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Abstract

Our goal here is to present various examples of situations where a “large” investor (i.e. an investor whose “size” challenges the
liquidity or the depth of the market) sees his long-term guesses on some important financial parameters instantaneously confirmed
by the market dynamics as a consequence of his trading strategy, itself based upon his guesses. These examples are worked out
in the context of a model (i.e. a quantitative framework) which attempts to provide a rigorous basis for the qualitative intuitions
of many practitioners. Our results may be viewed as some kind of reverse Black–Scholes paradigm where modifications of option
prices affect today’s real volatility.
© 2006

1. Introduction

Our goal in this paper is to show through a natural quantitative model some bootstrap effects in financial markets
with limited liquidity that we call self- fulfilling prophecies. Indeed, we shall argue that if an investor (typically a large
investor or a collection of investors. . . ), because of some belief (or conviction) about the future behavior of an asset,
decides to act according to it, then he will affect the market and the asset dynamics in such a way that the belief will
have much more chance to become true or at least partially true. . .

Such a phenomenon, as stated previously, is not surprising in a market with a limited liquidity: in such a market, if
a large investor “changes its belief” at a date T0 on some asset price at a future date T1 by, for instance, increasing his
own probability that this asset price will go up at time T1, then he will buy the asset, therefore pushing up the price,
hence increasing indeed the (real) probability of a higher asset price at time T1.

Let us immediately mention that our goal here is to illustrate similar phenomena on more complex market para-
meters such as, e.g., volatility or correlations. We are perfectly aware that the above qualitative argument on prices
may be challenged in many ways specially regarding the potential information analysis and reactions of other market
players. However, we do believe that the above scenario actually takes place in the markets, at least during some
transition periods, provided we concentrate upon a large investor (or a group of investors with similar behaviors. . . )
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when other market players are not aware or informed of these dynamical changes. Let us point out, by the way, that
the preceding phenomenon is both good and bad news for the investor. Indeed, on the one hand, his conviction will
be confirmed by the upward trend of the asset price while, on the other hand, since prices will go up because of his
buying orders, the investor will have to buy, at least for some part of his investment strategies, at higher prices. . .

Although the effects we discuss in this paper share with the preceding simple example the same basic property of
transforming subjective opinions into reality, we wish to show here much more subtle mechanisms. More precisely,
we shall show that changes in subjective parameters of a large investor not only modify the probability distribution
of asset prices at the end of the period (time T1 above), but also change some dynamical parameters such as, e.g.,
volatility on the whole time interval ((T0, T1) above) with the same type of qualitative features as in the above simple
example. For instance, if the belief of a large investor changes at time T0 towards an increased variance of an asset
price at time T1 and if he decides to buy European options (with a maturity greater or equal to T1) with convex
pay-offs, say for example call or “put-call”, in order to profit from the increased variance, then we will show that the
volatility of the asset will increase (over the whole time interval (T0, T1)) thus confirming in particular the growth of
the variance at time T1! In particular, the long-term investor’s guess (concerning time T1) is immediately (at any time
t > T0) confirmed since the volatility immediately increases. This is why we emphasized this observation through the
word “instantaneous” in the title of this article. However, we do not claim that our theory accurately reproducts the
dynamics over the whole period (T0, T1) (and thus, in particular, at time T1). An increased volatility of the asset will
change the global information pattern and thus will induce further effects due to other market players. We believe that
such “secondary reactions” are interesting and important issues but we do not wish to address them here since our
goal here is to focus on the “primary effect” for the sake of clarity. This is the first example we consider and treat in
details in Section 2 below.

We shall present in Sections 3 and 4 two more examples of similar phenomena. In Section 3, we consider an agent
worrying about the increased probability of a crossing of some barrier (or similarly about an increase of the probability
of default. . . ) who invests (substantially) in European options. . . Then, exactly as in the preceding example, the
volatility of the asset will increase thus confirming instantaneously the investor’s fears. . . . And our last example,
developed in Section 4, concerns the correlation between two assets.

Our results may be also viewed as some kind of reverse Black–Scholes paradigm. We show here that, in a market
with limited liquidity (or depth), changes in the real volatility can be driven by changes in the implied volatility (see for
example Section 2).

At this stage, we need to indicate the mathematical model we use in order to exhibit the market effects described
above. It is in fact the quantitative framework we developed in two previous papers [8,9] in order to investigate market
behaviors in a context of limited liquidity, i.e. more precisely a market in which a large investor shifts the market
prices proportionally to his buy/sell volume. With such a simple and natural framework, we have been able, through
a utility maximization approach, to quantify the impact of investing in a European option on the volatility structure
(see [8]). Note that this impact affects both the real and the risk-neutral probabilities on spot dynamics. And we have
also derived, within this framework, a model for the formation of the volatility structure out of “infinitely many small”
impacts caused by “infinitely many small” market players. And we refer to [9] for more details) on that theory which
is somewhat inspired from Mean Field (or self-consistent) theories in Statistical Physics.

Let us also point out that we are not aware of any previous work discussing the phenomena shown in this paper.
However, the quantitative framework we used in [8,9] and that we recall below is somewhat reminiscent of some
phenomenological models proposed by R. Frey and A. Strumme [6], H. Föllmer [5]. At a more technical level, the
examples in the following section are derived from our results in [8], which, in addition to the trading impact on prices
model, rely upon a utility maximization approach to incomplete markets problems similar to the one developed in, e.g.,
G. Constantinides and Th. Zariphopoulou [3], or M. Musiela and Th. Zariphopoulou [11]. And the resulting utility
maximization problems turn out to be novel stochastic control problems that require an extension (see J.-M. Lasry and
P.-L. Lions [7] for more details) of the classical modern stochastic control theory (see, for instance, W.H. Fleming and
M.H. Soner [4], M. Bardi and I. Capuzzo-Dolcetta [1])).

Next, we wish to emphasize that our theoretical framework falls within the general class of incomplete markets
models and thus should not be thought to apply to all situations! Nevertheless, we believe (or, at least, we hope. . . )
that both our framework and the type of effects we derive rigorously from it do capture at least quantitatively some of
the behaviors observed in real markets and thus shed some light on their complex mechanisms.
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Finally, although our arguments are mathematically funded and thus apply to rather general dynamics, we shall
present our three examples in the simplest possible situation of pure Gaussian (i.e. Brownian) dynamics for the asset
price with a linear buy/sell volume impact law i.e.

dSt = σ dWt + b dt + k dαt , (1)

where St denotes the asset price at time t , Wt is a Brownian motion, σ is the (extrinsic) volatility taken to be con-
stant, b is the trend also taken to be constant, k is a positive parameter corresponding to the impact factor, αt is the
position (resp. the aggregate position) of a large investor (resp. of a collection of investors sharing the same beliefs
and behaviors. . . ), and thus dαt corresponds to the instantaneous trading volume due to the investor or to his investing
strategies. In fact, we make a further simplification by assuming that the trend b vanishes, although one can check,
using the results of [8], that the presence of b does not modify the arguments made in the following sections!

2. Example 1: Variance and volatility

As explained in the Introduction, we consider a large investor who believes at time T0 that the variance of the
probability distribution of an asset price will be larger at time T1 > T0 than expected. We have to make a bit more
precise what we mean by an expected variance. Several understandings are possible and the simplest one is the
variance implied by the current (at time T0) market prices of a European option such as, for instance, a call (or a
put, or a “call–put”. . . ). More precisely, since we consider only Gaussian distributions to simplify the presentation as
much as possible, according to Black–Scholes theory [2,10], the market price at time T0 of a European option (with
maturity T1) whose pay-off is given by a scalar function Φ is simply given by

πm(S) =
∫

Φ
(
S + √

VmS′) exp

(
−S′2

2

)
(2π)−1/2 dS′, (2)

where S is the asset price at time T0, Vm corresponds to the variance and in the case of Brownian dynamics i.e. (1)
(with αt ≡ 0), Vm = σ 2(T1 − T0). For a call (resp. a put, a call–put) of strike K , Φ is given by (S − K)+ (resp.
(K − S)+, |S − K|) and πm by

πm = Vm exp

(
− (K − S)2

2Vm

)
(2πVm)−1/2 − (K − S)N

(
K − S√

Vm

)
, (3)

where N(x) = ∫ +∞
x

(e−y2/2/
√

2π )dy.
In particular, if the investor believes that the variance will be Vi > Vm, this leads to a value (from the investor’s

viewpoint) of the option given by

πi(S) =
∫

Φ
(
S + √

ViS
′) exp

(
−S′2

2

)
(2π)−1/2 dS′. (4)

And as is well-known, this value πi is strictly larger than the market price πm as soon as the pay-off is convex (and not
linear. . . !) as is the case for a call (or a put, or a call–put. . . ). Notice indeed that we have (denoting by π the quantity
given by (2) with V in place of Vm)

∂π

∂V
= 1

2
√

V

∫
Φ ′(S + √

V S′)S′ e−(S′)2/2

√
2π

dS′ = 1

2

∫
Φ ′′(S + √

V S′)e−(S′)2/2

√
2π

dS′ > 0.

In other words, the investor believes that the market underprices all European options with convex pay-offs and
maturity T1 (or greater or equal to T1. . . ). This is why it is natural to assume that he will (or may) invest substantially
into such options that is buying substantial amounts of, say calls (or puts, or call-puts) with maturity T � T1. A more
quantitative argument for the decision of investing into options with convex pay-offs is given in Section 3 below. We
do not present it here in order to keep our presentation of this first example as simple as possible.

Next, the seller(s) of these options will have to hedge them (or the investor may wish to replicate the options
himself, and the argument below is unchanged). One could also describe this market situation by saying that there is
a much larger flow of option buyers than of option sellers, and thus the excess demand of options is matched, through
delta hedging, by sales from trading desks. Then, because of the assumption of limited liquidity together with the
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large volume of trading involved, the hedging will have an impact on the dynamics of the asset price. At this stage,
we need to assume that the seller(s) either does not take into account that impact (Case B for “blind”), or incorporates
it into the definition of his trading strategy (Case A for “aware”).

We begin with Case B: in that case, we assume that the hedging strategy is the one deduced from Black–Scholes
theory [2,10] with a single dynamical model (Brownian dynamics) for the evolution of the market price given by

dSt = σ dWt. (5)

Recall that Vm = σ 2(T1 − T0). In other words, the position of the trader is given by

αt = Q
∂π

∂S

(
St + σ(Wt − WT0, t)

)
for t � T0, (6)

with π(S, t) = E[Φ(S + σ(Wt − WT0))] for t � T0, and where Q denotes the (positive) volume of calls (or puts, or
call–puts), bought and sold. We finally assume that the impact on price dynamics is represented by the model (1) and
we recover the following evolution of the asset price

dSt = σ dWt + k dαt = σ dWt + kQ
∂2π

∂S2
σ dWt + kQ

(
∂π

∂t
+ σ 2

2

∂2π

∂S2

)
dt

by Itô’s formula. As is well-known (Black–Scholes equations [2,10]), the last term vanishes and we obtain finally

dSt = σ(1 + kQΓ )dWt (7)

where Γ = ∂2π/∂S2 is the “gamma” of the option.
A variant of the above hedging strategy consists in keeping the (Black–Scholes) delta-hedging strategy but depend-

ing on the current observation of the asset price namely

αt = Q
∂π

∂S
(St , t)

with the same Black–Scholes price π as before or, even better, the Black–Scholes price corresponding to the volatility
we are computing (i.e. σ = σ(S) as determined below). The resulting volatility then becomes σ(1 − kQΓ )−1 and the
rest of our analysis below is easily adapted to this more complex situation.

In particular, at time T1, the variance of the distribution of the asset price whose evolution is given by (7) turns out
to be

�V = σ 2E

T1∫
T0

(1 + kQΓ )2 dt (8)

which is indeed larger than Vm since Γ > 0

�V > σ 2(T1 − T0) = Vm,

thus confirming the investor’s initial belief!
We now investigate Case A: in that case, we assume that the seller is aware of the impact on the asset price dynamics

and will try to define his hedging strategy accordingly. Once more, we assume that the trading impact is represented
by (1) i.e.

dSt = σ dWt + k dαt . (9)

This becomes an incomplete market problem that we solved completely in a previous work [8] through a utility
maximization approach. And we showed in [8] that, for any utility function, the optimal hedging strategy is still given
by (6)! Therefore, everything we said in case B above remains valid and we recover once again formula (8) for the
variance of the distribution of the asset price at time T1.

In conclusion, in both cases, the investor’s belief is indeed (instantaneously) confirmed as a consequence of the
belief of a natural investment caused by it and the impact on the asset price by trading! As we mentioned above, this
is indeed some kind of reverse Black–Scholes paradigm in limited liquidity markets. In our limited liquidity model,
the excess demand on European options yields an increased implied volatility and leads the trading desks to sell and
hedge options on the spot market, modifying thus immediately the real volatility.

Once more, as we emphasized in the Introduction, for the sake of clarity we do not wish to consider here further
market reactions due to other agents adjusting their trading strategies to the new situation created.
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3. Example 2: Barriers, defaults and volatility

We consider here the situation of an agent having invested in a (up and out) barrier option and, in order to simplify
the presentation, we consider an option with maturity T1 whose pay-off vanishes if St exceeds some fixed level B for
some t � T1, and is equal to 1 otherwise. Furthermore, to simplify further notation, we simply take T0 = 0. And we
consider a situation where the investor decides at time T0 = 0 to raise his estimate of the probability that St will cross
the barrier at level B before T1, assuming of course that S = ST0 < B i.e. raises his estimate of P(max0�t�T1 St >

B) = PB .
Once more, we assume that the market prices such options according to the Gaussian (Brownian) dynamics (5) and

thus the Black–Scholes price of the option πm is given by

πm = P
(

max
0�t�T1

St � B
)

= P

(
max

0�t�T1

Wt � B − S

σm

)
(10)

(a quantity that can be made quite explicit. . . ) writing σm in place of σ to emphasize the fact that σm is the volatility
implied by market prices. Note that PB = 1−π . In particular, raising the estimate of PB means in fact that the investor
believes that the volatility of the asset price is raised from σm to a higher value σi (and thus that the market, once more,
misprices the option). At this stage, the investor may simply “get rid” of the options but we assume he will not do so.
First of all, he may not be able to do it, but, in addition, we present now a rather convincing quantitative argument
that shows that the optimal investment strategy in such a situation is to buy a European option with maturity T1 and a
strictly convex pay-off. This is the argument we mentioned in the preceding section and thus also applies to the first
example and whose discussion we postponed. Of course, the simpler argument presented in Section 2 also remains
valid here, indicating the potential profit that can be made through investing in options with convex pay-offs!

We indeed argue that the optimal pay-off or profile of an investment in the asset can be deduced from a utility max-
imization approach. We thus consider an arbitrary investment profile f (ST1) where f is an arbitrary scalar function
and ST1 = S + σiWT1 . The current market price (Black–Scholes price) is given by

p(f ) = E
[
f (S + σmWT1)

]
. (11)

We may then consider the following maximization problem

sup
f

E
[
U

[
f (S + σiWT1) − p(f )

]]
, (12)

where U is a utility function. In order to make the calculations that follow as simple as possible, we choose an
exponential utility function U(z) = 1 − e−λz where λ > 0 represents the absolute risk aversion (we could consider
as well U(z) = zθ where θ ∈ (0,1) or U(z) = log z for z � 0, examples that correspond to a constant relative risk
aversion). The above concave optimization problem is easily shown to have a unique solution determined by the
associated Euler–Lagrange equation namely

U ′(f (x) − p(f )
)

e−x2/(2σ 2
1 T1) = E

[
U

(
f (S + σiWT1) − p(f )

)]
e−x2/(2σ 2

mT1)

and thus we find for some C ∈ R

f (x) = C + a

2λ
x2, a = 1

T1

(
1

σ 2
m

− 1

σ 2
i

)
. (13)

The constant C can be computed explicitly but we do not bother to do so here since its precise value is irrelevant.
Let us also mention that in the case of a power utility function U(z) = zθ with θ ∈ (0,1) (resp. a logarithmic utility
function U(z) = log z), we derive the following optimal pay-off for some (explicit) positive constant c

f (x) = p + c e
x2

2(1−θ)T1
( 1

σ2
m

− 1
σ2
i

)

(resp. f (x) = p + c e
x2
2π

( 1
σ2
m

− 1
σ2
i

)

).
At this stage, we have shown that, in order to maximize the utility, the investor should buy a European option with

maturity T1 and a strictly convex pay-off (actually, a quadratic pay-off in the case of an exponential utility). And we
may then apply the rest of the argument introduced in Section 2 which leads to an increased volatility given by

σ̄ = σ(1 + kΓ ) (14)
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where σ = σm, Γ = ∂2

∂S2 E[f (S + σ(WT1 − Wt))].
In particular, if we take the optimal choice f given by (13), we finally obtain a constant volatility (greater than σ )

σ̄ = σ

(
1 + k

λT1

(
1

σ 2
− 1

σ 2
i

))
. (15)

And, indeed, the probability of St crossing the barrier level B before any time T ∈ (0, T1) increases, confirming thus
instantaneously the original fears of the investor!

We conclude the discussion of this example by observing that, as is well-known, a possible interpretation of the
discussion above (replacing simply an upper barrier by a lower barrier) may be given in terms of default probability
in the context of Merton’s firm model. . . .

4. Correlations

Our last example concerns the correlations between assets. Once more, to simplify the presentation as much as
possible, we only consider the case of two assets whose prices are given by Xt and Yt and postulate Brownian
dynamics

dXt = α dWt, dYt = β dBt , (16)

where α > 0, β > 0; Wt , Bt are two correlated Brownian motions with a constant correlation ρ ∈ [−1,+1]
(E[WtBt ] = ρt for all t � 0. . . ).

At time T0 = 0 (in order to simplify notation), a (large) investor modifies his estimate of the correlation between
Xt and Yt at time T1 (> 0) believing that a correlation parameter ρi different from ρ should be more accurate.

We claim that it is then natural for the investor to buy some European option with maturity T � T1 and with a
pay-off Φ = Φ(x,y) where Φ satisfies⎧⎪⎪⎪⎨

⎪⎪⎪⎩
sign(ρi − ρ) · ∂2Φ

∂x∂y
� 0 for all x, y,

∂2Φ

∂x∂y
	≡ 0.

(17)

A simple argument for such an investment strategy follows the one made in Section 2, once we observe that the
Black–Scholes price of such an option is strictly increasing in ρ provided we have precisely

∂2Φ

∂x∂y
� 0 for all x, y,

∂2Φ

∂x∂y
	≡ 0.

Indeed, the Black–Scholes price π solves the following equation⎧⎨
⎩

∂π

∂t
+ α2

2

∂2π

∂x2
+ αβρ

∂2π

∂x∂y
+ β2 ∂2π

∂y2
= 0,

π |t=T1 = Φ.

Hence, Γc = ∂2π/∂x∂y solves the same equation with a non-trivial nonnegative terminal condition (Γc|t=T1 =
∂2Φ/∂x∂y). And we conclude by the maximum principle observing that ∂π/∂ρ solves⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂

∂t

(
∂π

∂ρ

)
+ α2

2

∂2

∂x2

(
∂π

∂ρ

)
+ αβρ

∂2

∂x∂y

(
∂π

∂ρ

)
+ β2 ∂2

∂y2

(
∂π

∂ρ

)
= −αβΓc,

∂π

∂ρ

∣∣∣∣
t=Tc

= 0

since Γc(x, y, t) > 0 for all x, y, t < T1. A direct (and more elementary) proof of this fact may be obtained by the
examination of π = E[Φ(Xt ,Yt )] but we chose to present the above proof since it remains valid for rather general
models where α = α(x), β = β(y) and ρ = ρ(x, y). . . .

Let us mention by the way that ∂2Φ/∂x∂y ≡ 0 simply means that Φ = Φ1(x)+Φ2(y) in which case the correlation
parameter has no influence on the option price.
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A more elaborate argument in the spirit of the one made in Section 3 leads to a specific pay-off Φ . Indeed, the
utility maximization problem becomes

sup
Φ

Ei

[
U

(
Φ(XT1, YT1) − p(Φ)

)]
,

where Fi denotes the expectation for the probability Pi under which the correlation is given by ρi , and p(Φ) =
E[Φ(XT1, YT1)] where E now corresponds to the correlation equal to ρ. Once more, we choose an exponential utility
function U(z) = 1 − e−λz (λ > 0). And, by a computation somewhat similar to the one made in Section 3, we obtain
the following optimal pay-off

Φ(x,y) = C + 1

2λT1

[
Q(x,y) − Qi(x, y)

]
(18)

for some (irrelevant) constant C, where Q (resp. Qi ) is the quadratic form correspond to the matrix

A = 1

1 − ρ2

( 1
α2 − ρ

αβ

− ρ
αβ

1
β2

) (
resp. Ai = 1

1 − ρ2
i

( 1
α2 −−ρi

αβ

−−ρi

αβ
1
β2

))
.

And we claim that (17) holds. Indeed, we have easily

∂2Φ

∂x∂y
= (2T1λαβ)−1

(
ρi

1 − ρ2
i

− ρ

1 − ρ2

)

and we conclude since the function x/(1 − x2) is obviously strictly increasing on (−1,+1).
For all the reasons detailed above, we assume that the investor buys an option with maturity T1 and with the pay-off

given by QXT1YT1 (for some Q > 0 if ρi > ρ and Q < 0 if ρi < ρ) and we fix ideas by choosing for example ρi > ρ

and thus Q > 0. Let us observe indeed that the difference between this pay-off and Φ(XT1, YT1) where Φ is given
by (18) is the sum of two split quadratic pay-offs in XT1 and YT1 respectively, corresponding to the sum of options
on each individual asset (options that obviously are not interesting from a correlation viewpoint. . . ). Similarly, since

xy = 1
2 (x + y)2 − x2

2 − y2

2 , up to irrelevant options on each individual asset the above option is really an option on the
basket composed by the two assets (and thus can be replicated by basket options. . . ).

Next, we need to define an impact model. Once more, in order to keep the presentation as simple as possible, we
consider a completely separated model

dXt = α dWt + k1 dat , dYt = β dBt + k2 dbt , (19)

where k1, k2 > 0, at corresponds to the position in the asset Xt and bt to the one in the asset Yt .
Then, exactly as we did in Section 2, we are led to the choice

at = ∂π

∂x
(x + αWt, y + βBt , t), bt = ∂π

∂y
(x + αWt, y + βBt , t), (20)

where π = QE[(x + α(WT1 − Wt))(y + β(BT1 − Bt))] = Qxy + Qαβρ(T1 − t). Hence (20) yields

at = Q(y + βBt ), bt = Q(x + αWt).

And (19) then becomes

dXt = α dWt + k1Qβ dBt , dYt = β dBt + k2Qα dWt. (21)

We may now conclude the discussion of this example since the initial correlation between the two assets (Xt , Yt )

was given by ρt (= E[XtYt ]E[X2
t ]−1/2E[Y 2

t ]−1/2), while (21) yields a new correlation given by

t
{
αβρ + k1k2Q

2αβρ + k2Qα2 + k1Qβ2}(α2 + k2
1Q2β2 + 2ρk1Qαβ

)−1/2(
β2 + k2

2Q2α2 + 2ρk2Qαβ
)−1/2

.

And a straightforward but tedious computation (that we leave to the reader. . . ) indeed yields, using the positivity of
α,β,Q,k1, k2, the fact that the new correlation is indeed larger (for all t > 0 i.e. instantaneously) than the original
one.

It is worth pointing out that, in a market with limited liquidity, our argument shows that basket options or options
on an index (in particular, an index of a specific industrial sector) modify the correlations structure (actually, increase
correlations in the case of put or call options).
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