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Abstract

We consider the Reynolds Averaged Navier–Stokes (RANS) model of order one (u,p, k) set in R
3 which couples the Stokes

Problem to the equation for the turbulent kinetic energy by k-dependent eddy viscosities in both equations and a quadratic term
in the k-equation. We study the case where the velocity and the pressure satisfy periodic boundary conditions while the turbulent
kinetic energy is defined on a cell with Dirichlet boundary conditions. The corresponding eddy viscosity in the fluid equation is ex-
tended to R

3 by periodicity. Our contribution is to prove that this system has a solution when the eddy viscosities are nondecreasing,
smooth, unbounded functions of k, and the eddy viscosity in the fluid equation is a concave function.
© 2006

Résumé

On considère le modèle de turbulence moyenné d’ordre 1 issu des équations de Navier–Stokes (modèle RANS) satisfait par
la vitesse moyenne u, la pression moyenne p et l’énergie cinétique turbulente k (ECT), le problème étant posé dans R

3. On ne
considère pas les termes de convection dans ce problème. Les équations pour la vitesse et la pression sont couplées avec l’équation
pour l’ECT par des viscosités turbulentes fonctions de l’ECT et un terme quadratique dans le second membre de l’équation pour
l’ECT. On considère le cas de conditions aux limites périodiques pour la vitesse et la pression, l’ECT étant définie dans une cellule
avec des conditions de Dirichlet homogènes sur le bord et étendue à R

3 par périodicité. Les viscosités turbulentes correspondantes
sont également étendues à R

3 par périodicité. Notre contribution dans ce travail est la preuve de l’existence d’une solution faible
assez régulière à ce système, à savoir H 2, quand les viscosités turbulentes sont des fonctions croissantes de l’ECT, de classe C2,
non bornées et de plus la viscosité dans l’équation du fluide est une fonction concave.
© 2006
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1. Introduction

1.1. Position of the problem

We study problem (1.1)–(1.5) below set in R
3. The unknowns are the vector field u and the scalar functions k

and p. The scalar k is defined on Q = [0,1]3 with Dirichlet boundary conditions while u and p are Q-periodic with
zero mean value on Q,

∇ · ([νt (k, �)
]e∇u

) + ∇p = f in D′
per, (1.1)

∇ · u = 0 in D′
per, (1.2)

−∇ · (μt(k, �)∇k
) = νt (k, �)

[|∇u|2]
Q

− k
√

k

�
in D′(Q), (1.3)

(u,p) Q-periodic,
∫
Q

u = 0,

∫
Q

p = 0, (1.4)

k|∂Q = 0, k � 0 a.e. in Q. (1.5)

In the equations above, ∇ · v = ∂iv
i (v = (v1, v2, v3)) is the divergence operator. We use the following definitions:

being given a scalar function h defined on Q, [h]e denotes its Q-periodic extension to R
3 and if h is a Q-periodic

function, [h]Q denotes its restriction to Q. The space D′
per stands for the distributional space deduced from D′(Q) by

Q periodic reproduction.
The functions νt and μt are continuous on R+ × R+ and satisfy throughout the paper the growth conditions,

∀(k, �) ∈ R+ × R+,

0 < ν � νt (k, �), νt (k, �) � C1
(
1 + �kα

)
, 0 < α � 1/2, (1.6)

0 < μ � μt(k, �), μt (k, �) � C2
(
1 + �kγ

)
, 0 < γ � 1/2. (1.7)

Finally, f is a H 1 Q-periodic field with zero mean value on Q and � is a nonnegative bounded function. We shall
note in the remainder

F =
{

f : R3 → R
3, Q-periodic such that f ∈ (

H 1
loc

(
R

3))3
,

∫
Q

f = 0
}
. (1.8)

1.2. Physical meaning of the system

1.2.1. General orientation
Systems of the form (1.1)–(1.3) play an important role in the modelization of turbulent flows. Indeed, they are the

mathematical form of the RANS (Reynolds Averaged Navier–Stokes) model of order 1 used to simulate a stationary
mean flow when the convection is neglected in front of the Reynolds stress. These systems are very often used in
engineering or in geophysics, see for instance in [6,10,17,23,25,28] and [30], Chapter 4.

In such systems, the vector field u stands for the statistical mean velocity, p is the mean pressure and k the turbulent
kinetic energy (TKE). Roughly speaking, the TKE measures the variation around the average of the turbulent fields.
The function νt is the eddy viscosity, μt is the eddy diffusion function and � is a local length scale.

The eddy viscosity and the eddy diffusion function involved in realistic models are defined by the following formula

νt (k) = ν + C1�
√

k, (1.9)

μt(k) = μ + C2�
√

k, (1.10)

where Ci are dimensionless constants.
The first term in the r.h.s of the k-equation (1.3), νt (k, �)[|∇u|2]Q, is the energy the large scales give to the small

scales. This is a source of TKE. The second term, −ε = −(k
√

k)/�, is the inverse cascade term which measures the
energy rate returned by the small scales to the large scales.
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1.2.2. Physical realism of the model
Physicists, like for instance Chen et al. [11], claim that the local length scale � is a constant when the turbulence is

homogeneous and isotropic. Others, quoting Batchelor [2], claim that in this case there is no production of Turbulent
Kinetic Energy, making useless any RANS model in such case. However, as shown in Mohammadi–Pironneau [30]
(Hyp (H4) page 53), isotropy of the fluctuation is one of the main assumption to justify the derivation of the equation
for the Turbulent Kinetic Energy.

In [26], we have used the same model to simulate a flow inside and outside a rigid fishing net. In this situation, the
turbulence is neither homogeneous nor isotropic. In the numerical code, we have chosen � to be the size of the mesh.
Therefore, � is not constant and varies with the position of the node. The numerical results obtained in [26] fit very
well with the experimental data, which makes this simple turbulence model very accurate in this situation.

More sophisticated RANS models exist, in which an equation is written to compute �, see for instance [29]. Un-
fortunately, these models are still discussed in the case of geophysical flows, see the discussion in [15]. Indeed, the
physical arguments to derive them are generally not convincing. Moreover, they are numerically unstable and very few
mathematical results can be obtained on this class of 2 degree closure model, see also in [23], Section 4.5, Chapter 4
concerning also the well know (k, ε) model.

We also notice that in the case of very important industrial numerical applications, engineers firstly study the case
where � is a constant in RANS models, as for instance in [28].

This bibliography shows how much these questions about turbulence modelization attract controversial reactions.

1.3. Former works and what problem are we looking for

The analogue of system (1.1)–(1.3) has already been studied in a bounded domain with homogeneous boundary
conditions when νt is a bounded function of k, and � is a constant. In this case we shall write νt (k) in place of
νt (k, �). The existence of a solution has been proved in this case (see [23], Chapter 6, Theorem 6.1.1, and [24]).
Uniqueness questions are discussed in [9], where we prove that the solution is unique when the eddy viscosities are
smooth bounded functions close to a constant.

We also mention that the problem of coupling two such systems with bounded eddy viscosities has been studied in
[3,4] and [5], always for � constant.

All the results mentioned above do not deal with the case where νt = νt (k) in the fluid equations is an unbounded
function of k, like in the physical case described by formula (1.9). However, these former results are still valid when
the eddy diffusion function in the k-equation satisfies the growth condition (1.7). Nevertheless, as far as we know, it
remains an open problem to know if there exists a solution to these RANS equations when νt = νt (k) is an unbounded
function of k in the 3D case. We are precisely studying this unbounded case in the present paper.

Remark 1.1. As already said, all known existence results are obtained when � is a constant. Returning back to the case
where � varies, is continuous satisfying 0 < �m � �(x) � �M < ∞ and νt = νt (k, �), there is no doubt that when νt is
in L∞(R+ × R+) and continuous with respect to the k variable, the existence of a solution can be obtained without
changing the proofs.

1.4. The main result

This paper is mainly devoted to the case where � > 0 is a constant. Therefore we note νt = νt (k) instead of νt (k, �).
We aim to give a first answer to the question set by unbounded νt = νt (k) for the model introduced above. We prove
an existence result when the velocity and the pressure satisfy periodic boundary conditions and when νt is a smooth
unbounded concave function having a bounded derivative.

The viscosities are subject to satisfy Properties 1.1 and 1.2 described below.

Properties 1.1. The eddy viscosity νt must satisfy the following properties.

νt is a C2-class function on R+, (1.11)

νt is nondecreasing, i.e. ν′
t (k) � 0, k � 0, (1.12)
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νt is concave, i.e. ν′′
t (k) � 0, k � 0, (1.13)

ν′
t is bounded. (1.14)

Properties 1.2. The eddy diffusion function μt as for it must be such that

μt is a C1-class function on R+, (1.15)

μt is a nondecreasing function on R
+, (1.16)

∃θ > 0; ∀k � 0, C3
(
μ

1
θ + k

)θ � μt(k). (1.17)

Our main result is the following.

Theorem 1.1. Assume that � > 0 is a constant and that Properties 1.1 and 1.2 hold. Let f ∈ F. There exists a constant
κ = κ(θ,‖ν̃ ′

t‖∞)) such that for every � > 0 satisfying the condition

�ν > κ
(
1 + ν

− 3
2(1+θ)

∥∥[f ]Q
∥∥ 3

1+θ

(L2(Q))3

)
, (1.18)

there exists

(u,p, k) ∈ (
H 2

loc

(
R

3))3 × L2
loc

(
R

3) × W
1,6
0 (Q)

solution to problem (1.1)–(1.5).

1.5. Further comments, boundary conditions

We first note that the restrictive condition (1.18) is due to the term ε = k
√

k/� in the k-equation. We do not know
how to remove this condition, except by neglecting ε in the k-equation which would be unrealistic.

One may wonder why dealing with periodic conditions in the fluid equations. This is simply because we shall
consider in our proof of Theorem 1.1 the formal derivative of Eqs. (1.1) and (1.2), the fluid part of the system.
Therefore, this makes it possible to study the gradients of the velocity and the pressure because they also satisfy
periodic conditions. However, in the case of a domain in R

3, we do not have any informations about the values taken
by the gradient of the velocity at the boundary. Periodic conditions remove this difficulty.

We conjecture that the same result holds in a bounded domain in R
3 with homogeneous Dirichlet boundary condi-

tions for u, but we have the feeling that the proof will be hard and very technical to write.
Now the question arises to know why we do not study periodic conditions for k and why did we have consider this

so strange situation. This is because such periodic conditions on k yields the compatibility condition∫
Q

νt (k)|∇u|2 = 1

�

∫
Q

k
√

k, (1.19)

an irrealistic condition. Indeed, when one lets � go to infinity in (1.19), one would have zero as limit for u unless k

blows up in the space L3/2, which is not the case thanks to the classical known estimates giving a uniform bound for
k in each Ls , s < 3. Therefore, this is possible if and only if f = 0, where in this case u = 0, k = 0 and p = 0.

This is why we had to consider k defined only inside a cell Q with homogeneous Dirichlet boundary conditions
and then to take the periodic extension of the corresponding eddy viscosity in the fluid equation (1.1). Notice that this
does not imply that the k-equation is satisfied in whole R

3.
The physical consequence is that the TKE is a constant on the interface of the cells, describing homogeneous

boundary layers there.

1.6. About the eddy viscosities properties

The question is how does Properties 1.1 and 1.2 fit with physical reality and what about the numerical reality when
simulations are performed with codes using such models.
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Actually, the growth hypotheses are well satisfied by realistic νt and μt which are nondecreasing functions, as well
as νt is a concave function, one of the main feature of our result. However the required regularities for νt and μt fail
because of the behavior of the realistic viscosities near 0. Let us go into more details.

The eddy diffusion function μt given by formula (1.10) is continuous and satisfies the growth condition (1.7), as
well as it is a nondecreasing function satisfying the below growth condition (1.17) with θ = 1/2. Therefore, these
assumptions fit well with the physical reality in the case of μt . As already said, the C1-class condition is not satisfied
because of the singularity at 0. Therefore, the function μt given by formula (1.10) should be replaced by

μt(k) = μ + C2�
√

τ + k, k � 0, τ > 0, (1.20)

We conjecture that the C1-class hypothesis can be removed and only a continuity hypothesis on μt should be enough
to conclude. However this remains an open problem.

Because of the same reason due to a lack of regularity near 0, νt is not a C2-class function with a bounded derivative
when it is defined by the formula (1.9) even if the growth condition (1.6) is satisfied. However, when νt is defined by
the physical formula (1.9) it is a nondecreasing and concave function. From this point of view, we are glad to observe
a good physical correspondence with our mathematical analysis. Therefore, as we did for μt , formula (1.6) should be
replaced by

νt (k) = ν + C1�
√

ρ + k, k � 0, ρ > 0, (1.21)

a function which satisfies Properties 1.1. It seems to us that this is more difficult to remove this C2-class hypothesis
on νt than in the case of μt .

The viscosities properties are involved because of the regularity considerations which are the key of the present
work. Indeed, we shall show in the remainder how to construct a solution to our problem with a H 2 velocity. As said
before, we shall consider the formal derivative of Eqs. (1.1), (1.2). A bound on ν′

t is crucial to obtain an a priori H 2

estimate on u as well as the concavity and the nondecreasing hypothesis on νt .
Finally, what is the role played by the below growth condition (1.17)? Actually, the equation for k is naturally

an equation “with a second hand side in L1” due to the production term νt (k)|∇u|2. Thus the classical Boccardo–
Gallouët’s inequality [7] yields k ∈ ⋂

p<3/2 W 1,p . As said already, regularity is the key of our result. We shall construct

a solution k continuous, especially bounded on R
3. To do this, we need to increase the regularity of the terms

νt (k)|∇u|2 and −k
√

k in the k-equation (1.3). The “below growth condition” (1.17) is one needed feature among
others to derive such regularity.

In conclusion, the existence of a solution to the system holds for eddy viscosities of the form (1.20) and (1.21) in the
place of (1.9) and (1.10), because they do have derivative’s singularity at zero point. We stress that this encountered
difficulty for small values of k in such models is well known by engineers who use truncations in their numerical codes
when k is near 0 (see [28]). Therefore, there is a good correspondence between our mathematical analysis and the
numerical reality. Physical formula are obtained by a dimensional analysis. Therefore (1.20) and (1.21) would be
also physically accurate if one could find a physical meaning to the small quantities τ and ρ, more than just formal
cut-off.

1.7. Additional bibliographical remarks

1.7.1. Scalar systems, unbounded viscosities: renormalized and energy solutions
Let us mention that in [23], Chapter 5, Section 5.2, [12,13,18], and [19], one considers the following system set

in an open bounded domain in R
n with homogeneous boundary conditions for scalar quantities (u, k), always for �

constant,

−∇ · (νt (k)∇u
) = f, (1.22)

−∇ · (μt(k)∇k
) = νt (k)|∇u|2. (1.23)

In Refs. [18,12] and [13], the system (1.22), (1.23) is involved in heat conduction problems while in [19] and [23]
Section 5.2, it is studied as a simplification of the RANS model to focus on the question raised by the quadratic term
and remove for clarity the difficulties due to the pressure term, the incompressibility constrain and the dissipation
term −ε. In [12] and [18], existence results are proved when νt and μt are bounded functions of k.
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In [23] Section 5.2, one proves the existence of a renormalized solution to the scalar system (1.22), (1.23) when νt

and μt are unbounded functions of k (but still satisfy a growth condition at infinity). The main result of Section 5.2
in [23], Theorem 5.3.1, has been obtained in collaboration with F. Murat. In [19] one proves the existence of an energy
solution in the same unbounded case and when νt is regularized near zero like in formula (1.21).

Notice that we have not been able to adapt to the RANS model (1.1)–(1.3) the techniques of [19] and [23], Sec-
tion 5.2 when the eddy viscosities are unbounded. This is directly linked to the impossibility to give a renormalized
sense to the Stokes and/or the Navier–Stokes equations in the spirit of Di Perna–Lions (see [16]) and Lions and
Murat [27].

Remark 1.2. In Remark 1.1 we have said that the known existence results can be obtained when � varies, is non-
negative, continuous bounded, νt = νt (k, �) is in L∞ and continuous with respect to k. Unfortunately, we think that
the proofs in [19] and [23] cannot be directly adapted to scalar systems in this case, which is an interesting open
mathematical question.

1.7.2. Scalar systems, unbounded viscosities: 2-dimensional case
In [13] the authors prove the existence of a solution to the simplified scalar system (1.22), (1.23) when νt and μt

are unbounded functions in the 2D case by proving that k ∈ L∞. The techniques of [13] can be adapted to RANS
systems like (1.1)–(1.3) in the 2D case but it does not work in the 3D case under current consideration. Indeed, in the
2D case, Boccardo–Gallouët estimate [7] yields k ∈ ⋂

p<∞ Lp . In [13], one fills the gap between k ∈ ⋂
p<∞ Lp and

L∞ by a nice improvement of [7] to this case.
In our present 3D case, [7] yields k ∈ ⋂

p<3 Lp . Then the gap to reach L∞ is too large in the 3D case and will not

be filled by this way. However, we also prove that k ∈ L∞ by showing firstly that u ∈ H 2.

1.8. Case � nonconstant

We have also investigated the case where � is not a constant. Indeed, this case is very important from the physical
point of view and for the applications as we said before. This case is very difficult and unfortunately, we are not able
to prove a similar result as in Theorem 1.1. The reasons will be made clear until the end of the paper. The only result
that we are able to prove here in this direction is the following.

Theorem 1.2. Assume that

νt (k, �) = ν0 + C1�(k + ρ)α, ν0 > 0,C1 > 0, ρ > 0, 0 < α <
1

2
, (1.24)

μt = μ0 ∈ R
�+, (1.25)

ε(k, �) = k1+θ

�(x)
, 0 < θ < 1/2, (1.26)

� is a function of class C2, −� � 0, 0 < �m � �(x) < �M < ∞, (1.27)(
ν − Π̃

�m

− ‖∇�‖L∞Ω̃

)
> 0 (1.28)

where κ = κ(ρ, �M), Π̃ = Π̃(f, ρ,α, ν, θ), Ω̃ = Ω̃(f, ρ,α, ν, θ). Then there exists

(u,p, k) ∈ (
H 2

loc

(
R

3))3 × L2
loc

(
R

3) × W
1,6
0 (Q)

solution to the problem

−∇ · ([νt (k, �)
]e∇u

) + ∇p = f in D′
per, (1.29)

∇ · u = 0 in D′
per, (1.30)

−μ0k = νt (k, �)
[|∇u|2] − ε(k, �) in D′(Q), (1.31)
Q
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(u,p) Q-periodic,
∫
Q

u = 0,

∫
Q

p = 0, (1.32)

k|∂Q = 0, k � 0 a.e. in Q. (1.33)

The constants Π̃ and Ω̃ in (1.28) depend on f, ρ, α, ν and θ and will be precised in Section 4. Of course, in the
proof of Theorem 1.2, we shall use the fact that νt is concave with respect to k, that is ∂2νt/∂k2 � 0. We conjecture
that it is possible to prove the analogue of Theorem 1.1, in particular when α = 1/2 and μt = μ0 + C2�(k + τ)α ,
ε(k, �) = k

√
k/�(x). This work is in progress. However, we do not know how to remove condition (1.28).

1.9. Organization of the paper

The continuation of this article is the following. Its main part is devoted to the case where � is a constant, νt = νt (k).
We first construct carefully smooth approximations to the RANS system (1.1)–(1.5) after changing the variable k into
k̃ thanks to the transformation

k̃ =
k∫

0

μt(k
′)dk′. (1.34)

Then one shows that the sequence of corresponding velocities is bounded in H 2 by studying the formal derivative of
the subsystem (1.1), (1.2). The periodic conditions play a role at this step, because one knows that the gradient of the
velocity still verifies periodic conditions and therefore one can deduce estimates for it. A L∞ bound for the sequence
of TKE can be obtained. That makes it possible to reduce the problem to the case of bounded eddy viscosities and to
pass to the limit in the equations as in former works.

In a last section, we prove Theorem 1.2.

2. Construction of approximations

2.1. Orientation

In this section as well as in Section 3, � > 0 is a constant and one writes νt (k) and μt(k) instead of νt (k, �) and
μt(k, �). We start by some transformations of the k-equation. The backward term is first replaced by −k

√|k| as well
as νt (k) and μt(k) are replaced by νt (|k|) and μt(|k|), as far as we do not have proved yet the positivity of k.

Next, we shall use the change of variable (1.34) mentioned above. That makes it possible to change the operator
−∇ · (μt∇) into the operator −. We shall obtain a new system that we shall study in the remainder, the system
(2.7)–(2.11) below. The solutions of this system provide solutions to the RANS system (1.1)–(1.5) (see Proposition 2.1
below).

Next, we shall construct an approximated system to the new system (2.7)–(2.11) with a smooth bounded eddy
viscosity in the fluid equation and a regularized r.h.s for the k̃ equation as well as a regularization of the cube Q.
We need to regularize Q by smooth approximated convex domains Qε again because of a regularity’s consideration,
Q being not a domain having a C1 boundary.

The existence of a smooth solution to this approximated system will be proved by using Leray–Schauder fixed
point Theorem (see [22]).

Throughout the paper, we shall assume that the eddy viscosity νt satisfies Properties 1.1 and 1.2 as well as the
growth conditions (1.6) and (1.7).

2.2. Transformation of the system

As far as we do not have any information on the k’s sign, we shall first replace Eqs. (1.1)–(1.3) by the following
ones,

−∇ · ([νt

(|k|)]e∇u
) + ∇p = f, (2.1)
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Fig. 1.

∇ · u = 0, (2.2)

−∇ · (μt

(|k|)∇k
) = νt

(|k|)[|∇u|2]
Q

− k
√|k|
�

. (2.3)

To remove the operator −∇ · (μt∇), we introduce the odd function βt defined on R by

∀k � 0, k̃ = βt (k) =
k∫

0

μt(k
′)dk′,

∀k � 0, k̃ = βt (k) = −βt (−k).

(2.4)

The function βt is a C2-class function because μt is of class C1. This is also an odd nondecreasing function, convex
on R

+ because μt is nondecreasing (see (1.16)). Thus the inverse function β−1 exists. It is a C2-class odd function,
concave on R

+ (see Fig. 1).
Let E be the function defined by

k
√|k| = E(k̃) = β−1

t (k̃)

√∣∣β−1
t (k̃)

∣∣ (2.5)

and ν̃t the function defined by

νt

(|k|) = ν̃t (k̃) = νt

(∣∣β−1
t (k̃)

∣∣). (2.6)

Using the variable k̃, the system (1.1)–(1.5) becomes

−∇ · ([ν̃t (k̃)
]e∇u

) + ∇p = f in D′
per, (2.7)

∇ · u = 0 in D′
per, (2.8)

−k̃ = ν̃t (k̃)
[|∇u|2]

Q
− E(k̃)

�
in D′(Q), (2.9)

(u,p) Q-periodic,
∫
Q

u = 0,

∫
Q

p = 0, (2.10)

k̃|∂Q = 0, k̃ � 0 a.e. in Q. (2.11)

By the below growth condition (1.17), one has for k � 0,

k̃ = βt (k) � C3

θ + 1

(
μ

1
θ + k

)1+θ − C3

θ + 1
μ

1+θ
θ ,

which can be rewritten

|k| = ∣∣β−1
t (k̃)

∣∣ � C4
(
1 + |k̃| 1

1+θ
)
, θ > 0, (2.12)
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because βt is odd. In the last inequality, C4 is a constant. Therefore the following holds:

∀k̃ ∈ R, 0 < ν � ν̃t (k̃) � C5
(
1 + |k̃| α

1+θ
)
, 0 < α � 1/2, θ > 0, (2.13)

∀k̃ ∈ R,
∣∣E(k̃)

∣∣ � C6
(
1 + |k̃| 3

2(1+θ)
)
, θ > 0. (2.14)

The function νt has a bounded derivative function as well as (β−1
t )′, because β−1

t is concave on R+, odd, of class C2.
Moreover, because β−1

t and νt are non decreasing C2-class functions, concave on R
+, ν̃t defined by (2.6) satisfies the

same following properties νt on R
+ (see Fig. 2).

Properties 2.1. The function ν̃t satisfies

ν̃t is a C2-class function on R+, (2.15)

ν̃t is nondecreasing, (2.16)

ν̃t is concave, (2.17)

ν̃′
t is bounded. (2.18)

Proposition 2.1. Let (u,p, k̃) be a solution to the system (2.7)–(2.11) where

u ∈ (
H 2

loc

(
R

3))3
, p ∈ L2

loc

(
R

3), k̃ ∈ W
1,6
0 (Q).

Let k = β−1
t (k̃). Then k ∈ W

1,6
0 (Q) and (u,p, k) is a solution to the system (1.1)–(1.5).

Proof. We mainly have to check the regularity of k. Notice that k̃ ∈ W
1,6
0 (Q) ⊂ C0(Q) (the dimension is 3). Let

n0 = ‖k̃‖L∞ and Tn0 be the truncature function at height n0. It means

Tn0(x) = x if |x| � n0, Tn0(x) = n0
x

|x| if n0 � |x|, (2.19)

by assuming that n0 = 0. If it is not, then the result is obvious.
Because Tn0(k̃) = k̃,

k = β−1
t (k̃) = β−1

t ◦ Tn0(k̃). (2.20)

The function β−1
t ◦ Tn0 is Lipschitz uniformly on R and its derivative has a finite number of discontinuities. Thus

thanks to a deep result due to G. Stampacchia (see [32], Lemma 1.2, page 17) k ∈ W
1,6
0 (Q) and one has

∇k = (
β−1

t ◦ Tn0

)′
(k̃)∇ k̃.

The end of the proof is straightforward. �
The remainder of the present section is devoted to prove the existence of a solution to the system (2.7)–(2.11),

a solution which will be obtained by approximations.
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2.3. Construction of approximations

This subsection is divided into the following steps:

• constructing smooth bounded approximations to ν̃t and E ,
• setting the approximated system and statement of the existence result, further comments,
• proving the existence result by fixed point theorem.

2.3.1. Smoothing ν̃t and E
One defines smooth bounded approximations to the eddy viscosity ν̃t in the fluid equation (2.7) and the function E

in the r.h.s of the k̃-equation (2.9), starting by νt .
Let ε > 0 and let us consider the function ν̃ε

t (see Fig. 3) be such that

ν̃ε
t is a C2-class function on R+, (2.21)

∀x ∈ [0,1/ε], ν̃ε
t (x) = ν̃t (x), (2.22)

∀x � 1 + 1/ε, ν̃ε
t (x) = ν̃t (1/2 + 1/ε), (2.23)

∀x ∈ R+,
(
ν̃ε
t

)′
(x) � ν̃′

t (x), (2.24)

∀x ∈ R, ν̃ε
t (x) = ν̃ε

t (−x). (2.25)

The existence of the sequence (ν̃ε
t )ε>0 is straightforward by Properties 2.1. Moreover, the following is satisfied by

(ν̃ε
t )ε>0. We note that ν̃ε

t = ν̃t on the range [0,1/ε].

Properties 2.2. Each ν̃ε
t is a C2-class function such that

ν̃ε
t is nondecreasing, (2.26)

ν̃ε
t is concave, (2.27)

∀ε > 0, ν̃ε
t is a bounded function, (2.28)((

ν̃ε
t

)′)
ε>0 is uniformly bounded with respect to ε, (2.29)

∀ε > 0, ∀x ∈ R, 0 < ν � ν̃ε
t (x). (2.30)

Let us consider E now.

Definition 2.1. Let Eε (see Fig. 4) be defined by

∀x ∈ [0,1/ε], Eε(x) = β−1
t (x)

√√
β−1

t (x)2 + ε2 + ε2, (2.31)

∀x � 1 + 1/ε, Eε(x) = β−1
t (1/2 + 1/ε)

√√
β−1

t (1/2 + 1/ε)2 + ε2 + ε2, (2.32)
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Eε is a function of class C2 on R, (2.33)

Eε(−x) = −Eε(x). (2.34)

The following lemma is straightforward.

Lemma 2.1. The sequence (Eε)ε>0 converges to E uniformly on the compact sets of R. Moreover we have∣∣Eε(k̃)
∣∣ � C7

(
1 + |k̃| 3

2(1+θ)
)
, θ > 0 (2.35)

thanks to the growth condition (2.14) where the constant C7 do not depend on ε.

For reasons that will be made clear in the remainder, we have to split Eε as a product of two functions ζε and γε ,
where ζε is the function defined by the following

Definition 2.2. Let ζε be defined by

∀x ∈ [0,1/ε], ζε(x) =
√√

β−1
t (x)2 + ε2 + ε2, (2.36)

∀x � 1 + 1/ε, ζε(x) =
√√

β−1
t (1/2 + 1/ε)2 + ε2 + ε2, (2.37)

ζε is a function of class C2 on R, (2.38)

ζε(−x) = ζε(x). (2.39)

Definition 2.3. Let γε be the function defined by

∀x ∈ [0,1/ε], γε(x) = β−1
t (x) (2.40)

∀x � 1 + 1/ε, γε(x) = β−1
t (1/2 + 1/ε), (2.41)

γε is a function of class C2 on R, (2.42)

γε(−x) = −γε(x). (2.43)

Notice that one has ζε > 0, γε is odd and

Eε(x) = γε(x)ζε(x). (2.44)

Notice also that thanks to the growth condition (2.12) satisfied by β−1, one has∣∣γε(k̃)
∣∣ � D1

(
1 + |k̃| 1

1+θ
)
, θ > 0, (2.45)∣∣ζε(k̃)

∣∣ � D2
(
1 + |k̃| 1

2(1+θ)
)
, θ > 0, (2.46)

for D1 and D2 be constant.
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2.3.2. Some geometrical considerations
The domain Q has not a smooth boundary. However, we want to deal with very smooth approximations k̃ε , that

means k̃ε ∈ H 3 at least. It is well known that high regularity not hold as well as if Q would have a C∞ boundary.
However, Q is a Lipschitz domain and there exists a cone C such that Q has the cone property determined by the
cone C, as defined in [1], Chapter IV, Definition 4.3. Moreover, it is straightforward that the cone C can be chosen
such that there exists a sequence (Qε)ε>0 of open bounded sets in R

3 satisfying

∂Qε is C∞, (2.47)

∀ε1 < ε2, Qε2 ⊂ Qε1 ⊂ Q, (2.48)⋂
ε>0

Qε = Q, (2.49)

Qε is convex for each ε, (2.50)

Qε has the cone property determined by the cone C for each ε. (2.51)

Now, combining Lemma 5.10 in [1], Chapter 5 and Theorem 1.4.3.4, Section 1.4, Chapter 1 in [21], one sees that for
all exponent p and each q with q � p�, there exists a constant K = K(p,q,C) and which does not depend on ε and
such that one has

∀u ∈ W
1,p

0 (Qε), ‖u‖Lq(Qε) � K‖u‖
W

1,p
0 (Qε)

. (2.52)

Moreover, let us consider the elliptic problem

−uε = f |Qε in Qε, (2.53)

uε = 0 on ∂Qε, (2.54)

where f ∈ L2(Q) and f |Qε stands for the restriction of f to Qε . Then, there exists a constant Cε such that

‖u‖H 2(Qε)
� Cε‖f ‖L2(Q).

Arguing as in [21], Theorem 3.2.1.2, page 147, one sees that the sequence (Cε)ε>0 converges to C while (uε)ε>0
converges to u solution to

−u = f in Q, (2.55)

u = 0 on ∂Q, (2.56)

which satisfies

‖u‖H 2(Q) � C‖f ‖L2(Q).

We indicate that we could use an other approach to treat this question of the regularity by using the results of [14],
Chapter 8.

2.3.3. Approximated system
Now we are able to introduce the approximated system.
Let (ρε)ε>0 be a sequence of molifiers. Let D be a given L1 function defined on Q. One denotes the extension of

D by 0 outside Q still by D, to give a sense to D �ρε . The system that we consider is the system (2.57)–(2.61) below.

−∇ · ([ν̃ε
t (k̃ε)

]e∇uε

) + ∇pε = f in D′
per, (2.57)

∇ · uε = 0 in D′
per, (2.58)

−k̃ε = (
ν̃ε
t (k̃ε)

[|∇uε|2
]
Qε

)
� ρε − Eε(k̃ε)

�
in D′(Qε), (2.59)

(uε,pε) Q-periodic,
∫
Q

uε = 0,

∫
Q

pε = 0, (2.60)

k̃ε|∂Qε = 0, k̃ε � 0, a.e. in Qε. (2.61)

In Eq. (2.57), [ν̃ε
t (k̃ε)]e means what follows.
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• In Qε , [ν̃ε
t (k̃ε)]e is equal to ν̃ε

t (k̃ε) where k̃ε is computed by (2.59) and [|∇uε|2]Qε stands for the restriction of
|∇uε|2 to Qε .

• In Q \ Qε , [ν̃ε
t (k̃ε)]e = [ν̃ε

t (0)]e and then it is extended to R
3 by periodicity.

Theorem 2.1. Let ε > 0 be fixed. Assume that f ∈ F. The system (2.57)–(2.61) has a solution (uε,pε, k̃ε) such that

uε ∈ (
H 1

loc

(
R

3))3
, p ∈ L2

loc

(
R

3), (2.62)

ν̃ε
t (k̃ε)

[|∇uε|2
]
Qε

∈ L1(Qε), (2.63)

kε ∈ H 3(Qε) ∩ H 1
0 (Qε) ⊂ C1(Qε). (2.64)

Moreover, the following estimates hold, uniforms in ε,∥∥[uε]Q
∥∥

(H 1(Q))3 � C1

ν2

∫
Q

|f|2, (2.65)

∥∥ν̃ε
t (k̃ε)

[|∇uε|2
]
Qε

∥∥
L1(Qε)

� C1

ν

∫
Q

|f|2, (2.66)

‖k̃ε‖W
1,p
0 (Qε)

� C(p)C1

ν

∫
Q

|f|2, ∀p < 3/2, (2.67)

where C1 is the Poincaré’s constant on and C(p) does not depend on ε and satisfies limp→3/2− C(p) = ∞.

The proof of Theorem 2.1 is postponed until the end of this section. Let us first introduce the function spaces that
we use, which are

V =
{

v = (
v1, v2, v3) ∈ (

C∞(
R

3))3
,Q-periodic,

∫
Q

v = 0, ∇ · v = 0

}
, (2.68)

V =
{

v = (
v1, v2, v3) ∈ (

H 1
loc

(
R

3))3
,Q-periodic,

∫
Q

v = 0, ∇ · v = 0

}
. (2.69)

Light modifications of a classical result in [20], Corollary 2.5, Chapter 1, yield

V = V. (2.70)

The key point is to prove that the following variational problem has a solution.

Find (uε, kε) ∈ V × [
H 3(Qε) ∩ H 1

0 (Qε)
]

be such that (2.71)

∀v ∈ V,

∫
Q

ν̃ε
t (k̃ε)∇uε : ∇v =

∫
Q

f.v, (2.72)

∀w ∈ H 1(Qε),

∫
Qε

∇ k̃ε · ∇w =
∫
Qε

(
ν̃ε
t (k̃ε)

[|∇uε|2
]
Qε

)
� ρε · w −

∫
Qε

Eε(k̃ε)w. (2.73)

Remark 2.1. Once problem (2.71)–(2.73) is solved, one knows by De Rham theorem (see [20], Theorem 2.3, Chap-
ter 1) that there exists pε periodic with mean value 0 on Q and such that pε ∈ L2

loc(R
3) and such that (uε,pε, kε) is a

solution to problem (2.57)–(2.61).

It remains to prove the existence of a solution to problem (2.71)–(2.73). Before doing this, we prove the positivity
of k̃ε .

Lemma 2.2. Let (uε, kε) be any solution of the variational problem (2.71)–(2.73). Then k̃ε � 0 a.e. in R
3.
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Proof of Lemma 2.2. Take the function w = −k̃−
ε ∈ H 1(Qε) as test function in (2.73). Because (ν̃ε

t (k̃ε)[|∇uε|2]Qε) �

ρε � 0 and Eε is odd and nonnegative on R
+, one has∫

Qε

∣∣∇ k̃−
ε

∣∣ � 0.

Then k̃−
ε = 0 a.e. and therefore k̃ε � 0 a.e. in Qε . The proof of Lemma 2.2 is finished. �

2.3.4. Proof of Theorem 2.1
The proof of Theorem 2.1 is now reduced to proving that the variational problem (2.71)–(2.73) has a solution and

to checking that the solution is regular as claimed in the statement. We shall use Leray–Schauder fixed point theorem
(see [22]). The proof is divided into the four following steps,

• constructing a map Γ on an appropriate Sobolev space W
1,p

0 (Qε), the fixed points of which being solutions to
the variational problem (2.71)–(2.73),

• obtaining estimates giving the existence of a ball B = B(0,R), being such that Γ (B) ⊂ B; notice that B is a
convex compact set for the weak topology of B ,

• proving the Γ ’s continuity for the weak topology of B ,
• checking the regularity of the solutions.

Step 1 – Construction of the map Γ . Let 1 < p < 3/2 close to 3/2 and to be fixed later. Being given q ∈ W
1,p

0 (Qε).
Let us consider the variational problem

Find (u, k̃) ∈ V × W
1,p

0 (Qε) be such that (2.74)

∀v ∈ V,

∫
Q

ν̃ε
t (q)∇u : ∇v =

∫
Q

f · v, (2.75)

∀w ∈ W
1,p′
0 (Qε),

∫
Qε

∇ k̃ · ∇w =
∫
Qε

(
ν̃ε
t (q)

[|∇u|2]
Qε

)
� ρε · w −

∫
Qε

γε(k̃)ζε(q)w, (2.76)

where the functions γε and ζε are defined in Definitions 2.2 and 2.3 above and are such that Eε = γεζε .
Note first that k̃ is not involved in (2.75). Indeed, ν̃ε

t (q) ∈ L∞(R3) (see (2.28)) and ν̃ε
t (q) � ν > 0 (see (2.30)).

Therefore, there exists a unique u ∈ V solution to problem (2.75) by Lax–Milgram theorem. In the remainder we shall
denote by u(q) this solution.

It is also easily seen that once the fluid problem (2.75) is solved, the TKE problem (2.76) has a unique solution k̃ ∈
H 3(Qε) ∩ H 1

0 (Qε). Indeed, thanks to the growth condition (2.35) one knows that Eε is continuous with a subcritical
growth. Estimate (2.79) just below shows that ν̃ε

t (q)[|∇u(q)|2]Qε ∈ L1(Qε) and therefore (ν̃ε
t (q)[|∇u(q)|2]Qε) �ρε ∈

C∞(Qε). Moreover, it can be proved that k̃ ∈ C∞(Qε). To do this, one can use the results in [31] or iterate the result
of Theorem IX.25 in [8], Chapter IX following the “bootstrapping” method.

The functional Γ is then defined by

Γ (q) = k̃, (2.77)

where k̃ is the unique solution to the problem (2.76) once (2.75) is solved. The functional Γ maps W
1,p

0 (Qε) onto
itself. Notice that by using a similar argument than in Lemma 2.2, it is easily proved that

k̃ � 0, a.e. in Qε. (2.78)

The two next steps are devoted to prove that Γ has a fixed point k̃ε by using Leray–Schauder theorem. Therefore,
the couple (u(k̃ε), k̃ε) will be a solution to the problem (2.71)–(2.73).

Step 2 – Looking for a ball B = B(0,R) such that Γ (B) ⊂ B . Let q ∈ W
1,p

0 (Qε). We begin with seeking for an
estimate for u(q). Taking u(q) as test function in (2.75) and using (2.30) yield, after classical computations,
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Fig. 5.∫
Q

ν̃ε
t (q)

∣∣∇u(q)
∣∣2 � C1

ν

∫
Q

|f|2, (2.79)

∫
Q

∣∣∇u(q)
∣∣2 � C1

ν2

∫
Q

|f|2, (2.80)

where C1 is the Poincaré’s constant. By (2.80) and Qε ⊂ Q,∥∥ν̃ε
t (q)

[∣∣∇u(q)
∣∣2]

Qε

∥∥
L1(Qε)

� C1

ν

∫
Q

|f|2. (2.81)

Therefore, by Young’s inequality (see in [8], Theorem IV.30, Chapter IV),∥∥(
ν̃ε
t (q)

[∣∣∇u(q)
∣∣2]

Qε

)
� ρε

∥∥
L1(Qε)

� C1

ν

∫
Q

|f|2. (2.82)

Now we look for an estimate for k̃ = Γ (q) in W
1,p

0 (see (2.85) below). We aim to use Boccardo–Gallouët’s
estimate (see [7]). Therefore, we have to prove that the gradient of k̃ is uniformly bounded in L2 norm on the sets
{n � |k̃| � n + 1}.

To do this, let us consider the odd function Gn piecewise linear, equal to 0 on [0, n] and 1 on [n + 1,∞[ (see
Fig. 5).

Take Gn(k̃) as test function in the k̃-equation (2.76). We note that γε is an odd function, which is nonnegative
on R+ (see (2.43) and above) as well as Gn. We also note that ζε is everywhere nonnegative. Therefore, one has

0 �
∫
Q

γε(k̃)ζε(q)Gn(k̃).

Notice that even if we already know that k̃ � 0, one does not need any information on the sign of k̃ to obtain the
inequality above. Therefore, estimate (2.82) satisfied by the production term yields∫

n�|k̃|�n+1

|∇ k̃|2 � C1

ν

∫
Q

|f|2, (2.83)

where one has used 0 � Gn(k̃) � 1. Therefore, by Boccardo–Gallouët’s estimate [7], one knows that for all r ∈
[1,3/2[, there exists a constant Cε(r) which depends on r , where limr→3/2 Cε(r) = ∞ and such that

‖k̃‖
W

1,r
0 (Qε)

� Cε(r)C1

ν

∫
Q

|f|2. (2.84)

One recalls that only the Hölder and Sobolev’s inequalities are used for proving the Boccardo–Gallouët’s inequality.
Therefore, the remarks in Subsection 2.3.2 and more precisely (2.52), make sure that there exists C(r) such that for
each ε > 0 one has Cε(r) < C(r) and the inequality (2.84) becomes

‖k̃‖
W

1,r
0 (Qε)

� C(r)C1

ν

∫
|f|2 = Rr. (2.85)
Q
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Let B = B(O,Rp) ⊂ W
1,p

0 (Qε) which is a convex set, compact for the weak topology of W
1,p

0 (Qε). Estimate
(2.85) makes sure that Γ (B) ⊂ B .

Step 3 – Γ ’s continuity on B . We need to prove that Γ is a continuous function on W
1,p

0 (Qε) for the weak topology

of B . Since B is bounded and the space W
1,p

0 (Qε) is a separable space, the weak topology has a metric associated,
following Theorem III.25 Chapter III in [8]. It means that there exists a distance d such that the weak topology on B

is the topology induced by d . Therefore it is enough to prove that Γ is sequentially weak continuous.
Let us consider (qn)n∈N ⊂ BN which converges in B to q for the weak topology of W

1,p

0 (Qε) (here ε is fixed). We
have to prove that

(k̃n)n∈N = (
Γ (qn)

)
n∈N

converges weakly to k̃ = Γ (q).

We proceed in three substeps:

• extracting subsequences,
• passing to the limit in the fluid equation,
• passing to the limit in the k̃ equation and concluding.

Extracting subsequences. In what follows, we shall extract a finite number of sequences. These subsequences will
always be denoted by using the same notation. At the end of the procedure, we shall note that the whole sequence
converges due to the uniqueness of the limit.

By Sobolev Embedding theorem, one can extract a subsequence from the sequence (qn)n∈N which converges
strongly to q in Lr(Qε) for all r ∈ [1,p�]. Moreover, this sequence can be chosen such that it converges almost
everywhere to q in Qε .

On the other side, one knows that the sequence (k̃n)n∈N is bounded in W
1,p

0 (Qε) (bound (2.85)). Therefore, one
can extract again a subsequence such that (k̃n)n∈N converges

– weakly to some k̃ ∈ B in W
1,p

0 (Qε),
– strongly to k̃ in Lr(Qε) for all r ∈ [1,p�],
– a.e. in Qε .

We have to show that k̃ = Γ (q).

Passing to the limit in the fluid equation. Now we study the sequence (u(qn))n∈N. We must prove that this sequence
strongly converges in V to u(q).

Every qn and q are extended by zero in Q \ Qε . Thanks to the bound (2.80), the sequence (u(qn))n∈N is bounded
in V . Thus, up to a subsequence, it weakly converges in V to some u, and ([u(qn)]Q)n∈N strongly converges in
(L2(Q))3 to [u]Q.

Let v ∈ V be a test vector field. The function ν̃ε
t being continuous, (ν̃ε

t (qn))n∈N converges almost everywhere to
ν̃ε
t (q). Thus, (ν̃ε

t (qn)[∇v]Q)n∈N converges a.e. to ν̃ε
t (q)[∇v]Q and one has∣∣ν̃ε

t (qn)[∇v]q
∣∣ � ‖ν̃ε

t ‖L∞(R)

∣∣[∇v]Q
∣∣ ∈ L2(Q).

Therefore, by Lebesgue’s theorem, (ν̃ε
t (qn)[∇v]Q)n∈N strongly converges to ν̃ε

t (q)[∇v]Q in [L2(Q)]3×3, which yields

lim
n→∞

∫
Q

ν̃ε
t (qn)∇u(qn) : ∇v =

∫
Q

ν̃ε
t (q)∇u : ∇v =

∫
Q

v · f. (2.86)

Therefore one has u = u(q). Strong convergence is not proved yet. Using u(qn) as test vector field in the equation
satisfied by u(qn) itself gives on one hand,∫

ν̃ε
t (qn)

∣∣∇u(qn)
∣∣2 =

∫
f · u(qn), (2.87)
Q Q
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while on the other hand, taking u(q) = v as test vector field in (2.86) yields∫
Q

ν̃ε
t (q)

∣∣∇u(q)
∣∣2 =

∫
Q

f · u(q). (2.88)

The strong convergence of ([u(qn)]Q)n∈N in (L2(Q))3 yields

lim
n→∞

∫
Q

f · u(qn) =
∫
Q

f · u(q).

Thus, (2.87) combined to (2.88) shows that

lim
n→∞

∫
Q

ν̃ε
t (qn)

∣∣∇u(qn)
∣∣2 =

∫
Q

ν̃ε
t (q)

∣∣∇u(q)
∣∣2

.

Therefore, by arguing as in [23] and [24] and thanks to the strict positivity of ν̃ε
t (see (2.30)) one deduces the

strong convergence of (u(qn)n∈N to u(q) in V and also the strong convergence in L1(Q) (and L1(Qε) of course)
of (ν̃ε

t (qn)|∇u(qn)|2)n∈N to ν̃ε
t (q)|∇u(q)|2, up to a subsequence. This is satisfied by the whole sequence thanks to the

uniqueness of the possible limit.

Passing to the limit in the k̃ equation. Let ϕ ∈ D(Qε). The strong convergence in L1(Qε) of (ν̃ε
t (qn)|∇u(qn)|2)n∈N

to ν̃ε
t (q)|∇u(q)|2 yields

lim
n→∞

∫
Qε

ϕ
(
ν̃ε
t (qn)

∣∣∇u(qn)
∣∣2)

� ρε =
∫
Qε

ϕ
(
ν̃ε
t (q)

∣∣∇u(q)
∣∣2)

� ρε. (2.89)

Because of the weak convergence in W
1,p

0 (Qε) of the sequence (k̃n)n∈N to k̃ one has

lim
n→∞

∫
Qε

∇ k̃n · ∇ϕ =
∫
Qε

∇ k̃ · ∇ϕ. (2.90)

Since:

• the functions γε and ζε satisfy conditions (2.45) and (2.46) and are continuous,
• when p is chosen close enough to 3/2, such that p� > 2, sequences (k̃n)n∈N and (qn)n∈N strongly converge to k̃

and q in L2(Qε) and a.e,

one also has

lim
n→∞

∫
Qε

γε(k̃n)ζε(qn)ϕ =
∫
Qε

γε(k̃)ζε(q)ϕ. (2.91)

By putting together (2.89), (2.90) and (2.91), one sees that we were able to pass to the limit in each term in the k̃

equation proving Γ (q) = k̃. As already mentioned we have extracted a finite number of subsequence, and the limit
being unique, the whole sequence (k̃n)n∈N converges to k̃ and the weak continuity of Γ is proved.

Summarize. The continuity of the functional Γ for the weak topology of B is proved. The ball B which is preserved
by Γ is a compact set when W

1,p

0 (Qε) is equipped by its weak topology. The set B is also a convex set. Consequently,
the map Γ has a fixed point denoted by k̃ε in the ball B . The couple

(uε, k̃ε) = (
u(k̃ε), k̃ε

) ∈ V × W
1,p

0 (Qε)

is a solution to the variational problem (2.71)–(2.73).



430 J. Lederer, R. Lewandowski / Ann. I. H. Poincaré – AN 24 (2007) 413–441
Step 4 – Check of the regularity. Estimates (2.65), (2.66) and (2.67) are deduced from (2.79), (2.80) and (2.85). In
particular, recall that

ν̃ε
t (k̃ε)

[|∇uε|2
]
Qε

∈ L1(Qε), k̃ε ∈
⋂

r<3/2

W
1,r
0 (Qε) ⊂

⋂
s<3

Ls(Qε). (2.92)

Now we check the H 3 regularity for k̃. Notice first that in the r.h.s of the k̃-equation,(
ν̃ε
t (k̃ε)

[|∇uε|2
]
Qε

)
� ρε ∈ C∞(Qε). (2.93)

On the other side, the growth condition (2.35) satisfied by Eε shows that∫
Qε

∣∣Eε(k̃ε)
∣∣2 � E1 mes(Qε) + E2

∫
Qε

|k̃ε| 3
1+θ , (2.94)

for E1 and E2 two constants. This can be rephrased as∥∥Eε(k̃ε)
∥∥

L2(Qε)
� E3

[
1 + ‖k̃ε‖

3
2(1+θ)

L3/(1+θ)(Qε)

]
. (2.95)

Let p be such that 3/(2 + θ) = p < 3/2. Therefore 3/(1 + θ) = p� and Sobolev’s inequality yields∥∥Eε(k̃ε)
∥∥

L2(Qε)
� E4

[
1 + ‖k̃ε‖

3
2(1+θ)

W
1,p
0 (Qε)

]
. (2.96)

By the W
1,p

0 estimate (2.85) satisfied by k̃ε , one deduces

‖Eε(k̃ε)‖L2(Qε)
� E5

[
1 + ν

− 3
2(1+θ) ‖f‖

3
(1+θ)

L2(Q)

]
, (2.97)

where the constant here only depends on θ and Q. One may object that the constant should also depend on ε. In fact
they do not: see the remarks at Subsection 2.3.2 above.

We have shown that the second term in the r.h.s of (2.73) is in L2(Qε), the first one being in C∞(Qε). Therefore,
it follows from the classical elliptic theory that k̃ε ∈ H 2(Qε) because Qε is a smooth domain.

Now notice that Eε is a C2-class function and that its derivative function is bounded. Therefore, thanks to the
Stampacchia’s result ([32], Lemma 1.2, page 15), Eε(k̃ε) ∈ H 1(Qε). Then, Eq. (2.73) is an equation with a r.h.s
in H 1. Therefore, thanks to the elliptic theory again, k̃ε ∈ H 3(Qε) ∩ H 1

0 (Qε).
Theorem 2.1 is now entirely proved. �
In order to prove the claimed result in the introduction, Theorem 1.1, we have to pass now to the limit in Eqs.

(2.57)–(2.61) when ε tends to 0. This is the aim of the next section.

3. Proof of Theorem 1.1

3.1. Orientation

Let us consider (uε,pε, k̃ε) a solution to the approximated system (2.57)–(2.61), the existence of which being
guaranteed by Theorem 2.1. We aim to obtain a L∞ estimate for the sequence (k̃ε)ε>0 which does not depend on ε.
The strategy consists in studying the formal derivative of Eq. (2.57) to get a uniform H 2 bound for (uε)ε>0 to obtain
a uniform W 1,6 bound on the sequence k̃ε , which does not depend on ε.

Before doing that, we first prove a general helpful regularity result.

3.2. General regularity theory

The general problem that we consider in this subsection is the following Stokes problem

−∇ · (a(x)∇u
) + ∇p = f in D′

per, (3.1)

∇ · u = 0 in D′
per, (3.2)
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(u,p) Q-periodic,
∫
Q

u = 0,

∫
Q

p = 0, (3.3)

where f ∈ F and a = a(x) is a Q-periodic function at least in L∞
loc(R

3), to make sure that problem (3.1)–(3.3) has a
solution (u,p) ∈ V × L2

loc(R
3).

Even if the regularity of the solution of such a Stokes Problem with nonconstant coefficients has not been directly
investigated (as far as we know), one may expect that:

let a = a(x) be a continuous Q-periodic function, then u ∈ H 2
loc

(
R

3
)
.

In the remainder, we shall prove a weaker result, but which presents the advantage that the proof is very simple and
which is also a preparation to the next results we shall prove.

As usual in the paper, f ∈ F.

Theorem 3.1. Assume that a = a(x) is Q-periodic and a ∈ W
1,∞
loc (R3). Let (u,p) ∈ V × L2

loc(R
3) be a solution to

problem (3.1)–(3.3). Then (u,p) ∈ (H 2
loc(R

3))3 × H 1
loc(R

3).

Proof. Because a ∈ L∞
loc(R

3) and is Q-periodic, the existence of a unique periodic solution u ∈ V ×L2
loc(R

3) to prob-
lem (3.1)–(3.3) is a consequence of Lax–Milgram theorem combined to De Rham theorem and the Neças estimates
(see in [20], Chapter 1, §2).

The result will be obtained by deriving Eqs. (3.1), (3.2).
Let us consider the following Stokes problem where D and P are unknowns.

−∇ · (a(x)∇D
) + ∇P = ∇f + ∇ · (∇a ⊗ ∇u) in D′

per, (3.4)

∇ · D = 0 in D′
per, (3.5)

(D,P) Q-periodic,
∫
Q

D = 0,

∫
Q

P = 0. (3.6)

In the problem above, D = (di
r )1�i,r�3 is a second order tensor while P = (Pr)1�r�3 is a first order tensor. Eqs. (3.4)

and (3.5) can be rephrased as

−∂j

(
a(x)∂j d

i
r

) + ∂iPr = ∂rf
i + ∂j

(
∂ra∂ju

i
)
, (3.7)

∂id
i
r = 0, (3.8)

by using the convention of the repeated indexes summation. Notice first that because f ∈ F, ∇f ∈ L2
loc and is a periodic

field with a mean equal to zero. Next one has −∇ · (∇a ⊗ ∇u) ∈ (V ⊗ V )′, because a ∈ W
1,∞
loc and ∇u ∈ L2

loc, both
being periodic. This term being also periodic with zero mean value, one knows thanks to Lax–Milgram theorem that
there exists a unique D ∈ V ⊗ V such that

∀E = (
ei
r

)
1�i,r�3 ∈ V ⊗ V, (3.9)∫

Q

a(x)∂j d
i
r∂j e

i
r =

∫
Q

∂rf
iei

r −
∫
Q

∂ra∂ju
iei

r . (3.10)

The existence of P ∈ L2
loc being such that (D,P) is a solution to problem (3.4)–(3.6), is a consequence of De Rham’s

theorem combined with the classical Necas estimates.
We prove now that D = ∇u, which will show the (H 2

loc)
3 regularity of u.

Let E = (ei
r )1�i,r�3 ∈ V ⊗ V . Take v = (∂re

1
r , ∂re

2
r , ∂re

3
r ) ∈ V as vector test in (3.4). We have∫

a(x)∂ju
i∂j ∂re

i
r =

∫
f i∂re

i
r . (3.11)
Q Q
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Integrating by part with respect to r and using the periodic boundary condition yields in the sense of the distributions

−〈
∂r

(
a(x)∂ju

i
)
, ∂j e

i
r

〉 = −
∫
Q

∂rf
iei

r . (3.12)

Therefore〈
a(x)∂j

(
∂ru

i
)
, ∂j e

i
r

〉 + ∫
Q

∂ra∂ju
iei

r =
∫
Q

∂rf
iei

r . (3.13)

By the fact that V = V , one deduces from (3.10) and uniqueness that D = ∇u. It is easily seen that ∇p = P and
Theorem 3.1 is proved. �
Corollary 3.1. Let (uε,pε, k̃ε) be a solution to the system (2.57)–(2.61). Then one has (uε,pε) ∈ (H 2

loc)
3 × H 1

loc.

Proof. One knows that k̃ε is a C1-class function already (see (2.64)). Because ν̃ε
t is a C2-class function, [ν̃ε

t (k̃
ε)]e is

at least in W
1,∞
loc . Then the result is a consequence of Theorem 3.1. �

3.3. H 2 estimate for uε and k̃ε

Recall that νt satisfies Properties 1.1, ν̃t satisfies Properties 2.1 and ν̃ε
t has been built in order to satisfy Proper-

ties 2.2.
Throughout the rest of the paper, (uε,pε, k̃ε) is a solution to the approximated system (2.57)–(2.61). The aim of

this part is to deduce a H 2 estimate on uε , uniform in ε. For doing this, one uses the equation deduced from the fluid
equation by a formal derivation.

We consider the system (3.14)–(3.16) below. It is obtained after derivating the terms in Eqs. (2.57) and (2.58),

−∇ · ([ν̃ε
t (k̃ε)

]e∇D
) − ∇ · ([(ν̃ε

t

)′
(k̃ε)∇ k̃ε

]e ⊗ D
) + ∇P = ∇f in D′

per, (3.14)

∇ · D = 0 in D′
per, (3.15)

(D,P) Q-periodic,
∫
Q

D = 0,

∫
Q

P = 0. (3.16)

As above, the unknowns are the tensor D = (di
r )1�i,r�3 and the vector field P = (Pi)1�i�3. By definition,

∇ · (ν̃ε
t (k̃ε)∇D

) = (
∂j

(
ν̃ε
t (k̃ε)∂j d

i
r

))
1�i,r�3, ∇P = (∂iPr)1�i,r�3,

and finally

∇ · ((ν̃ε
t

)′
(k̃ε)∇ k̃ε ⊗ D

) = (
∂j

((
ν̃ε
t )

′(k̃ε)∂r k̃εd
i
j

))
1�i,r�3, ∇ · D = (

∂id
i
r

)
1�r�3.

The scalar k̃ε is extended by 0 in Q \ Qε without changing the notation.

Lemma 3.1. System (3.14)–(3.16) has a unique solution (Dε,Pε) ∈ V ⊗V × (L2
loc)

3 and one has Dε = ∇uε a.e. in R.

Proof. Let us consider the variational problem

Find D ∈ V ⊗ V such that (3.17)

∀E ∈ V ⊗ V,

∫
Q

ν̃ε
t (k̃ε)∇D : ∇E +

∫
Q

(
ν̃ε
t

)′
(k̃ε)∇ k̃ε ⊗ D : ∇E =

∫
Q

∇f : E. (3.18)

Above “:” denotes the contracted tensor’s product, that means that A : B = a
j
i B

j
i for second order tensors, A : B =

ak
ijB

k
ij for three order, and so on. In particular, Eq. (3.18) means that ∀E = (ei

r )1�i,r�3 one has∫
ν̃ε
t (k̃ε)∂j d

i
r∂j e

i
r +

∫ (
ν̃ε
t

)′
(k̃ε)∂r k̃εd

j
i ∂j e

i
r =

∫
∂rf

iei
r , (3.19)
Q Q Q
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where f = (f 1, f 2, f 3).
Thanks to the results above (in particular (2.64), (2.29) and (2.30)), one already knows that

ν̃ε
t (k̃

ε) � ν > 0, ν̃ε
t (k̃

ε) ∈ L∞(Q),
(
ν̃ε
t

)′
(k̃ε)∇ k̃ε ∈ L∞(Q).

Therefore, (3.17), (3.18) has a unique solution Dε thanks to Lax–Milgram theorem. The existence of Pε such that
(3.14)–(3.16) is satisfied is a consequence of De Rham theorem (see also in [33], Proposition 1.1, Chapter 1).

One already knows that uε ∈ (H 2
loc)

3, thanks to Corollary 3.1. Let E = (ei
r )1�i,r�3 ∈ V ⊗ V (see the definition of

V in (2.68)). Let us take the vector field v = −(∂re
1
r , ∂re

2
r , ∂re

3
r ) as test tensor in the variational fluid equation (2.72).

This leads to

−
∫
Q

ν̃ε
t (k̃ε)∂ju

i
ε∂j ∂re

i
r = −

∫
Q

f i∂re
i
r . (3.20)

By a part integration using the periodic conditions, a legal computation thanks to the regularity mentioned above,
(3.20) becomes∫

Q

ν̃ε
t (k̃ε)∂j

(
∂ru

i
ε

)
∂j e

i
r +

∫
Q

(
ν̃ε
t

)′
(k̃ε)∂r k̃ε∂ju

i
ε∂j e

i
r =

∫
Q

∂rf
iei

r . (3.21)

We stress that in (3.21), each term makes sense. Comparing (3.21) to (3.19), one deduces that Dε = ∇uε by uniqueness
of the solution to problem (3.17), (3.18) combined to the fact that V = V . The proof is finished. �

In the following, we still note Dε = ∇uε .

Theorem 3.2. Assume that f ∈ F (see (1.8)). There exists a constant κ = κ(θ,‖ν′
t‖∞) such that for every � satisfying

the condition

�ν > κ
(
1 + ν

− 3
2(1+θ)

∥∥[f]Q
∥∥ 3

1+θ

(L2(Q))3

)
, (3.22)

there exists a constant ζ = ζ(f, ν, �, θ,‖ν′
t‖∞) being such that for all ε > 0,∥∥[Dε]Q

∥∥
(H 1(Q))3×3 � ζ. (3.23)

Corollary 3.2. When condition (3.22) is satisfied, the sequence (uε)ε>0 is bounded in (H 2
loc(R

3))3.

Corollary 3.3. Under the condition (3.22), there exists a constant υ = υ(f, ν, �, θ,‖ν′
t‖∞) being such that for all

ε > 0, one has

‖k̃ε‖H 2(Qε)
� υ. (3.24)

Proof of Theorem 3.2. We take Dε = ∇uε as test tensor in (3.18). We first note that since di
j = ∂ju

i , then ∂j d
i
r =

∂rd
i
j . Therefore, one has∫

Q

(
ν̃ε
t

)′
(k̃ε)∇kεDε ⊗ ∇Dε =

∫
Q

(
ν̃ε
t

)′
(k̃ε)∂r k̃εd

i
j ∂j d

i
r =

∫
Q

(
ν̃ε
t

)′
(k̃ε)∂r k̃εd

i
j ∂rd

i
j , (3.25)

which yields∫
Q

(
ν̃ε
t

)′
(k̃ε)∇kεDε ⊗ ∇Dε = 1

2

∫
Q

(
ν̃ε
t

)′
(k̃ε)∂r k̃ε∂r

(
di
j

)2
. (3.26)

Integrating by parts yields,

1

2

∫ (
ν̃ε
t

)′
(k̃ε)∂r k̃ε∂r

(
di
j

)2 = −1

2

∫
∂r

[(
ν̃ε
t

)′
(k̃ε)∂r k̃ε

](
di
j

)2
, (3.27)
Q Q
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and

−
∫
Q

∂r

[(
ν̃ε
t

)′
(k̃ε)∂r k̃ε

](
di
j

)2 = −
∫
Q

(
ν̃ε
t

)′′
(k̃ε)(∂r k̃ε)

2(di
j

)2 +
∫
Q

(−k̃ε)
(
ν̃ε
t

)′
(k̃ε)

(
di
j

)2
. (3.28)

Therefore, taking Dε as test tensor in (3.18) yields∫
Q

ν̃ε
t (k̃ε)|∇Dε|2 +

∫
Q

[−(
ν̃ε
t

)′′
(k̃ε)

]|∇ k̃ε|2|Dε|2 +
∫
Q

(−k̃ε)
(
ν̃ε
t

)′
(k̃ε)|Dε|2 =

∫
Q

∇f : Dε. (3.29)

The function ν̃ε
t being a concave function (it plays a role here, see (2.27) and (1.13)), one has −(ν̃ε

t )
′′(k̃ε) � 0 and

Eq. (3.29) yields∫
Q

ν̃ε
t (k̃ε)|∇Dε|2 +

∫
Q

(−k̃ε)
(
ν̃ε
t

)′
(k̃ε)|Dε|2 �

∫
Q

∇f : Dε. (3.30)

By using the equation satisfied by k̃ε (see (2.59)), inequality (3.30) becomes∫
Q

ν̃ε
t (k̃ε)|∇Dε|2 +

∫
Q

(
ν̃ε
t

)′
(k̃ε)

(
ν̃ε
t (k̃ε)|D|2) � ρε · |Dε|2 � 1

�

∫
Q

(
ν̃ε
t

)′
(k̃ε)|Dε|2Eε(k̃ε) +

∫
Q

∇f : Dε. (3.31)

Now thanks to the fact that ν̃ε
t is a nondecreasing function (see (2.26)) and ν̃ε

t is nonnegative, (3.31) combined to
(2.30) yields

ν

∫
Q

|∇Dε|2 � 1

�

∫
Q

(
ν̃ε
t

)′
(k̃ε)|Dε|2Eε(k̃ε) +

∫
Q

∇f : Dε. (3.32)

Bound (2.24) states that ‖(ν̃ε
t )

′‖∞ � ‖(νt )
′‖∞ and recall that (νt )

′ is bounded. Therefore (3.32) yields

ν

∫
Q

|∇Dε|2 � ‖(νt )
′‖∞

�

∫
Q

|Dε|2Eε(k̃ε) +
∫
Q

∇f : Dε. (3.33)

The first term in the r.h.s of (3.33) is considered in what follows. By Cauchy–Schwarz inequality, one has

‖(νt )
′‖∞

�

∫
Q

|Dε|2Eε(k̃ε) � ‖(νt )
′‖∞

�
‖Eε‖L2(Qε)

‖D‖2
(L4(Qε))3×3 , (3.34)

and by Sobolev inequality,

‖(νt )
′‖∞

�

∫
Q

|Dε|2Eε(k̃ε) � H
‖(νt )

′‖∞
�

‖Eε‖L2(Qε)

∫
Q

|∇Dε|2. (3.35)

When inserting in (3.35) estimate (2.97) for Eε , one deduces (where the constant Υ below does not depend on ε, but
on θ )

‖(νt )
′‖∞

�

∫
Q

|Dε|2Eε(k̃ε) � Υ
‖(νt )

′‖∞
�

[
1 + ν

− 3
2(1+θ) ‖f‖

3
(1+θ)

L2(Q)

] ∫
Q

|∇Dε|2. (3.36)

Let us write

κ = Υ
∥∥(νt )

′∥∥∞. (3.37)

By reporting (3.36) inside (3.33), one obtains(
ν − κ

�

[
1 + ν

− 3
2(1+θ) ‖f‖

3
(1+θ)

L2(Q)

])∫
|∇Dε|2 �

∫
∇f : Dε. (3.38)
Q Q
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One knows that

σ = σ(θ, f, �, ν) =
(

ν − κ

�

[
1 + ν

− 3
2(1+θ) ‖f‖

3
(1+θ)

L2(Q)

])
> 0 (3.39)

by the hypothesis (3.22) in Theorem 3.2. Therefore, (3.38) can be rewritten under the following form

σ

∫
Q

|∇Dε|2 �
∫
Q

f : Dε, σ > 0. (3.40)

By Cauchy–Schwarz inequality combined with Poincaré’s inequality one has

σ

∫
Q

|∇Dε|2 � Cp‖∇f‖(L2(Q))3×3‖∇D‖(L2(Q))3×3×3 . (3.41)

Finally, one uses Young inequality to derive the inequality

‖∇Dε‖(L2(Q))3×3×3 � ζ = √
Cp

‖∇f‖(L2(Q))3×3

σ
(3.42)

where σ is defined by (3.39). Inequality (3.42) can be rewritten under the form (3.23) and Theorem 3.2 is entirely
proved. �

Corollary 3.2 is obvious because Dε = ∇uε . We are left to prove Corollary 3.3.

Proof of Corollary 3.3. Notice that the sequence of the Q-restrictions ([uε]Q)ε>0 are bounded in the space (H 2(Q))3

and then in (W 1,6(Q))3. Therefore, the sequence ([|∇uε|2]Q)ε>0 is bounded in L3(Q).
We also have ν̃ε

t � ν̃t . The scalar k̃ε is extended by zero on Q \ Qε . Therefore the growth condition (2.13) yields∥∥ν̃ε
t (k̃ε)

∥∥
L6(Q)

� ρ
[
1 + ‖k̃ε‖α/(1+θ)

L6α/(1+θ)(Q)

]
. (3.43)

Therefore when p = 3/(2 + θ), there exists a constant Ξ = Ξ(ν, θ, f) being such that for any ε > 0,∥∥ν̃ε
t (k̃ε)

∥∥
L6(Q)

� Ξ. (3.44)

To obtain this inequality we have used

– the W 1,p estimates (2.67) satisfied by k̃ε;
– the Sobolev inequality;
– the fact that α � 1/2.

Consequently, for any ε > 0 one has ν̃ε
t (k̃ε)|[∇uε]Qε |2 ∈ L2(Qε) and there exists a constant which does not depend

on ε and denoted by Ξ̃ = Ξ̃(θ, ν, f) being such that∥∥ν̃ε
t (k̃ε)|[∇uε]Qε |2

∥∥
L2(Qε)

� Ξ̃ . (3.45)

Moreover, thanks to Young inequality, one also has∥∥[
ν̃ε
t (k̃ε)

∣∣[∇uε]Qε

∣∣2]
� ρε

∥∥
L2(Qε)

� Ξ̃ . (3.46)

We combine this last estimate with the L2 estimate (2.97) on Eε obtained in Subsection 2.3.4 when proving Theo-
rem 2.1. Then, one observes that the k̃ε’s equation is an elliptic equation with a second hand side uniformly bounded
in L2, that means

−k̃ε = Kε, (3.47)

where

‖Kε‖L2(Q ) � Φ = Φ
(
f, ν, θ,

∥∥(νt )
′∥∥ , �

)
.

ε ∞
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Thus, the H 2 claimed estimates (3.24) satisfied by k̃ε follows from the classical elliptic theory. Recall that here the
constant υ involved in (3.24) does not depend on ε thanks to the geometrical considerations of Subsection 2.3.2. �

Before passing to the limit. The space H 2(Qε) ∩ H 1
0 (Qε) is embedded in W

1,6
0 (Qε), and the constant can be

chosen large enough, independent on ε (see Subsection 2.3.2). In what follows, we shall consider the function k̃ε

equal to itself in Qε and equal to 0 in Q \ Qε without any change of the notation. This new function lies in W
1,6
0 (Q)

and for this function, one has the estimate, uniform in ε,

‖k̃ε‖W
1,6
0 (Q)

� Θ = Θ
(
f, ν, θ,

∥∥(νt )
′∥∥∞, �

)
. (3.48)

There is also an other consequence. The space W
1,6
0 (Q) is embedded in C0(Q) because we are in R

3. Therefore, each
k̃ε remains a continuous function and the following estimate holds, uniform in ε,

‖k̃ε‖L∞(Q) � Θ̃ = Θ̃
(
f, ν, θ,

∥∥(νt )
′∥∥∞, �

)
. (3.49)

We are now ready to pass to the limit in the approximated system when ε tends to 0. Throughout the remainder, one
assumes that (3.22) holds (also referred as (1.18)).

3.4. Passing to the limit: proof of Theorem 1.1

We now finish the proof of Theorem 1.1. To do this, we must pass to the limit in the approximated system (2.57)–
(2.61) when ε tends to zero.

Notice that thanks

– to estimate (3.49);
– to the definition of ν̃ε

t which is equal to ν̃t on the range [0,1/ε] (Subsection 2.3.1),

when ε is such that ε � (Θ̃)−1, one has

ν̃ε
t (k̃ε) = ν̃t (k̃ε) = ν̃t ◦ TΘ̃(k̃ε) = ˜̃νt (k̃ε), (3.50)

and the function ˜̃νt involved above is a bounded nonnegative continuous function (recall that TΘ̃ is the truncation
function at height Θ̃ as defined by the sentence (2.19)).

One denotes by Ẽε the function defined by

Ẽε = Eε ◦ TΘ̃ . (3.51)

On one hand, one has

Eε(k̃ε) = Ẽε(k̃ε), (3.52)

on the other hand, the sequence (Ẽε)ε>0 is uniformly bounded in L∞(R) and uniformly converges to Ẽ = E ◦TΘ̃ . The
equations satisfied by (uε,pε, k̃ε) can be written under the form

−∇ · ([ ˜̃νt (k̃ε)
]e∇uε

) + ∇pε = f in D′
per, (3.53)

∇ · uε = 0 in D′
per, (3.54)

−k̃ε = ( ˜̃νt (k̃ε)
[|∇uε|2

]
Qε

)
� ρε − Ẽε(k̃ε)

�
in D′(Qε), (3.55)

(uε,pε) Q-periodic,
∫
Q

uε = 0,

∫
Q

pε = 0, (3.56)

k̃ε|∂Qε = 0, k̃ε � 0 a.e. in Qε. (3.57)

The problem is now a problem with a bounded eddy viscosity, as considered in many former works, see for in-
stance [24]. Therefore, arguing as in [24] where in addition we also use the H 2-estimate for u (see for instance (3.23))
and the W

1,6
0 -estimate for k̃ε (see (3.48)), one can extract from the sequence (uε, k̃ε)ε>0 a subsequence (still denoted

by the same) which converges to some (u, k̃) ∈ [V ∩ H 2 (R3)] × W
1,6

(Q) and such that
loc 0
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– (uε)ε>0 weakly converges to u in H 2
loc(R

3), strongly in V .
– (k̃ε)ε>0 converges to k̃ � 0

◦ weakly in W
1,6
0 (Q),

◦ uniformly.
– (( ˜̃νt (k̃ε)[|∇uε|2]Qε) � ρε)ε>0 strongly converges in L1(Q) to ˜̃νt (k̃)[|∇u|2]Q.

Notice that in addition one has

‖k̃‖L∞(Q) � Θ̃. (3.58)

The end of the proof follows now the scheme of former proofs written several times before. That is why we skip the
details. Therefore, there exists p ∈ L2

loc(R
3) be such that

−∇ · ([ ˜̃νt (k̃)
]e∇u

) + ∇p = f in D′
per, (3.59)

∇ · u = 0 in D′
per, (3.60)

−k̃ = ˜̃νt (k̃)
[|∇u|2]

Q
− Ẽ(k̃)

�
in D′(Q), (3.61)

(u,p) Q-periodic,
∫
Q

u = 0,

∫
Q

p = 0, (3.62)

k̃|∂Q = 0, k̃ � 0 a.e. in Q. (3.63)

Finally one has, by the L∞ estimate (3.58) for k̃ and ˜̃νt = ν̃t , combined to Ẽ = E on the range [0, Θ̃],
˜̃νt (k̃) = ν̃t (k̃), Ẽ(k̃) = E(k̃).

Therefore, (u,p, k̃) ∈ [V ∩ H 2
loc(R

3)] × L2
loc(R

3) × W
1,6
0 (Q) is a solution to system (2.7)–(2.11), and thanks to

Proposition 2.1,(
u,p,β−1

t (k̃)
) ∈ [

V ∩ H 2
loc

(
R

3)] × L2
loc

(
R

3) × W
1,6
0 (Q)

is a solution to problem (1.1)–(1.5). The proof of our existence result is now complete.

4. Case where � is not a constant

4.1. Orientation and preliminary result

We prove in this section Theorem 1.2. In this case, νt = νt (k, �). We do the following assumptions

νt (k, �) = ν0 + C1�(k + ρ)α, ν0 > 0,C1 > 0, ρ > 0, 0 < α <
1

2
, (4.1)

μt = μ0 ∈ R
�+, (4.2)

ε(k) = k1+θ

�(x)
, 0 < θ < 1/2, (4.3)

� is a function of class C2, −� � 0, 0 < �m � �(x) < �M < ∞, (4.4)(
ν − Π̃

�m

− ‖∇�‖L∞Ω̃

)
> 0. (4.5)

The constants Π̃ and Ω̃ depend on f, ρ, α, ν and θ and will be made clear in the remainder. Therefore, we are looking
at the system:

−∇ · ([νt (k, �)
]e∇u

) + ∇p = f in D′
per, (4.6)

∇ · u = 0 in D′
per, (4.7)
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−μ0k = νt (k, �)
[|∇u|2]

Q
− k1+θ

�(x)
in D′(Q), (4.8)

(u,p) Q-periodic,
∫
Q

u = 0,

∫
Q

p = 0, (4.9)

k|∂Q = 0, k � 0 a.e. in Q. (4.10)

We note that we cannot take μt = μt(k, �) and we assume that μt is a constant. This is because of transformation
(2.4) which aims to replace the variable k by k̃ and the operator −∇ · (μt∇k) by −k̃. Indeed, if one assumes
for instance that μt = μt(k, �) = μ0 + C2�(k + τ)α , the transformation (2.4) will induce in the k̃-equation several
additional nonlinear terms that we cannot currently estimate. Without loss of generality, we shall assume that μ0 = 1.
Therefore, βt = Id and k = k̃, ν̃t = νt . The price to pay is also the fact that for a regularity reason, one cannot take
ε(k) = k

√
k/�(x), here replaced by k1+θ /�(x), where 0 < θ < 1/2.

Moreover, as we shall see in the remainder, the fact that we have to restrict ourselves to the case α < 1/2 is due to
the appearance of the term∫

Q

∂2νt

∂k∂�
(k, �)∇� · ∇k|D|2

when one wants to obtain an estimate for the variable D. Of course, there is no hope to invoke a sign argument.
Therefore, we just can wait for a regularity argument. Notice that when νt (k, �) = ν0 + C1�(k + ρ)α , then

∂2νt

∂k∂�
(k, �) = C1α

(k + ρ)1−α
,

and here k � 0. We prove the following lemma.

Lemma 4.1. Assume that k � 0 is a function in the space H 1
loc(Q) and that there exists a constant C such that

∀n ∈ N,

∫
n�k�n+1

|∇k|2 � C. (4.11)

Then for any 0 < α < 1/2,

∇k

(k + ρ)1−α
∈ L2(Q). (4.12)

Proof. One has∫
Q

|∇k|2
(k + ρ)2−2α

=
∞∑

n=0

∫
n�k�n+1

|∇k|2
(k + ρ)2−2α

.

By using (4.11),∫
n�k�n+1

|∇k|2
(k + ρ)2−2α

� C
1

(n + ρ)2−2α
,

hence∫
Q

|∇k|2
(k + ρ)2−2α

� C

∞∑
n=0

1

(n + ρ)2−2α
= CS(ρ) < ∞,

since α < 1/2, and the lemma is proved. �
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4.2. Proof of Theorem 1.2

As we have shown, the heart of the proof of Theorem 1.1 is estimate (3.42). The process of building approximations
remains the same in the present case as well as passing to the limit. Indeed, we notice that νt is continuous with respect
to the k-variable, which is the required property to pass to the limit in the viscous term. Therefore, we just have to
derive the same “à priori” estimate as (3.42), the remainder of the proof following the same scheme as in the case �

constant. Recall that u is a periodic solution to

−∇ · (νt (k, �)∇u
) + ∇p = f, (4.13)

where we have omitted here to quote the periodic extension of νt and k for the simplicity. Moreover, we take grant
that k � 0, as already proved in Lemma 2.2, the proof here being exactly the same (by replacing the term ε(k) by
k|k|θ /�(x)).

Deriving formally Eq. (4.13) yields, with D = (di
j )1�i,j�3 = ∇u and P = ∇p,

−∇ · (νt (k, �)∇D) − ∇ ·
([

∂νt

∂k
(k, �)∇k + ∂νt

∂�
(k, �)∇�

]
⊗ D

)
+ ∇P = ∇f. (4.14)

We take D as test tensor in (4.14) and we integrate by parts, using as before the rule ∂j d
i
r = ∂rd

i
j . We obtain (we omit

the details, the calculus being the same as in the previous section)∫
Q

νt (k, �)|∇D|2 − 1

2

∫
Q

∇ ·
[
∂ν̃t

∂k
(k, �)∇k + ∂νt

∂�
(k, �)∇�

]
|D|2 =

∫
Q

∇f · D. (4.15)

One has

∇ ·
[
∂νt

∂k
(k, �)∇k + ∂νt

∂�
(k, �)∇�

]
= ∂νt

∂k
(k, �)k + ∂νt

∂�
(k, �)� + ∂2νt

∂k2
(k, �)|∇k|2

+ ∂2νt

∂�2
(k, �)|∇�|2 + 2

∂2νt

∂k∂�
(k, �)∇k · ∇�. (4.16)

Observe now that

∂2νt

∂�2
(k, �) = 0,

∂νt

∂�
(k, �) = C1(k + ρ)α � 0,

∂2νt

∂k∂�
(k, �) = C1α

(k + ρ)1−α

and

∂2νt

∂k2
(k, �) = −C1

α(1 − α)�(x)

(k + ρ)2−α
� 0.

Using the equation

−k = ν̃t |∇u|2 − k1+θ

�(x)

we obtain:∫
Q

νt (k, �)|∇D|2 + 1

2

∫
Q

νt (k, �)C1α�(x)(k + ρ)α−1|D|2|∇u|2 − 1

2

∫
Q

k1+θ

�(x)
|D|2 + 1

2

∫
Q

C1(k + ρ)α(−�)|D|2

+ 1

2

∫
Q

1

2
C1α(1 − α)�(x)(k + ρ)α−2|∇k|2|D|2 − C1α

∫
Q

∇k

(k + ρ)1−α
· ∇�|D|2

=
∫

∇f · D. (4.17)
Q
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Thanks to the hypothesis −� � 0 and the fact that � is a C2-class function on Q and νt � ν, one has

ν

∫
Q

|∇D|2 � 1

�m

∫
Q

k1+θ |D|2 + C1α‖∇�‖L∞
∫
Q

∇k

(k + ρ)1−α
|D|2 +

∫
Q

∇f · D. (4.18)

One already knows by the analogue of (2.67) that k ∈ ⋂
p<3/2 W

1,p

0 (Q) and therefore k ∈ ⋂
p<3 Lp(Q). Because

θ < 1/2, k1+θ ∈ L2(Q) and∥∥k1+θ
∥∥

L2(Q)
� Π = Π

(‖f‖L2(Q), θ
)
. (4.19)

Consequently

1

�m

∫
Q

k1+θ |D|2 � 1

�m

Π‖D‖2
L4(Q)

� 1

�m

ΠCs

∫
Q

|∇D|2 = 1

�m

Π̃

∫
Q

|∇D|2, (4.20)

where Cs is the Sobolev constant. On the other hand, thanks to (2.83) and Lemma 4.1 one has∫
Q

∇k

(k + ρ)1−α
|D|2 �

∥∥∥∥ ∇k

(k + ρ)1−α

∥∥∥∥
L2(Q)

‖D‖2
L4(Q)

�
C2

p‖f‖L2(Q)

ν
S(ρ)‖D‖2

L4(Q)

which yields combined to Sobolev inequality to an inequality under the form∫
Q

∇k

(k + ρ)1−α
|D|2 � Ω

∫
Q

|∇D|2, (4.21)

where Ω = Ω(ρ, ν, f). Therefore (4.18) yields, by using (4.20) and (4.21)(
ν − Π̃

�m

− ‖∇�‖L∞Ω̃

)∫
Q

|∇D|2 �
∫
Q

∇f · D, (4.22)

where Ω̃ = C1αΩ . By using hypothesis (4.5) the end of the proof is obvious.
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