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Abstract

Cylindrically symmetric traveling waves with paraboloid like interfaces are constructed for reaction–diffusion equations with
balanced bistable nonlinearities. It is shown that the interface (a level set) is asymptotically a paraboloid z = c

2(n−1)
|x|2, where

(x, z) ∈ R
n × R (n � 2) is the space variable and c is the speed that the wave travels upwards in the vertical z-direction. In the

two-dimensional case (i.e., n = 1), the interface is asymptotically a hyperbolic cosine curve z = A cosh(μx) for some positive
constants A and μ.
© 2006

Résumé

Nous montrons l’existence d’ondes progressives à symétrie cylindrique pour des équations de réaction–diffusion dont le terme
de réaction est une fonction bistable de moyenne nulle. Les courbes de niveau sont de forme parabolique (ou expontielle en
dimension 2 d’espace). Plus précisément, l’interface (n’importe quelle courbe de niveau) se comporte asymptotiquement comme
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une parabole z = c
2(n−1)

|x|2, où (x, z) ∈ R
n × R (n � 2) est la variable d’espace et c est la vitesse de propagation de l’onde dans

la direction z. En dimension 2 d’espace (i.e. n = 1), l’interface se comporte asymptotiquement comme un cosinus hyperbolique
z = A cosh(μx), où A et μ sont des constantes strictement positives.
© 2006
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1. Introduction

Consider the Allen–Cahn equation [2], for u = u(x, z, t),

ut = uzz + �u − f (u), x ∈ R
n, z ∈ R, t > 0 (1.1)

where t is the time variable, subscripts denote partial derivatives, (x, z) = (x1, . . . , xn, z) is the spatial coordinates with
dimension n + 1 � 2, and ∂zz + � with � = ∑n

i=1 ∂xixi
is the Laplacian. In the original Allen–Cahn dynamics [2],

the forcing term f is the derivative of a double-equal-well, also called balanced bistable, potential; more precisely,

f = F ′ ∈ C2(R), F (±1) = 0 < F(s) ∀s �= ±1, F ′′(±1) > 0. (A)

A typical example is the cubic function f (u) = 4[u3 − u] with potential F = [1 − u2]2.
Here the constants ±1 represent two stable phase states. Phase regions at each time t are represented by the sets

{(x, z) | u(x, z, t) ∼ ±1}. Typically the unit length in (1.1) is relatively tiny in comparing to a sample size, so that
the interfacial region, defined as the complement of the phase regions, is very thin and can be roughly regarded as a
hypersurface called the interface. It is a common practice to use a level set γ (t) = {(x, z) | u(x, z, t) = α} to denote
the interface at time t , where α ∈ (−1,1) is a number chosen at one’s convenience.

We are interested in solutions having interfaces that travel upwards in the vertical z direction with a constant
speed c. Mathematically, this renders to a solution of the form u(x, z, t) = U(x, z − ct), where (c,U), called a
traveling wave with speed c and profile U , satisfies the differential equation and the “boundary values”{

cUz + Uzz + �U = f (U) ∀x ∈ R
n, z ∈ R,

lim
z→±∞U(x, z) = ±1 ∀x ∈ R

n. (1.2)

In this paper, we shall work in the class of cylindrically symmetric solution; that is, U depends only on z and
r = |x|. Without cylindrical symmetry, problem (1.2) for U is extremely hard, and we leave it as a challenging open
problem.

Since we shall look for cylindrically symmetric solutions which are monotone decreasing along the radial (i.e.,
r = |x|) direction, U must have the boundary value lim|x|→∞ U(x, z) = −1 on the “lateral boundary” |x| = ∞.

In the sequel, subscripts denote partial/ordinary derivatives; in particular, Ur denotes the directional derivative in
the radial direction of x.

Theorem 1. Assume (A). For any c > 0, (1.2) admits a cylindrically symmetric solution U with the monotonicity
property:

Uz > 0 on R
n+1 and Ur < 0 on

(
R

n \ {0}) × R. (1.3)

Notice that the function V (x, z) = U(x,−z) is a solution of (1.2) with speed c replaced by −c < 0; it satisfies
V (x,±∞) = ∓1, Vz < 0 on R

n+1 and Vr < 0 on (Rn \ {0}) × R.
When F(1) �= F(−1), the existence of a traveling wave with asymptotic planar interface was proved by Fife [20]

in dimension n + 1 = 2 (see also [32]). Solutions having asymptotic conical level sets with any positive aperture
angle were constructed by Ninomiya and Taniguchi [36,37] in dimension n + 1 = 2 and by Hamel, Monneau, and
Roquejoffre [29] in any dimension n + 1 � 2, where the nonlinearities f is assumed to have exactly one zero in
(−1,1). See also the works of Bonnet and Hamel [8] and Hamel, Monneau, and Roquejoffre [28] for the combustion
case (i.e., f = 0 in [−1, θ ] and f > 0 in (θ,1) for some θ ∈ (−1,1)) in dimension n + 1 = 2, and Hamel and
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Nadirashvili [31] for the mono-stable case (i.e., f > 0 in (−1,1)) and for solutions with general level sets in any
dimension n + 1 � 2. Other related works can be found in [26,27,32,34,35].

Another motivation of our study of (1.2) is the De Giorgi conjecture [16] which asserts that

when c = 0 and f (U) = U3 − U , all z-monotonic solutions of (1.2) are planar

at least in dimension n � 8. Here planar means that all level sets are planes, i.e., there exist a unit vector a ∈ R
n+1 and a

function Φ : R → [−1,1] such that U(x, z) = Φ(a · (x, z)) for all (x, z); in this conjecture, the radial symmetry in x is
not assumed. This conjecture was proven recently by Savin [39] (see also [1,3,5,6,9,24]). More general nonlinearities
of type (A) can also be considered in the spirit of [24,39].

In view of the De Giorgi conjecture, a natural extension is to ask whether planar solutions are the only solutions
to the corresponding parabolic equation

ut = uzz + �u + u − u3, (x, z) ∈ R
n × R, t ∈ R (1.4)

subject to the monotonicity conditions

lim
z→±∞u(x, z, t) = ±1, uz(x, z, t) > 0 ∀(x, z, t) ∈ R

n × R × R. (1.5)

In the literature, a solution to a parabolic equation that is defined for all t ∈ R is called an entire solution. Since
traveling waves are special entire solutions, our Theorem 1 clearly provides an example, when n � 1, of an entire
solution that satisfies the monotonicity conditions (1.5) and that is not planar. Thus, for the elliptic equation (1.2) with
c �= 0 or for the parabolic equation (1.4) additional conditions are needed for an entire monotone solution to be planar.
Our Lemma 2.2 below in Section 2 provides one such condition in that direction.

The monotonicity property (1.3) and the boundary values of U imply that the interface can be represented as a
graph z = H(|x|) or |x| = R(z) where R is the inverse of H . We can describe the asymptotic shape of the interface as
follows.

Theorem 2. Assume (A). Let (c,U) be as in Theorem 1 and Γ be the 0-level set of U .

(i) If n > 1, Γ is asymptotically a paraboloid, i.e.

lim
z→∞, U(x,z)=0

|x|2
2z

= n − 1

c
.

(ii) If n = 1, Γ is asymptotically a hyperbolic cosine curve, i.e., for some A = A(f ) > 0,

lim
z→∞, U(x,z)=0

cosh(2μx)

μz
= A

c
, μ := √

f ′(1).

We remark that if we choose an α-level set {(x, z) | U(x, z) = α} as the interface where α ∈ (−1,1), the limit value
in the case n > 1 is unchanged, whereas in the case n = 1, A is a function of α, given by the formula (6.2).

It is well-known that the interface (level set) of solutions of (1.1) evolves, in an appropriate space and time scale,
according to the motion by mean curvature flow; see [2,11,17,19,33,40] and references therein. For a traveling wave
solution of (1.2), after shrinking the space by a factor of R(ẑ), the interface near R

n ×{ẑ} is asymptotically, as ẑ → ∞,
a circular cylinder S(1)×R where S(r) represents the sphere in R

n with radius r and center origin. As a hypersurface
in R

n+1, S(1) × R has a sum of all principal curvatures equal to n − 1. Thus, when n > 1, the interface moves, in a
certain scaled space-time, with a normal velocity equal to n − 1. Translating into the original space-time, this motion
should represent a constant vertical velocity c motion. In the moving coordinates, this renders to the approximation
equation cR′ ∼ (n − 1)/R, from which the asymptotic behavior z ≈ c|x|2/(2[n − 1]) for the interface follows.

In comparing with the traveling wave solutions for the mean curvature flow z = z(R):

c√
1 + (z′)2

= z′′

[1 + (z′)2]3/2
+ n − 1

R

z′√
1 + (z′)2

, (1.6)

our asymptotics cR′ ∼ (n − 1)/R is exactly c ∼ z′(n − 1)/R for z (and R) large for each given c. This is because
the radial curvature term z′(n − 1)/[R√

1 + (z′)2] becomes dominant in the curvature term for z (and R) large (see
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Section 5 for the rigorous derivation). Since we are mainly concerned with the asymptotics of the interface for z

(and R) large, we do not analyze the solution of (1.6) for “not large” z (and R).
In the two (n = 1) space dimension case, the scaled interface is asymptotically two lines {±1} × R, for which the

curvature effect is negligible. To discover the dynamics, we compare (1.1) with its one space dimensional version
ut = ε2uξξ − f (u) (ε = 1/R(ẑ), ξ = x/R(ẑ)). It has been discovered more than a decade ago by Carr and Pego [10],
Fusco [22], and Fusco and Hale [23] that for well-developed initial profile in a bounded domain with Neumann or
periodic boundary conditions, the speed that two interfaces of distance d approach each other is of order e−2μd/ε . Such
a result was recently extended with simplified proofs by Chen [13] to arbitrary initial data and on the whole real line
(see also Ei [18]). In particular, if initially there are two interfaces of distance d , the velocity that the two interfaces
approach each other is Ae−2μd/ε+o(1), after an initiation which processes an arbitrary initial data into a special wave
profile. The time needed for such an initiation is significantly short in comparing to the exponentially slow motion
of the interface. If this size of normal velocity should produce a vertical velocity c motion, the shape of interface for
solutions of (1.2) should be asymptotically governed by the equation cR′ = Ae−2μR , resulting a hyperbolic cosine
curve, as describes in Theorem 2.

From another point of view, formally, for large z we have cR′′ = −2μAe−2μRR′ = o(1)R′, so the Uzz term
in (1.2) can be expected to be dropped without causing any significant change (for large z). Then (1.2) becomes
cUz + Uxx = f (U). A change of variables s = z/c gives Us + Uxx = f (U), (s, x) ∈ R

2. A recent result of Chen,
Guo, and Ninomiya [14] shows that there is a unique (up to a translation) entire solution having two interfaces
located asymptotically on the hyperbolic cosine curve described in Theorem 2.

Thus, Theorem 2 verifies the following speculation: when n > 1, it is the pure curvature effect that contributes to
the vertical velocity c motion of the interface; when n = 1, the curvature effect is insignificant and it is the interaction
of the two branches of the interface that drives the effective vertical velocity c motion of the combined interface.

Finally, we remark that the uniqueness of the solution given in Theorem 1 is not known. We leave it here as another
challenging open problem.

2. Preparation

2.1. Basic notation

Throughout this paper, the condition (A) and only the condition (A) is assumed. It implies the existence of constants
α ∈ (0,1) and α̂ ∈ (−1,0) satisfying

f ′ = F ′′ > 0 on [−1, α̂] ∪ [α,1], F (α) = F(α̂) < F(s) ∀s ∈ (α̂, α). (2.1)

In the sequel, α and α̂ are thus fixed. Also fixed is the wave speed c > 0.
Note that all wells (roots to f (·) = 0) other than ±1 lie either in (α̂, α) or in (−∞,−1) ∪ (1,∞) where the latter

is not our concern at all. The depth (the value of F ) of any well in (−1,1) is higher than F(α) > 0 = F(±1).
For definiteness, we use notation

x ∈ R
n, z ∈ R, y = (x, z) ∈ R

n+1, r = |x|, ρ = |y| =
√

z2 + |x|2.

For a function ψ of x ∈ R
n, radial symmetry means that ψ depends only on r = |x| so � = ∂rr + n−1

r
∂r . A function

W(y) is called cylindrically symmetric if W(x, z) = W̃ (|x|, z) for some W̃ . For simplicity, we shall not distinguish
W and W̃ ; i.e., we abuse the notation W(x, z) = W(|x|, z). A function W(y) is radially symmetric if W(y) = W̃ (|y|)
for some W̃ . For radially symmetric functions of y = (x, z), ∂zz + � = n

ρ
∂ρ + ∂ρρ .

2.2. Stationary waves

The one-dimensional stationary wave Φ used in this paper is the unique solution to

Φ ′′ = f (Φ) on R, Φ(±∞) = ±1, Φ(0) = α, (2.2)
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where α is as in (2.1). Since [Φ ′2 − 2F(Φ)]′ = 0, one derives that

Φ ′ = √
2F(Φ),

Φ(ξ)∫
α

ds√
2F(s)

= ξ ∀ξ ∈ R.

2.3. Traveling waves

For any ε > 0, Φ is also the profile of a 1-D speed ε traveling wave to

εΦ ′ + Φ ′′ = fε(Φ) on R; fε := f + ε
√

2F . (2.3)

Note that f ε is unbalanced; in particular
∫ s

−1 fε(u)du > 0 for all s ∈ (−1,1]. Furthermore, up to shift, Φ is the only
solution to (2.3) such that Φ(±∞) = ±1 (cf. [4]). The family {fε}ε>0 will be used to construct solutions approximat-
ing that of (1.2).

2.4. Radially symmetric stationary waves

For definiteness, in the sequel ζ ∈ C3(R) is a fixed function satisfying

ζ = 0 on {−1} ∪ [α̂,1], ζ > 0 in (−1, α̂),

1∫
−1

{
ζ(s) − √

2F(s)
}

ds > 0.

For each ε > 0, we define

gε(s) = fε(s) − εζ(s) = f (s) + ε
√

2F(s) − εζ(s) ∀s ∈ [−1,1].
For each sufficiently small positive ε, notice the following:

(i) both wells ±1 of gε are stable, i.e., g′
ε(±1) > 0 = gε(±1);

(ii) all wells of gε in (−1,1) lies in (α̂, α);
(iii) 1 is the only deepest well of gε on [−1,1], i.e.

∫ s

1 gε(u)du > 0 for all s ∈ [−1,1).

Using a standard shooting argument [7,15,38] one can show the following:

Lemma 2.1. For each sufficiently small positive ε, there exists a unique solution wε to

n

ρ
wε

ρ + wε
ρρ − gε(w

ε) = 0 > wε
ρ in (0,∞), wε

ρ(0) = 0, wε(∞) = −1. (2.4)

The solution satisfies wε(0) < 1 = limε↘0 wε(0).

These solutions will be used as subsolutions to establish the boundary values of U obtained from a limit process.

2.5. Planar waves

In studying the asymptotic behavior of the interface, a limiting procedure leads to the following, for Ψ = Ψ (ξ, z),
ξ ∈ R, z ∈ R:

cΨz + Ψzz + Ψξξ = f (Ψ ), |Ψ | � 1, Ψz � 0 � Ψξ on R
2, Ψ (0,0) = α. (2.5)

Lemma 2.2. Assume (A) and c > 0. Then Ψ (ξ, z) = Φ(−ξ), (ξ, z) ∈ R
2, is the only solution to (2.5).

The proof will be given at the end of Section 4. In particular, this result implies that limz→∞ ‖Uz(·, z)‖L∞(Rn) = 0
and that the interface is asymptotically vertical.
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2.6. Energy functionals

The Allen–Cahn equation (1.1) is a gradient flow of an energy functional with the density function u2
z + |∇u|2 +

2F(u). For the traveling wave problem (1.2), there are certain variational structures. For this, we introduce the fol-
lowing notation. For functions ψ,ψ1,ψ2 of r = |x| and a cylindrically symmetric function W on R

n × (−∞,0], we
define

‖ψ‖ := √〈ψ,ψ〉, 〈ψ1,ψ2〉 =
∞∫

0

rn−1ψ1(r)ψ2(r)dr,

X(l) := {
ψ ∈ C

(
(0,∞)

) ∣∣ ψ � α on (0, l], ψ(∞) = −1
} ∀l > 0,

E(ψ) :=
∞∫

0

rn−1
{

1

2
ψ2

r + F(ψ)

}
dr,

J(W) :=
0∫

−∞

{
1

2
‖Wz‖2 + E(W)

}
c ecz dz.

Here the function spaces used are those that makes the norms or functionals finite.
The following is a consequence of the Euler–Lagrange equation for energy minimizers:

Lemma 2.3. Suppose for each z ∈ R, U(·, z+·) on R
n×(−∞,0] is a minimizer of J subject to the boundary condition

W(·,0) = U(·, z) on R
n × {0}. Then cUz + Uzz + �U = f (U) in R

n+1.

Since the interface is asymptotically vertical, from a dynamical point of view, for each large enough z, there is
enough time for u(·, z + ct, t) to merge to an almost optimal shape that consumes energy as small as possible. That
is, for z � 1, the wave profile U(·, z) should be close to a minimizer φ(·, l) of the energy E in the set X(l) where
l = R(z). For this purpose, it is natural to consider the minimization problem

φ ∈ X(l), E(φ) = E(l) := min
ψ∈X(l)

E(ψ). (2.6)

Here we establish a basic property of the minimizers. More details will be given in Section 6.2.

Lemma 2.4. For each l > 0, (2.6) admits at least one solution. Any solution satisfies φr < 0 in (0, l) ∪ (l,∞) and
φ|r=l = α. In addition, for each ψ satisfying ψ(∞) = −1,

E
(
min{ψ,φ}) � E(ψ). (2.7)

Furthermore, liml→∞ φ(·, l) = 1 uniformly in any compact subset of [0,∞).

Proof. Fix l > 0. It is easy to show that there is at least a minimizer of the energy E in X(l). Let φ(·) be an arbitrary
minimizer. Here we only prove (2.7). The rest will be proven in Section 6.2. Given ψ satisfying ψ(∞) = −1, set
w1 = min{φ,ψ} and w2 = max{φ,ψ}. Then, E(w1) + E(w2) = E(φ) + E(ψ). Since w2 ∈ X(l) we see that E(w2) �
E(φ), so that E(w1) � E(ψ). �
3. The existence of cylindrically symmetric traveling waves

We shall prove the existence by two totally different methods.
The first method uses the fact (cf. [28,29,36]) that the existence of a positive speed 1-D traveling wave implies the

existence of cylindrically symmetric traveling waves of any speed. We shall construct a sequence of such waves to
approximate a solution to (1.2).

In the second approach, the solution is approximated by the l → ∞ limit of appropriately vertically lifted energy
J minimizers subject to the boundary values being energy minimizers of E in X(l). The proof is presented in a self-
contained manner and the solution established satisfies an extra energy minimum principle that cannot be derived
from the first method.
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3.1. Approximation by traveling waves of unbalanced potentials

For any ε > 0, fε := f + ε
√

2F gives an unbalanced potential

Fε(u) :=
u∫

−1

fε(s)ds

which attains its deepest well only at u = −1. Chosen in such a manner, the solution Φ to (2.2) is also a traveling
wave of speed ε to εΦ ′ + Φ ′′ = fε(Φ) that connects the equilibrium states −1 and 1. One assumes that ε > 0 is
small enough so that f ′

ε(±1) > 0 and the profile of Φ is then unique. Hence, according to [36] when n + 1 = 2, and
[29] when n + 1 � 3, for any given speed c > 0, there exists a cylindrically symmetric traveling wave Uε = Uε(x, z)

satisfying{
cUε

z + Uε
zz + �Uε = fε

(
Uε

)
on R

n+1,

Uε(0,0) = α, Uε(·,±∞) ≡ ±1, Uε
z > 0 � Uε

r on R
n+1,

(3.1)

where r = |x|. Since |Uε| � 1, by a standard elliptic estimate [25], {Uε}0<ε�1 is a bounded family in C3(Rn+1). Thus
it is a compact family in C2

loc(R
n+1). Along a sequence ε ↘ 0, it converges to a cylindrically symmetric solution U to

cUz + Uzz + �U = f (U), |U | � 1, Uz � 0 � Ur on R
n+1, U(0,0) = α. (3.2)

In the next subsection, we shall identify the boundary values of U at |x| + |z| = ∞.

Remark 1.
1. The cylindrically symmetric solution Uε has many special properties. Beside uniqueness ([30]), one of the

characteristic property is that asymptotically, as z → ∞, the interface (e.g. the α-level set of Uε) is a cone of the form
|x| = z tan θε with θε = arcsin(ε/c); see [29,30,36] for more details. Though we shall not use such a special property,
we have in mind that in the limit, as ε ↘ 0, the open angle of the cone becomes zero, so the interface of U should
look like a paraboloid.

2. One can use any approximation sequence {fε}, as long as limε↘0 fε = f and there are positive speed 1-D

traveling waves connecting steady states ±1. We point out that the unbalanced condition
∫ 1
−1 fε(s)ds > 0 is necessary

but not sufficient for such an existence since other stable wells of fε in [α̂, α] may prevent a connection from −1 to 1;
see, for example, [21]. By choosing fε as in the proof, we avoided unnecessary complications.

3. In [29], the result used in our proof (the existence of Uε) is proven under the additional assumption that fε = 0
has only one root in (−1,1), and that the root is non-degenerate. This technical condition can indeed be removed.
We shall, however, not present a modification of the proof of [29] to make the result in [29] be valid purely under
the assumption (A). Instead, we provide an alternative proof (cf. Section 3.3) which does not rely on any analysis in
[29,36].

3.2. The “boundary values”

To show that solutions to (3.2) has the right boundary value, we shall distinguish the case n = 1 from n > 1. In the
former case no extra condition is needed whereas in the latter case we have to assume that either U is the limit of Uε

or f = 0 has only one root in (−1,1).

Lemma 3.1.

(1) Suppose n = 1. Then any symmetric (about x) solution U to (3.2) satisfies

lim
z→±∞U(x, z) = ±1 ∀x ∈ R

n, lim|x|→∞U(x, z) = −1 ∀z ∈ R. (3.3)

(2) Suppose n > 1. Let U be a limit, along a sequence ε ↘ 0, of the cylindrically symmetric family {Uε} of solutions
to (3.1). Then U has the boundary value (3.3).
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Proof. (i) The limit equations. As Uz � 0 � Ur and |U | � 1, there exist

ϕ±(x) := lim
z→±∞U(x, z) ∀x ∈ R

n, ϕ(z) := lim|x|→∞U(x, z) ∀z ∈ R.

Consequently, limz→±∞(|Uz| + |Uzz|) = 0 and lim|x|→∞ �U = 0, by the boundedness of the C3(Rn+1) norm of U

and the interpolation

‖ · ‖C1(D) � 5‖ · ‖1/2
C2(D)

‖ · ‖1/2
C0(D)

(3.4)

for any cubic domain D with side length � 1. Thus,

�ϕ± − f
(
ϕ±) = 0 � ϕ±

r on R
n, ϕ+(0) � α � ϕ−(0),

cϕz + ϕzz − f (ϕ) = 0 � ϕz on R, ϕ(0) � α.

To complete the proof, we need show that ϕ± ≡ ±1 and ϕ ≡ −1. In the sequel, the proofs for the case n = 1 and
the case n > 1 differ only at the proofs of ϕ+ ≡ 1.

(iia) The z → ∞ limit when n = 1. Integrating ϕ+
x {ϕ+

xx − f (ϕ+)} = 0 over [0,∞) and using ϕ+
x (0) = 0 gives

F(ϕ+(∞)) = F(ϕ+(0)). Since ϕ+(0) � α, the definition of α in (2.1) implies that ϕ+(∞) ∈ [−1, α̂] ∪ [α,1]. As
f (ϕ+(∞)) = 0, we can only have either ϕ+(∞) = −1 or ϕ+(∞) = 1. The former case cannot happen, since F is a
balanced potential with its deepest well at ±1 so that ψ ≡ −1 is the only solution to

ψxx − f (ψ) = 0 � ψx on [0,∞), ψx(0) = 0, ψ(∞) = −1.

Thus ϕ+(∞) = 1. Consequently, since ϕ+
x � 0 on [0,∞), ϕ+ ≡ 1.

(iib) The z → ∞ limit when n > 1. We write ϕ+(x) as ϕ+(r) where r = |x|.
Suppose ϕ+ �≡ 1. Since ϕ+

r (0) = 0, we must have α � ϕ+(0) < 1. Set β := ϕ+(∞). Then f (β) = 0. Integrating

ϕ+
r

[
ϕ+

rr + n − 1

r
ϕ+

r − f
(
ϕ+)]

= 0

over r ∈ [0,∞), and using ϕ+
r (0) = 0, we obtain

F(β) − F
(
ϕ+(0)

) =
∞∫

0

n − 1

r

(
ϕ+

r

)2
> 0.

This implies that β ∈ (α̂, α).
Next, consider the solution wε of (2.4). Since limε↘0 wε(0) = 1, there exists ε0 > 0 such that wε0(0) > ϕ+(0).

Also, since wε0(∞) = −1, there exists R0 > 0 such that wε0(R0) = α̂. Set δ := 1
3 min{wε0(0) − ϕ+(0), β − α̂} > 0.

Now, since limz→∞ U(·, z) = ϕ+(| · |) locally uniformly, there exists z0 ∈ R such that |U(x, z) − ϕ+(|x|)| < δ for
all |x| � R0 and z � z0. Also, by the assumption, along a sequence ε ↘ 0, Uε → U uniformly on any compact subset
of R

n+1. There exists ε ∈ (0, ε0) such that |Uε(x, z) − U(x, z)| � δ for all |z − z0| + |x| � 2R0. Hence∣∣Uε(x, z) − ϕ+(|x|)∣∣ � 2δ if z0 � z � z0 + R0, |x| � R0.

We shall compare Uε((0, z) + ·) with wε0(| · |) on B(R0) := {y ∈ R
n+1 | |y| < R0}. Since limz→±∞ Uε(·, z) = ±1

locally uniformly, we can define z∗ by

z∗ := min
{
z ∈ R | Uε

(
(0, z) + y

)
� wε0

(|y|) ∀y ∈ �B(R0)
}
.

Upon noting that for every z � z0, Uε(0, z) � Uε(0, z0) � ϕ+(0) + 2δ < wε0(0), we see that z∗ > z0.
Let y0 ∈ �B(R0) be a point such that

0 = Uε
(
(0, z∗) + y0

) − wε0
(|y0|

) = min
y∈�B(R0)

{
Uε

(
(0, z∗) + y

) − wε0
(|y|)}

.

Since Uε(x, z) is monotonic in z and in |x|,
wε0

(|y0|
) = Uε

(
(0, z∗) + y0

)
� Uε

(
(0, z0) + y0

)
� ϕ+(|y0|

) − 2δ � β − 2δ > α̂ = wε0(R0).
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It follows that y0 is an interior point of �B(R0). Consequently, (∂zz + �)Uε((0, z∗) + y0) � (∂zz + �)wε0(|y0|). Also,
as wε0(|y0|) > α̂, we have ζ(wε0(|y0|)) = 0. Hence

0 = cUε
z + (∂zz + �)Uε − fε

(
Uε

)∣∣
(0,z∗)+y0

> 0 + (∂zz + �)wε0 − fε0

(
wε0

)∣∣
y0

= (∂zz + �)wε0 − gε0

(
wε0

)∣∣
y0

= 0,

which is impossible. This impossibility shows that ϕ+ ≡ 1.
(iii) The z → −∞ behavior. We show that ϕ− ≡ −1. Write ϕ−(x) as ϕ−(|x|).
Again, set β := ϕ−(∞). First we show that β = −1. Suppose not. Since ϕ−(0) � U(0,0) = α, we must have

f (β) = 0 and β ∈ (α̂, α). Furthermore, since Uz � 0 � ϕ−
r ,

U(x, z) � U(x,−∞) = ϕ−(|x|) � ϕ−(∞) = β ∀(z, x) ∈ R
n+1.

Now let ε0 > 0 be such that wε0(0) > α. Let R0 be such that wε0(R0) = α̂. Since limz→∞ U(·, z) = ϕ+(| · |) ≡ 1
locally uniformly and since wε0(0) > α = U(0,0), the following constant z∗ is well defined:

z∗ := min
{
z ∈ R | wε0

(|y|) � U
(
(0, z) + y

) ∀y ∈ �B(R0)
}
.

Same as before, there is a point y0 ∈ �B(R0) such that U((0, z∗) + ·) − wε0(| · |) obtains a zero minimum on �B(R0)

at y0. Since U � β on R
n+1 and wε0(| · |) = α̂ < β on ∂B(R0), y0 is an interior point of B(R0). Upon noting that

gε0(w
ε0(y0)) = fε0(w

ε0(y0)) > f (wε0(y0)) = f (U((0, z∗)+ y0)), a similar argument as before leads a contradiction.
Thus, ϕ−(∞) = −1.

Finally, integrating

ϕ−
r

[
ϕ−

rr + n − 1

r
ϕ−

r − f (ϕ−)

]
= 0

over |x| = r ∈ [0,∞), we obtain

∞∫
0

n − 1

r
ϕ2

r (r)dr = F
(
ϕ−(∞)

) − F
(
ϕ−(0)

) = F(−1) − F
(
ϕ−(0)

)
.

Since F(−1) − F(ϕ−(0)) � 0, we have ϕ−
r ≡ 0 and so ϕ− ≡ −1.

(iv) The limit as |x| → ∞. Finally, we show that ϕ ≡ −1.
As Ur � 0, ϕ(z) � U(x, z) so that ϕ(−∞) � U(x,−∞) = −1; i.e., ϕ(−∞) = −1.
Since ϕz � 0, it remains to show that ϕ(∞) = −1. Suppose not. Then β := ϕ(∞) > −1. Since F is a balanced

potential and ϕ solves c ϕz +ϕzz = f (ϕ) on R where c > 0, we must have β < 1. Thus β ∈ (α̂, α); i.e., ϕ(∞) ∈ (α̂, α).

Take z0 > 0 such that ϕ(z0) > α̂. Then U > α̂ on R
n × [z0,∞).

Take positive ε0 and R0 such that wε0(0) > α and wε0(R0) = α̂. Since limz→∞ U = 1 locally uniformly, there
exists z∗ > z0 + R0 such that U((0, z∗) + y) > wε0(|y|) for all |y| � R0. Now consider

R∗ = sup
{|x| | U(

(x, z∗) + y
)
� wε0

(|y|) ∀y ∈ �B(R0)
}
.

Since β > ϕ(z∗) = lim|x|→∞ U(x, z∗) and wε0(0) = α > β , R∗ must be finite. Consequently, there exists x0 ∈ R
n

and y0 ∈ �B(R0) such that U((x0, z
∗) + ·) − wε0(| · |) attains its zero minimum on �B(R0) at y0. Since U > α̂ on

R
n × [z∗ − R0,∞) and wε0 = α̂ on ∂B(R0), y0 must be an interior point of B(R0). A similar argument as before

gives a contradiction.
This contradiction shows that ϕ(∞) = −1 so that ϕ ≡ −1. �
Finally, the monotonicity property Uz > 0 on R

n+1 and Ur < 0 for all r = |x| > 0 follows from a strong maximum
principle. This completes proof of Theorem 1.

Remark 2. If in addition to (A) one assumes that f = 0 has only one root in (−1,1), then a similar proof leads to the
following conclusion (see [29]):

any cylindrically symmetric solution to (3.2) satisfies the boundary value (3.3).
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3.3. Approximation by energy minimizers

In this subsection, we shall use another approach to establish the existence of a traveling wave claimed in The-
orem 1. The solution obtained will satisfy a certain energy minimum principle. We use the notation introduced in
Section 2.6.

Theorem 3.1. Assume (A). There exists a cylindrically symmetric solution U to (1.2) and (3.3) that satisfies the
monotonicity property (1.3) and the minimum energy principle

J
(
U(·, z + ·)) = min

W(·,0)=U(·,z) J(W) ∀z ∈ R. (3.5)

This kind of variational principle has already been used in [1] to validate the conjecture of De Giorgi for general
nonlinearities f in dimension n + 1 = 3.

Proof. 1. For each l > 0, let φ(·, l) be a minimizer of the energy E in X(l), claimed in Lemma 2.4. Consider the
minimization problem

min
W(·,0)=φ(·,l) J(W).

It is easy to show that there is a minimizer, which we denote by Ul . Since for each W ,

J(W) = echJ
(
W(·, h + ·)) +

0∫
h

{
1

2
‖Wz‖2 + E(W)

}
cecz dz ∀h < 0,

J
(
Ul(·, h + ·)) = min

W(·,0)=Ul(·,h)
J(W) ∀h < 0.

(3.6)

Also, the Euler–Lagrange equation shows that Ul is a (classical) solution to the boundary value problem

cUl
z + Ul

zz + �Ul = f
(
Ul

)
on R

n × (−∞,0), U l(·,0) = φ(·, l).
Integrating over R

n × {z} the equation for Ul multiplied by Ul
z we obtain

d

dz
E

(
Ul

) = 1

2

d

dz

∥∥Ul
z

∥∥2 + c
∥∥Ul

z

∥∥2
,

d

dz

(
eczE

(
Ul

)) = 1

2

d

dz

(
ecz

∥∥Ul
z

∥∥2) + cecz

(
1

2

∥∥Ul
z

∥∥2 + E
(
Ul

))
.

Integrating the last equation over z ∈ (−∞,0] and using the boundary value we obtain

J
(
Ul

) = E(l) − 1

2

∥∥Ul
z(·,0)

∥∥2
. (3.7)

2. By a rearrangement in the r = |x| direction, one can show that Ul
r � 0. To show Ul

z � 0, the rearrangement
technique does not work, due to the ecz term in the energy functional. Instead, we use the following argument.

First of all, in view of (2.7), we see that J(min{φ,Ul}) � J(Ul), where equal sign holds if and only if
min{φ,Ul} = Ul . As an energy minimizer, we have

Ul = min
{
Ul,φ

}
, i.e., Ul � φ for z � 0.

For ε > 0, set Ul,ε = Ul(·, · − ε), w1 = min{Ul,Ul,ε} and w2 = max{Ul,Ul,ε}. Then J(w1) + J(w2) = J(Ul) +
J(Ul,ε). Since w1(·,0) = Ul,ε(·,0) and w2(·,0) = Ul(·,0), we have J(w1) � J(Ul,ε) and J(w2) � J(Ul). This im-
plies that w1 = Ul,ε and w2 = Ul ; that is, Ul(·, z) � Ul(·, z − ε) for every ε > 0, so that Ul

z � 0.
The same argument also shows that the minimizer Ul is unique, since otherwise if there is a different minimizer Ũ l ,

then both w1 = min{Ul, Ũ l} and w2 = max{Ul, Ũ l} are minimizers. This contradicts (3.7), since, by the Hopf Lemma,
w2z(·,0) > w1z(·,0) � 0.
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A similar argument shows that

l2 > l1 > 0 ⇒ φ(·, l2) > φ(·, l1) ⇒ Ul2 > Ul1 . (3.8)

Note that Ul
z � 0 implies the existence of ϕ− := limz→−∞ Ul(·, z). Since ϕ− � φ(·, l) we see that ϕ−(∞) = −1.

After integrating

ϕ−
r

[
ϕ−

rr + n − 1

r
ϕ−

r − f (ϕ−)

]
= 0

over r ∈ [0,∞) we see that ϕ− ≡ −1. The strong maximum principle then gives Ul
z > 0.

3. Thus, there exists a unique constant H(l) > 0 such that Ul(0,−H(l)) = α. In view of (3.8), we see that H(l) is
monotonic in l > 0. We claim that liml→∞ H(l) = ∞. To do this, we define

Ec(h) = min
ψ(−h)�α�ψ(0)

0∫
−∞

{
1

2
ψ2

z + F(ψ)

}
cecz dz ∀h � 0.

Note that Ec(·) is continuous and positive on [0,∞). Also,

E(l) > J
(
Ul

)
�

l∫
0

rn−1Ec
(
H(l)

)
dr = ln

n
Ec

(
H(l)

)
.

This implies that liml→∞ H(l) = ∞, since E(l) = O(1)ln−1.
Finally, set Ul,H(l)(x, z) = Ul(x, z − H(l)) and consider the family {Ul,H(l)}l>0. This family is bounded in C3,

so along a subsequence, it converges to a limit U which solves the differential equation in (1.2). It is cylindrically
symmetric and Uz � 0 � Ur .

Following an argument similar to that in the previous section, one can show that such limit U has the right boundary
value (3.3). Indeed, the only modification is to replace Uε in (iib) part of the proof by Ul,H(l) and use the fact that

lim
l→∞Ul,H(l)

(·,H(l)
) = lim

l→∞φ
(| · |, l) = 1

uniformly in any compact subset of R
n.

In the next section we shall show the exponential decay of U + 1 as |r| → ∞. It then follows from (3.6) that U

satisfies (3.5). �
4. Qualitative behavior of solutions

In this section, we provide a rough description of the cylindrically symmetric traveling wave solution stated in
Theorem 1. Also, we make a crude estimate about the behavior of the interface; that is, we show that it is paraboloid
like.

4.1. Basic properties of the interface and wave profile

Lemma 4.1. For each m ∈ (−1,1), there exists a unique root Z(m) to U(0, ·) = m and there is a unique function
R(m, ·) defined on [Z(m),∞) such that

Γ (m) := {
(x, z) | U(x, z) = m

} = {
(x, z) | z � Z(m), |x| = R(m,z)

}
.

In addition, Rz(m, z) > 0 for all z > Z(m) and

lim
z→∞R(m,z) = ∞, lim

z→∞Rz(m, z) = 0, (4.1)

lim
z→∞

∥∥U(·, z) − Φ
(
R(α, z) − | · |)∥∥

L∞(Rn)
= 0, (4.2)

lim
z→∞

{∥∥Uz(·, z)
∥∥

L∞(Rn)
+ ∥∥Uzz(·, z)

∥∥
L∞(Rn)

} = 0. (4.3)
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Proof. For convenience, we write U(x, z) as U(r, z) where r = |x|.
The existence of unique Z(m) and R(m, ·) follows from the monotonicity property and the boundary values of U .

As limz→∞ U = 1, we must have limz→∞ R(m,z) = ∞. Applying the Implicit Function Theorem to the equation
U(R,z) = m we see R(m, ·) is smooth in (Z(m),∞) and Rz = −Uz(R, z)/Ur(R, z) > 0 for every z > Z(m).

Next we use a blow-up technique to show the rest assertions of the lemma.
Consider the family {U(R(α, ẑ) + ·, ẑ + ·)}ẑ>Z(α). This family is bounded in C3. For any sequence {zi} satisfying

limi→∞ zi = ∞, there exists a subsequence converging locally uniformly to a function Ψ = Ψ (ξ, z), defined for all
(ξ, z) ∈ R

2 and satisfying (2.5), which, by Lemma 2.2, is given by Ψ (ξ, z) = Φ(−ξ). The uniqueness of the limit
Ψ implies that the whole sequence {U(R(α, ẑ) + ·, ẑ + ·)}ẑ>Z(α) approaches, in C2

loc(R
2), to Φ(−ξ) as ẑ → ∞.

Consequently, locally uniformly as ẑ → ∞,∣∣Uz

(
R(α, ẑ) + ·, ẑ + ·)∣∣ + ∣∣Uzz

(
R(α, ẑ) + ·, ẑ + ·)∣∣ → 0,

Ur

(
R(α, ẑ) + ·, ẑ) → −Φ ′(−·).

Denote by Φ−1 the inverse function of Φ . This in particular implies that for each m ∈ (−1,1),

lim
z→∞

{
R(m,z) − R(α, z)

} = Φ−1(m), lim
z→∞Rz(m, z) = − lim

z→∞Uz/Ur = 0.

To prove (4.2) and (4.3), set, for every ε > 0, Rε = Φ−1(1 − ε) − Φ−1(−1 + ε). Since limẑ→∞ U(R(α, ẑ) +
ξ, ẑ + z) = Φ(−ξ) uniformly on [−Rε,Rε]2, there exists zε > 0 such that for every ẑ > zε , |U(R(α, ẑ) + ξ, ẑ + z) −
Φ(−ξ)| � ε for all |z| + |ξ | � 2Rε .

Fix any |z| � Rε . When ξ ∈ [0,R(α, ẑ) − Rε], using the monotonicity of U in r = |x|, we have

1 � U(ξ, ẑ + z) � U
(
R(α, ẑ) − Rε, ẑ + z

)
� Φ(Rε) − ε > 1 − 2ε.

Thus, |U(ξ, ẑ+z)−Φ(R(α, ẑ)−ξ)| � 2ε for all ξ ∈ [0,R(α, z)−Rε]. Similarly, |U(ξ, ẑ+z)−Φ(R(α, ẑ)−ξ)| � 2ε

for all ξ � R(α, z) + Rε . Thus

max
ξ�0, |z|�Rε

∣∣U(ξ, ẑ + z) − Φ
(
R(α, ẑ) − ξ

)∣∣ � 2ε ∀ẑ � zε, ξ � 0.

Sending ε ↘ 0 we see that

lim
ẑ→∞

max
|z|�M

∥∥U(·, ẑ + z) − Φ
(
R(α, ẑ) − | · |)∥∥

L∞(Rn)
= 0 ∀M � 0.

In particular this implies (4.2). Finally, (4.3) follows from an interpolation of the form (3.4). This completes the proof
of the lemma. �
4.2. The exponential decay

For convenience, we denote the phase domains Ω±, interfacial region Γ , and interface γ by

Ω+ := {
(z, x) | U(x, z) > α

}
, Ω− := {(z, x) | U(x, z) < α̂

}
,

Γ :=
⋃

m∈[α̂,α]
Γ (m), γ := Γ (α).

Lemma 4.2. There exist positive constants M and ν > 0 such that∣∣U2 − 1
∣∣ + |Ur | + |Uz| + |Uzz| � Me−ν|r−R(α,z)| ∀z � 0, x ∈ R

n,

|U + 1| + |Ur | + |Uz| + |Uzz| � Me−ν(|z|+|x|) ∀z < 0, x ∈ R
n.

Proof. For y ∈ R
n+1, let d(y) be the distance from y to Γ . Let

k = min
s∈[−1,α̂]∪[α,1]

f ′(s).

Note that k > 0 and by the definition of Ω±, f ′(U) � k for all y ∈ Ω±. Consequently, the positive function 1 ∓ U

satisfies



X. Chen et al. / Ann. I. H. Poincaré – AN 24 (2007) 369–393 381
{−c ∂z − ∂zz − � + k}(1 ∓ U) = (1 ± U)

{
k − f (±1) − f (U)

±1 − U

}
� 0 in Ω±.

Let λ1, λ2 be positive constants uniquely determined by

λ1 = λ2 + c/2, λ2
1 + nλ2

2 = c2/4 + k.

Consider the function

B(x, z) = 4e−λ2L−cz/2 cosh(λ1z)

n∏
i=1

cosh(λ2xi),

where x = (x1, . . . , xn). Set D := {(x1, . . . , xn, z) | |z| < L, |xi | < L}. Note that

min
∂D

B � 1, −cBz − Bzz − �B + kB = 0 in D.

For each y ∈ Ω±, set L = d(y)/
√

n + 1 and compare 1 ∓ U(y + ·) with B(·) on D. Since y + D ⊂ Ω± and
0 < 1 ∓ U(y + ·) < 1 on ∂D, the comparison gives 1 ∓ U(y + ·) � B(·) on D. In particular, 1 ∓ U(y) � B(0,0) �
4e−d(y)λ2/

√
n+1. Using interpolation, one also obtains the estimates for Uz,Uzz,Ur and Urr .

Finally, since limz→∞ Rz(m, z) = 0, we have d(y) > 1
2 (|z| + |r|) − M1 for all z < 0, x ∈ R

n and some constant
M1 > 0. Also, since limz→∞{R(α̂, z)−R(α, z)} = Φ−1(α)−Φ−1(α̂), we see that for y = (x, z) where z > 0, d(y) >
1
2 |r − R(α, z)| − M2 for some positive constant M2 that is independent of y. The assertion of the lemma thus follows
with ν = λ2/[2

√
n + 1]. �

4.3. Energy identities

Once we know the exponential decay of |U2 − 1| and Ur in the phase domains, we see immediately that for each
z ∈ R, the energy E(U(z, ·)) is bounded. In addition, both Uz(z, ·) and Uzz(z, ·) are L1(Rn) ∩ L∞(Rn) functions.

Lemma 4.3. There holds the energy identities, for every z ∈ R,

d

dz
E

(
U(z, ·)) = 1

2

d

dz
‖Uz‖2 + c‖Uz‖2,

E
(
U(z, ·)) = 1

2

∥∥Uz(z, ·)
∥∥2 + c

z∫
−∞

‖Uz‖2 dz

= 1

2

∥∥Uz(z, ·)
∥∥2 + c

z∫
−∞

ec(ẑ−z)

{
1

2
‖Uz‖2 + E(U)

}
dẑ.

Also, denote by |x| = R(z) the interface defined by U(z, x) = α for z > 0,

lim
z→∞

E(U(z, ·))
R(z)n−1

= σ :=
1∫

−1

√
2F(s)ds, lim

z→∞
‖Uz‖2

R(z)n−1
= 0.

In particular, in the case when n = 1,

lim
z→∞

∞∫
0

{
1

2
U2

x + F(U)

}
dx = σ,

∫
R

∞∫
0

U2
z dx dz = σ

c
.

Proof. Multiplying the equation for U by Uz and integrating over {z} × R
n we obtain the first energy identity. From

the exponential decay, we know that limz→−∞{E(U)+‖Uz‖2} = 0. Hence, integrating the first identity over (−∞, z],
we obtain the second identity in the lemma.

Note that the energy identity can also be written as
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d

dz

(
eczE(U)

) = 1

2

d

dz

(
ecz‖Uz‖2) + cecz

(
1

2
‖Uz‖2 + E(U)

)
.

After integrating the identity over (−∞, z] we obtain the third identity in the lemma.
From the limit behavior, as z → ∞, of

U(z, r) ∼ Φ
(
R(α, z) − |x|)

and the uniform exponential decay of |U2 − 1| + |Uz| with respect to |r −R(α, z)| we can derive the remaining limits
stated in the lemma. �
4.4. Proof of Lemma 2.2

Lemma 2.2 is analogous to the De Giorgi conjecture. The proof, however, is much simpler than that in [24,39]
since the monotonicity is assumed in both ξ and z directions. We divide the proof into several steps.

1. First, we show that limξ→−∞ Ψ (ξ, z) = 1 for all z ∈ R. Set ϕ−(z) := limξ→−∞ Ψ (ξ, z). By (2.5), ϕ−(0) � α

and ϕ′− � 0 on R. Thus ϕ−(∞) = 1 and cϕ′− + ϕ′′− − f (ϕ−) = 0 on R with c > 0, which implies ϕ− ≡ 1.
Let ε0 and R0 be positive constants such that wε0(0) > α and wε0(R0) < α̂. Also, define

Γ := {
(ξ, z) | α̂ � Ψ (ξ, z) � α

}
, κ := inf

{−Ψξ (ξ, z) | (ξ, z) ∈ Γ
}
.

2. We claim that κ > 0. Suppose otherwise. Then there exists a sequence {(ξi, zi)} in Γ such that
limi→∞ Ψξ(ξi, zi) = 0. As the family {Ψ (ξi + ·, zi + ·)} is compact, along a subsequence it converges to a func-
tion W satisfying

cWz + Wzz + Wξξ = f (W) on R
2, Wξ � 0 � Wz,

Wξ (0,0) = 0, W(0,0) ∈ [α̂, α].
The maximum principle implies that Wξ ≡ 0. Thus W(ξ, z) = ϕ(z) for some ϕ satisfying

cϕ′ + ϕ′′ = f (ϕ).

Since c > 0 and ϕ(0) = W(0,0) ∈ [α̂, α], we must have ϕ(∞) ∈ (α̂, α). Let z0 be a number such that ϕ(z0 −2R0) > α̂.
Then ϕ(z) > α̂ for all z � z0 − 2R0. Consequently, for some large enough i,

α̂ � Ψ (ξi + ξ, zi + z0 + z) � ϕ(∞) ∀|ξ | � 2R0, |z| � 2R0.

Now consider the constant

ξ∗ = sup
{
ξ̂ | wε0(·) � Ψ

(
(ξi + ξ̂ , zi + z0) + ·) on �B(R0)

}
.

Since Ψξ � 0 and limξ→−∞ Ψ = 1, we see that ξ∗ is well-defined. In addition, since wε0(0) > α > ϕ(∞), we have
ξ∗ < 0.

Let y0 ∈ �B(R0) be the point such that Ψ ((ξi + ξ∗, zi + z0) + ·) − wε0(·) obtains its zero minimum on �B(R0) at y0.
Noting that

Ψ
(
(ξi + ξ∗, zi + z0) + y

)
� Ψ ((ξi, zi + z0) + y) � α̂

for y ∈ �B(R0), we see that y0 is an interior point of B(R0) which will lead us a contradiction. Thus, we must have
κ > 0. The strong maximum principle then yields Ψξ < 0 in R

2.
3. Set K = ‖Ψz‖L∞ . Let R(·) and R̂(·) be solutions to Ψ (R, ·) = α and Ψ (R̂, ·) = α̂, respectively. Then

0 < R̂(z) − R(z) � α − α̂

κ
, 0 � Rz = −Ψz

Ψξ

� K

κ
∀z ∈ R.

Notice that R(z) and R̂(z) are then automatically well-defined for all z ∈ R. If we denote by d(y) the distance from
y = (ξ, z) to Γ , then

d(y) � κ√
2 2

(∣∣ξ − R(z)
∣∣ − α − α̂

)
.

K + κ κ
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Following the same proof as before, we see that there exist two positive constants M and ν such that∣∣Ψ 2 − 1
∣∣ + |Ψz| + |Ψξ | + |Ψzz| + |Ψξξ | � Me−ν|ξ−R(z)| ∀(ξ, z) ∈ R

2.

This implies that

sup
z∈R

(
E2

(
Ψ (·, z)) + ∥∥Ψz(·, z)

∥∥2)
< ∞,

where

E2
(
φ(·)) =

∫
R

[
φ′(ξ)2/2 + F

(
φ(ξ)

)]
dξ and ‖φ‖2 =

∫
R

φ2(ξ)dξ.

4. Now we have the energy identity

c
∥∥Ψz(·, z)

∥∥2 = d

dz

(
E2

(
Ψ (·, z)) − 1

2

∥∥Ψz(·, z)
∥∥2)

.

Integrating this identity over z ∈ (−h,h) and sending h → ∞ we see that
∫

R
‖Ψz(·, z)‖2 dz < ∞. This implies that

limz→±∞ ‖Ψz(·, z)‖2 = 0, which further implies that limz→±∞ ‖Ψzz(·, z)‖2 = 0. Using the differential equation for
W and the positivity of κ , we can show

lim
z→±∞Ψ

(
R(z) + ·, z) = Φ(·).

The exponential decay estimate further implies that limz→±∞ E2(Ψ (·, z)) = σ . After integrating the energy identity
we derive that

∫
R

‖Ψz(·, z)‖2 dz = 0, i.e., Ψ is independent of z. This completes the proof of Lemma 2.2. �
5. The case n > 1: the curvature dominant effect

In this section we study the asymptotic expansion, in the leading order, of the interface function R(z) := R(α, z)

when n > 1. In the higher space dimensional case, the interfacial dynamics of (1.1) is governed by the mean curvature
flow. Since limz→∞ Rz = 0, we see that asymptotically, the shape of the interface is locally a circular cylinder of
radius R(z), which has a total curvature (n − 1)/R. That a normal velocity (n − 1)/R produces a vertical velocity c

gives us an approximation equation cR′ = (n − 1)/R. Here we shall make such a formal calculation rigorous.

Lemma 5.1. Assume that n > 1. Then the interface is asymptotically a paraboloid. More precisely, let r = R(z) be
the function for the interface, i.e. U(x, z) = α at |x| = R(z). Then

lim|z|→∞
R2(z)

z
= 2(n − 1)

c
.

Proof. Here we use the inverse of a blow-up technique.
To study the behavior of the interface, it is convenient to consider the interface from the time evolution point of

view. Namely, consider u(x, z, t) = U(x, z − ct) as a solution of (1.1).
For each fixed ẑ � 1, set

ε = 1

R(ẑ)
, (ξ, η, τ ) = (

εx, ε(z − ẑ), ε2t
)
, wε(ξ, η, τ ) = U(x, z − ct).

Then denote by �̃ the Laplacian with respect to the (ξ, η) variables, we have

wε
τ = �̃wε − 1

ε2
f (wε) in R

n+1 × (0,∞). (5.1)

For convenience, we quote the following theorem from Chen [11]; see also, De Montonni and Schatzman [17],
Evans, Soner and Souganidis [19], and Ilmanen [33].
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Proposition 5.1. [11] Assume (A). Let {wε} be solutions to (5.1) with initial values satisfying |wε(·,0)| � 1 on R
n+1

and limε→0 wε(·,0) = 1 (or −1) uniformly on Ω0 where Ω0 is a bounded domain with smooth boundary γ 0. Let
{γ τ }0�τ�τ∗ be the classical solution of the mean curvature flow and Ωτ , 0 � τ � τ ∗, be the interior of γ τ . Then

lim
ε→0

wε(ξ, η, τ ) = 1 (or − 1) uniformly in any compact subset of
⋃

0�τ�τ∗

(
Ωτ × {τ }).

We now investigate the initial value of wε . For this note that by the mean value theorem and the relation between
(z, ẑ, x) and (ε, ξ, η),

|x| − R(z) = R(ẑ)|ξ | − R(z) = R(ẑ)
{|ξ | − 1

} + {
R(ẑ) − R(z)

}
= R(ẑ)

[|ξ | − 1
] + Rz(z̃)[ẑ − z] = R(ẑ)

{|ξ | − 1 − Rz(z̃)η
}
,

where z̃ ∈ [min{ẑ, z},max{ẑ, z}] ⊂ [ẑ − |η|R(ẑ), ẑ + |η|R(ẑ)}.
Since limz→∞ Rz(z) = 0 and limz→∞ R(z) = ∞, it follows from the exponential estimate in Lemma 4.2 that

lim
ε↘0

wε(ξ, η,0) =
{

1 if |ξ | < 1,

−1 if |ξ | > 1,

where the limit is uniform in any compact subset away from the initial interface positioned at S(1) × R where S(r) is
the unit sphere in R

n of radius r .
First of all, the solution to the motion by mean curvature starting from initial surface S(1) × R is given by

{S(R∗(τ )) × R}0�τ<1/[2(n−1)] where

d

dτ
R∗(τ ) = − n − 1

R∗(τ )
, R∗(0) = 1; or R∗(τ ) = √

1 − 2(n − 1)τ .

Although the initial interface S(1) × R is unbounded and Proposition 5.1 does not apply directly, we can approxi-
mate the interior of S(1) × R by the ellipsoids

γ 0(δ) := {
(ξ, η) | |ξ |2 + δ2η2 = 1 − δ2}

, 0 < δ � 1.

Denote by R1(δ, τ ) the radius of the circle being the intersection of the {η = 0} plane with the mean curvature
flow starting from γ 0(δ). Then limε→0 wε(ξ,0, τ ) = 1 uniformly in |ξ | � R1(δ, τ ) − δ. One can also show that
limδ→0 R1(δ, τ ) = √

1 − 2(n − 1)τ . Hence, sending δ → 0, we obtain limε→0 wε(ξ,0, τ ) = 1 uniformly in any com-
pact subset of {(ξ, τ ) | |ξ | < √

1 − 2(n − 1)τ ,0 � τ < 1/[2(n − 1)]}.
Similarly, from outside, the mean curvature flow starting from S(1) × R can be approximated by that starting from

the torus{
(ξ, η) | (|ξ | − 1 − K

)2 + η2 = K2}
, K � 1.

First sending ε → 0 and then K → ∞ we conclude that limε→0 wε(ξ,0, τ ) = −1 uniformly in any compact subset of
{(ξ, τ ) | |ξ | > √

1 − 2(n − 1)τ ,0 � τ < 1/[2(n − 1)]}.
Thus, for sufficiently small positive ε, the α-level set of wε(·,0, τ ) is near the set |ξ | = √

1 − 2(n − 1)τ ; that is,

wε(ξ,0, τ ) = α when |ξ | = √
1 − 2(n − 1)τ + o(1),

where limε→0 o(1) = 0 uniformly in τ in any compact interval of τ ∈ [0,1/[2(n − 1)]). Since

wε(ξ,0, τ ) = U(x, ẑ − ct) and t = τ/ε2 = R(ẑ)2τ,

this implies, translating to the original variables, that

R(ẑ − cτR(ẑ)2)

R(ẑ)
= √

1 − 2(n − 1)τ + o(1),

lim
ẑ→∞

o(1) = 0 uniform in τ ∈
[

0,
1

2[n − 1] − δ

]
∀δ > 0.

(5.2)

We shall now derive an asymptotic expansion of R from such an asymptotic relation.
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Let z0 � 1 be a constant large enough so that the quantity o(1) in (5.2) is � 1/8 for all ẑ � z0 and τ ∈ [0,3/8[n −
1]]. Let {zi}∞i=1 be a sequence defined by

R(zi) = 2i/2R(z0), i = 0,1,2, . . . .

Note that R(zi+1)/R(zi) = √
2. Then for ẑ = zi+1, let τi be such that 1 − 2(n − 1)τi + o(1) = 1/2 in (5.2). Then

τi = 1/[4(n − 1)] + o(1) and

zi = zi+1 − cτiR(zi+1)
2 = zi+1 − c + o(1)

4(n − 1)
2i+1R2(z0).

This implies that

zi+1 − z0 = R2(z0)

i∑
j=1

c + o(1)

4(n − 1)
2j+1 = (2i+1 − 1)[c + o(1)]R2(z0)

2(n − 1)
= (1 − 2−i−1)[c + o(1)]R2(zi+1)

2(n − 1)
.

A simple interpolation then provides the basic estimate z = O(1)R2(z) and R2(z) = O(1)z where O(1) is uniformly
bounded as z → ∞.

Now pick any small positive δ and set τ = 1/(2[n − 1] + δ]). We see from the square of (5.2) that

R2
(

z − c

2[n − 1] + δ
R(z)2

)
=

{
δ

2[n − 1] + δ
+ o(1)

}
R2(z).

Since z and R2(z) are comparable, this implies that

z − c

2(n − 1) − δ
R(z)2 = O(1)R2

(
z − c

2(n − 1) − δ
R(z)2

)
= O(1)

{
δ

2[n − 1] + δ
+ o(1)

}
R2(z) = O(1)

[
δ + o(1)

]
z.

This implies that

R2(z)

z
= 2(n − 1)

c + O(δ) + o(1)
.

First sending z → ∞ and then sending δ ↘ 0 we obtain the required limit. �
6. The center manifold approach

Apparently the method in the previous section does not yield information accurate enough to describe the interface
position when n = 1. Since the position of the interface is believed (and proven) to be governed by the interaction of
the two interfaces at x = ±R(z), we take a classical geometric approach.

The center manifold approach was first used by Carr and Pego [10], Fusco [22], and Fusco and Hale [23] for the
1-D Allen–Cahn equation ut = ε2uξξ − f (u) for ξ ∈ [0,1] with Neumann or periodic boundary conditions. Recently,
the method was revisited by Chen and Ei in [13,18] for the same problem for ξ ∈ R. Here we follow the setting and
idea in [13], but since (1.2) is of elliptic nature, there is a key difference in the method developed here.

6.1. An overview

The manifold will be defined in the space of radially symmetric functions in R
n. With notation as in Section 2.6,

the quasi-invariant or center manifold M is defined in this paper by

M :=
{
φ(·, l) ∈ X(l)

∣∣∣ l � l0, E
(
φ(·, l)) = min

ψ∈X(l)
E(ψ)

}
.

Here l0 � 0 is a number chosen so that M is a 1-dimensional manifold.
For each z > 0, we project U(z) := U(·, z) onto M and write

U(z) = φ
(
�(z)

) + V, dist
(
U(z),φ

(
�(z)

)) = dist
(
U(z),M

)
, V ⊥ TφM,

where TφM is the one-dimensional tangent space of M at φ = φ(�) = φ(·, �(z)).
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It is easy to imagine that �(z) ≈ R(z) is the location of the interface, that V is negligible for large z, and, regarding
z as time, that the dynamics of U(z) is accurately described by the dynamics of �(z). We shall rigorously derive that
�(·) satisfies the 1-d ODE equation[

c + o(1)
]d�

dz
+ d2�

dz2
= 1 + o(1)

‖φl(�)‖2

dE(�)

d�
, lim

z→∞ o(1) = 0.

Note that ‖φl‖dl is the length element of M, E(l) = E(φ(·, l)) is the energy function defined on M, and dE
‖φl‖dl

is the
gradient of E. Since �′′ � �′ for large z, we can ignore the �′′ term. Also regarding z → φ = φ(�(z)) as the motion of
a particle on M, we can express the limit of the projected dynamics in terms of the motion of the particle on M. In the
language of differential geometry, it can be written as

cφ̇ = gradE, or c
dE

dt
= |gradE|2.

Here φ̇ is a tangent vector with magnitude

|φ̇| := lim
h→0

‖φ(h + z) − φ(z)‖
h

measuring the distance that the particle moves per unit time, gradE is a co-vector with magnitude

|gradE| = lim sup
φ̃∈M,φ̃→φ

|E(φ̃) − E(φ)|
‖φ − φ̃‖

measuring the maximum change of E per unit length, and c in the first equation is a tensor mapping a vector to a
co-vector. Here the first equation is for velocity whereas the second one is for speed. When M is one-dimensional,
velocity and speed are the same, so both equations are equivalent but the second equation has clear advantages over
the first.

6.2. The quasi-invariant (center) manifold

The Euler–Lagrange equation for a minimizer φ of E in X(l) leads to the problem⎧⎨⎩φrr + n − 1

r
φr − f (φ) = 0 > φr in (0, l) ∪ (l,∞),

φr(0) = 0, φ(l) = α, φ(∞) = −1, φ(0) < 1.

(6.1)

Since the solution is not smooth across r = l, we introduce notation for jumps and averages:

�ψ� := ln−1{
ψ(l+) − ψ(l−)

}
, ψ̄ := 1

2

[
ψ(l+) + ψ(l−)

]
.

Note that for functions ψ1(·, l),ψ2(·, l) ∈ C1([0, l]) ∪ C1([l,∞)),

d

dl
〈ψ1,ψ2〉 = 〈ψ1l ,ψ2〉 + 〈ψ1,ψ2l〉 − �ψ1ψ2�, �ψ1ψ2�= ψ̄1�ψ2�+ �ψ1�ψ̄2.

Lemma 6.1. For every l > 0, let φ = φ(·, l) be a minimizer of the energy E in X(l), claimed in Lemma 2.4. Then φ

satisfies (6.1). When n = 1 or {n > 1, l � 1}, φ(·, l) is unique and

φl = ∂φ

∂l
> 0, El := dE(l)

dl
= 1

2

[[
φ2

r

]]
> 0.

Furthermore, there exist M > 0 and l0 � 0 such that for all l > l0,

‖φl‖L1(Rn) + ‖φll‖L1(Rn) + ‖φll‖2 + ‖φlll‖2 � M‖φl‖2,∣∣�φl�
∣∣ + ∣∣�φll�

∣∣ + ∣∣�φrl�
∣∣ + |Ell | + |Elll | � MEl,
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lim
l→∞

‖φl‖2

ln−1
= lim

l→∞
‖φr‖2

ln−1
= σ =

1∫
−1

√
2F(s)ds,

lim
l→∞ sup

r>0

∣∣φ(r, l) − Φ(l − r)
∣∣ = 0.

Proof. 1. First we show that φ(l) = α. For this, let l∗ = max{r > 0 | φ � α on [0, r]}. Then l∗ � l, since φ ∈ X(l).
Define φ̃(r) = φ(r + l∗ − l) for r � 0. Then φ̃ ∈ X(l) and φ̃(l) = α. It is easy to verify that E(φ) � E(φ̃) where the
equal sign holds only if l∗ = l. Since φ is an energy minimizer, we must have l∗ = l. Hence, φ(l) = α.

Similarly, for any r1 � r2 � l satisfying φ(r1) = φ(r2), we can compare the energy of φ with that of φ̂ defined by
φ̂ = φ on [0, r1] and φ̂(r) = φ(r + r2 − r1) to conclude that r1 = r2. Thus, φ is strictly decreasing on [l,∞).

In (l,∞) there is no restriction of ψ in X(l) so φ must be smooth and satisfy the differential equation

φrr + (n − 1)
φr

r
= f (φ)

with the boundary conditions φ(l) = α and φ(∞) = −1. As φr � 0 on [l,∞), the strong maximum principle implies
that φr < 0 on [l,∞). Solving the ode problem, one can show that φ on [l,∞) is also unique if n = 1 or {n > 1 and
l � 1}.

To find the behavior of φ on [0, l], let F̃ be a C1 function such that F̃ = F on [α,∞) and F̃ ′(s) = f (α) for all
s < α. Then restricted on the interval [0, l], φ is a minimizer, without constraint, of the energy with F replaced by F̃ .
It then follows that on [0, l], φ is the unique solution to the differential equation φrr + (n − 1)φr/r = f (φ) on (0, l)

with the boundary condition φr(0) = 0 and φ(l) = α. It satisfies α < φ < 1 on [0, l) and φr < 0 on (0, l].
In conclusion, φ is a solution to (6.1); there is l0 � 0 such that φ is unique when l � l0.
2. Next, we calculate the variation of E(l) with respect to l. For this we denote a (generic) minimizer by

φ(·, l). Suppose l2 > l1 > 0. Set w1 = min{φ(·, l1),φ(·, l2)} and w2 = max{φ(·, l1),φ(·, l2)}. Then E(w1)+ E(w2) =
E(φ(·, l1)) + E(φ(·, l2)). Since wi ∈ X(li), we see that wi is a minimizer of E in X(li) and hence is smooth. This
implies that w1 = φ1 < φ2 = w2. Consequently, except a possible set of measure zero, φ is smooth in l.

For each ε > 0, X(l + ε) ⊂ X(l) so that E(l + ε) > E(l) for all l > 0. Also, using

φ̃(r, l) =
{

φ(0, l), if 0 < r < ε,

φ(r − ε, l), if r � ε,

as a test function in estimating E(l + ε) one can derive that E(l + ε) < E(l) + O(ε); we omit the details. Hence, E(·)
is a strictly decreasing and Lipschitz continuous function.

Now consider l � l0, so φ(·, l) is unique. Differentiating φ(l, l) = α we see that φl +φr |r=l± = 0. Now identifying
∇φ with φr and �φ with φrr + (n − 1)φr/r , we calculate

El = 〈∇φ,∇φl〉 + 〈
f (φ),φl

〉 − 1

2

�
φ2

r

�

= 〈−�φ + f (φ),φl

〉 − �φrφl�− 1

2

�
φ2

r

� = 1

2

�
φ2

r

� = 1

2

�
φ2

l

�
.

The proof of the last assertion is omitted. We only point out the following:

φ(r, l) = Φ(l − r) + o(1), φr(l±, l) = −√
2F(α) + o(1),

�φl�= −�φr�= O(1)El, �φrr�= 1 − n

l
�φr�,

‖φl‖2 = E(l) + o(1) = [
σ + o(1)

]
ln−1, El = [

(n − 1)σ + o(1)
]
ln−2,

where o(1) → 0 as l → ∞.

6.3. The center manifold when n = 1

As an illustration and also for later applications, we provide detailed calculation for n = 1. The equation for φ is

φxx = f (φ) on (0, l) ∪ (l,∞), φx(0, l) = 0, φ(l, l) = α, φ(∞, l) = −1.
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It follows, denoting b = φ(0, l), that

φ2
x =

{
2F(φ) − 2F(b) when x ∈ [0, l),

2F(φ) when x ∈ (l,∞),

l =
b∫

α

ds√
2F(s) − 2F(b)

= 1√
f ′(1)

ln
2(1 − α)

1 − b
+ A1 + o(1),

where liml→∞ o(1) = 0 and

A1 = lim
b↗1

b∫
α

{
1√

2F(s) − 2F(b)
−

√
1/f ′(1)√

(1 − s)2 − (1 − b)2

}
ds

=
1∫

α

{
1√

2F(s)
− 1√

f ′(1) (1 − s)

}
ds.

Consequently, we have the identities and the expansion

El(l) = 1

2

�
φ2

r

� = F(b) = σAe−2μl+o(1),

where liml→∞ o(1) = 0, μ = √
f ′(1) and

A = 2(1 − α)2f ′(1)∫ 1
−1

√
2F(s)ds

exp

( 1∫
α

{√
2f ′(1)√
F(s)

− 2

1 − s

}
ds

)
. (6.2)

6.4. Projection onto the center manifold

Lemma 6.2.

(i) For every large enough z, there is a unique �(z) � l0 such that∥∥φ
(·, �(z)) − U(z, ·)∥∥ = min

l�l0

∥∥φ(·, l) − U(·, z)∥∥ = dist
(
U(·, z),M

)
.

(ii) For some z0 � 0, the function z → �(z) is smooth on [z0,∞) and

�z > 0 on [z0,∞), lim
z→∞�z(z) = 0, lim

z→∞
[
R(z) − �(z)

] = 0.

(iii) Write V (·, z) = U(·, z) − φ(·, �(z)). Then V (·, z) ⊥ φl(·, �(z)), i.e. 〈φl,V 〉 = 0, and

lim
z→∞‖V,Vr ,Vz‖L∞(Rn) = 0, lim

z→∞
‖V (·, z)‖

‖φl(·, �(z))‖ = 0.

Proof. Set G(l, z) := 1
2‖U(·, z) − φ(·, l)‖2. Then

Gl = 〈φ − U,φl〉, Glz = −〈Uz,φl〉 < 0.

Also, using ‖φll‖L1(Rn) + |�φl�| = O(1)‖φl‖2 we have

Gll = ‖φl‖2 + 〈φ − U,φll〉 − �
(φ − U)φl

�

= ‖φl‖2{
1 + O(1)‖U − φ‖L∞(Rn)

}
> 0

as long as ‖U − φ‖L∞(Rn) < δ0 for some fixed δ0 > 0. From the limit behavior of U in Lemma 4.1, one sees that the
minimum of G(·, z) is achieved at �(z) ∼ R(z). The implicit function theorem gives the uniqueness of �(z) and the
monotonicity �z = −Glz/Gll > 0.
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The last assertion (iii) follows from Lemma 4.1 and the previous assertions. �
Since �φ = f (φ) in R

n \ S(�), the decomposition U = φ + V gives, for z � z0 and x ∈ R
n \ S(�(z)),

(c�z + �zz)φl + �2
zφll + cVz + Vzz = f (φ + V ) − f (φ) − �V. (6.3)

6.5. Projection of the dynamics onto the manifold

In the sequel, φ = φ(·, �(z)). Taking the inner product of φl with (6.3) we obtain

(c�z + �zz)‖φl‖2 = J0 + J1 − J2 − �2
z〈φll, φl〉, (6.4)

where

J0 = 〈
f ′(φ)V − �V φl

〉
,

J1 = 〈
f (φ + V ) − f (φ) − f ′(φ)V φl

〉
,

J2 = c〈Vz,φl〉 + 〈Vzz,φl〉.
1. The main term. The major contribution on the right-hand side of (6.4) is J0. Using integration by parts and the

equation �φl − f ′(φ)φl = 0 in R
n \ S(�) we obtain

J0 := 〈
f ′(φ)V − �V φl

〉 = �Vrφl − V φlr�.
Since V and φ are continuous, �Vr�= −�φr�= �φl�. Hence,

�Vrφl�= �Vr�φ̄l + �Vr�φl�= �φl�φ̄l + �Vr�φl�= 1

2

�
φ2

l

�+ �Vr�φl�.

Using El = 1
2�φ2

l �, we have

J0 = El + �Vr�φl�− �V �φlr�= El

{
1 + O(�Vr) + O(�V )

}
,

since the sizes of �φl� and �φlr� are majorized by El = 1
2�φ2

r �= φ̄r�φr�. Here we note that the estimates in Lemmas 4.1
and 4.2 and the definition of � imply that

lim
z→∞

{|�V | + |�Vr |
} = 0.

2. The remainder term. We use the mean value theorem to conclude that

J2 := 〈
f (φ + V ) − f (φ) − f ′(φ)V φh

〉 = 〈
O(1)V 2φl

〉
.

3. The z-derivative terms. Differentiating 〈φl,V 〉 = 0 with respect to z gives

〈Vz,φl〉 = �z

{�V φl�− 〈V,φll〉
}
,

〈Vzz,φl〉 = �zz

{�V φl�− 〈V,φll〉
} + �z

{�Vzφl�+ �V φl�z − 2〈Vz,φll〉 − �z〈V,φlll〉
}
.

4. Conclusion. Combining all these calculations, the equation can be written as

(c�z + �zz)
(‖φl‖2 + �V φl�− 〈V,φll〉

) = El

{
1 + o(1)

} + 〈
O

(
V 2)

φl

〉 + o(1)�z‖φl‖2. (6.5)

It can also be written as[
c + o(1)

]
�z + �zz = [1 + o(1)]El + 〈O(1)V 2, φl〉

‖φl‖2
. (6.6)

This equation is “self-contained” if we can show that 〈O(1)V 2, φl〉 = o(1)El . For this we need to study the dynam-
ics of ‖V ‖2.
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6.6. The dynamics in the direction normal to the manifold

Taking the inner product of (6.3) with V and using 〈V,φl〉 = 0 we obtain

〈V, cVz + Vzz〉 = 〈
V,f ′(φ)V − �V

〉 + 〈
V,f ′(φ + V ) − f (φ) − f ′(φ)V

〉 − �2
z〈φll,V 〉.

Note that

〈V,Vz〉 = 1

2

d

dz
‖V ‖2,

〈V,Vzz〉 = d

dz
〈V,Vz〉 − ‖Vz‖2 + �z�V Vz�

= 1

2

d2

dz2
‖V ‖2 − ‖Vz‖2 + �2

z
�V �φr�.

Here we have used the fact that 0 = �V �z = �Vr�z + Vz� so �Vz�= −�z�Vr� = �z�φr�. Also〈
f ′(φ)V − �V,V

〉 = ‖∇V ‖2 + 〈
f ′(φ)V,V

〉 + �V Vr�
= ‖Vr‖2 + 〈

f ′(φ)V,V
〉 − �V �φr�.

Hence, we have the equation

1

2

(
c

d

dz
+ d2

dz2

)
‖V ‖2 = ‖Vz‖2 + ‖Vr‖2 + 〈

f ′(φ)V,V
〉 − �V �φr�− �2

z

{〈V,φll〉 + �V �φr�}.
Lemma 6.3. There exist positive constants l0 and ν such that for any l � l0 and φ = φ(·, l),

‖ψr‖2 + 〈
f ′(φ)ψ,ψ

〉
� 2ν

{‖ψr‖2 + ‖ψ‖2 + |ψ̄ |2} ∀ψ ⊥ φl.

See, for example, Chen [12].
It then follows that(

c
d

dz
+ d2

dz2

)
‖V ‖2 � ν

{‖Vz‖2 + ‖Vr‖2 + ‖V ‖2 + |�V |2} + O
(
E2

l

) + O
(
�4
z

)‖φl‖2.

6.7. Rigorous derivation of the projected dynamics when n = 1

For simplicity, we focus only on the one-dimensional case. The key is to bound ‖V ‖ by El .
1. For some large constant M > 1, all z � z0 � 1:(

c
d

dz
+ d2

dz2

)
‖V ‖2 � ν‖V ‖2 − M

(
�4
z + E2

l

)
.

Since |Ell | + |Elll | = O(1)El , taking larger z0 if necessary, we have for all z � z0,(
c

d

dz
+ d2

dz2

)
E2

l

(
�(z)

) = 2(c�z + �zz)ElEll + 2
(
ElElll + E2

ll

)
�2
z

� M
{
El + �2

z + ‖V ‖2}
E2

l � ν

4
E2

l

by using (6.5). Thus, for B(z) := ‖V ‖2 − 4M
ν

E2
l − ec(z0−z)/4,(

c
d

dz
+ d2

dz2

)
B(z) � ν‖V ‖2 − M

(
2E2

l + �4
z

) + 3c2

16
ec(z0−z)/4. (6.7)

2. Set B∗ = supz�z0
B(z). We want to show that B∗ � 0 when z0 � 1.

Suppose B∗ > 0. Since B(z0) < 0 and limz→∞ B(z) = 0, there exists z1 > z0 such that

B∗ = B(z1) = ∥∥V (z1)
∥∥2 − 4M

E2
l

(
�(z1)

) − ec(z1−z0)/4.

ν
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Note that Bz(z1) = 0 and Bzz(z1) � 0. It follows from (6.7) that,

‖V (z1)‖2 � M

ν

(
2E2

l

(
�(z1)

) + �4
z(z1)

) − 3c2

16ν
ec(z0−z1)/4. (6.8)

Substituting this estimate into the definition of B∗ gives

0 < B∗ � M

ν
�4
z(z1) − 2M

ν
E2

l

(
�(z1)

) −
(

1 + 3c2

16ν

)
ec(z0−z1)

or

2M

ν
E2

l

(
�(z1)

)
� M

ν
�4
z(z1) −

(
1 + 3c2

16ν

)
ec(z0−z1),

El

(
�(z1)

)
<

√
2�2

z(z1).

Consequently, by (6.8),∥∥V (z1)
∥∥2 � 2M

ν
�4
z(z1) −

(
1 + 6c2

16ν

)
ec(z0−z1)/4.

3. Also, taking larger z0 if necessary, we have for any z � z0,

d

dz

(
ecz/4El

) = ecz/4El

{
c

4
+ Ell�z

El

}
> 0,

d

dz

(
ecz/4E2

l

) = ecz/4E2
l

{
c

4
+ 2Ell�z

El

}
> 0.

Namely, both ecz/4El and ecz/4E2
l are increasing functions on [z0,∞).

Since �z > 0, we have from (6.6) that, for all z � z0, c
2�z + �zz � M(El + ‖V ‖2). Using the definition of B∗, this

implies that

d

dz

(
ec(z−z1)/2�z

)
� Mec(z−z1)/2(

El + ‖V ‖2)
� Mec(z−z1)/2

{
El + 4M

ν
E2

l + ec(z0−z)/4 + B∗
}
.

Integrating this inequality over [z0, z1] and using the monotonicity of ec(z−z1)/4El and Ec(z−z1)/4E2
l we obtain

�z(z1) − �z(z0)e
c(z0−z1)/2 � 4M

c

{
El

(
�(z1)

) + 4M

ν
El

(
�(z1)

)2 + ec(z0−z1)/4 + B∗
}

= 4M

c

(
El

(
�(z1)

) + ∥∥V (z1)
∥∥2)

� 4M

c

(√
2�2

z(z1) + 2M

ν
�4
z(z1) −

(
1 + 6c2

16ν

)
ec(z0−z1)/4

)
.

This implies that(
1 − 4

√
2M

c
�z(z1) − 8M2

νc
�3
z(z1)

)
�z(z1) � ec(z0−z1)/4

(
�z(z0) − 4M

ν

(
1 + 6c2

16ν

))
.

This is impossible for large z0 since �z > 0 and limz→∞ �z = 0. Hence B∗ = 0 and we have

Lemma 6.4. Assume n = 1. There exists z0 � 1 such that ‖V ‖2 � 4M
ν

E2
l + e−c(z−z0)/4 ∀z � z0.

Now the equation for �z can be written as[
c + o(1)

]
�z + �zz = 1 + o(1)

2
El + O(1)e−cz/4.
‖φl‖
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Since El = σAe−2μ�+o(1) and �(z) ∼ R(z) = o(1)z, we see that e−cz/4 = o(1)El for large z. Hence, using ‖φl‖2 =
σ + o(1), we can summarize our result as follows.

Lemma 6.5. Assume n = 1. Then the function � defined Lemma 6.2 satisfies[
c + o(1)

]
�z + �zz = [

A + o(1)
]
e−2μ� ∀z � 1, (6.9)

where A is as in (6.2) and limz→∞ o(1) = 0.

Define Q(z) = e2μ�. The equation can be written as

2μA + o(1) = [
c + o(1)

]
Q′ + Q′′ − 2μ�zQ

′ = [
c + o(1)

]
Q′ + Q′′.

With an integrating factor this gives

Q′(z) = Q′(z0)e
− ∫ z

z0

[
c+o(1)

]
dẑ +

z∫
z0

e− ∫ z
ẑ [c+o(1)]dz̃

[
2μA + o(1)

]
dẑ = 2μA/c + o(1).

Thus, Q(z) = 2μAz/c + o(z). From the definition Q = e2μ� we then conclude that

2μ� = ln

{ [2μA + o(1)]z
c

}
or

cosh(2μ�)

μz
= A

c
+ o(1).

Here we used the fact that cosh s = [ 1
2 + o(1)]e|s| for |s| � 1.

We remark that we can obtain iteratively more and more accurately expansions.

6.8. The case n > 1

Assume n > 1. Following a similar analysis as above, we can derive the projected dynamics[
c + o(1)

]
�z + �zz = [1 + o(1)]E�

‖φl‖2
= n − 1 + o(1)

�
.

This gives

z = c + o(1)

2(n − 1)
�2, lim

z→∞ o(1) = 0.
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