (112 p"F) L ps (5.8)
2
where |by(7)| < Ce, 77122 for any &3 > 0.
Suppose now that T < 1. Then:

3+A

g(t,x, 1) :a3r)c_3%A +b4(t)x™ 2 + O(TX_(#_H)), x> -, (5.9)

NSNS

where |by(1)| < Crltes for some g3 > O sufficiently small.

Proof. The argument is similar to the one in [8]. More precisely we deform the contour of integration in (4.12).
Crossing the singularities of the integrand we obtain contributions using residues that yield the main terms in the
asymptotics. The only difference with the argument in [8] is that we have to cross also the singularity at £ = (3%)‘ +r)i.
This yields the second term on the right-hand side of (5.7).

More precisely. Suppose first that T > 1. We then use the representation formula (cf. [8, Section 9.2]):

G(t, X):(r)%dfl(erl—Gl(r, X), =X+ log(t)

2
A—1

where:
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1 i 2i
W, (0) = dg 5%y F(—— —i >
1o 7 (= DIV (é)/ﬁ R e
m(§)=p
i o VErT (2
cien=coy [ oae [ geer(-he-y
Im(§)=p2 Im(y)=p3

with 8> € (Bo, 3_7)‘), Bo € (%, 2), Bz € (3%, 1). The asymptotics of the function ¥ (8) as 6 — oo has been obtained
in [8, Proposition 9.8], moving upwards the contour of integration {Im(¢) = f} in order to make it cross the first
singularity found of V at & = 3JrT’\i. To obtain better estimates we just move the contour of integration above the line

{Im(&) = A + 1}. We then obtain the following generalization of formula (9.27) in [8]:

#10) = - TG V@ie 50 2l ()Y @ie” (T
2vi - V) wG— DIVEED@ (G + DD (i)
N 1 d& eiéGV(f)F<—i(E - i)> G40
7 (h— DIV P

Im)=14+1+¢;
with ¢ > 0 small. We have computed Res(V; & = (A 4 1)i) using Proposition 4.1 and (5.11) in [8].
The first term on the right-hand side of (5.10) is the first one on the right-hand side of (5.7). The last one can be

estimated by C e_(3%k+’ +e09 for > 0. This gives (5.7). We now estimate G| (7, X). This can be made as the estimate
of G in [8, Lemma 9.9]. Deforming the contour {Im(£) = $,} as in the derivation of (9.36) of [8], but moving it above
the line {Im(§) = A + 1} we obtain:

3+A

Gi(w. X) = ba(me 20 £ by (e T+ 1 §1(z, X)
where the function b, (7) is exactly as in [8], t~he function 52(1’) has a similar formula, with slightly different terms
arising from the integration by residues, and Q(z, X) is similar to (9.37) in [8] with the only difference that ¢ =
(1 +A) + &1, with &1 > 0. Arguing exactly as in [8] we obtain:

20| + |ba(0)| < COFT72 forT > 1,

|01z, X)| < CryF1 2 n e,

This gives (5.8). On the other hand, in order to derive (5.9) we argue as in [8, proof of Lemma 9.10, (9.45)]. Indeed,
moving the contour of integration {Im(§) = 87} to {Im(§) = (A + 1 + ¢1)}, with &1 > 0 we obtain:

2iY

G(‘C, X):_Mef%x dY 3‘[ )fhil ( ZlY )
2w —1) Ca=al JE iityy \r-—1
Im(Y)=—y;
Wi (324X — 2y 2%Y
S 1 U - f &y — F( : ) (5.11)
(=@ O+ DHP(FFD) . V((1+0i+Y) \a—1
m(r)=—y1
‘ VE)TTET [ 20y
l ; T A= 1
— dg 't / dy r ) 5.12
t oo / s€ VE+Y) (x—l) G12
Im(&)=A+1+4¢; Im(Y)=-y

The time dependence of the integral terms can be obtained as in [8], since this one comes from the integration in
the Y variable. O

6. Estimates for the quadratic term Q[k]

The following lemma will be used to show smallness of the quadratic terms Q[A].
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- - It
Proposition 14. For any o € (1, 2) and any § > 0, there exists C = C (o, §) such that for any h € Zg’ 2(T):

2
H Q[h]” y;(m)m < C”h”Za;%

> 2(1)

with Q-] as in (1.2), (1.5).

In order to prove Proposition 14 we rewrite Q[h] as:

Olhl(r,x)=h+ I, 6.1)
where:
h=— / (o), b y) dy. 6.2)
L=-— f(xyﬁh(r, Oh(z, y)dy + / Vi, [ =0 3h(z,x — y) —x3h(z,x)] dy. 6.3)
X 0

2
We begin estimating /;:
Lemma 15. Let I be as in (6.3) and § > 0. Then:

illys @ <Clal* (6.4)
7@+ Z; ()

where C is uniformly bounded for 0 < T < 1.
Proof. We just need to estimate the functionals N».,(I1; 9, R) for R > 1 and M., (11; R) for R < 1 (cf. (2.8), (2.9)).
Suppose first that R > 1. We introduce the rescaling x = RX,y=RY, t =19+ R_%G, Hg (0, X) =h(t,x). Then:

2
A1y b 2
I, =—R XzHR(e,X)/YzHR(e,Y)dY
X

[N

o
_ pAatlypd 2
R X2Hr,X) | Y2HR(,Y)dY (6.5)
2

=hi+1p. (6.6)
We begin estimating /; ». Notice that:

[e¢]

&+] & C

R>2 Y2Hr(0,Y)dY <f|| ol
R2TO 272
2
Then:

. . < _ 2 > . .

No.o (I1,2; 70, R) < RCT2) ”h”z‘_"%m’ R2>21, 19€[0,T] (6.7)
P

On the other hand using the inequality:
< .
”fg”qu(%yz) X C(”f”Hf(%l) ”g”Hf(%,Z) + ”f”H;’(%,Z) ”g”Hg(%’g)) (6.8)
foro > % (cf. [18, Theorem 1, Section 4.6.4, p. 221]) we obtain:

C

. ; < —
N2,0(11,19 t()’ R) ~X R(2+25)

Inl? .y . R>1,7%€0,T]. (6.9)
Z.2(T)
P
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Therefore, combining (6.7), (6.9):

c
R(2+25)

Noo(I: 70, R) < lhl* . . R>11€[0.T]. (6.10)

Z; 21
Suppose now that R < 1. We introduce now the rescaling x = RX, y = RY, Hr(t, X) = h(z, x). Then:
2 00
I = —R*1 X3 Hg(x, X)fy%HR(r, Y)dY — R*' X% Hp(z, X)/Y%HR(I, Y)dy
X 2
2
=h+ 1o

Notice that:

oo

R%“fy%HR(r,Y)dY <Clhl 1 . 6.11)
Z;(T)
2 b
: o Y _ p2o—1 o Y i
On the other hand, using || D§ Hg (7, )||L2(%’2) =R ID? h(T, )||L2(§,2R) we obtain:
T ! T 1
2 20 —1 2
(/||D§HR(T, -)||L2(%’2)dr> < (R o /HDgh(f, -)||L2(§’2R)dt)
0 0
SRR 4 (6.12)
Z;2(T)
Moreover:
T , % \
Hpg(z,-) 1, dT | <CT sup |HR(T,)|| ;0001 o SCTRT2|R|l .1 (6.13)
(Jrme s (el e

henceforth, using (6.11)—(6.13):

3
R2M>,0(112; R)

3 A
RIMy.6 (112 R) + <CRI|R|
T Z52(T)
On the other hand:
T 2 2 % 2
(/ D§|:/Y3HR(L Y)dY:| dr) + sup /Y%HR(‘L', Y)dY
b i 12(,2) oststlly 1=}
SCR7Eh| 4
252D

P
where we just estimate the L2 norm of D$ combining the estimates of the derivative and the function itself by

interpolation. Then, using also (6.12), (6.13) we obtain R3 My., (I1.1; R) + R2 Ma.o(I1.1; R) < CR*2|[h))?
201
P
whence:

R3 Moo (I1; R) + RIMao(I: Y CIRI? |, . R<L (6.14)
Z72(T)
P

Combining (6.10), (6.14) we obtain (6.4) and the lemma follows. O

In order to estimate I, we will need the following auxiliary lemma:
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Lemma 16. Suppose that ¢ € C° (RY). There exists C > 0 depending only on ¢ and its derivatives such that the
following inequality holds for any R > 1:

/Xl+@Fﬂu$*éxafmmﬂ¢EL¢fnﬂﬁ

R

< C/(l +1£179)|G®)) (1 + min{ €], VR})? dE. (6.15)

R

The proof of Lemma 16 will be based in the following inequality:

Lemma 17. Let Wg(£) = min{/[€], v'R} = +/R min{ %I, 1}. There exists a constant C > 0 such that, for any R > 0
and any &€, € R:

|& —n
7]

|Wr(&) — Wr(m| < C Wr(n). (6.16)

Proof. This lemma can be thought as a particular case of Lemma 3.6 in [9]. However, we give here an elementary
proof. Due to the scale invariance of the inequality (6.16) we can restrict ourselves to the case R = 1. The inequality
is then elementary if max{|£|, ||} > 1. Suppose then that max{|€|, ||} < 1. Then (6.16) reduces to |+/[€] — +/In]| <
C %«/W which follows immediately multiplying both sides of the inequality by (+/[E] + +/[n]). O

Proof of Lemma 16. Using the regularity properties of ¢ we have:

" oA 1G () / G ()
G <Cn ——— 4+ Cy,
|@+)®)| / 1+ —nm

{InI<1} {Inl>1}

— =] + J
e = hE) + )

(A+EDHWrE)  _C

where m can be assumed to be arbitrarily large. Using then “— HE— S THE

for |n] < 1 we obtain:

]Xl++§P”Mo$*é)@)Pﬁnm{¢Eﬂw/EH2ds

R

<C /|Gmfm+/a+m”m+0m@ﬁﬂh@fﬁ

{InI<1} R
<c/@+mﬁﬂﬁ+0w&»ﬁm@nhs+c/0+@M%Wﬂ@f@ﬂ@f&
R R
= K| + K».

In order to estimate K, we use Lemma 17 to obtain for |n| > 1:

|(1+1&17)Wr(E) — (1+ nI”)Wr(n)|

£ —nl 1§ —nl
<C w C———W, ClE—n|°W
T WROD O W) + CIE = nl” W(@)
. 1§ —nlot!
< Cle = nlWr() + CI& = l" Welp) + C == Wi ()

<C(1§ = nl” + 1€ —nl” Y Wr ().

Using this inequality to estimate the terms in Wg (&) - J>(&) and using Young’s inequality, as well as the fact that
the integration J,(£) takes place in 5| > 1 we obtain:
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K» < c/(l +1E27) (W ()G )| de

R

whence Lemma 16 follows. O

We now estimate /5. The bounds for this operator are the crucial step in the argument from the point of view of the

regularity of the functions, because this operator can be estimated as some regularized version of the half-derivative
1

operator. It will be essential to use the seminorm [](;z (cf. (2.14)).
=

Lemma 18. Suppose that I is as in (6.3) and § > 0. Then:
ILlys < CR™®pn?
7,2+6 Z]}’Z (T)

Proof. S_uppose first that R > 1. Using the rescaling x = RX, y = RY, 7 = 19 + RJ_EIG, h(t,x) =
R-CEDGR0, X)

L=R"2 [ Y56, V[x - Y)3GRr6, X —Y) — X>Gr(6, X)]ayr. (6.17)

O"\le

Notice that:
(= (3RS pAisy 3
|GrO. V)| <kl ,1 min(Y~ T RITy~I), (6.18)
2; 2

We rewrite (6.17) as:

L=0L_+ Z b+ 1D 4,
k=0,1,..; Z <)
1

h_= R—(2+23>/Y%GR(9, Y)J(Gg: 6. X,Y)ay,
0

2k
r
Ly=R"® / Y3IGR(6,Y)J(Gg:6,X,Y)dY, k=0,1,...,
%t
R

[N

L =R / Y3GR(0,Y)J(Gg: 6, X,Y)dY,

2kmax
R
J(G:0,X,Y)=[(X =¥)3G, X —Y)n(X —¥) = X3G (O, X)n(X)] (6.19)
2kmax 1 okmax+1

where <3< and n(X) is the cutoff function used in (2.13). (Notice that n(X) = 1 in all the regions
R 7 R

of integration, since X € (%, 2).) Let us write Yg(0, X) = X%GR(Q, X)n(X). In order to estimate these terms in
HY (%, 2) we use Fourier:

1 N .
0,X)= —— 0, &)etX de.
VR0, X) mR/wR( £)e4X di



M. Escobedo, J.J.L. Veldzquez / Ann. 1. H. Poincaré — AN 29 (2012) 589-635 605

Since the functions I> (6, X), I (8, X), I+ (8, X) are defined for X € R we can compute their Fourier trans-
forms. Using the convolution property for Fourier transforms we have:

2k

bx(0.6) = Yx (0. s>[R<2+25> f YEGRO,Y) (e - l)dy}.
2k—1
"R

Using (6.18):

” D3I, k||L2( 2) || D3I, k||L2(R)

—(2+5) 2% |e iEY _ 2 2
<k || M= f|s| iR (@, 6)[ / dg | .

We now use that:
e—iEY _
/ ™ —1I SCmin{\/ISL\/E}
Zk 1

whence:

7(2+8)

||DXI2k||L2( 2) C”h” (2k 1)8

</|s|2“|w1e<9 &)’ (min{y/]. VR})® dé)
Using Lemma 16 it follows that:

7 <SP
” DXIZsk”LZ(%,Z) = (k13 ”h”Z(_T;%(T)' (6.20)
P

The term /5 4 can be estimated similarly:

CR™ (2+95)
| D% 2t 2y 0y < s 1Py 6.21)
LGS (ka1 zm
We now estimate I _. A similar argument yields:

1

- . 2
L N L P R el § I ORI
Z5 R

where:
1
le —iEY _ 1] le zi,y_” X
Qr(Y)= / (RY)ZdY VR /—3(y)2dy<CWR($) (6.22)
Yz
0

with Wg(&) as in Lemma 17. The last inequality follows computing the asymptotics of the second integral in (6.22)
for%aOand%eoo.
Therefore
1

- R 2
| D% 2.l 123 2, <C||h||za;5(T)R—<2+‘”< / |s|2“\w(e,s>!2(WR<s>)2ds)
» R
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whence:
| DS -] 2 < CIRIP, RTEFD. (6.23)
2 Z0T
P
To conclude the proof of Lemma 18 it only remains to estimate the contributions of the region where R < 1. The

estimate of R% M. (I2; R), R 5 M>.o(I2; R) can be made in exactly the same way as the estimate (6.14) for ;. Notice

that the two terms in I, yield integrals that converge separately since h(t, y) can be estimated as % for y <1 and
y2

A_3
272

then, the term y gives integrability. Therefore:

R3 Mo (i R) + REMao(L: )< ClIRIP | . R<1. (6.24)

2,2

Combining (6.20), (6.21), (6.23), (6.24) Lemma 18 follows. O
Proof of Proposition 14. It is just a consequence of (6.2), (6.3), Lemmas 15 and 18. O

We can also prove the following Lipschitz property for the functional Q[-]:

- - s
Proposition 19. For any o € (1, 2) and any § > 0 there exists C = C(o, §) such that for any h1 hy € Zg’ 2(T):

2
Olh1] = Qlh2]| ys <C Al .1 hy —hall .1
[ I Y 1; 2 253

P

with Q-] as in (1.2), (1.5).

Proof. We have Q[h](t,x) — Qlh2](z, x) = I} + I with:

= —( / (o0 (200 (2, y) dy — / (o0 (e, a2, ) dy>,

2 2
12£<

Yihi(r [ = 03kt x —y) = x3hi(z, )] dy

O\le O\le

Viha(e, [ = 0 ha(z,x — ) —x%hz(r,x)]dy)-

To estimate I; we need to estimate the functionals Nj.,(I1; 70, R) for R > 1 and M».,(I1; R) for R < 1 (cf.

(2.8), (2.9)). Suppose first that R > 1. We introduce the rescalingx = RX,y=RY, 1t =1+ R_%G, Hgr1(6,X) =
hi(r,x), Hr 2(0, X) = ha(z, x). Then:

o0

I = =R X3 [Hg 10, X) — Hg (0, X)] f YZHg1(0,Y)dY
X
2

oo
— R*1XT Hp (0, X)/Y%[HRJ(@, Y) — Hg (0, V)] dY. (6.25)
X

[N

Notice that:
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o o0
sp | [YiHgs@.ay|+ | [Vitiea0.v)ay < gl .y
Xe(z.D)|y b HE (L) R™ Z; ()
o o
sup /Y%[HR,I(Q,Y)—HR,Z(Q,Y)]dY + /Y%[HR,I(Q,Y)—HR,Z(Q,Y)]dY
Xe(3.2) X © HY (3.2)
2
C
< - _
S E |y — A2l ;;%
Using (6.8) in (6.25) we obtain:
c 2
Nyo (11570, R) < = 1kl .1 A1 —h2ll .1 (6.26)
o R(2+25) ]; Zﬁ' 2 (T) Zﬁ’ 2 (T)

for R > 1, 79 € [0, T]. Suppose now that R < 1. We introduce the rescaling x = RX, y = RY, Hg (7, X) = h(z, x),
Hpg2(t, X) = ha(z, x). Then:

L=hi+17,

2
_ Ayt A
11,1=—|:R X2[Hg,(z, X)_HR,Z(T’X)]fYZHR,l(T» Y)dy
3

2
+ R*X3 Hy (7, X) f Y3[Hr1(z,Y) — Hra(, V)] dY}, (6.27)
X
2
o0
_ A1y A
11,2=—|:R X2[Hg,(z, X)—HR,Z(T,X)]/YZHR,](Ty Y)dy
2
o
+ RMX 5 Hy o (1, X)/Y%[HRJ(I, Y) — Hga(z, Y)]dY:|. (6.28)
2
Notice that:
o
A+1 A
R2 Y2Hg1(z,Y)dY| < Clhill ,.1 (6.29)
Z;2(T)
2
o
R%+1[Y%[HR’1(1, Y) — Hra(z, Y)]dY| < Cllhy —h2||zm% - (6.30)
2T
2 4

On the other hand, using the definition of Hg 1, Hr > we arrive at:

T
2
/ | DG Hr 2w, ) oy o de <2l (6.31)
2 2.2(T)
0 P
T
2
/ | D% [Hr1 (. X) = Hr 2(x, X)]| 121 5 d7 < 11 = ha||? o (6.32)
Z22(T)
0 r

Moreover:
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T 1
2
2 _3
[Vtra@ ol pdr) <cTR I, (633)
20 Z; 2(T)
0
7 3
2 _3
/ I[Hra(. ) = Hr2(T. )] 121 5ydT ) <SCTR™2|h1 = hall .1 (6.34)
2 Z; 2(T)
henceforth, using (6.8), (6.28)—(6.34):
3 3 A
R Moo(12: R) + R My (I 2 R) S RI( Y Ml o Jlhi=h2ll L0 . (6.35)
Z; 2(T) Z; 2(T)
On the other hand, for R < 1 we have:
T 2 %
( f [ / Y3[Hg1(z,) — Hra(z, ~)]dY} dr)
0 X L2(%,2)
2
2
+ sup /Y%HR,I(r, ) — Hga(x, ) dY
0<t<T oo
(4.2

vl

3
<CR2|h —hall .1
z_ 2
P
where we just estimate the L? norm of D% by Dy and the function itself by interpolation. Then, using also (6.12),
(6.13) as well as the fact that R < 1:

3 3
R2Mp,5 (11,15 R) + R2Mp,0(11,1; R) < C Z”hk” ol Iy —h2ll .1 - (6.36)
Z.2(T) Z; 2(T)
Combining (6.35), (6.36):
Inllys < Znhkn Clim =hall , (6.37)
2.2+ Z; (T)

where C is uniformly bounded for 0 < 7 < 1.
We now estimate 1. Suppose first that R_/ 1. Using the rescaling x = RX, y=RY, 1t =1+ R_%G, hi(t,x)=
R=CEDGR 10, X), ha(r,x) = R-CF DGR, (8, X) and using (6.19) we obtain:

L=05Li+ 1,

X

2
L= (fy%hl(r, W[ =03 x —y) — x5k (2, 0] dy

0

X

2
- / Viha(z, [ - M3 ha(t,x = y) —x%hz(r,x)]dy),
0

Lhi=R" W‘”fﬁ Gr1(0,Y)—Gr2(0,Y))J(Gg1:6,X,Y)dY, (6.38)
0
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X
2
L= R—<2+23>/Y%GR,2(9, Y)J(Ggr1—Ggo:6,X,Y)dY. (6.39)
0
Notice that:
GR1(O.Y) = Gro@. V)| <l —hall . min(y~C7H9 Ri+y-3). (6.40)
Z.2(T)

P

We now argue exactly as in the proof of Lemma 18 in order to estimate 1> 1, /> 7. Notice that estimating these terms
-1
it is crucial to use the boundedness of the seminorm [~]er§ in (2.14) for the sources. On the other hand, the argument

in the proof of Lemma 18 shows that the pointwise estimate (6.40) is needed. A similar argument and estimate allows
to estimate the terms 12 1, 122 in (6.38), (6.39). Therefore, after some computations:

2
C
Nao(l2, 70, R) + Noo (12, 70, ) < ——= | D lall oy Jlibs —hall 0 (6.41)
R2+5 =1 z Z(T) z 2(T)

P P

. . . . 3 3
It only remains to estimate the region where R < 1. The estimate of R2 M., (I2; R), R2 M».¢(I2; R) can be made
exactly in the same way as the estimate of similar terms for /1. Notice that the two terms in I yield integrals that

. . A3 .
converge separately since A(7, y) can be estimated as % for y < 1 and then, the term y2~2 is integrable near the

y?
origin. Then:
2
3 3
R Moo(Iy; R) + RIMpo (I RY S C Y ll 0 |llhi=hall 1 (6.42)
=1 Z;2(1) Z2(T)
Combining (6.41), (6.42) we obtain:
2
by <C h . hi—h _ . 6.43
1By o (;n knzg,;m)n Vel ey (643)

The proof of the lemma is then concluded using (6.37) and (6.43). O

342
7. Derivation of the asymptotics x~ 3 asx — 0o

The main result in this section is the following.

1
Proposition 20. Suppose that ¢ € Z;;f (T) solves:
2

0 =Lyglel+ F(r,x), x>0,0<r<T, ¢0,x)=0 (7.1)

where F € Y 2+S(T) and 8 < r. Then, the following asymptotics holds:
2

o(t,x)= V\/(r)x_%A + ¢pr(t,x) asx— o0 (7.2)
where:
T oodxO et 30
W(r):/ds/;@((r —5)x7 )xg7 [F(s.x0) + (L g, — L)e](s, x0)] (7.3)
0 0

with ©(-) as in (4.11) and.:

-1
or € Z; 2(T). (7.4)
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The proof of Proposition 20 is based in dealing with the operator L, as a perturbation of the operator L. To this

end, we rewrite (7.1) as:
@ = Llgl + (L s, — L)[h] + F(t, x).

Using variations of constants and Theorem 5 we have the representation formula:

T 00 t 4
o(t,x) = f ds f g((r R 1) (L1 — Dlpl(s.x) + F(s. 0] 22,
X0 X0
0 0

(7.5)

In order to prove Proposition 20 we will derive some auxiliary lemmas. We begin estimating the term (£ 5, — L)[¢]
(cf. (7.5)). Most of the estimates in the next lemma have been already obtained in [9], but we recall them here for

convenience.

Lemma 21. Suppose that fy satisfies (2.2)~(2.5) and ¢ € Er.. Then:

Cligll
Noo((Lfy = Dlgl: 70, R) < 7= w0 €0, 1), R>1,
Cligll

Mos((L s, — D)lgl; R) < Rz", R<1,
2
C
Nao((Lgy = DIl 10, R) < o llell , 10€(0,7), R>1,
Z(%Jrr)
C
Mo ((Lsy — D), R) < = llell .1 ., R<L
R2 iy, @
2

Proof. We write
(Ls —Dlel(s, x0) =A1 + A

where:

Al =

S —~—

2 2

I

2
Ay = /((x _ y)%gp(r,x —-y) —X%QO(T, x))H(y)dy
0

and

H) =y foly) —y2.
It has been proved in [9] (cf. Section 5, Lemmas 5.1, 5.2, 5.4):

S

Cliglly 22 Cliglly 252
|Al|<—3, x <1, |A1|<T, x=>1,
X2 X
C C
Neo(Azi o )< Mo oo A <o et e 1),

R2+r R3
NZ,O'(AI»T()vR)gW”(p”YG 3420 TOE(Ov T)s R>19

3
272

C
M (A1, R) < —llellyg ,,,» R<1,
R> 277

where r might be chosen as in (2.1) and the norms || - || 34, || - [lo are as in (2.10), (2.11).
20 2

(Hx — y)— H@)yp(r,y) dy — Hx) / Vip(r y) dy — xbp(zx) / H(y) dy,

(7.6)

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)
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On the other hand, arguing as in the proof of Lemma 18 it is possible to prove the following estimates:

N2 5 (A2, 70, R) < lell .1 , 10€(,T), R>1, (7.14)

R2+r
Ea

M35 (A2, R) < %HQDH , R<1L (7.15)
R? Z( 342 +r)(T)
The only difference in the argument is that instead of (6.18) the estimate that must be used is:
[H| < Cmin(y~3,y=G)
that implies that the function Hg(Y) = R( S+ g (RY) satisfies:
|Hr(Y)| < Cmin(Y—(‘T+’>, R7+’Y_7).
Notice that for R < 1 we obtain estimates with the dependence L% on the right-hand side (cf. (7.11), (7.13), (7.15))
due to the fact that the term H (x) [ go y%go(r, y)dy in the deﬁnitili)n of A yields such a power law dependence for
small x. Combining (7.12)—(7.15) the lemma follows. O

Remark 22. The estimate for the term A cannot be improved to the decay in the norm H_ except if we obtain
instead the decay R~2. Such a decay has been obtained in [9]. The main novelty in the estimate for A, obtained in

Lemma 21 is the decay like R~?*") in (7.14) for large R, that can be obtained using the estimate for the seminorm
1

(015, 54 contained in the spaces z’ 3 f 5"
=5 s

In the proof of the following results the notation will become simpler using the following definitions:

][f(S)dS—— f f(s)ds.

(t0—p)+

The next lemma shows how to compute the asymptotics as x — oo of the solutions of:
Jr=L[J]+ F(r,x), J(O,x)=0.
To this end we will use the following auxiliary functional:

sup  [Neo(F: 70, RYR*T] + sup[ Moo (F; R)R? ] = H(F). (7.16)
R>1, 1e(0,T) R<1

Lemma 23. Let 0 < § < min{e, r}, with & as in (4.10) and r as in (2.1). Suppose that F € X% 2435(T). Let J = J (7, x)

be:
F r Al x dxo
J(t,x)=/ds/g<(t—s)xo2 ,—,1>F(s,xo)—. (7.17)
X0 X0
0 0
Then:
J(t,x)—I(r;F)x_s%ké(x):JR(r,x) (7.18)

where &(-) is as in (2.4) and:

3+)»

I(r; F) = fd O/dvF(s 70O ((t — $)x,7 Jxg? (7.19)
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with ©(-) as in (4.11) and
|||JR|||? 345 S CIIFIIx3 (-
Moreover:

2_
[[@ A< ComTIFlx , .

Proof. We split the integral in (7.17) as:

J=h+Dh+ 3+ J4,

)
=
S

In the term J; we use the fact that (4.7) implies:

1
gr.x. D] <Cra™3, 0<x< 5

) x—1 1
lg(r.x, D| < Ct 7% =) Ix —1] < w1th<p(§)_

14+£379

for some &; > 0. Then:

[Nl < J11+ Ji2

where:
3x
T
_ _ X — XQ
J]‘] EC/dxo / (T—S) zdsxo k(ﬂ(m)
X a1
: (T X0 2 )+
o0 T
Jio= 3/2/d)c0 / (t—s)dsx0|F(s x0)|
2x ,)»2;1

In order to estimate J3 we use that (4.4)—(4.6) imply:

lg(r.x, D] < CriT min{(t%x)%, (r%x)fg%k}, >1.

Then:

A=l

2
%) (T_x() )+

|J3|<C/dx0 / ds|F(s x0)|m1n{(r—s) = =Tx~ 5 ,(t—9)" le 3%A}

2x 0
3

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)
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S

T— (x/Z)*A

To
Rey  Rey %Rez Re, T 2Ry, 37* 2Ry,

2 2

Fig. 2. Two cubes of the covering Cﬁl)r

To obtain the leading asymptotics of J> as x — oo we will use the detailed asymptotics of g(t, x, 1). Using (4.9),
(4.11) we have:

2x
344 ‘ 14
Jr—x"7 /dxo / ds F(s, xo)@((r — s)xo )x 2 =Jr (7.27)
0

(T —Xp 2 )+

where, due to (5.9) in Proposition 13:

| ol < Cx~ [dxo / (v —8)ds | F (s, x0)|x; ™" (7.28)

0 _A—l
(r— X0 2 )+

To estimate J4 we use (4.4)—(4.6):

A—1

(t—x, 2 )+

ds
|4l < = / dxg / 7“1\1% x0)| (7.29)
E (T —s)H1

2
0

. Al e
where we use that, since xo < x, we have (t —s)x 2z > % Af > 1. We now proceed to estimate all the terms Ji, k =

1,2,3,4, in terms of H(F) in (7.16). We are interested in the behaviour of all these quantities for large values

of x. We begin with the term Jy; (cf. (7.24)). Notice that we can cover the domain {(xo,s): xo € [7, 3x], s €
)\ 1

[z — x4 )+, 7]} by a set of rectangles with the form [ ,2R¢] X [t0,T0 + (R()_%], with R, € [3, 3"]
T €[t — 2 7 X -5t ;] with £ =1,..., Ny r and Ny ; < ng < oo with ng independent of x, . The fact that the
number of rectangles can be estimated umformly on x follows from the self-similarity of the problem. Let us denote
such finite covering as C,(CI% (See Fig. 2.)

The specific rescaling chosen for the rectangles is due to the fact that they are the ones appearing in the definition
of the functionals N (F; 79, R). We then have:

3
T 2

_ — X — X0
J]’l SCZ / (T—S) 2ds/dxox0)‘(p(m>”F(S, .)”LOO(%,ZRX)

Te—CR, T )4 ?



614 M. Escobedo, J.J.L. Veldzquez / Ann. I. H. Poincaré — AN 29 (2012) 589-635

-
—
— (2:r)‘x2;1
Zo
2x Rk Rk SRk
2 2
Fig. 3. The sub-family Ry of cubes of the covering C( )
T
=t
S CR; Z ”F(s )HLOO( X IR,) ds
ct) it
" (t—CR, ? )y
A=l
<CR. 7 sup Neol(F:7,R) <Cx~CE+Hy(F). (7.30)
0<t<T

We now estimate the term Jj in (7.25). Let us denote as C)(( 7 a covering of the set {(xo,s): xo = 2x,
)L 1

(t — x, 2 )4 < s < 1} by means of boxes with the form [7, 2R] x [t9, To + (R)_T], with R > x, 19 € [0, 7]
in which each point is covered at most by a finite number of boxes (independent of x, t), and where the sequence of
sizes R increases exponentially. (See Fig. 3.)

Then:

peys) /dxo / ds (r—s)x07|F(s,xo)‘

_K_
2

70

C
<n ZR%“ / ds (e = F 6w 2ny

c?® e
’ —R 2
1
C 2_7 2 2
<WZR ds | F (s, ')||Lw(§,2R)
e kT

C ooty o CHF) ~ s 45 CH(F)
S5 LR NG(Fin ) S —55= ) RTIR O S
x 2

2 2
c? c?

where we use the fact that the series Zc(z) [---] is a geometric series, due to our choice of the sizes of the boxes.
X, T
Therefore:

1] < Cx~CF D (F). (7.31)
We now estlmate J3 (cf. (7.26)). To this end we introduce a new covering C)(C 7 of the set Dy = {(xo, 5): x0 = 2x,

0<s<(t— xo 2 )+} by means of boxes of the form [5, 2R] x [0, T0 + (R)_T] with R > x, 79 € [0, T].
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A—1

T—(22)" =

Zo

2z Rk RE 3Rk

Fig. 4. The sub-family Ry of cubes of the covering C )(631

We will assume that the rectangles in the set C)Q have the following properties. (i) Each point in the set Dy .
is contained in at most a finite number of boxes independent of x, t for t € [0, T']. (ii) There exists a sequence of

sizes {Ri}ren that increases exponentially on k, such that the number of cubes with R comparable to a given Ry
=1
(i.e.Re (%, 2Ry)) is bounded by CR, 2, with C independent of x, T for T € [0, T']. Notice that the construction of

the covering implies that, for (xo, s) € [%, 2R] x [t0, T0 + (R)’%] we have %(r —10) < (t —5) <2(t — 10). (See
Fig. 4.)

Then, using min{1, }< 1

1
2
(t—s)*-Tx

||F(S, .)”Loo(g’zR)

1
(T —10) %7

A—1

w0+R™ T

C [ R a1
<SY|E | 16 s s

3 1
X2 C,((Si L (‘L’ — TO) =1 T

A—1

- T+R 2

C ds
g—32 R / —1:|Noo(F;TvR)

X2 C)(?; L 5 (‘[ _s)ﬁ

where we have used the fact that the length of the time integration in each box is of order R™7" as well as Cauchy—

Schwartz inequality in the last step. Therefore, using the definition of H(F') as well as the properties of the covering
Cf’% and in particular the properties of the sequence {Ry}:

A—1

T0+R

CHF) | . 15 ds
sl < == 3 | R —;]
oot oo FmOE
_A-l
_ —CR,
gC%L§F)Z R0+ / ds_ i|<CHEF) R;gfagcz-fk(F?.
5 o 3 HE 45
X2 (rgl o (T—s)i X2 (R x
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-
[
T—1
Zo
1 bi%} Rk 3RE
2 2
Fig. 5. The sub-family Ry of cubes of the covering Cy @ )
Then:
CH(F)
3l < =5 (732)
We now estimate the term J,. Using (4.11), (7.27) and (7.28) we obtain J> < K> where:
o T
Atl
K2</dxo / ds|F(s x0)|x 2.
0 eS|
(f_x() 2 )+

)»71
We introduce a covering C)(C 7 such that each point of the set {(xg, 5): xo 1 (Tt —x, 2 )4 < s <t} is contained

in a bounded number of boxes having the form [7, 2R] x [t0, 10 + (R)™ o ], and where the values of the radii R
increase exponentially. (See Fig. 5.)

Then:
T 1 2R T
Atl Atl
Kzgfds/dx(ﬂF(s x0)|x 2 Z/ X0 / ds|F(s x0)|x02 =K1+ K2
0 0 )R _Aazl
2 (t— X0 2 )+

Using Cauchy—Schwartz we then estimate K> > as:

K22 <C Y RNoo(Fit,R) SCH(F) Y R™> < CH(F).
ot ol
On the other hand, we estimate K ; decomposing the interval [0, 1] as

e¢]

[0, 11= | J[Rnt1, Ra), Ry=27",1n=0,1,2,.... (7.33)
n=0

Then, using again Cauchy—Schwartz:

oo & L
Ky1 < Z/ds / dxo | F (s, )||L°°(R" Ry R
n=0 n+l

C’H(F)ZR TR < CHP).

n=0
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Therefore:
Jr < Ky < CH(F).

Actually we can derive a more precise approximation for J, rewriting itas Jo = lr(7)x~ H + J2.r.1 + J2. g Where:

T

o
d Aol 34a
L) = axo / ds F(s,x0)O((t —5)xy% )xo° &

X0
Azl
(t=xy * )+
OOd T
34 X0 Al 3tk
Jror1=—x"2 — / ds F(s, xo)O((r—s)x 2 ) 2,
X0
2x A—=1

: (t=xp %)+

— 2=l izl o d
Jz,szds/[g((r —0xg? 1) —@((r—s)xZ)(x—O> :|F(s,x0)£.
X0 X X0
0 0

The terms Jo. g can be estimated using Proposition 13 (cf. (5.7), (5.8)) arguing as in the estimate of K, exactly as
the previous estimate for J; since r > §. Therefore, we obtain the estimate:

Wl

_3+A dxo _3+A_3
|hrl <Cx™ 27" | ———<Cx™ 270
’ (xO)1+5—r

where the constants C could be very large for small §. On the other hand:

o
k d —1 342 £ sn =
|J2:Rw1|<cxﬁ?/i / ds (T — 5)x, 7 T (x0) " b ox -8

whence:
340 8

| = h(t)x™ o | <Cx~ 7 7°. (7.34)
We now estimate the integrand in J4 in (7.29). In order to apply Lebesgue’s Theorem we need to prove that:

A—1

00 (7_)50 2 )+
ds
K4=/dx0 / 7M_1|F(s x0)|<oo
0 o (t —s)*1

Azl
2

We define a new covering Ci 7 of the set {(xp,s): x0 21, 0<s < (v —x; ° )+} having the same properties as

the covering C,(C % (See Fig. 6.)
Then, using that the integrand is empty for xo < 1 due to the fact that t < T < 1, as well as Cauchy—Schwartz and
the properties of the covering C )(C% we obtain:

it (TO*CR_%)‘F
R'-"7
Ky<CY ————— ][ ||F(Sv‘)||Loo(§,2R)ds
e Ty

R—l—%—g
SCHP)Y —

c® (T—10)" T



618 M. Escobedo, J.J.L. Veldzquez / Ann. I. H. Poincaré — AN 29 (2012) 589-635

Zo
1 Rk Rk 3Rk

Fig. 6. The sub-family Ry of cubes of the covering C}Q

_A=l
(®—CR, * )y

<CHP) Y RO / (v —s) i ds

i 7

<CH(F) Y RS < CH(F)
{Ri}

whence:

K4 < CH(F). (7.35)

In order to obtain (7.18) we need to substract from J4 the leading contribution and to estimate the remainder. Using
(4.10) we obtain:

_izl
2% (T_xo 2 )+
dx r—1
J4=/— / dsg| (t —s5)x, ,—,1)F(s,xo)
X0
0 0
_izl
QTXd (T_X() )+
X il |
= [ &0 / ds@((r—s))co2 )(x)fHTAF(s,xo)+J4’R
X0
0 0
where:
_azl
23)[d (T_xo 2 )+ 340 e
X Al 2 a4l x \T 2
arl<c | =2 / ds ((r —s)x,? ) T A <—) |F (s, x0).
X0 X0

0

The argument yielding (7.35) implies the existence of the integral:

st
[e¢) (f_x() 2 )+
d - :
L= =2 / ds O((t = 5)x)? )(x — ) T F(s, x0).
X0
0
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Therefore:

(r xo

,m A1 _ 34
Jy=L(T)x™ 2 / ds O (r —8)xg 2 )(‘L’ — ) =LF(s,x0) + Jar. (7.36)
0

wl?\g

We then estimate the remainders in (7.36). Notice that the bounds for ® and F yield:

A—1

(t—xy 2 )y

/ dsO((t—s)x%)(r—s) "= lF(s X0)

‘Q.
=
(=)

X0
0
a1
00 (t—xy 2 )t
dx 2 344 5
<cl = f ds (v — ) Txg(t — )1 (x9) "3+
X
5 0 0
3
<Cx_‘s.

We estimate the term J4 g in (7.36) as:

A1

(T —Xp 2 )+

342 dx Al 2e4htl 5 34h 5

|Ja gl SCx~ 72~ f—o / ds ((t —s)x,7 )~ 1 (xo) T+ < cx— S

X0
0 0

2
3

using & > & whence:
| — I(o)x~ 3 | < ox 7, (7.37)
Combining (7.31), (7.32), (7.34), (7.37) we obtain that the function Jg(z, x) defined in (7.18) satisfies
ClliFllxs ,,
_ > 1. (7.38)
|JR(t,x)|§ X%M for x >

On the other hand, in order to estimate Jg = J for x < 1 we argue as follows. We recall that | J1| < Ji,1 + J1 2 with
J1,1, J12 asin (7.24), (7.25). We have for R <1 and x € (2 ,2R):

4

Ji1(z, %) < C/ ds || F (s, -)||Loo(§ 4r) S Moo(Fs R) S CIIF x5, (1)
, 3,
0

We estimate J; » covering the set (s, xo) € (0, T') x (0, 1) by means of union of the rectangles (0, ") x [2,1%, zi,,],

n=0,1,2,.... Let us denote this covering as C© . Then:
1 T 00 T
C 2 C A
11,2(t,x)<m/dx()/(r—s)dsxOZ|F(s,xo)|+m/dxo / (r—s)dsx(ﬂF(s,xo)I
2x 0 1 _ A=l

(t—x > )+
=Ji2,1(t, x) + J12,2(7, X),

1
2"

T
J12,1(7, %) < %/ZZ / 4% /(T—S)dsx ||F(s )”Lw( n+l 37
co 0
on+1
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620
1 1
Sy () o)
co
on+T
_ ClFlx, , 51 1 _ C”F”X%’HS(T)
X — ~X
x3/2 o on(t5h) x3/2
The integral term in J; 2 2(7, x) can be estimated using the covering C)(C 7 exactly in the same way as in the estimate
of Ji 2 for x > 1. It then follows that J; 7 2(7, x) < C||F||X3 25 (DX —3/2 whence:
CllFlx; , s
3.
Ji2(t, %) < 3 . (7.39)
X
1 we use (7.26). Notice that fors <7 < T < 1 andx < 1 we have (t —s)~ = =X~ S«

In order to estimate J3 for x <
H whence (7.26) yields:

(t —s)" Aflx
_A-l
(f_x() 2 )+
|F (s, x0)|

C o
/3] < §/dJCo / ds
x22% o (r—s)A I
_azl _aol
1 (T—xy > )+ o (=xy P g

C F(s, x C F(s, x
<< [ax / ds| ( 0?|+_§/de / ds |F( o)l

xzzx o (t —s5)*1 X2 1 0 (-[_S)A T
1. We just use the covering C)(C 7 to obtain

T
=J31+ J32.
The term J3 > can be estimated in the same manner as J3 for x >
J32 <C|IFllx, L5 (DX —3/2_ Since J31=0for 0 <7 <T <1 we then obtain:
(7.40)

-3/2.

J3 < CllFllx%’M(T)x
In order to estimate J, we use (7.27), (7.28) as well as (4.11)

2
3 T

3 |
_/dx()/ds F(s,x0)(t — $)x{

JHr<Cx 2
0 0

T

1
x_%/dxofds F(S,XO)(T_S)(XO)Z
0

0
and this integral can be estimated exactly as J; 2,1(t, x), using the covering C ©)

Jz\x3/22 / dx()/(r—s)dsxo 1, )||Lw( )
(7.41)

co
n+T

whence:
< 3/2
< C|F ||X%’2+S(T)x
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Finally we notice that (7.29) implies that Jy =0forx < 1,0< 7
obtain:

72,0 < ClIFlxy ™
:

< T < 1. Combining (7.39), (7.40), (7.41) we

for 0 < x < 1. Using then also (7.38) the result follows.
To conclude the proof of Lemma 23 it only remains to show (7.21). To this end we use similar covering arguments.
First we decompose the expression of I (t; F) as:
I(t;F) =L+ L+ I+ 1,

L

=
e e [
1

T

fdxo f dsl..]l, L= / dxo / ds[..].
X0
T% . "o

k; 0
0 T

Using (4.11) as well as the definition of || - || x, 1.5 (T) We obtain, using Cauchy—Schwartz:
3,

\ﬁ

3 /1 A=3 3
1| < Ct? ||F||x%.2+g<r>’§)<2—n) <CTiFllxy , - (7.42)

Using the splitting of the domains of integrations in rectangles as above as well as (4.11) we also obtain the
following estimates:

‘I\)

T

|| < C||F||X%2+S(T)

>

—1

T
dxo (x0)*~ 2+ /(r —s)ds,

T

IBI<SCIFlxy, ) [ dxoleo)™ @+ [ (t —s)ds,

b T—g TT—

T

>
|
|
(S

— 5 Al
L4l S CIFlx, , jr) [ dxoeo) 3 / (t =)+ ds.

S

(=}

T

>

28
Therefore, since the three integrals on the right-hand side are bounded by < Ct*-T || F|| X3 LD

25
|l +155] + 14l < CT=T Flix, (1)
3.

Combining this with (7.42) we obtain (7.21). O

We now derive the asymptotics (7.3) for the solutions of (7.1) in a pointwise sense. More precise estimates for the
regularity of the error terms will be derived later.

Lemma 24. Suppose that ¢ € Z3+A (T) solves (7.1) with F € Y" (T) and 8 < r. Then (1.2) holds with W(z) as in
(7.3) and:

lorlls 32,5 < (”F”X” (T)+||<ﬂ|| o )- (7.43)
3_<T>
2

‘;M
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Proof. Lemma 21 as well as the fact that » > § implies that ||(L fo — Dlelllx, 25 (T) < 00 Lemma 24 then follows
3.
applying Lemma 23 with F replaced by
F=F+ (ﬁfo — L)[¢]. O (7.44)
In order to prove suitable regularity properties of the remainder ¢ in (7.2) we will need to obtain some regularity
properties for the function 7 (-; F), where the functional 7 is as in (7.19) and F as in (7.44). The rationale behind
the argument is that an equation for ¢ contains terms that can be estimated only if some regularity for I (z; F) is

available.
We have:

Lemma 25. Suppose that sup,cjo 11 I F (T, )l 3 3 <oo. Let A=t — 19, with0 < 19 < 71 < T. Then:

248
|1(r1: F) — I (rg; F)| < ()T

with C > 0 depending on SUP,¢[0.7] IE (T, ) 3045 A

Proof. We write, using (7.19):

341

I(t; F) — I(70; F)—/dxo/ds() (tl—s)xl\T)xOTF(s,xo)

Odeo Al Azl 342
+/ /ds (n —5)x,° ) ((ro—s)x 2 )]xo2 F (s, x0)
X
0 0 0
=L+ L.

We have the global estimate:
|F(s,x0)‘ < Cx(;(2+6).
Then:

L] < f /ds |@ (1:1 —s)xAT)|x0 _(2+8)

/(x NE /|@(s)|ds—C(A / o /|@(s)|ds
0 0

A=l
Using the fact that ¥ (y) = [ * 1@ (s)|ds satisfies |¥ (y)] < Cmin{y*~!, 1} (cf. (4.11)) we obtain:

[Li| < C(A)A =3 (7.45)

We now estimate |L;|. We have:

3+

|L2|/ /ds|@ (@ =95 7) = (1 — T P ag D)

e

=/ /dp|O((1+,0)Ax%) o(pr%)|xO A
, (x0) 1+ ;
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<(A)2—1/M/dz|@(y%+z)—@(z)|

148
, ) .

where ¥, (y) = fo dZ |()(y + Z)— (Z)| We have used the change of variables y = (A)%xo, and Z = y%p.
Using (4.11) we obtain ¥, (y) < Cmm{y 5 , 1}. Then:

|La| < C(A)T. (7.46)
Lemma 25 follows combining (7.45), (7.46). O

We can now prove Proposition 20 deriving suitable regularity estimates for the function ¢g.

Proof of Proposition 20. Given the function ¢g defined in (7.2) our goal is to prove (7.4). To this end, given I (z; F)
in (7.3) defined in 0 < 7 < T we extend it to R defining I (z; F) = 1(0; F) for <0 and I(7; F) = I(T; F) for
T > T. We define a function /g(7) for 0 < t < T by means of:

Ig(t; F) = (1(-- F)* xg) (1) (7.47)

with xg(7) = R = X1 (R = ) where the nonnegative function x; € C °(R) is compactly supported in [—1, 1] and it
satisfies fR x1(v)dt = 1. We extend I (t; F) in (7.47) as it can be easily seen, using Lemma 25 with § < r with r as
in (2.1) that:

\Ix(t; F)—I(r; F)| <CR™, t€0,T], , tel0,T] (7.48)

‘dIR(T; F)‘ <R
We define ¢g(t, x) = ¢(t,x) — Ir(z; F)x_#é(x) where £ is as in (2.4). Then, using (7.2) we obtain [¢g (T, x)| <
lor(T, )| + [Tr(t; F) — I(t; F)|E(x)x~"F whence (7.43), (7.48) yield:

R
|Gr(z, x)| < CR™CEHD), xe[E,R], T el0, T,

where @r satisfies:

(@R)r = L1, [Pr]+ F (1, x),

F(t,x)=F(t,x) — w Ik )Ly [T E)] (7.49)

where F is as in (7.44). Using (7.48) as well as the fact that Fey g 245 and the fact that L, [x_HTAE(x)] decreases
72

like x~ @9 as x — o0, including derivatives, it follows that F e Yy 245" We now use the rescaling ¢g(t, x) =
75
Idg

R™CFDdp(p, X), x = RX, 7 = =

+—. The function @r(p, X) then satisfies an equation of the form
R°T
£§0[<1§ r]+ Fr where £§0 is the operator obtained rescaling L 7, as well as Fg that is obtained rescaling F (cf. (5.82)
in the proof of Lemma 5.8 of [9]).
We can now argue as in the proof of Lemma 5.8 in [9], applying Theorem 11 in Section 4 to prove:
I@rl .1 <CIFlyg
Z, 2(T) 5.248
This concludes the proof of Proposition 20. O

8. Fixed point argument

In this section we prove Theorem 1 by means of a fixed point argument. Our strategy is to define a function h
by means of (3.5) with initial data h(O x) = 0. To this end, we define two auxiliary functions hl, h2 that will be
due respectively to the source terms 2 A( —|— A7) Q[ fol) and (—A; fo(x)). The goal of this splitting is to treat in a
separate way the term containing A, since this term will require some careful analysis of the time regularity of the
solutions. The function & will be then defined as A (z, x) = h; (¢, x) + ha(t, x).
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8.1. Construction of the function h

We define & as the solution of the problem:

- - Q[h]
hi —Efo[hl]‘f‘—A(T) + A(0) Ol fol, (3.1
h1(0,x)=0, x>0. (8.2)

The existence, uniqueness and main regularity properties of the function /2 are given in the following result:

.1 _
Proposition 26. Given h € Zg’z (T) with 8 <r, foasin(22)-(2.5),0<T < 1and A € C[0, T] satisfying |A(t) —
~ .1
11 < }T there exists a unique function hy € Z(;f (T) solution of (8.1), (8.2) if T is sufficiently small. Moreover; there
=
exists a function G[-; h, A] € C[0, T'] such that the function r| defined by means of:

iz, x) — Glt: b, AJE@)x ™5 = ri(z, x: b, A) (8.3)

.1
satisfies r1(-,-; h, A) € Z;' 2(T). The function £(-) is as in (2.4). The mappings

Zg;%(T) % C[0, T]— C[0, T],

(h, A) — G[-; h, Al (8.4)
Zg;%(T) x C[0,T] — Z;;%(T),

(h, A) > r1(-, - h, A) (8.5)

are Lipschitz continuous assuming that C[0, T] is endowed with the uniform topology and T is sufficiently small.
Moreover there exist pg, To such that the Lipschitz constant for the maps can be made arbitrarily small if T < Ty and

Al .1 < po.
Z;2(T)

We will prove Proposition 26 with the help of some auxiliary lemmas. Estimates for Q[ fo](x() are obtained in the
next result.

Lemma 27. Let f be as in (2.2)—(2.5). We assume that this function is defined in [0, T] x R™ as a function independent
of t. We then have:

letfolly, oy <C, (8.6)
3,241
|Ufollys ¢y < Cmax{VT, T, 0<bi<r, (8.7)
3,(2+31)
C
’Q[fo](xo)’ < W, xo > 0. (8.8)

Proof. We use the decomposition (2.6)

i = o &)
Jo= fox) +ho(x), folx)=—3
X 2
with £(-) as in (2.4). Then:
CB
|ho(O)| + x| hy(D)| < 57—, x>1. (8.9)
xT+r

Then:
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Ol fol(xo) = Ol fol(x0) + L 7 [hol(x0) + Qlhol(xo),

X

Ol fol(x) = — / @) 2 fox) foly)dy + f Y2 R =3 folx — y) — x% fo(x)] dy. (8.10)
%

0

Using the fact that fo(y) = y’% for large y we obtain:

X

2

0 2
_ d 1 17d 1 17d
ot = [ Lo+ [ - L] %+ [em -1 ——-1]%
x2yz o Lx—y2  xzdy2 4 (x—y)2 xzdy2

X

[N

The first two terms on the right-hand side cancel out. The third one can be estimated, using Taylor’s expansion, as:
2

1 1 c
3 g|vs3 b
o Yilr—=y2  x2 x2
whence:
, C
0Lfol0)| < =, x>1. (8.11)

X2
We can estimate Q[ho](xg) as:

X

2
d
/d—q(y)S(x,y;ho)dy
y
0

CB?
|Qlhol(x)] < +

X 24-2r

where:
q(y: ho) = /s%ho@)ds, SCx, y; ho) =[x — y) T ho(x — y) — x 3 ho(x)].
y

Integrating by parts we obtain:

jdq(h)S( ho)dy| < 2+C32/2 L < CB
— (3 ho)S(x, y; ho)dy| < ——5- — dy|< =
, dy x2+2r J y%+r (_X _y)%+r x2+2}’
Then:
CB?
Q0| € 70 x> 1 (8.12)

Finally we write L 7, [ho] as:

X

Lp[hol = — / S(x, y; fo)q (v ho)dy — x*'? fo(x)gq (% ho)
0

X
- / S,y ho)g' (vi fo)dy — x“zho(xm(z; fo>.
0
An immediate computation shows that the second and fourth terms on the right can be estimated as C Bx~?+"),

The other two terms can be estimated integrating by parts. Then:

CB
IEfO[ho](x)KxW, x> 1. (8.13)
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In the region x < 1 we have trivially boundedness of Q[ fo](xg). Combining this with (8.10)—(8.13) we obtain (8.8).
Estimate (8.6) follows similarly using the differentiability properties assumed for fj.
It only remains to prove (8.7). To this end, notice that due to the definition of || - || Y7 (1) We need to estimate L2
j»(2+5)

norms in time for R < 1. Since we have estimates in L for Q[ fy] we then obtain a dependence on T like V/T. Similar

2
estimates can be obtained, using also the definition of the norms || - || Yg () for all the values of R < T *-T, since
3,241

2
for these values there is not splitting of the domain of integration in the ¢ variable. In the region where R > T~ =T we
use the fact that Q[ fo] is pointwise estimated by R~?*")_ Therefore:

R (Noo(QLfol; 10, R) + Nao (QL fol: f0, R)) < CR* < CT %

for R > T_AZTI. Therefore (8.7) follows. 0O

2() )

As a next step we estimate the quadratic terms in (8.1).

-1
Lemma 28. Given h € Z;’ 2(T) and A as in Proposition 26. Then:

Qlh]
0 C||h||2 g (8.14)
3+x 04 ()

Moreover:

Qlhi]  Qlho]

Ar(- A (- o

1) 2(+) ym i

2
<C 2l .1 Iy —h2ll .1 +lA1— Azllcpo,7)- (8.15)
(1; 2; %) ( 2,1 o.1)

Proof. Estimates (8.14), (8.15) are just a consequence of Propositions 14, 19 as well as the fact that % <AG) <L % O

Proof of Proposition 26. Existence and uniqueness of the function I follow from the results in [9] (cf. 9) combined
with Lemmas 27, 28.
On the other hand, the decay and regularity properties of the function r; defined in (8.3) are a consequence of

Proposition 20. In order to apply this proposition some regularity and decay for the source terms IQ‘([Q and A(7) Q[ fol

are needed. In the case of g{ ) such properties are a consequence of Proposition 14. The corresponding properties for
A(7) Q[ fo] follow from Lemma 27 and the fact that r > 8. The function G[t; h, A] is given by the function WW(7) in

(7.3) with source F given by %{g + A(7) QI fol. Notice that the linearity of the equation satisfied by hy as well as the

Lipschitz property for Q[A] in Proposition 19 implies that the map & — h; is Lipschitz in 4 in the space z7 i (T ).

Moreover, due to Lemma 21, the map & — (L g, — L)(hy) from Z 3 (T)yto Y§ HETOY; is Lipschitz. Therefore the map
in (8.4) has the Lipschitz dependence stated in Proposition 26. The Lipschitz property for the map in (8.5) is again a
consequence of Proposition 19, the linearity of the problem under consideration and Proposition 20.

It only remains to check that the Lipschitz constant of the maps (8.4), (8.5) can be made small if T < Ty and Ty
is small enough. Indeed, given two couples (A, AD), (h® AP) satisfying the hypothesis of the proposition, let
us denote as FD, F@ | fzil), fz?) and WD, WD the corresponding functions F, le, W respectively. The stated
Lipschitz properties yield:

R P TG
3.(245)

(”A(l) A(Z)HC[O T]+Hh(1) h(Z)H ) (8.16)
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Using the inequality (8.16) combined with (7.3) and (7.21) we then obtain that the difference WO WD can be
estimated as:

WO@ W@ < CTH (A0 = A2 g 1y [0 =1

b))
Z; 21
forO0<t<T.
The fact that the Lipschitz constant for the map (8.5) can be made small for small 7 is just a consequence of (8.7)

in Lemma 27 and (8.15) in Lemma 28 if pg in the statement of Proposition 26 is sufficiently small. O
8.2. Construction of the function h»

It would be natural to construct /1, as the solution of the problem:
hoe = Lplho] = Az fo(),  h2(0,) =0, x >0. (8.17)

However, since it is more convenient from the technical point of view to avoid using the derivative A; we will use
an alternative procedure that we describe shortly here. More precisely, we will obtain a solution of the initial value
problem:

Ve =Lpl¥], ¥0,x)= fox), x>0. (8.18)
In order to solve this problem we define the change of variables:

V(T x) = fo(x) + (7, x). (8.19)
The function ¢ then solves:

Ge=Lgle1+ Lplfol, ¢0,x)=0, x>0. (8.20)

This equation can be solved, assuming (2.2)~(2.5) using Theorem 9.
Variation of constants formula then suggests that 45, solution of (8.17) is given by:

T
hy(t, x) = —/W(T —8,x) A (s)ds (8.21)
and assuming that v is differentiable in time we would obtain:

hz(r x)=—fox)A(T) + ¥ (r,x) — / —(t —s5,x)A(s)ds. (8.22)

This representation formula avoids using A;. However, it requires to prove that %—'ﬁ is well defined. We now prove
the properties of v required to give a precise meaning to (8.22).

Proposition 29. Suppose that fo satisfies (2.2)—(2.5). There exists a function ¥ € z7, 3 (T) defined by means of (8.18).
We have:

Y (@) =a(@E@X T +ra(t,x) (823)
where £(-) is the cutoff in (2.4) and where:
a0) =1, Ir2ll ,.1 <C. (8.24)
Zﬁ’Z(T
Moreover:

da 8r2
—| < < C. (8.25)
drt 2(T)
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The proof of this result is based on the following lemma:

Lemma 30. Suppose that fy satisfies (2.2)—(2.5). There exists a constant C such that, forany 0 < T < 1:
12alfollyy o+ 1Lnllnlfol]lys oy <C (8.26)
5,248 5,248

where § > 0 is as in (2.2)—(2.5).

Proof. Using (2.2)—(2.5) we obtain the asymptotics:

Lol fol = Kx— T E(x) + wo r(x) 8.27)

with a remainder wg g(x) that can be estimated, together with its derivatives as x_(B%AH) as x — o0. The main
idea to keep in mind is that the operator Ly, acting on power laws x 7 amounts to multiply then by C,x". The
constant C), vanishes if p = 3"’7}‘ The estimate (8.26) will be Ehi:n proved multiplying by the cutoff () and taking
the operator L 4. Since the leading power law in (8.27) is x~ 2 the action of the operator L 7, will cancel the first

order and only a remainder behaving like x ~*% will be left, with § as in (2.2)~(2.5).
We now describe the details. The operator Lz, is defined in (3.3). We then have, rearranging the integral terms:

1
5 £Alfolx) = QLAol(). (8.28)
Using (2.2), (2.3):
Lz Lfol(x) = Lg, [Lf1:21(0) + 2L 5, [ 3]+ L g [ f3](x). (8.29)

We can estimate £ finlf3], as well as its derivative using (2.2), (2.3), (2.5) as well as the fact that 1 <A <2 and
O<d<r:

C

|£f12 f3 ‘+(1+X) (L:flz f3) +(1+X)2 (ﬁflz[f?s]) < m, x > 0. (830)

The term L 7, [ f3](x) can be estimated similarly:

+(l+x) (£f3 f3])

‘ ['f3 [f3]

(»Cf3[f3])‘ +(1+x)°

< ¢ < ¢
RTENSE SIS

(8.31)

for x > 0. Therefore, it only remains to estimate L 7, , [ f1.2] in (8.29).
We then only need to approximate the term Ly, ,[ f1,2] that might be rewritten as:

L, f1:21(x) = Lg [f11(x) + 2L 1 [ f21(x) + L g, [ f2](x). (8.32)
We then have, using r > §:

C

(Efz[fZ])‘ m x > 0. (833)

We need to obtain precise asymptotics of the terms Lz, [ f11(x), 2L 7, [ f21(x) in order to obtain the leading order
term in (8.27). Let us write fl (x)= x_%. Notice that:

LzlAi1=0. (8.34)

Moreover, we have the following identity:

|ILpl ]+ (1 +X)

d?
(z fz[fz])‘ +(1 +x)2

XM fi(x) / Y2 fiy)dy = x*? fi(x) / YR dy, x>1.
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Using (8.34) we then obtain for x > 2:

2
Lplfil= / YAMED =16 =2 i = y) =22 fi(n)] dy
0
Taylor’s expansion, as well as the fact that § < 252 1mphes

C

= 0 8.35
(1 4+ x) 2+ e (83

LA+ +)|-

(ﬁfl [fl])‘ +( +x)2

(ﬁ i [m)‘

where we use the fact that £, [ f1] and its derivatives are trivially bounded for x bounded as it might be seen using
directly using the definition of £ g, [ f1].
It remains to estimate the term 2L , [ f2](x) in (8.32). Using the definition of L ¢, [ f2](x) we obtain

2L 121(x0) = Hi(f1, [2)(x) +Ha(f1, f2)(x) (8.36)

where:

:
Hi(fi, ) = / PR AM[E = - y) — 2 o] dy
0

+ | Y2 LW =i —y) —xM f1(x0)]dy,

S —

Ha(f1, f)(x) =x*2 f1(x) f Y2 f () dy + xM f(x) / Y2 fi(y) dy.

The term H>(f1, f2)(x) can be explicitly computed for large values of x:

Ho(fi, f)(0) = Kix~3, KjeRandx > 1. (8.37)

In order to approximate 1 (f1, f>)(x) we define a function f5(x) = — +x+ We then have:
x 2

Hi(fi, F)(x) = Kax~ 3, KjeRandx > 0. (8.38)
On the other hand:
Hi(f1, L)) — Hi(fi, f2)(x)
2
= / Y AM[EG) = 1][(x = Y ilx — y) = xM2 fr(x)] dy
0
2
+ / Y2 HM[EG) — 1][(x = M2 fitx = y) = x*2 fi(x)]dy
0

Taylor’s expansion, as well as the fact that § < Z_T)‘, yields:

|Hi(f1. o)) —Hi(f1, fz)(X)|+(1+X) (Hl(flsfz)(x)—Hl(fl )W)

C C
X2 X 2
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The boundedness of L7, [ f2](x) and its derivatives combined with (8.36)—(8.39) yields:
342 | C

2L71/2](x) —Kx™ 7 | < ——5—. x>0. (8.40)
l4+x72 1
Combining (8.29)—(8.35), (8.40) we obtain (8.27) where:
3 k
d C
PIE R Ll P x>0, (8.41)
=0 dx 1+XT+5

Applying L7 [-] on both sides of (8.27), using L g, [x_%] =0, and arguing as in the proof of (8.35) we obtain
Zi:o(l + x)k| %(ﬁ flK x_%f(x)]ﬂ < IJ—JCLQM On the other hand, the action of the operator L 7, over functions
satisfying (8.41) amounts to multiplying by x” for large values of x. Therefore Zi:o(l + x)ﬂ%(ﬁfo[wo, rDI <

HLZM and the result follows. O

Proof of Proposition 29. Due to (8.26) in Lemma 30 L [ fo] is bounded in the space Y§/2,2 +s(T). Therefore (8.20)

1
can be solved using the results in [9]. We obtain in this way a solution ¢ € Zfﬂz (T). Then, ¥ can be obtained by

2
means of (8.19). Therefore expansion (8.23), (8.24) are just a consequence of Proposition 20.
It only remains to obtain estimates for the derivatives on time of the functions a, r,. Formal differentiation of (8.20)

suggests that w = g—i satisfies the following initial value problem:

(W) =Lplwl,  w(0,x) =Ly fol. (8.42)

Actually we can use the results in [9] to construct a solution of (8.42) as follows. We define a function W(z, x) by
means of:

w(t, x) =Ly [fol + W(z, x). (8.43)
Then, w solves (8.42) iff W solves:
We=Lg{[WI+ Ly [Lplfo]l], WO,x)=0. (8.44)

In order to be able to solve the problem (8.42) we use the hypothesis (2.2)—(2.5). Due to Lemma 30 we have that
1L 7 [L 7l f()]]”yg 2+5(T) is bounded. Therefore, we can apply the results in [9] (cf. Theorem 9) to obtain a unique
jv

solution W of (8.44) satisfying | W/|| < C. The function v, solution of (8.18) can be obtained, using also
zZ

Em
(8.19) as: ;
T
1//(r,x):fo(x)—i—ﬁfo[fo]t—i—/W(s,x)ds. (8.45)
0
Using (7.2), (7.4) in Proposition 20 we obtain:
W (z,x) = W(D)x~ T £(x) + Wr(T, x) (8.46)
with
Wm|<C, 0<T<T, |[Wr(r.x)| .1 <C. (8.47)
Z5(T)

P

Then ¥ (z, x) = a(r)x_%é(x) + rp(t, x) where:
a(t)=14+Krt +/W(s) ds, r(t,x)= [fo(x) — x_%é(x)] + wo,r(x)T + / Wr(s,x)ds.
0 0

Using (8.47) we obtain (8.25) and the proposition follows. O
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Remark 31. As indicated in Section 2 the assumption (2.2)—(2.5) is very strong. However, the argument proving

Proposition 29 shows that the main reason for assuming (2.2)—(2.5) is to show that |§1’—‘T’| 912 are bounded in a suitable

> 0T
sense. It would be possible to weaken (2.2), (2.3) to some assumption with the form fo(x) = Dix~ s +O0(x~ =n =)

as x — oo for some § > 0. Making such an assumption the only difference in the argument proving Proposition 29

would be that the term £ [ fo] in (8.42) would behave like O (x~?%) instead of 0(x—#) as x — oo. Unfortu-
nately the well-posedness theory developed in [9] cannot cover such weakest rate of decay at infinity. The expected

. _ 3
asymptotics for w(z, x) as x — oo for small T would have the form w(z, x) ~ %x 2 as x — 00,7 — 0.
17T
This type of asymptotics has been obtained in [6,7] for a different equation, namely the Uehling—Uhlenbeck equation.
Unfortunately since the well-posedness theory of classical solutions for the coagulation equation is more difficult, we
have preferred not to consider such a case, at the price of assuming stronger regularity assumptions near the singular

point. Nevertheless it would be an interesting question to prove analogous regularizing results in time.
With the previous construction we can define the function & as follows.

Definition 32. For any fo, A satisfying the assumptions in Proposition 26 we define /5 by means of

T

ﬁz(r, x)=—fox)A(r) + ¥ (T, x) — / w(t —s,x)A(s)ds (8.48)
0
where v is as in (8.45) and w is as in (8.43).

Remark 33. The rationale behind Definition 32 is the following. Assuming smoothness we obtain, differentiating
(8.48):

. 9 ;
(h2)r = — fo(x) A (T) + %(T,X) — ALl fol — / L lwl(z —s,x)A(s)ds
0

where we have used (8.42). Exchanging the order of the integral in time and L 7, and using again (8.48) we obtain,
after some cancellations };2’1— = —foA(7) + % + Ly, (hy) — L r,[¥]. Using then (8.18) we obtain that hy would
solve (8.17).

The asymptotics of the function hy as x — oo can be derived using the corresponding results for the functions i,
w in Proposition 29.

Lemma 34. For any A € C[0, T] satisfying the assumptions in Proposition 26 we have:

fia(1, x) = K[ANDE@)x ™ T + hig g (1, x; A)

where

Kl[Al(r) = —A(r) +a(r) — / W(r —s)A(s)ds
0

~ .1
with a as in Proposition 29, Z—? =Wandhy r € ZI(—:’ 2(T). Moreover, the map:

.1 ~
Cl0,T]— z;” 2(T):A— hy (8.49)

is Lipschitz if T < Ty, with Ty sufficiently small.

Proof. It is just a consequence of the definition of /2, in (8.48) and Proposition 29. O
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8.3. Setting of the fixed point argument. Solution of an integral equation

1 - -
Given h € Z;’Z(T) and A € C[0, T] as in Proposition 26 we can define a map (h, A) — h with h(t,x) =

le(t, x) + fzz(t, x) where fll is as in Proposition 26 and fzz as in (8.48).
We now select, for any given /4, the function A in order to have:

(x T h(t, x)) = 0. (8.50)

lim
X—>00

1
Due to (8.3) and since ri (-, -; h) € Z;’ 2(T), as well as Lemma 34 it follows that (8.50) holds if A solves:

A(r):g[r;h,A]—i—a(r)—/W(t—s,x)A(s)ds. (8.51)
0

1
We first show that for 4 € Zg’ 2(T) we can find A = A(-; h) such that (8.51) is satisfied.

.1
Lemma 35. There exists Ty > O sufficiently small, such that, for any h € Zg’z(T) satisfying || h|| o) < 0o
2%

Eq. (8.51) has a unique solution for 0 < v < T, assuming that T < Ty. Moreover, this solution defines a mapping:

.1
Z73(T) > CI0,TL: h> A(:h) (8.52)
that is contractive.
Proof. The function W in the integral term (8.51) is uniformly bounded due to Proposition 29. On the other hand, the
function G[t; h, A]is Lipschitz contractive in A if Ty is sufficiently small and ||A] . ! < po due to Proposition 26.
Z2(T)

It then follows from (8.51) that the mapping (8.52) is contractive. [ '

it
Lemma 36. Let us denote as By, the ball of radius pg in Z;’ 2(T), with po as in Proposition 26 and let us consider

the mapping from By, to By, given by h — T[h] where T[h] = h 1+ ﬁz, with h 1 as in Proposition 26 and ﬁz as
in (8.48) and with A = A(-; h) in (8.1) where A(-; h) is chosen as in Lemma 35. Then, there exists Ty such that the
mapping T is contractive in B, if T < To. In such a case there exists a unique fixed point of T in Bp,.
Proof. The definitions of 7, ﬁl, fzz combined with (8.51) imply:

TIhl(x,x) = h(r,x) =ri(t,x; h, ACi h)) + ho g (T, x3 A3 B)). (8.53)

Notice that 7 transforms B, into B, for T < Tp small. Indeed, r; consists of two pieces that are due to the

.1
contributions of the source terms 2! and A(t) Q[ fol in (8.1) respectively. The norm Zg’ 2(T) of the solution due

A7)
to the source term % can be bounded as C pg due to Proposition 14. On the other hand in order to estimate the

contribution due to the term A(7t) Q[ fo] we use (8.7) in Lemma 27. Using then Proposition 20 it follows that the
contribution due to the source A(7) Q[ fo] is smaller than %0 if Ty is small enough.

On tpe other hand, in order to see that the contribution of the term ﬁg, g is small for small times, we use the formulas
for ¥, hy. Using (8.45) and (8.48) we obtain:

T

ﬁz(r,x)zfo(x)[l—A(r)]+Lf0[fo]r+/W(s,x)ds—/w(r—s,x)A(s)ds.
0 0

We substract the terms behaving like & (x)x ™~ ** in all the pieces. We then obtain:
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ho.r(1.2) = [fo) — §)x~F][1 - A@)]
T T
+ wo,r(x)T + / Wgr(s,x)ds — /‘[wo,R(x) + Wgr(t — s,x)]A(s) ds
0 0
=ho, g1 (7, %)+ ho R 2 (T, X) + ho g 3(T, X) + 1o, g 4(T, X)
(cf. (8.27), (8.43), (8.46)). Using (8.27) we obtain ||f12,R,2||Z;;%(T) < CT. We can estimate ﬁz,R,g and fzz,R,4 in the
space Zg;%(T) using the fact that these functions are integrals on time of functions bounded in Z;;%(T). Using

Lemma 12 we obtain ||ﬁ2,R,3 | o) + ||}~12,R,4|| o} < C+/T. It only remains to control the term fzg,R,l. To this
. Z52(T)

end, we use here the integral equation (8.51) that yields:
T
[1 — A(‘L’)] =—G[t;h, Al + (1 — a(r)) + / W(t —s5,x)A(s)ds. (8.54)
0

Due to Proposition 26 and Lemmas 27, 28 we can estimate the contributions to G[t; &, A] that are due to A(7),

Ol fo] and % respectively as C max{~T, T w} and C pg. Therefore this contribution can be estimated by %. The
second term on the right-hand side of (8.54) can be estimated using the differentiability of a (cf. (8.25)). Therefore
this term can be estimated as CT. On the other hand, the boundedness of W (cf. (8.47)) provides a similar estimate
for the last term in (8.54). Therefore, using the regularity of f we obtain ||l~12, R.1 ”Zm 1 o < %. It then follows that

T transforms By, into By, if T is sufficiently small. Combining the contractivity of the map (8.52) with the Lipschitz
properties of the maps (8.5), (8.49) we obtain the contractivity of 7 if T < Tj sufficiently small. O

Proof of Theorem 1. We define f by means of:

F(.2) = A@ fox) + h(z, %) (8.55)
where A (7, x) is the fixed point associated to the operator 7 obtained in Lemma 36. Notice that:

h(t,x) =T ) (t,x)=ri(t,x; h, A) + fzz,R(t, x) = hi(t, x) + ha(z, x)
where fn, fzz are as in Proposition 26 and (8.48) respectively. Using (8.55) and (8.48) we obtain:

f(t,x):ﬁl(t,x)+w(r,x)—/w(r — 5, x)A(s)ds (8.56)
0

where V¥, w are as in (8.45), (8.43). The function f is differentiable with respect to T due to Propositions~26, 29 and
the continuity of A, and differentiability of w (cf. Lemma 35 and (8.43), (8.44) respectively). Therefore f solves:

= _ O]
= 8.57
Je A7) (8.57)
as it can be checked as follows. Differentiating (8.56), using the fact that w solves (8.42) and exchanging the integra-
tion in time with the operator £ f,[-] we obtain:

T

fe=0)r + Y0 — ALy fol — £f0|: / w(t — s,x)A(s)ds:|.

0

Eliminating the integral in the last term by means of (8.56):

fe=[h)e = Lylh1] + Ve — L [W1] = AL ol + L4 L.
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Proposition 29 yields ¥, — L 7, [¥] = 0. Using also (8.1) we obtain:
O[h] x

ﬂ—ZTS+M)be A@L gl fol + L [ f]
where due to (8.55) h = f(r, x) — A(7) fo(x). Then:
fo= gif)] L[ f14 A@) QL fol + A@) QL fol — AL g [ fol + L, [ £

Using that £ [ fol =20[ fol (cf. (8.28)) we obtain that f solves (8.57). Using the time scale ¢ given by means of
(3.4) we deduce that f (¢, x) = f(r, x) solves (1.1), (1.2). Using (8.2), (8.18) and (8.56) we have that f satisfies (1.3).
This concludes the proof of the existence of the sought-for solution.

We prove uniqueness in the class of solutions stated in Theorem 1 as follows. Suppose that we have two solutions
e, fﬂ of (1.1)=(1.3) such that f* = 1%(¢) fo(x) + h*, fP = rB(1t) fo(x) + hP with A% AP € C[0, T], h*, hP €

EARI)

Usmg the change of variables (3.4), for both solutions and denoting as t the new time scale in both cases we

obtain functions £, f# satisfying (8.57) with A = A% = A% and A = AP = AP respectively. We will write, with a
~ ~ -~ o~ it
bit abuse of notation f% = A%(7) fo(x) + h%, f# = AP(1) fo(x) + hP. We define functions A<, hg € 22'2 (T) by

- .1
means of (8.48) with the corresponding functions A%, AP We define also the functions h‘i‘, h’l3 € Zg’ 2(T) by means
of h% = h* — i, WP =nf —if.
Using arguments analogous to the ones used in the derivation of (8.57) we obtain:

- s _ QL]

+ AR orf), A0)=0, k=0a,p.

Using Proposition 26 we obtain that 7%, ﬁ‘f have the asymptotics (8.3). Moreover, for T < T small enough we
have that the operator G is contractive in 2z and A. Therefore:
|61 n, A*] = G[ n”, A7] <OJA% = A po gy + 00 =],

P

”C[O T] %(T)

.1
where 0 < 6 < 1 can be made arbitrarily small for Ty sufficiently small. Moreover, since A%, WP e Z;’z(T), the
functions A%, A# solve the integral equation (8.51). The function A depends in a Lipschitz manner on the function G
with a constant smaller than two if T < Ty. Therefore || A% — AP | cjo.7] < 2011 A% — AP clo.r) +20|h% —hP| !
Z57(T)
P
whence || A% — A/3||C[0 71 < 40]|h% — hﬂ|| . Using then the contractivity of the mapping (k, A) — h; (cf.
272 (T
P
Proposition 26) we then obtain [|R¢ — 2P| 1 < Hin® —hP| 1 . On the other hand, (8.48) yields ||h% —
zﬁ’Z(T) Zﬁ'z(T)
fzzﬂll .1 <COlh* — hB | ,.1 . Therefore, choosing 6 small enough:
Zﬁ’Z(T) zﬁ’Z(T)

1
e —nf| W —i? + |hg — i —||ne — 1P
P B BT L B JOYOE | sty IO

P

whence h* = h#. Then A% = AP and the uniqueness follows. [

P

8.4. Computing the fluxes of particles towards x = 00

Proof of Theorem 4. The system (1.1)—(1.2) can be rewritten as follows (cf. [23]):

a a X o0
SN =), ﬂﬁ&ﬂ=//yM%QmJV@©@W'

0 x—y
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Integrating in [0, R], R > 0, we obtain:
R

d ;
7 /xf(t,X)dx =—Jj(H. R).
0

Using the asymptotics (2.16) we obtain:
. . 2
lim j(f)(t. R) =27 (A(1))
R—o0

whence the result follows. O
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