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Abstract

The mathematical study of travelling waves in the potential flow of two superposed layers of perfect fluid can be set as an ill-
posed evolutionary problem, in which the horizontal unbounded space variable plays the role of “time”. In this paper we consider
two problems for which the bottom layer of fluid is infinitely deep: for the first problem, the upper layer is bounded by a rigid top
and there is no surface tension at the interface; for the second problem, there is a free surface with a large enough surface tension.
In both problems, the linearized operator Lε (where ε is a combination of the physical parameters) around 0 possesses an essential
spectrum filling the entire real line, with in addition a simple eigenvalue in 0. Moreover, for ε < 0, there is a pair of imaginary
eigenvalues which meet in 0 when ε = 0 and which disappear in the essential spectrum for ε > 0. For ε > 0 small enough, we
prove in this paper the existence of a two parameter family of periodic travelling waves (corresponding to periodic solutions of the
dynamical system). These solutions are obtained in showing that the full system can be seen as a perturbation of the Benjamin–Ono
equation. The periods of these solutions run on an interval (T0,∞) possibly except a discrete set of isolated points.
© 2006

Résumé

La recherche d’ondes progressives dans un système de deux couches superposées de fluides parfaits peut s’écrire comme un
problème d’évolution mal posé, pour lequel la variable horizontale non bornée remplace le temps. Dans cet article, on étudie deux
problèmes pour lesquels la couche inférieur de fluide est de profondeur infinie : dans le premier problème la couche supérieure est
bornée par une surface rigide et il n’y a pas de tension de surface à l’interface ; pour le deuxième problème, la surface est libre
mais avec une tension de surface élevée. Pour les deux problèmes, l’opérateur linéarisé à l’origine Lε (où ε est une combinaison
des paramètres physiques) possède, en plus d’une valeur propre simple en 0, un spectre essentiel sur tout l’axe réel. De plus, pour
ε < 0, il y a une paire de valeurs propres imaginaires pures, qui se rencontrent à l’origine pour ε = 0, et qui disparaissent dans le
spectre essentiel pour ε > 0. Pour ε > 0 assez petit, on montre l’existence d’une famille à deux paramètres d’ondes progressives
périodiques (qui correspondent à des solutions périodiques du système dynamique). Ces solutions sont obtenues en montrant que le
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système dynamique peut se réduire à une perturbation de l’équation de Benjamin–Ono. Les périodes de ces solutions appartiennent
à un intervalle (T0,∞) à l’exception possible d’un ensemble discret de points isolés.
© 2006 . .
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1. Introduction

The search for travelling waves in a system of superposed perfect fluid layers, having a potential flow in each
layer, may be formulated as a “spatial dynamical system”. Such “spatial dynamics” was introduced in the 80’s by
K. Kirchgässner [8] for solving an elliptic problem in a strip. Writing the system in the frame moving with the
velocity of the travelling wave, we look for steady solutions. In choosing the unbounded spatial coordinate “x” as the
evolutionary variable (and then replacing “time”) the problem reads

dU

dx
= F(U), x ∈ R, (1)

where U takes its values in general in an infinite dimensional space. The initial value problem is then ill-posed, but
looking for bounded solutions on the real line leads to a sort of “boundary value” problem. When the initial problem
has a symmetry x → −x, then the vector field F anti-commutes with a symmetry S, and the dynamical system is
said to be “reversible”. An easy consequence is that if U(x) is a solution, then SU(−x) is also a solution. The spatial
dynamics consideration allows in particular to study the asymptotics at infinity. For instance, periodic solutions or
homoclinic orbits of (1) correspond respectively to periodic travelling waves or to solitary waves. A review of results
concerning problems where all layers have finite thickness and treated as a spatial dynamical system is made in the
paper [5].

In the present paper, we study two problems for which the bottom layer of fluid is infinitely deep. The two problems
consist in a system of two superposed layers of immiscible perfect fluids (densities ρ1 (upper layer) and ρ2 (bottom
layer)) assuming that there is no surface tension at the interface and assuming that the flow is potential in each layer
and subject to gravity. The thickness at rest of the upper layer is h while the bottom layer is infinitely deep. We
are interested in travelling waves of horizontal velocity c. The dimensionless parameters are ρ = ρ1/ρ2 ∈ (0,1) and
λ = gh/c2 (inverse of (Froude number)2). In the first problem we assume that the upper layer is bounded above by a
rigid horizontal top (see Fig. 1). Such a case was treated, using a different formulation, by Amick [1] and Sun [11],
where the existence of a solitary wave is shown, asymptotically looking like the Benjamin–Ono solitary wave.

In the second problem we assume that there is a free upper surface with surface tension T (see Fig. 2), and there
is a new dimensionless number b = T/(ρ1hc2) (Weber number). Notice that this situation is studied in [7] in the case
when b = 0, where the existence of generalized solitary waves is shown, the principal part being again solution of the
Benjamin–Ono equation. In the present paper, the physical problem is different since we consider it for a large enough
parameter b.

Fig. 1. Problem 1. Two layers, the upper one being
bounded by a rigid top.

Fig. 2. Problem 2. Two layers, free upper surface with
large surface tension.
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We show in Section 2 how these problems can be formulated as a reversible dynamical system (1), where U = 0
corresponds to a uniform state, and where F depends on the parameters λ and ρ (and b for problem 2). The Galilean
invariance of the physical problem induces a reflection symmetry of the system in the moving frame. This leads to the
reversibility of system (1).

The study near the origin of dynamical systems (1), which depend on a parameter ε consists first on the computation
of the spectrum of the linearized operator Lε around an equilibrium, taken at the origin. The system (1) reads

dU

dx
= LεU + Nε(U), x ∈ R, (2)

where Nε is the nonlinear term. The reversibility symmetry S leads to the symmetry of the eigenvalues with respect
to real and imaginary axis. In the case when the linear operator Lε has a “spectral gap”, the system (2) can be reduced
to a system of finite dimensional ordinary differential equations by using the center manifold reduction theorem. This
leads to the study of a perturbed reversible normal form. In such a case the description near the imaginary axis of the
spectrum of the linear operator is sufficient to understand the dynamics of small reversible solutions of (2) (see for
instance [5]).

In the present work, the linearized operator around 0: Lε = DUF(0), where ε = ρ − λ(1 − ρ) for problem 1, and
ε = 1 −λ(1 −ρ) for problem 2, possesses an essential spectrum on the entire real axis. Therefore, there is no spectral
gap and the center manifold reduction cannot apply. In addition to the essential spectrum, the linear operator Lε

possesses a simple eigenvalue in 0. This eigenvalue results from the existence of a one parameter family of stationary
solutions of (1) which correspond physically to the sliding with uniform velocity of the upper surface over the bottom
one. More precisely, the family of equilibria of (1) reads U(x) = uξ0, u ∈ R, where ξ0 is the (symmetric) eigenvector
associated with the 0 eigenvalue. Moreover (when b is large enough for problem 2), for ε < 0, Lε has two conjugated
imaginary eigenvalues, which meet at the origin for ε = 0 and which disappear in the essential spectrum for ε > 0
(see Fig. 3).

This bifurcation has been encountered in [3], in which the existence of a one parameter family of bifurcated
homoclinic solutions of (1) approximated by the Benjamin–Ono solitary wave is proved. Because of the presence of
the essential spectrum in this paper, the sole description of the spectrum is not sufficient to prove the existence of these
solutions. In particular, the proof of the existence of these solutions is based on a delicate study of the Fourier transform
of (2), then the main tool is the resolvent operator (ik − Lε)

−1 for k real. In presence of an essential spectrum on the
real axis, the singularity of the resolvent in k = 0 is unknown. That’s why a meticulous description of the resolvent is
performed in [3]: some assumptions on the resolvent of Lε are given in order to describe the singularity in k = 0. It
is checked in [3] that these assumptions are satisfied in both water-wave problems presented above. Therefore, there
exists a one parameter family of solitary waves for problems 1 and 2 (corresponding to the homoclinic solutions in
the spatial dynamics formulation). These waves are approximated by the Benjamin–Ono solitary waves (see [4,9]).

The aim of the present paper is to prove the existence of a family of bifurcating periodic solutions of (2). The
bifurcation of periodic solutions might be studied for ε < 0 in using the way of [6] which generalizes the Lyapunov–
Devaney method for finite dimensional reversible vector fields. However, there is an additional technical difficulty
due to the fact that the two imaginary eigenvalues are close to 0 together with the occurrence of 0 in the continuous
spectrum as in [6]. Notice that the periodic waves obtained in [7] are of the same nature as in [6]. On the contrary,
the solutions which interest us below are the bifurcating periodic solutions for ε > 0. These ones are of different
nature, and similar to the ones observed in the case of a three-dimensional one parameter family of reversible vector
fields where 0 is a fixed point and where in addition to the 0 fixed eigenvalue of the linearized operator, a pair of

Fig. 3. Spectrum of Lε .
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imaginary eigenvalues collide at 0 and become a pair of two real opposite eigenvalues. In this three-dimensional case,
for every homoclinic orbit near 0, there is a one-parameter family of periodic orbits starting from a point at the elliptic
equilibrium and growing until the homoclinic to the hyperbolic equilibrium (see for example the result in [5] for
the corresponding situation). We show below that the periodic solutions found in the present paper are approximated
by solutions of the periodic version of the Benjamin–Ono equation. These periodic solutions correspond to periodic
travelling waves in both water-wave problems. Actually, we can prove the existence of such periodic solutions for the
general dynamical system having the spectrum as in Fig. 3, and satisfying the generic properties presented for the
water-wave problems in Sections 2.3 and 2.4. Therefore, the properties on the resolvent and on the nonlinear term
(see Sections 2.3 and 2.4) for the water-wave problems are written in the general frame of spatial dynamics. These
properties correspond to weaker assumptions than the ones made in [3].

The idea for the proof of the existence of periodic solutions is to reduce the full system to a nonlocal scalar equation.
This equation turns out to be a perturbation of the Benjamin–Ono equation which reads as follows

u + 2π

T
H�(u

′) + ac0u
2 = c, (3)

where a and c0 are two coefficients given below (see (6) and (7)) and they are related to the physical parameters
of problem 1 and 2, aT is the period of the solutions and c is an arbitrary constant. The operator H� is the Hilbert
transform for the 2π -periodic functions defined by the relation

H�(f )(s) = 1

2π
p.v.

π∫
−π

f (τ)

tan( 1
2 (s − τ))

dτ.

The Hilbert transform can also be defined by the following relations H�(cos) = sin, H�(sin) = − cos and H�(const.) =
0. We know (see [2]) that the function vp defined for p > 2π by

vp(s) = v0

cos2(s/2) + (pv0/(2π))2 sin2(s/2)
, (4)

where v0 = 1 −√
1 − (2π/p)2 is a 2π -periodic solution (unique up to translation) of (3) when T = p, ac0 = −1 and

c = 0, and we can obtain explicitly other periodic solutions for c �= 0.
Before presenting the results of this paper, we need to perform a scaling in (2) which dilates the spectrum of Lε of

a factor 1/ε (see Section 2.2 for the explicit scaling). The new system reads

dU

dx
= LεU +Nε(U), U(x) ∈ D ⊂ H. (5)

The next step is the study of the resolvent operator (ik −Lε)
−1 on the imaginary axis (i.e. for k real) near the origin

and when k is large (see Section 2.3). In particular, the dispersion equation of both physical problems can be written
as ikεΔ(ε, k) = 0, where for k real

Δ(ε, k) = 1 + a|k| + O(εk2), (6)

and where a = 1 for problem 1, and a = λ(λ − 1)−1 for problem 2. The solutions of the dispersion equation give the
eigenvalues σ = ik of the linearized operator Lε . Some needed properties on the nonlinear term Nε are also given in
Section 2.4.

With the properties on the resolvent and on the nonlinear term, presented in Section 2, we obtain in Section 3 the
existence of a two parameter family of periodic solutions of (5), corresponding to periodic travelling waves for the
water-wave problems. This family is constructed in two steps. First we prove the existence of periodic solutions close
to the equilibria uξ0 with u ∼ −1/(ac0) (where 2c0 = 3ρ for problem 1 and 2c0 = −3λ/(λ − 1) for problem 2) and
with a period close to 2πa (recall that ξ0 is the (symmetric) eigenvector associated with the 0 eigenvalue). Then we
obtain the existence of periodic solutions with a period close to ap for almost all values of p > 2π .

Result of Theorem 3.2. There exist ε0 > 0, κ1 > κ0 > 0 and A0 > 0 such that for all 0 < ε < ε0, Eq. (5) has a family
of reversible periodic solutions UA

κ,ε , parametrized by A (|A| < A0) and κ ∈ [κ0, κ1]. The period of these solutions is
aT where T is given by

T
(
ε, κ,A2)= 2π

, μ = 1(
κ−1ac0

)2
A2 + O(ε),
κ(1 − μ) 2
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where

c0 = 3ρ/2 for problem 1 and c0 = −3λ/2(λ − 1) for problem 2. (7)

These solutions read

UA
κ,ε(x) = u0

κ,εξ0 + AUκ,ε(x) + O
(
A2), (8)

where ξ0 is the (symmetric) eigenvector associated with the 0 eigenvalue and

u0
κ,ε = −κ + 1

2ac0
+ O(ε), is a constant, (9)

and Uκ,ε(x) = cos(2πx/(aT ))ξ0 + O(ε).

This theorem shows that the equilibria U = u0
κ,εξ0 are limits of periodic solutions of amplitude O(A) tending to-

wards 0. We can also prove the existence of a second family of equilibria which read U = uξ0 with u ∼ (κ −1)/(2ac0),
hence close to 0 when κ is close to 1. These last equilibria are the one considered in [3] to which the homoclinic so-
lutions are connected.

In the previous theorem, we proved the existence of ap/κ-periodic solutions where p > 2π is close to 2π . In next
theorem, we prove that we can extend this result to “large periodic solutions” of period ap/κ , for almost all values of
p > 2π .

Result of Theorem 3.3. There exists a sub-set P of (2π,+∞), which differs from the interval (2π,+∞) by a discrete
set without point of accumulation, for which the following result holds: for all compact set K ⊂P , there exist ε0 > 0,
κ1 > κ0 > 0 such that Eq. (5) has a family of periodic solutions Vp

κ,ε , parametrized by p ∈ K and κ ∈ (κ0, κ1). The
period of these solutions is aT where T = p/κ , and Vp

κ,ε satisfies

Vp
κ,ε(x) =

(
− κ

ac0
vp

(
2πx

aT

)
+ κ − 1

2ac0

)
ξ0 + O(ε),

where vp is defined in (4).

The periodic solutions constructed above correspond to periodic travelling waves for both problems as presented
in Figs. 1 and 2. We can compute the expression of the interface ZI,1 for problem 1. This expression reads (using
2ac0 = 3ρ and a = 1), in the unscaled variables

ZI,1(x) ∼ ε

(
−2κ

3ρ
vp

(
2πκεx

p

)
+ κ − 1

3ρ

)
, (10)

where ε = ρ − λ(1 − ρ), κ ∈ (κ0, κ1) and p ∈ K. This expression is valid for all the values of p close to 2π and we
can expand it with respect to the amplitude A (see the result of Theorem 3.2 above)

ZI,1(x) ∼ −ε

(
κ + 1

3ρ
+ A cos

(
2πεx

T

))
,

where T is close to 2π/κ .
For problem 2, we obtain the following expressions for the interface ZI,2 and the free surface Z (using 2ac0 = −3

and a = λ(λ − 1)−1)

ZI,2(x) ∼ −ε
λ − 1

λ

(
2κ

3
vp

(
2πκεx

ap

)
− κ − 1

3

)
, (11)

Z(x) ∼ ε

λ

(
2κ

3
vp

(
2πκεx

ap

)
− κ − 1

3

)
. (12)

Notice that we also obtain the expansion of these expressions when p is close to 2π as for problem 1.
Notice that the periodic solutions found here are different from the ones found in [6] and [7]. In these two articles,

the periodic solutions result from a generalization of the Lyapunov–Devaney theorem in presence of the resonance
due to the eigenvalue 0 which lies in the essential spectrum. This would correspond here to a study with ε < 0, where
a pair of eigenvalues sit on the imaginary axis.
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The proof of these theorems consists in the reduction of (5) to a scalar nonlocal equation, which is a perturbation
on the Benjamin–Ono equation (3). We first fix a real number T > 0 and we look for aT -periodic solution of (5).
With the scaling U(x) = U(s) where s = aT x/(2π) we now look for 2π -periodic solutions of the new system

2π

aT

dU

ds
= LεU +Nε(U ). (13)

We decompose a solution of (13) as follows

U = uξ0 + εY,

where u is a 2π -periodic scalar function and Y is in a complementary space of ξ0. The reduction technics consists in
proving that Y can be written as a function of u (see Theorem 4.2)

The next step of the reduction consists in finding the equation satisfied by u (see Theorem 4.3).

Equation for u. Let U = uξ0 +εY be a 2π -periodic reversible solution of (13). Then u satisfies the following equation

u + 2π

T
H�(u

′) + ac0u
2 = c + O(ε), (14)

where c is a constant of integration, c0 is defined by (7) and H� is the Hilbert transform for 2π -periodic functions.

The rest of the paper is devoted to the resolution of (14). We first change the parameters in (14) as follows T = p/κ

and c = (κ2 − 1)/(4ac0) with p > 2π and κ > 0. We now consider the equation

u + κ
2π

p
H�(u

′) + ac0u
2 = κ2 − 1

4ac0
+ O(ε). (15)

The search of stationary solutions of (15) leads to the existence of two solutions: the first one being precisely u0
κ,ε

given in (9). The second solution is u = (κ − 1)/(2ac0) + O(ε). This solution is close to 0 for κ close to 1 and
corresponds to the equilibria considered in [3].

Since the function uκ,p defined by

uκ,p = − κ

ac0
vp + κ − 1

2ac0

is a solution of (15) when the term O(ε) is zero (see [2]), we search even solutions u of (15) as a perturbation of uκ,p ,
i.e. u = uκ,p + w. The equation satisfied by w reads

Lpw = Nε,κ,p(w), (16)

where Lp is defined by

Lpw = w + 2π

p
H�(w

′) − 2vpw,

where vp is defined in (4) and Nε,κ,p(w) = −κ−1ac0w
2 + O(κ−1ε). Actually, Lp is the Benjamin–Ono operator

linearized around the solution uκ,p .
We use the implicit function theorem to find solutions of (16). First we study the case when p 
 2π . Since v2π = 1

we have L2πw = −w + H�(w
′), then L2π is not invertible and its kernel in a space of even functions is spanned by

the function cos. The Lyapunov–Schmidt method leads to a solution w = A cos+O(A2 + ε) of (16) where p 
 2π

is a function of the amplitude A and of ε. These solutions give the solutions of Theorem 3.2 thanks to the reduction
theorem.

We finally study Eq. (16) with p > 2π . The difficulty is to know whether Lp is invertible. We know that it’s not
invertible in a space including odd functions since ∂svp is in the kernel for all the values of p > 2π . But the study
made for p 
 2π shows that Lp is invertible for even functions when p > 2π is close to 2π . The family Lp , p > 2π

being analytic with respect to p, we can prove that Lp is invertible for even functions for p ∈ P where the set P
differs from the interval (2π,+∞) by a discrete set with no accumulation point.

Thanks to the implicit function theorem we can solve (16) with respect to w. This leads to the existence of a family
of solutions of (14) which read u = uκ,p + O(ε), and then lead to the solutions Vp of Theorem 3.3.
K,ε
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2. Spatial dynamic formulation

In this section we show how we can obtain a “spatial dynamics” formulation (see [8]) to describe the water wave
problems. We then linearize the vector field around the origin (which is a stationary solution of the spatial dynamical
system) and we study its resolvent operator on the imaginary axis. We finally give some properties on the nonlinear
term.

2.1. Formulation of the water-wave problems

In the moving reference frame, denoting by ξ , η the physical coordinates, the complex potential in layer j is
denoted wj(ξ + iη) and the complex velocity w′

j (ξ + iη) = uj − ivj . For formulating both problems as a dynamical
system we proceed as in [6] and [7] and use the change of coordinates used by Levi-Civita: the new unknowns are
αj + iβj , j = 1,2, which are analytic functions of wj = xj + iy where xj is the velocity potential in the layer j and
y is the stream function and where

w′
j (ξ + iη) = eβj −iαj .

Notice that αj is the slope of the streamline and eβj is the modulus of the velocity in the region j . The interface
is then given by y = 0 and the upper surface by y = 1. The region of the flow is −∞ < y < 0 for fluid 2 and
0 < y < 1 for fluid 1. We choose as the basic x coordinate the one given by the bottom layer (x2) (and we notice that
dx1/dx2 = eβ10−β20 which introduces a factor in the Cauchy–Riemann equations of the upper layer).

With this choice of coordinates we formulate our problems as a dynamical system (see [6])

dU

dx
= F(U ), (17)

with the following unknown for problem 1[
U(x )

]
(y) = (

β20( x ),α1( x, y),β1( x, y),α2( x, y),β2( x, y)
)t

,

where β20 is the trace of β2 at y = 0. The right-hand side of (17) reads

F(U ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λ(1 − ρ)e3β20 sinα10 − ρ ∂α1
∂y |y=0

e3(β10−β20),

∂β1
∂y

eβ10−β20

− ∂α1
∂y

eβ10−β20

}
, y ∈ (0,1),

∂β2
∂y

− ∂α2
∂y

⎫⎬⎭ , y ∈ (−∞,0).

(18)

Eq. (17) is understood in H where

H = R × {
C0(0,1)

}2 × {
C0

1(R−)
}2

,

and U(x ) lies in D where

D = R × {
C1(0,1)

}2 × {
C1

1(R−)
}2 ∩ {

α1(0) = α2(0), α1(1) = 0, β20 = β2(0)
}
,

where we define the following Banach spaces

C0
1(R−) =

{
f ∈ C0(R−); sup

y∈R−

∣∣f (y)
∣∣(1 + |y|)< ∞

}
,

C1
1(R−) = {

f ∈ C0
1(R−);f ′ ∈ C0

1(R−)
}
.

The norm in H for V = (a, f1, g1, f2, g2)
t ∈ H is defined by

‖V ‖H = |a| + ‖f1‖∞ + ‖g1‖∞ + ‖f2‖1,∞ + ‖g2‖1,∞,
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with

‖f ‖1,∞ = sup
y∈R−

∣∣f (y)
∣∣(1 + |y|),

and we obtain the norm in D by adding the norms of f ′
i and g′

i .
For problem 2, the unknown is defined by[

U(x )
]
(y) = (

β20( x ),Z(x ),α11( x ),α1( x, y),β1( x, y),α2( x, y),β2( x, y)
)t

,

where 1 + 1
2λ

(1 − e−2λZ(x )) is the expression of the free surface, and for example, α11 means the trace of α1 in y = 1,

and the same convention holds for β20. The right-hand side of (17) is given by

F(U ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λ(1 − ρ)e−3β20 sinα20 − ρ ∂α1
∂y |y=0

e3(β10−β20),

e2λZ−β11+β10−β20 sinα11,

eβ11

2b
(1 − e−2(λZ+β11))eβ10−β20 ,

∂β1
∂y

eβ10−β20

− ∂α1
∂y

eβ10−β20

}
, y ∈ (0,1),

∂β2
∂y

− ∂α2
∂y

⎫⎬⎭ , y ∈ (−∞,0).

(19)

The spaces H and D are defined as for problem 1, except that R is replaced by R
3 and that the boundary condition

involving α1(y = 1) in D is now α11 = α1(y = 1).
The Galilean invariance of the physical problems induces a reflection symmetry (through the y axis) of both

systems in the moving frame. This reflection leads to the reversibility of system (17), i.e. to the existence of a linear
symmetry S which anticommutes with the vector field F . This reversibility symmetry is then defined by

SU = (β20,−α1, β1,−α2, β2)
t , for problem 1,

SU = (β20,Z,−α11,−α1, β1,−α2, β2)
t , for problem 2.

The dispersion equation reads (for Re k > 0) for problem 1

Δ1(k) = ρk cosh(k) − sinh(k)
[
k − λ(1 − ρ)

]= 0, (20)

while for the second problem, this equation reads for Re k > 0

Δ2(k) = k cosh(k)(ρbk2 + λ − k) − sinh(k)
{(

λ + bk2)[λ(1 − ρ) − k
]+ ρk2}= 0. (21)

Because of reversibility, both expressions should be completed by the symmetric relationship for Re k < 0. This
means that in Δ1 and Δ2, k should be replaced by (sgn(k)Re(k)). The complex roots of Δj(k) = 0 give all complex
eigenvalues ik of the linearized operator DUF(0) belonging to the upper part of the complex plane. These isolated
eigenvalues have a finite multiplicity, and are completed by the symmetric eigenvalues in the lower half plane. They
are located in a sectorial region of the complex plane, centered on the real axis, which leads to the finiteness of
the number of such eigenvalues in the neighborhood of the imaginary axis (see for example [6]). In addition to this
discrete set, the spectrum of the linearized operator contains an essential spectrum formed by the entire real axis. This
is shown, for example in [6], and this results from the form of the Cauchy–Riemann operator in the infinite layer
(−∞ < y < 0). Let us give more precisions on the eigenvalues lying on the imaginary axis.

For problem 1, we introduce the parameter ε = ρ − λ(1 − ρ). The study of Eq. (20) shows that the linear operator
Lε = DUF(0) has the spectrum of Fig. 3 . For problem 2, the parameter ε is 1 − λ(1 − ρ). The study of the equation
Δ2(k) = 0 for k real and for b large leads to the following conclusion: for ε > 0 small enough, b large enough and
1 − ρ = (α/b)1/3 with 0 < α < 4, then 0 is the only real solution of the dispersion equation (21). This means that
for ε < 0 there is a pair of eigenvalues on the imaginary axis in addition to the 0 eigenvalue, and for ε > 0 this pair
disappears (see [3] for the study of the equation Δ1(k) = 0). Notice that the case treated in [7] is such that b = 0,
which implies the occurrence of another pair of simple imaginary eigenvalues (given by k = ±λ) for all values of ε.
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Looking at (18) and (19), we notice the existence of a one parameter family of solutions

U(x) = uξ0, u ∈ R,

of the nonlinear system (17). The eigenvector ξ0 belonging to a zero eigenvalue of the linearized operator (about 0)
Lε reads

ξ0 = (0,0,1,0,0)t , for problem 1,

ξ0 = (0, λ−1,0,0,−1,0,0)t , for problem 2.

This family of equilibria corresponds physically to a sliding with a nonzero small and uniform velocity of the upper
layer over the bottom one.

2.2. Rescaling

Let us introduce the basic rescaling of our systems for ε > 0, hence hiding the pair of imaginary eigenvalues
occurring for ε < 0 (the details are only given for problem 2, since the formulation for problem 1 is very similar). We
set

εx = x; εy = y, y ∈ (−∞,0); y = y, y ∈ (0,1),

U = εU,

and Eq. (17) now reads

dU

dx
= LεU +Nε(U), (22)

where for problem 2, U = (β20,Z,α11, α1, β1, α2, β2)
t , and

LεU =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε−1{−(1 − ε)α10 − ρ ∂α1
∂y |y=0

}
ε−1α11

ε−11/b(β11 + λZ)

ε−1 ∂β1
∂y

−ε−1 ∂α1
∂y

∂β2
∂y

− ∂α2
∂y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

Nε(U) = ε−2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(1 − ε)[e−3εβ20 sin(εα10) − εα10] − ερ ∂α1
∂y |y=0

[e3ε(β10−β20) − 1]
e2ελZ−εβ11+εβ10−εβ20 sin(εα11) − εα11

eεβ11/2b(1 − e−2ε(λZ+β11))eεβ10−εβ20 − ε/b(β11 + λZ)

ε
∂β1
∂y

{eε(β10−β20) − 1}
−ε ∂α1

∂y
{eε(β10−β20) − 1}

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We observe that (in both problems) the two last components of Nε(U) are zero and that the differentiability in y of
the components α2, β2 of U is not necessary to define Nε(U). Therefore, the following property holds

Nε : D̂ → H̃,

where

D̂ = R
3 × {

C1(0,1)
}2 × {

C0(R−)
}2 ∩ {

α1(0) = α2(0), α11 = α1(1), β20 = β2(0)
}
,
1
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i.e. the functions α2 and β2 of the vector U are only continuous when U ∈ D̂ and

H̃ = R
3 × {

C0(0,1)
}2 × {

Cexp
ε (R−)

}2
,

where Cexp
ε (R−) = {f ∈ C0(R−),‖f ‖exp

ε < ∞} with the norm for a given d > 0

‖f ‖exp
ε = sup

y∈R−

∣∣f (y)
∣∣e−dy/2ε,

with similar definitions for problem 1. Actually, H̃ could be chosen such that the two last components are 0, but
we choose a space for which these components have an exponential decay rate (H̃ is then dense in H). Notice that
Lε considered in L(H̃) is Fredholm on the real axis. It can be shown that the only eigenvalue is 0, and for any λ

real, λ − Lε has a closed range, of codimension 1 if λ �= 0 and 2 if λ = 0. Actually, H̃ is chosen such that the map
k 
→ (ik −Lε)

−1 is regular in L(H̃, D̂) for k real close to 0 (see Section 2.3).
Notice also the existence in both problems of a first integral (hence independent of x), which reads for problem 2

h = (1 − ε)

{
− 1

2λ
e−2λεZ −

1∫
0

(
e−εβ1 cos(εα1) − 1

)
dy

}
+ 1

2
e2εβ20 − ρ

2
e2εβ10 . (23)

This combination of the two Bernoulli first integrals at the free surface and at the interface is well defined in H. The
existence of such an integral is not necessary in the study which follows.

2.3. Resolvent operator of Lε

This section is devoted to the study of the resolvent operator (ik − Lε)
−1 for ε > 0 small enough. The explicit

formulae can be found for example in [3] and [6]. Here we give the estimates on this resolvent on the imaginary axis
(i.e. for k real) near the origin and for |k| large.

For both problems, the resolvent can be written as follows for ε|k| small enough.

Lemma 2.1 (resolvent operator for small ε|k|). There exists δ > 0 such that for k ∈ R \ {0}, ε|k| < δ and V ∈ H, the
resolvent operator is decomposed as follows

(ik −Lε)
−1V = ξ∗

ε,k(V )

ikεΔ
ξ0 + η∗

ε,k(V )

Δ
θk + εSε,k(V ), (24)

with the properties described below in four parts.

The proof of this lemma and of the properties below lies on the study of the equation (ik −Lε)U = V for a given
vector V ∈ H. The explicit formulae can be found in [3] and [6] and the properties below result easily from these
formulae.

Notice that the form (24) of the resolvent is the same as in Hypothesis H1 in [3], where this decomposition is
used as a general assumption to describe the spectrum of Fig. 3. Actually, the form (24) (or an adaptation of this
form, depending in particular on the multiplicity of the 0 eigenvalue) turns out to be a general formulation of the
resolvent of the linear operator involved in many water-wave problems, when the bottom layer of fluid is infinitely
deep. Therefore, in the rest of the paper, we describe the dynamical system (22) in the most general frame, since we
can prove the existence of periodic solutions for other systems having the properties described below for the water
waves problems.

Let us now give in four parts the main properties of each term introduced in (24). These properties result from the
explicit formulae of the resolvent.

The dispersion equation. For k ∈ R \ {0}, and near 0, the dispersion equation reads

ikεΔ(ε, k) = 0,

where the map Δ(ε, k) is even with respect to k and satisfies

Δ(ε, k) = 1 + a|k| + O
(
εk2),

where a = 1 for problem 1, and a = λ−1(λ − 1) for problem 2.
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The root k = 0 in the dispersion equation is related to the simple eigenvalue in 0 of Lε . We also observe that Δ is
not analytic, this is a sign of the fact that 0 lies in the essential spectrum. The evenness comes from the reversibility
of the system. For problem 2, the dispersion equation (before scaling) is Δ2(k) = 0 (see (21)), Δ is obtained by the
relation Δ(ε, k) = Δ2(εk)/(ε2kλ).

On the splitting of the space and the projection associated with the kernel of Lε . There exists p∗
0 ∈ H

∗ such that
p∗

0(SV ) = p∗
0(V ), p∗

0(ξ0) = 1.
There exists δ > 0 such that for k ∈ R \ {0}, ε|k| � δ and V ∈ H, we have

p∗
0(ik −Lε)

−1V = ξ∗
ε,k(V )

ikΔ(ε, k)
,

where, for k �= 0, ξ∗
ε,k ∈ H

∗, ξ∗
ε,k(SV ) = ξ∗

ε,−k(V ) and we can define the form ζ ∗
ε,k with

ξ∗
ε,k = ξ∗

ε + ζ ∗
ε,k, ξ∗

ε ∈ H
∗,∣∣ζ ∗

ε,k(V )/k
∣∣� cε, for V ∈ H̃.

For problem 1, we choose p∗
0(V ) = β11 = β1(y = 1), and for a vector V = (a, f1, g1, f2, g2)

t ∈ H

ξ∗
ε (V ) = −a + ρg10 − (ρ − ε)

1∫
0

g1(τ )dτ.

For problem 2, we choose p∗
0(V ) = −β11 = −β1(y = 1) and for a vector V = (a1, a2, a3, f1, g1, f2, g2)

t ∈ H

ξ∗
ε (V ) = a1 − ρg10 + (1 − ε)a2 + (1 − ε)

1∫
0

g1(τ )dτ.

The symmetry property of the linear form ξ∗
ε,k is an easy consequence of the reversibility of (22) and it implies the

invariance of ξ∗
ε under S (i.e. ξ∗

ε (SV ) = ξ∗
ε (V )). We can also prove in both problems that ξ∗

ε (ξ0) = ε. Therefore, the
usual projection on the kernel of the linear operator Lε is V 
→ ε−1ξ∗

ε (V ), which is singular when ε → 0+, that’s why
we prefer to use the projection p∗

0 which is independent of ε.
Notice that the estimate on ζ ∗

ε,k is not valid in H but in the smaller space H̃. Indeed, the main (nondifferentiable)
term of ζ ∗

ε,k can be written as ε|k|χ∗
ε where

χ∗
ε (V ) =

1∫
0

g1(τ )dτ + ε−1

0∫
−∞

g2(τ )dτ, for problem 1,

χ∗
ε (V ) = −a2 −

1∫
0

g1(τ )dτ + ε−1

0∫
−∞

g2(τ )dτ, for problem 2.

We observe that this form cannot be defined in H because of an insufficient decay rate of the component g2 in the
lower layer of fluid, whereas it is well-defined in H̃ (with a uniform bound).

Singularity related to the essential spectrum in 0. The singular part of (ik −Lε)
−1V in kerp∗

0 reads

η∗
ε,k(V )

Δ(ε, k)
θk,

where kθk is bounded in D, (kθk)k=0 = 0, Sθk = −θ−k , p∗
0(θk) = 0 and

ξ∗
ε (θk) = i sgn(k). (25)

For k �= 0, η∗ ∈ H
∗, η∗ (SV ) = η∗ (V ) and
ε,k ε,k ε,−k
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η∗
ε,k = η∗

ε + β∗
ε,k, η∗

ε ∈ H̃
∗, β∗

ε,0 = 0,∣∣β∗
ε,k(V )/k

∣∣� cε, V ∈ H̃.

We obtain the following vector θk

θk = (−i sgn(k), y − 1,0,−e|k|y,−i sgn(k)e|k|y)t , for problem 1,

θk = (
i sgn(k),0,−(λ − 1)−1,1 − λ(λ − 1)−1y,0, e|k|y, i sgn(k)e|k|y)t , for problem 2,

from which we directly obtain the relation (25). Since the norm of the function y 
→ e|k|y in C0
1(R−) is 1/|k| for |k|

small, then kθk is bounded in D.
The linear form η∗

ε is defined by

η∗
ε (V ) = a − ρg10 + ρ

1∫
0

g1(τ )dτ +
0∫

−∞
g2(τ )dτ, for problem 1,

η∗
ε (V ) = λ−1(1 − λ)(a1 − ρg10) − ρa2 − ρ

1∫
0

g1(τ )dτ +
0∫

−∞
g2(τ )dτ, for problem 2.

We observe that for the same reasons as for χ∗
ε , the linear form η∗

ε cannot be defined in H. Looking at the definitions
of ξ∗

ε , η∗
ε and χ∗

ε , we observe that the following relationship holds

aξ∗
ε = εχ∗

ε − η∗
ε . (26)

It has been seen in [3] that this relation is equivalent to (25).

Regular part of the resolvent near 0 for k ∈ R \ {0}. The regular part of (ik −Lε)
−1V reads

εSε,k(V ),

where Sε,k ∈ L(H,D) for k �= 0 and Sε,k is uniformly bounded with for ε|k| < δ in L(H̃, D̂).

Remark on the range of Lε . Looking at (24), we observe that there is a limit when k tends to 0 if V ∈ H̃ and
ξ∗
ε (V ) = η∗

ε (V ) = χ∗
ε (V ) = 0. These are sufficient conditions on V to be in the range of Lε . It results that the range

of Lε has codimension 2 since the relation (26) holds and since H̃ is dense in H.
We finally give here a property on the resolvent on the imaginary axis for ε|k| > δ/2. Notice that only the continuity

of the resolvent is needed here, whereas we needed the differentiability of G(ε, k) in [3]. These estimates are obtained
as in [6].

Lemma 2.2 (resolvent operator for large ε|k|). Let V ∈ H, then for k real,

(ik −Lε)
−1V = G(ε, k)(V ), (27)

where k 
→ G(ε, k) is continuous in L(H,D) for ε|k| > δ/2 with the following estimates in L(H) and in L(H̃, D̂)∥∥G(ε, k)
∥∥
L(H)

� c/|k|, ∥∥G(ε, k)
∥∥
L(H̃,D̂)

� cε. (28)

2.4. Properties of the nonlinear term Nε

Let us now give the properties of the nonlinear term. The first lemma describes the regularity of Nε . This lemma is
an easy consequence of the expression of Nε .

Lemma 2.3 (properties of the nonlinear operator Nε). For k � 3, the nonlinear map Nε satisfies

Nε ∈ Ck
(
D̂, H̃

)
, DUNε(0) = 0,

Dm
UNε(0) = O

(
εm−2), m = 2,3.

Moreover, Nε(νξ0) = 0 for all ν ∈ R in a neighborhood of 0.
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Notice that the property Nε(νξ0) = 0 is equivalent to the existence of the one parameter family of stationary
solutions U(x) = νξ0 for ν in a neighborhood of 0. It has been seen in [3] that this property is related to the 0
eigenvalue and to the structure of the resolvent near the origin.

As in [3], we now introduce Rε(u,Y ) = ε−1Nε(uξ0 + εY ). This operator is used because we decompose a solution
of (22) as U = uξ0 + εY , p∗

0(Y ) = 0. Thanks to Lemma 2.3, the operator Rε has the following properties.

Proposition 2.4 (properties of Rε). The operator Rε : R × D̂ → H̃ is Ck and satisfies

Rε(u,Y ) = uDεY + R̃ε(u,Y ),

where Dε ∈ L(D̂, H̃), and∥∥R̃ε(u,Y )
∥∥

H̃
� cε‖Y‖

D̂

(|u| + ‖Y‖
D̂

)
,

for |u| + ‖Y‖
D̂

� M .

For problem 2, a straightforward computation leads to the following operator Dε

DεY =
(

3ρ
∂α1

∂y

∣∣∣∣
y=0

,2α11,−2λ

b
Z,−∂β1

∂y
,
∂α1

∂y
,0,0

)t

.

Next proposition gives the link between ξ∗
ε , θk and the operator Dε introduced above. This proposition results from a

straightforward computation.

Proposition 2.5. For both problems, the following property holds

ξ∗
ε (Dεθk) = 2c0 + εγε(k), c0 �= 0, k 
→ γε(k) ∈ C0(R,R),

with 2c0 = 3ρ for problem 1, and 2c0 = −3λ/(λ − 1) for problem 2.

Notice that in both problems, the function γε is constant. This is linked with the existence of the Bernoulli first
integral (see (23)). Actually, the proof of the existence of periodic solutions of (22) only requires the continuity of the
function γε . That’s why we prefer to give the most general property in Proposition 2.5, since the study of this article
can be generalized to other reversible systems having the spectrum as in Fig. 3 .

3. Existence of periodic solutions

3.1. Working system and notations

In this section we come back to the system (22). We fix a real number T > 0, and we look for periodic solutions of
(22) of period aT (where a is introduced in the definition of the function Δ). Since we want to work with 2π -periodic
functions, we perform the following change of variable

U(x) = U(s), s = 2π

aT
x,

so that Eq. (22) now reads

2π

aT

dU

ds
= LεU +Nε(U ), (29)

As in [3] for the search of homoclinic solutions, we decompose a 2π -periodic solution U of (29) as follows

U = uξ0 + εY, p∗
0(Y ) = 0, (30)

where p∗
0 is defined in Section 2.3, and is such that p∗

0(ξ0) = 1. Thanks to the definition of Rε (i.e. Rε(u,Y ) =
ε−1Nε(uξ0 + εY )), we can write the system for u and Y

2π

aT

du

ds
= p∗

0(LεεY ) + p∗
0

(
εRε(u,Y )

)
, (31)

2π

aT

dY

ds
= π(LεY ) + π

(
Rε(u,Y )

)
, (32)

where π is defined by π(V ) = V − p∗(V )ξ0 for V ∈ H.
0
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We look for reversible solutions U of (29), i.e. SU(s) = U(−s). This implies the following for u and Y

u is even, and SY (s) = Y(−s).

To prove the existence of periodic solutions of (29), we first prove that the system (31), (32) can be reduced, for
reversible solutions, to a scalar equation for u. Indeed, if (u,Y ) is a reversible solution of (31), (32), then Y is a function
of u for ε > 0 small enough (see Theorem 4.2). The equation satisfied by u is given in Theorem 4.3. This equation
is a perturbation of the Benjamin–Ono equation, for which there is a family of periodic solutions (see Theorems 4.4
and 4.7). Therefore, a family of periodic reversible solutions of (29) can be constructed (see Theorems 3.2 and 3.3).

3.1.1. Notations
Before going to the theorems proving the existence of periodic solutions of (22), let us give some definitions.
Let E be a Banach space and n ∈ N, we denote by Hn

� (E) the space of 2π -periodic functions u, taking values in E

and such that
∑

k∈Z
(1 + |k|2n)‖uk‖2

E
< ∞, with the usual norm, and where uk is the kth Fourier coefficient of u. The

space of even functions of Hn
� (E) is denoted by Hn

�,e(E).
The Hilbert transform for 2π -periodic functions H� is defined by the following relations

H�(cos) = sin, H�(sin) = − cos,

and H�(const.) = 0. The Fourier coefficients of H�(f ) are given by the following relation{
H�(f )

}
k
= −i sgn(k)fk, k ∈ Z \ {0}.

We now introduce the operators and the vectors linked with the vector θk . Indeed, as in [3], the construction of the
periodic solutions depends on the vector θk . Therefore, we define the operator u 
→ T�(u) for a function u ∈ H 1

� (R)

by {
T�(u)

}
k
= −i

2π

T
ϕ0

(
2πεk

aT

)
kukθ 2π

aT
k
, k ∈ Z \ {0},

which is completed by {T�(u)}0 = 0 (in using {kθk}k=0 = 0). In this formula, we introduced a splitting of the unity
ϕ0 + ϕ1 = 1

ϕ0(εk) =
{

1, ε|k| < δ/2,

0, ε|k| > δ,
ϕ1(εk) =

{
0, ε|k| < δ/2,

1, ε|k| > δ.

Notice that, thanks to the property ξ∗
ε (Dεθk) = i sgn(k), we obtain

ξ∗
ε

(
T�(u)

)= 2π

T
H�

(
du0

ds

)
,

where {u0}k = ϕ0(2πεk/aT )uk . Since kθk is bounded in D in the neighborhood of k = 0 the following property holds

Proposition 3.1. The operator T� is bounded from Hn
� (R) into Hn−1

� (D), for n � 1

T� ∈ L
(
Hn

� (R),Hn−1
� (D)

)
,

and for an even function u, ST�(u)(s) = T�(u)(−s).

The symmetry property of this proposition results from the symmetry of θk : Sθk = −θ−k .

Remark. The definition of T� shows that if u is a constant function, then T�(u) = 0.

Water-wave problems. In the second water-wave problem, we compute explicitly the vector T�(u) (the result being
similar for problem 1). We obtain T�(u) = (β20,0, α11, α1,0, α2, β2)

t where

α1(y) = −2π
(

1 − λ
y

)
u′

0,
T λ − 1
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α2(y) = − 1

T

π∫
−π

u′
0(s − τ)(1 − e

4π
aT

y)

1 − 2e
2π
aT

y cos(τ ) + e
4π
aT

y
dτ,

β2(y) = 1

T

π∫
−π

2u′
0(s − τ) sin(τ )e

2π
aT

y

1 − 2e
2π
aT

y cos(τ ) + e
4π
aT

y
dτ,

we check in particular that

β20 = 2π

T
H�(u

′
0).

3.2. Main theorems

The following theorem shows the existence of a family of periodic solutions of (29). These solutions are close to
stationary solutions belonging to the family of equilibria uξ0, u ∈ R.

Theorem 3.2. There exists ε0 > 0, κ1 > κ0 > 0 and A0 > 0 such that for all 0 < ε < ε0, Eq. (29) has a family of
reversible periodic solutions U A

κ,ε ∈ H 2
� (R)ξ0 ⊕ {H 1

� (D̂) ∩ kerp∗
0}, parametrized by A (|A| < A0) and κ ∈ [κ0, κ1].

The parameter T is given by

T
(
ε, κ,A2)= 2π

κ(1 − μ)
, μ

(
ε, κ,A2)= 1

2

(
κ−1ac0

)2
A2 + O(ε).

These solutions read

U A
κ,ε(s) = u0

κ,εξ0 + AU κ,ε(s) + Ũ A

κ,ε(s),

with

u0
κ,ε = −κ + 1

2ac0
+ O(ε) is a constant,

and U κ,ε(s) = cos(s)ξ0 + O(ε), Ũ A

κ,ε = O(A2).

Remark. This theorem shows that the stationary solutions u0
κ,εξ0, belonging to the family of equilibria U = uξ0,

u ∈ R, are limits of periodic solutions of amplitude O(A) tending towards 0. Actually, we can prove that the linearized
operator around these stationary solutions u0

κ,εξ0, i.e. Lε + DUNε(u
0
κ,εξ0), has two imaginary eigenvalues ±iσκ,ε =

±i2π/(aT (ε, κ,0)) = ±iκ/a + O(ε). Therefore, the equilibria uξ0 are elliptic for u large enough.
We note that for ε > 0 small enough and κ close to 1, there is also a family of equilibria of the form uξ0, with

u 
 (κ − 1)/(2ac0), hence close to 0 (see Section 4.2 and the resolution of (71)). These equilibria are exactly the ones
of [3] to which the family of homoclinic solutions with a polynomial decay rate are connected.

The solutions are searched in H 2
� (R)ξ0 ⊕ {H 1

� (D̂) ∩ kerp∗
0}. This space has been chosen in order to work in an

algebra: if u ∈ H 2
� (R) and if Y ∈ H 1

� (D̂) then the term Rε(u,Y ) of Proposition 2.4 is in H 1
� (H̃). We need more

regularity for the function u, since Y is computed with T�(u), which is in H 1
� (D) for u ∈ H 2

� (R).

The preceding theorem shows the existence of periodic solutions close to the equilibria u0
κ,εξ0. In next theorem, we

prove that there are also “large periodic solutions”.

Theorem 3.3. There exists a sub-set P of (2π,+∞), which differs from the interval (2π,+∞) by a discrete set with
no accumulation point, for which the following result holds: for all compact set K ⊂P , there exist ε0 > 0, κ1 > κ0 > 0
such that Eq. (29) has a family of periodic solutions V p

κ,ε ∈ H 2
� (R)ξ0 ⊕ {H 1

� (D̂) ∩ kerp∗
0}, parametrized by p ∈ K

and κ ∈ (κ0, κ1). The parameter T is given by T = p/κ , and Vp
κ,ε satisfies

V p
κ,ε(s) = vp

κ,εξ0 + Ṽ p

κ,ε(s),
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with v
p
κ,ε(s) = uκ,p(s) + O(ε), where

uκ,p = − κ

ac0
vp + κ − 1

2ac0
, (33)

and where vp is defined in (4). Finally, Ṽ p

κ,ε = O(ε).

We recover the solutions of Theorem 3.2 when p tends toward 2π in Vp
κ,ε . Notice that, in this theorem, we cannot

reach the homoclinic solutions found in [3] (which correspond to solitary waves) since we cannot reach the value
p = +∞.

Remark. The results of Theorems 3.2 and 3.3 are given in the general spatial dynamics framework, since the study
presented here can be applied to other reversible systems having the spectrum as in Fig. 3 and having the properties
presented in Sections 2.3 and 2.4. In next paragraph, we write these results for both water-wave problems.

Periodic waves. The periodic solutions of Theorems 3.2 and 3.3 correspond to periodic waves for both problems. In
problem 1, we can compute the expression of the interface ZI,1 (using 2ac0 = 3ρ)

ZI,1(x) ∼ −ε

(
κ + 1

3ρ
+ A cos

(
2π

T
εx

))
, (34)

where T is close to 2π/κ .
For problem 2, we obtain the following expression of the free surface Z (using ac0 = −3/2)

Z(x) ∼ ε

λ

(
κ + 1

3
+ A cos

(
2π

aT
εx

))
, (35)

and the expression of the interface ZI,2

ZI,2(x) ∼ −ε
λ − 1

λ

(
κ + 1

3
+ A cos

(
2π

aT
εx

))
. (36)

This result shows the existence of periodic travelling waves superposed to the uniform translation of the upper layer
of fluid. Notice in problem 2 the opposition of phases between the oscillations of the free surface and the ones of the
interface.

As for the previous theorem, the periodic solutions Vp
κ,ε of (22) lead to periodic waves for problems 1 and 2, of

period (in the unscaled variables) ap/(κε) (see (10) for the expression of the interface for problem 1, and (11), (12)
for the expression of the interface and free surface for problem 2). Notice that we recover the expressions (34), (35)
and (36) (i.e. when the amplitude A of the periodic waves is small) by taking p close to 2π in (10), (11) and (12).

The rest of this paper is devoted to the proof of the Theorems 3.2 and 3.3. In Section 4.1 the system (31), (32)
is reduced to an equation for u, which is a perturbation of the Benjamin–Ono equation. Then, in Section 4.2, we
prove that this equation has a family of periodic solutions, from which we obtain the families of solutions given in
Theorems 3.2 and 3.3.

4. Proofs of Theorems 3.2 and 3.3

4.1. Reduction to the Benjamin–Ono equation

The aim of this section is to reduce the system (31), (32) to a non-local scalar equation for the function u. To obtain
this equation, we first solve in Section 4.1.1 the linear non-homogeneous system obtained from (31), (32). Then, in
Section 4.1.2 we prove that the function Y is determined by u for ε > 0 close to 0 and that u is a solution of a non-local
scalar equation, which is a perturbation of the Benjamin–Ono equation.

Notice that this strategy of reduction is similar to the one performed in [3], except that we now work with peri-
odic functions instead of functions which decay towards 0. This implies in particular the presence of the constant c

appearing in the Benjamin–Ono equation (64) of Theorem 4.3.
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4.1.1. Linear lemma
We study the non-homogeneous linear system obtained from (31), (32) where we replaced Rε(u,Y ) by a given

anti-reversible function R ∈ H 1
� (H̃) (i.e. R satisfies SR(s) = −R(−s)). This system reads

2π

aT

du

ds
= p∗

0(LεεY ) + p∗
0(εR), (37)

2π

aT

dY

ds
= π(LεY ) + π(R). (38)

The following lemma gives the solution u and Y of (37), (38) as functions of R.

Lemma 4.1. Let R ∈ H 1
� (H̃) be an anti-reversible function. Let (u,Y ) ∈ H 2

� (R) × H 1
� (D̂) be a solution of (37), (38),

then

Y = T�(u) + T�,ε(R), (39)

2π

aT

d

ds

{
u + 2π

T
H�(u

′) + C�,ε(R)

}
= ξ∗

ε (R), (40)

with ∥∥T�,ε(R)
∥∥

H 1
� (D̂)

� cε‖R‖H 1
� (H̃), (41)∥∥C�,ε(R)

∥∥
H 1

� (R)
� cε‖R‖H 1

� (H̃). (42)

Moreover, ST�,ε(R)(s) = T�,ε(R)(−s) and C�,ε(R) is even.

Notice that the formulation (39), (40) is a weaker formulation of (37), (38) since LεY is not in H for Y ∈ D̂.
Actually, this formulation is weak in the sense that we solve the linear system for its Fourier coefficients, and it can be
understood in the distribution sense. In our water-wave problems, we recover regular functions thanks to properties of
the Cauchy–Riemann equations in the half plane.

The idea of the proof is to write Fourier coefficients of the system (37), (38) in order to use the properties of the
resolvent. Eq. (39) is obtained in observing that the coefficients of Y and of u are linked thanks to the operator T�. The
difficulty is then to prove that the remaining term, i.e. T�,ε(R) is small. Finally, we use ξ∗

ε (T�(u)) = (2π/T )H(∂xu0)

to prove (40).

Proof of Lemma 4.1. Let us write the Fourier coefficients of the system (37), (38). We then obtain the following
equation for k ∈ Z

(ik̃ −Lε)(ukξ0 + εYk) = εRk, (43)

where uk , Yk and Rk are the k-th Fourier coefficients of u, Y and R, and k̃ = 2πk/(aT ). Let us define uk,0 = ukϕ0(εk̃)

and uk,1 = ukϕ1(εk̃) and similarly Yk,0 et Yk,1.
First step: ε|k̃| < δ. We first consider the following equation

(ik̃ −Lε)(uk,0ξ0 + εYk,0) = ϕ0(εk̃)εRk.

The property of the resolvent for ε|k| small, allows us to solve this equation and to express uk,0 and Yk,0 in function
of Rk

uk,0 = ϕ0ξ
∗
ε (Rk)

ik̃Δ
+ {

S
(0)
�,u(R)

}
k
, (44)

Yk,0 = −a
ξ∗
ε (Rk)

Δ
ϕ0θk̃

+ {
S

(0)
�,Y (R)

}
k
, (45)

where we defined for k �= 0

{
S

(0)
�,u(R)

}
k
= ϕ0

ζ ∗
ε,k̃

(Rk)
, (46)
ik̃Δ
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and {
S

(0)
�,Y (R)

}
k
= ϕ0

εχ∗
ε (Rk)

Δ
θ
k̃
+ ϕ0

β∗
ε,k̃

(Rk)

Δ
θ
k̃
+ ϕ0εSε,k̃

(Rk). (47)

Notice that the function k 
→ {S(0)
�,u(R)}k is even. Indeed, ζ ∗

ε,k(SV ) = ζε,−k(V ) and the functions k 
→ Δ and k 
→ ϕ0

are even. Moreover, SRk = −R−k since R is anti-symmetric. This explains the evenness of k 
→ {S(0)
�,u(R)}k . Because

of similar symmetry relations for η∗
ε,k and Sε,k and thanks to the relation Sθk = −θ−k , we obtain S{S(0)

�,Y (R)}k =
{S(0)

�,Y (R)}−k .

Note also that the relations (44) and (45) are well-defined for k = 0. Indeed, since R0 ∈ H̃ and satisfies SR0 = −R0,
then ξ∗

ε (R0) = η∗
ε (R0) = 0. It results that R0 is in the range of Lε , and this allows to define Y0,0 and u0,0.

Estimates on S
(0)
�,u(R) and S

(0)
�,Y (R). We now estimate S

(0)
�,u(R) and S

(0)
�,Y (R). Using the following estimate

1 + k2

Δ(ε, k̃)2
� c

1 + k2

(1 + a|k̃|)2
� c max

(
1,

T 2

(2π)2

)
, (48)

and the fact that the function k 
→ ζ ∗
ε,k/k is uniformly bounded by ε in H̃

∗ for ε|k| < δ, we obtain(
1 + k2)∣∣{S(0)

�,u(R)
}
k

∣∣2 � cε2‖Rk‖2
H̃
.

We deduce that S
(0)
�,u(R) ∈ H 2

� (R) with∥∥S(0)
�,u(R)

∥∥
H 2

� (R)
� cε‖R‖H 1

� (H̃). (49)

We use the same technics to estimate S
(0)
�,Y (R). The first term of S

(0)
�,Y (R), denoted by S

(0)
�,Y,1(R), can be written as

{
S

(0)
�,Y,1(R)

}
k
= ϕ0

εχ∗
ε (Rk)

Δ
θk̃

= ikεϕ0

{
A(R)

}
k

Δ
θk̃

,

where

A(R) =
x∫

0

χ∗
ε (R)ds.

The linear form χ∗
ε is invariant under S and R is anti-reversible. Therefore, the function χ∗

ε (R) is odd. This proves
that the function A(R) is in H 2

� (R) with ‖A(R)‖H 2
� (R) � c‖R‖H 1

� (H̃). We deduce the following estimate thanks to

Proposition 3.1∥∥S(0)
�,Y,1(R)

∥∥
H 1

� (D̂)
� cε‖R‖H 1

� (H̃). (50)

The estimate on the second term of (47), denoted S
(0)
�,Y,2(R), is obtained as for the first term. We have indeed

{
S

(0)
�,Y,2(R)

}
k
= ϕ0

β∗
ε,k̃

(Rk)

Δ
θ
k̃
= ik̃ϕ0{B(R)}kθk̃

,

where{
B(R)

}
k
= ϕ0

β∗
ε,k̃

(Rk)

ik̃Δ
.

Since β∗
ε,k/k is uniformly bounded by ε in H̃ for ε|k| < δ and thanks to (48), B(R) ∈ H 2

� (R) with ‖B(R)‖H 2
� (R) �

cε‖R‖H 1
� (H̃). It results from Proposition 3.1 that S

(0)
�,Y,2(R) ∈ H 1(D̂) with∥∥S(0)

�,Y,2(R)
∥∥

H 1(D̂)
� cÊε‖R‖H 1(H). (51)
� �
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The last term of (47) can be estimated as follows∥∥εϕ0Sε,k̃
(Rk)

∥∥
D̂

� cε‖Rk‖H, (52)

since the function k 
→ S
ε,k̃

is uniformly bounded in L(H̃, D̂) for ε|k̃| < δ. We deduce from (50), (51) and (52) the

following result: S
(0)
�,Y (R) ∈ H 1

� (D̂) with∥∥S(0)
�,Y (R)

∥∥
H 1

� (D̂)
� cε‖R‖H 1

� (H̃). (53)

Relation between uk,0 and Yk,0. From (44), (45), we obtain the following relation between Yk,0 and uk,0

Yk,0 = −i
2π

T
kuk,0θk̃

+ {
T 0

�,ε(R)
}
k
, (54)

with {
T 0

�,ε(R)
}
k
= S

(0)
�,Y (Rk) + i

2π

T
kS

(0)
�,u(Rk)θk̃

. (55)

An estimate on T 0
�,ε(R) in H 1

� (D̂) is obtained in gathering (49), (53) and in using Proposition 3.1∥∥T 0
�,ε(R)

∥∥
H 1

� (D̂)
� cε‖R‖H 1

� (H̃). (56)

Moreover, thanks to the symmetry relation of S
(0)
�,Y (R) and thanks to evenness k 
→ {S(0)

�,u(R)}k , we remark that the

expression T 0
�,ε(R) is anti-reversible

ST 0
�,ε(R)(x) = T 0

�,ε(R)(−x). (57)

Second step: ε|k̃| > δ. We now study the equation for uk,1 and Yk,1, i.e.

(ik̃ −Lε)(uk,1ξ0 + εYk,1) = ϕ1(εk̃)εRk.

Thanks to Lemma 2.2, uk,1 and Yk,1 are given by the following relations

uk,1 = εϕ1(εk̃)p∗
0

(
G(ε, k̃)(Rk)

)
, Yk,1 = ϕ1(εk̃)π

(
G(ε, k̃)(Rk)

)
.

Since p∗
0(SV ) = p∗

0(V ), Sπ = πS and SG(ε, k)(V ) = −G(ε,−k)(SV ) for all V in H, the following symmetry
relations hold

uk,1 = u−k,1, SYk,1 = Y−k,1. (58)

To estimate Yk,1, we use ‖G(ε, k)‖L(H̃,D̂) � cε which shows that Y1 ∈ H 1
� (D̂) with

‖Y1‖H 1
� (D̂) � cε‖R‖H 1

� (H̃). (59)

To estimate u1, we use ‖G(ε, k)‖L(H) � c/|k|, then(
1 + k2)|uk,1|2 � cε2 1 + k2

|k̃|2 ‖Rk‖2
H̃
.

It results that u1 ∈ H 2
� (R) with

‖u1‖H 2
� (R) � cε‖R‖H 1

� (H̃). (60)

Equation for Y . Adding Yk,1 on both sides of (54), we obtain

Yk = −ϕ0i
2π

T
kukθk̃

+ {
T�,ε(R)

}
k
, (61)

where we defined the operator T�,ε(R) by{
T�,ε(R)

} = {
T 0 (R)

} + Yk,1.
k �,ε k
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Eq. (61) corresponds to Eq. (39) of Lemma 4.1. The estimate (41) is obtained in gathering (56), (59) and (60) together
with Proposition 3.1. Finally, the symmetry relation of Lemma 4.1 results from (57) and (58).

Notice that, applying ξ∗
ε on Eq. (61), we obtain

ξ∗
ε (Y ) = 2π

T
H�(u

′
0) + ξ∗

ε

(
T�,ε(R)

)
. (62)

Equation for u. To end the proof of Lemma 4.1, it remains to find the equation giving u in function of R. We apply
the linear form ξ∗

ε on the system (37), (38), then using ξ∗
ε (LεU) = 0 we obtain

ξ∗
ε

(
2π

aT

d

ds
{uξ0 + εY }

)
= εξ∗

ε (R).

Finally, with the relation (62) and ξ∗
ε (ξ0) = ε we obtain Eq. (40) with C�,ε(R) = ξ∗

ε (T�,ε(R)) − 2π/TH�(u
′
1). This

concludes the proof of Lemma 4.1. �
4.1.2. Reduction

In the previous section, we have solved the linear system. We now replace the function R in Lemma 4.1 by the
nonlinear term Rε(u,Y ). We observe that if u ∈ H 2

� (R) is even and if Y ∈ H 1
� (D̂) is reversible then Rε(u,Y ) ∈ H 1

� (H̃)

is anti-reversible and satisfies the assumptions of Lemma 4.1. Eq. (39), in which R is replaced by Rε(u,Y ), shows
that the function Y ∈ H 1

� (D̂) is a solution of

Y = T�(u) + T�,ε

(
Rε(u,Y )

)
. (63)

This equation can be solved with respect to Y thanks to the implicit function theorem.

Theorem 4.2. For all M > 0, there exists ε0 > 0 such that for 0 < ε < ε0 and for all function u ∈ H 2
�,e(R) (i.e.

u ∈ H 2
� (R) is even) such that ‖u‖H 2

� (R) � M , a reversible solution (u,Y ) ∈ H 2
� (R)×H 1

� (D̂) of (31), (32) must satisfy

Y = Y�,ε(u),

= T�(u) + O(ε),

where the function Y�,ε is smooth H 2
�,e(R) 
→ H 1

� (D̂).

Proof of Theorem 4.2. We solve Eq. (63) with the implicit function theorem. Here u is fixed and is such that
‖u‖H 2

� (R) � M , and we use the estimate (41). Actually, we need to adapt this theorem since T�,ε(Rε(u,Y )) is de-

fined only for ε > 0. Thus, we replace T�,ε(Rε(u,Y )) by

T�,ε

(
Rε(u,Y )

)− (
1 − με−1)T�,ε

(
Rε

(
u,T�(u)

))
.

For μ = 0 we have the solution Y = T�(u), and Eq. (63) corresponds to μ = ε. Applying the implicit function theorem
for μ close to 0 and Y near T�(u), we obtain the required result in making μ = ε, which lies in the domain of existence
of the solution. �
Remark. In the case when u is constant, then Y�,ε(u) = 0. Indeed, we know that T�(u) = 0 and the uniqueness of the
solution of (63) leads to Y = 0.

Theorem 4.2 reduces the system (31), (32) to one equation for the scalar function u. This equation is obtained by
replacing R by Rε(u,Y�,ε(u)) in (40). Finally, Proposition 2.5 allows us to rewrite this equation as a perturbation of
the Benjamin–Ono equation. Indeed, we prove that the main term of ξ∗

ε (Rε(u,Y�,ε(u))) is a local quadratic term. We
finally prove that the right-hand side of (40) is at main order a local term, which is −c0(2π/T )∂x(u

2). This leads to
the following result

Theorem 4.3. Let (u,Y ) ∈ H 2
� (R)×H 1

� (D̂) be a reversible solution of (31), (32). Then for all 0 < ε < ε0, the function
u satisfies

u + 2π H�(u
′) + ac0u

2 = c +B�,ε(u), (64)

T
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where B�,ε :H 2
�,e(R) 
→ H 1

�,e(R) is smooth and O(ε) and c is a constant of integration.

Proof of Theorem 4.3. We use the following notation in the rest of the paper: Rε(u) = Rε(u,Y�,ε(u)). If u ∈ H 2
�,e(R)

then Rε(u) satisfies the assumptions of Lemma 4.1. Therefore, we can replace R by Rε(u) in Eq. (40)

2π

aT

d

ds

{
u + 2π

T
H�(u

′) + C�,ε

(
Rε(u)

)}= ξ∗
ε

(
Rε(u)

)
. (65)

Thanks to Proposition 2.5 we first prove that the main term of ξ∗
ε (Rε(u)) is a local quadratic term: −c02π/T (u2)′.

The term ξ∗
ε (Rε(u)) appearing in (65) can be computed in using the expansion of Rε given in Proposition 2.4

ξ∗
ε

(
Rε(u)

)= uξ∗
ε

(
DεY�,ε(u)

)+ ξ∗
ε

(
R̃ε

(
u,Y�,ε(u)

))
. (66)

We now use the relation (61), which gives the Fourier coefficients of Y�,ε(u) in function of uk and the Fourier coeffi-
cients of Rε(u). This allows to compute the term ξ∗

ε (DεY�,ε(u)).

{
ξ∗
ε

(
DεY�,ε(u)

)}
k
= −i

2π

T
kuk,0ξ

∗
ε (Dεθk̃

) + ξ∗
ε

(
Dε

{
T�,ε

(
Rε(u)

)}
k

)
= −i

2π

T
kukϕ0

(
2c0 + εγε(k̃)

)+ ξ∗
ε

(
Dε

{
T�,ε

(
Rε(u)

)}
k

)
= −2c0

2π

T
{u′}k + 2c0ϕ1ikuk − i

2π

T
kukϕ0εγε(k̃) + ξ∗

ε

(
Dε

{
T�,ε

(
Rε(u)

)}
k

)
(67)

notice that ξ∗
ε (Dεθk) = 2c0 + εγε(k) has been used. We deduce from (67) that

ξ∗
ε

(
DεY�,ε(u)

)= −2c0
2π

T

du

ds
+ J 0

�,ε(u), (68)

where{
J 0

�,ε(u)
}
k
= 2c0ϕ1ikuk − i

2π

T
kukϕ0εγε(k̃) + ξ∗

ε

(
Dε

{
T�,ε

(
Rε(u)

)}
k

)
. (69)

We know that the function γε is even, that T�,ε(Rε(u)) is reversible and that the operator Dε anti-commutes with S.
It results that J 0

�,ε(u) is odd when u is even. We know that u1 ∈ H 2
� (R) with the estimate (60). Since the function γε

is bounded, we deduce the following estimate on J 0
�,ε(u) (we also use (41))∥∥J 0

�,ε(u)
∥∥

H 1
� (R)

� cε
∥∥Rε(u)

∥∥
H 1

� (H̃)
.

Replacing (68) in (66) then in (65), Eq. (65) becomes

2π

aT

d

ds

{
u + 2π

T
H�(u

′) + C�,ε

(
Rε(u)

)}= −c0
2π

T

du2

ds
+ uJ 0

�,ε(u) + ξ∗
ε

(
R̃ε

)
which can be written as follows

d

ds

{
u + 2π

T
H�(u

′) + ac0u
2
}

= B�,ε(u), (70)

where

B�,ε(u) = − d

ds

{
C�,ε

(
Rε(u)

)}+ aT

2π

(
uJ 0

�,ε(u) + ξ∗
ε

(
R̃ε

(
u,Y�,ε(u)

)))
.

Since T�,ε(Rε(u)) is reversible and since R̃ε(u,Y�,ε(u)) is anti-reversible, the function B�,ε(u) is odd. After an inte-
gration in (70), we obtain (64), the periodic function B�,ε(u) being the primitive of B�,ε(u), with zero mean value. �
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4.2. Resolution of the perturbed Benjamin–Ono equation

In the previous section, the system (31), (32) is reduced to Eq. (64) for the scalar function u, where T and c

are parameters. The limit equation, i.e. the equation obtained when B�,ε(u) ≡ 0, can be solved in the case when
1 + 4ac0c > 0 (see [2]). More precisely, the family of functions uκ,p parametrized by κ > 0 and p > 2π , defined
in (33), is a solution of the limit equation when T = p/κ and c = (κ2 − 1)/4ac0. Therefore, we look for solutions
of (64) where we introduce the new parameters T = p/κ and c = (κ2 − 1)/4ac0, with p > 2π and κ > 0, i.e. we are
now interested in the equation

u + κ
2π

p
H�(u

′) + ac0u
2 = κ2 − 1

4ac0
+B�,ε(u). (71)

The rest of Section 4.2 is devoted to the construction of solutions of (71). In Section 4.2.1, we find solutions of (71)
with p close to 2π . In Section 4.2.2, we find solutions of (71) for almost all the values of p > 2π . We also show how
these solutions lead to the periodic solutions of Theorems 3.2 and 3.3.

Notice that the resolution of the perturbed Benjamin–Ono equation for functions u tending towards 0 at infinity is
easily performed in [3] thanks to a result of [1] on the invertibility of the linearized Benjamin–Ono operator. In next
sections, we study this resolution in the periodic case. In particular, we need to study the invertibility of the linearized
Benjamin–Ono operator around a given solution (see the definition of Lp in (89)).

4.2.1. Solutions of (71) with p close to 2π

The critical value of p in uκ,p is 2π . For that particular value, we obtain the constant function uκ,2π (denoted by
uκ in the following)

uκ(s) = −κ + 1

2ac0
. (72)

Therefore, we look for solutions u of (71) close to uκ , such that p is close to 2π . The following theorem proves the
existence of a family of solutions uA

κ,ε = uκ + A cos+O(ε + A2) parametrized by A, close to 0, and κ , which lies in
an interval [κ0, κ1] with κ0 > 0. The values of κ are limited since we must avoid the critical value κ = 0 and because
uκ must be bounded.

Theorem 4.4. There exists ε0 > 0, κ1 > κ0 > 0 and A0 > 0 such that for all 0 < ε < ε0 Eq. (71) has a family of
periodic solutions uA

κ,ε parametrized by A (|A| < A0) and κ ∈ [κ0, κ1], and satisfying

uA
κ,ε(x) = u0

κ,ε + A cos(x) + ũA
κ,ε(x), (73)

where u0
κ,ε = uκ + O(ε) is a constant, and the function ũA

κ,ε ∈ H 2
�,e(R) is of order O(εA + A2). The parameter

p = p(ε, κ,A2) is given by

p = 2π

1 − μ
, μ = 1

2

(
κ−1ac0

)2
A2 + O(ε).

Remark. The constant uκ is a solution of (71) when B�,ε(u) = 0. This equation admits another constant solution ũκ

given by

ũκ = −1 + κ

2ac0
.

We can prove (same proof as the proof of Theorem 4.4) that Eq. (71) admits a family of solutions ũ0
κ,ε = ũκ + O(ε),

parametrized by κ ∈ (κ0, κ1). This proves the existence of a family of stationary solutions of (22) which read U(x) =
ũ0

κ,εξ0 and which correspond, for κ ∼ 1 (i.e. ũκ close to 0), to the “hyperbolic” equilibria of system (22) which we
encounter in [3] (these equilibria are not properly hyperbolic, because there is no real positive or negative eigenvalues).
The Theorem 4.4 shows that the equilibria uκ are “elliptic”.

Before proving Theorem 4.4, let us give the end of proof of Theorem 3.2.
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End of proof of Theorem 3.2. The periodic solutions of Theorems 3.2 are obtained from the solutions uA
κ,ε of (71)

and thanks to Theorem 4.2 which allows to construct the solutions of (29). Indeed, if u is a solution of (71) then
U = uξ0 + εY�,ε(u) is a solution of (29). Therefore, we obtain a family of 2π -periodic solutions of (29): UA

κ,ε =
uA

κ,εξ0 + εY�,ε(u
A
κ,ε), by using the Theorem 4.2 with u = uA

κ,ε . Hence Theorem 3.2 is proved. �
Proof of Theorem 4.4. We look for even solutions of (71) close to uκ . Therefore, we introduce the function
w ∈ H 2

�,e(R), perturbation of the constant function uκ , and the parameter μ by

u = uκ + w,
2π

p
= 1 − μ. (74)

The equation satisfied by w is obtained in replacing (74) in (71) and can be written as

Lw = Nε,κ,μ(w), (75)

where operators L ∈ L(H 2
�,e(R),H 1

�,e(R)) and Nε,κ,μ :H 2
�,e(R) 
→ H 1

�,e(R) are defined by

Lw = −w +H�(w
′),

Nε,κ,μ(w) = κ−1B�,ε(uκ + w) − κ−1ac0w
2 + μH�(w

′). (76)

For ‖w‖H 2
� (R) � δ, the following estimate on Nε,κ,μ(w) holds, for κ ∈ [κ0, κ1]∥∥Nε,κ,μ(w)

∥∥
H 1

� (R)
� c

(
ε + ‖w‖2

H 2
� (R)

+ |μ|).
Since (Lw)k = (−1 + |k|)wk , the kernel of L in H 2

�,e(R) is spanned by the function cos. Hence, we introduce the
projection P(f ) = P0(f ) cos on the kernel of L, where for a real valued function f

P0(f ) = 1

π

π∫
−π

f (τ) cos(τ )dτ,

and the projection on the orthogonal of the kernel: Q = I − P . We can now define a pseudo-inverse L̃−1 ∈
L(H 1

�,e(R),H 2
�,e(R)) of L. If N ∈ H 1

�,e(R) satisfies P(N) = 0 then

L̃−1(N)(s) =
∑

k∈Z\{−1,1}

1

−1 + |k|Nk eiks .

Stationary solutions of (75). We first look for stationary solutions w of (75) close to 0. The equation for w (inde-
pendent of μ) reads

−w = κ−1B�,ε(uκ + w) − κ−1ac0w
2. (77)

We solve this equation thanks to the implicit function theorem: for ε positive close to 0, there exists a constant WK,ε

solution of (77) which satisfies

Wκ,ε = −κ−1B�,ε(uκ) + O
(
ε2).

It results that (71) admits a family stationary solutions u0
κ,ε = uκ +Wκ,ε , where uκ is defined by (72) and p is arbitrary.

Nonconstant solutions of (75). To find the nonconstant even solutions w of (75), we use the Lyapunov–Schmidt
method. We decompose w as follows

w(s) = v(s) + A cos(s), P (v) = 0, v even.

Eq. (75) is then equivalent to the system

v = L̃−1QNε,κ,μ

(
v(s) + A cos(s)

)
, (78)

0 =
π∫

Nε,κ,μ

(
v(τ) + A cos(τ )

)
cos(τ )dτ. (79)
−π
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Eq. (78) can be solved with respect to v thanks to the implicit function theorem, for ε and μ close to 0, there exists a
function v = Vε,κ (μ,A) solution of (78). When A = 0, then the function Vε,κ (μ,0) is constant and corresponds to the
constant Wκ,ε obtained in the previous paragraph. It results from the uniqueness of Vε,κ (μ,A), from the invariance of
(78) under the change of variables s → s + π , A → −A and from the invariance s → −s, the following properties

Vε,κ (μ,A)(s + π) = Vε,κ (μ,−A)(s), (80)

Vε,κ (μ,A)(−s) = Vε,κ (μ,A)(s). (81)

We compute the main terms of Vε,κ (μ,A) thanks to (78) and thanks to the definition of Nε,κ,μ in (76)

Vε,κ (μ,A) = L̃−1QNε,κ,μ

(
A cos+Vε,κ (μ,A)

)
,

= L̃−1Q
{
μAH(cos′) + κ−1B�,ε(uκ) − κ−1ac0A

2 cos2}+ κ−1L̃−1Q
{
DuB�,ε(uκ) · A cos

}+ h.o.t.

Observe that H(cos′) = cos and Q(cos) = 0. Now using L̃−1(const) = −const, Q(const) = const and L̃−1Q(cos2) =
− sin2, we obtain

Vε,κ (μ,A) = −κ−1B�,ε(uκ) + κ−1ac0A
2 sin2 +h.o.t. = O(ε) + O

(
A2). (82)

Let now replace v by Vε,κ (μ,A) in Eq. (79), which now reads

0 = 1

π

π∫
−π

Nε,κ,μ

(
Vε,κ (μ,A)(τ) + A cos(τ )

)
cos(τ )dτ, (83)

and can be written as

hε,κ (μ,A) = 0.

We know that hε,κ (μ,0) = 0 since A = 0 corresponds to the family of stationary solutions. The property (80) shows
that hε,κ is odd with respect to A. Hence, we can write

hε,κ (μ,A) = Agε,κ

(
μ,A2).

In order to write the main terms of gε,κ (μ,A2), we must compute the beginning of the expansion of Nε,κ,μ(A cos(τ )+
Vε,κ (μ,A)(τ))

Nε,κ,μ

(
A cos(τ ) + Vε,κ (τ )

)= μA cos(τ ) + μH�(V ′
ε,κ ) − κ−1ac0

(
A cos(τ ) + Vε,κ

)2

+ κ−1B�,ε(uκ + A cos+Vε,κ ),

= μA cos(τ ) − κ−1ac0A
2 cos2(τ ) − 2κ−1ac0A cos(τ )Vε,κ

+ κ−1B�,ε(uκ) + h.o.t. (84)

We use this expansion to express the main terms of hε,κ , in replacing (84) in (83)

hε,κ (μ,A) = μA − 2κ−1ac0A
1

π

π∫
−π

Vε,κ (μ,A)(τ) cos2(τ )dτ + h.o.t. (85)

From (82) we can compute the main terms of the following integral

1

π

π∫
−π

Vε,κ (τ ) cos2(τ )dτ = −κ−1B�,ε(uκ) + κ−1ac0A
2 1

π

π∫
−π

sin2(τ ) cos2(τ )dτ + h.o.t.

= −κ−1B�,ε(uκ) + 1

4
κ−1ac0A

2 + h.o.t. (86)

Replacing (86) in (85), we obtain

gε,κ

(
μ,A2)= μ − 1(

κ−1ac0
)2

A2 + 2κ−2ac0B�,ε(uκ) + h.o.t.

2
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Therefore, we can solve gε,κ (μ,A2) = 0 with respect to μ and we obtain

μ
(
ε, κ,A2)= 1

2

(
κ−1ac0

)2
A2 + O(ε). (87)

In conclusion, the family uA
κ,ε(s) = u0

κ,ε + A cos(s) + ũA
κ,ε(s) where ũA

κ,ε = Vε,κ (μ,A) − Vε,κ (0,0) is a solution of
(71) with 2π/p = 1 − μ and μ is given by (87). This concludes the proof of Theorem 4.4. �
4.2.2. Resolution of (71) with p > 2π

In this section, we solve Eq. (71) for an open set a values of p. We look for even solutions u approximated by uκ,p .
Therefore, we set

u = uκ,p + w, w ∈ H 2
�,e(R).

The function w is a solution of the following equation

Lpw = κ−1B�,ε(uκ,p + w) − κ−1ac0w
2, (88)

where we denote by Lp the operator H 2
� (R) 
→ H 1

� (R) defined by

Lpw = w + 2π

p
H�(w

′) − 2vpw, (89)

where vp is defined in (4). We intend to solve Eq. (88) in w with the implicit function theorem. Therefore, we need
to study the invertibility of Lp . In the previous section, we have seen that Lp is not invertible for p = 2π , and that its
kernel in H 2

� (R) is spanned by the functions cosine and sine. We prove here that for p close to 2π and p > 2π then

Lp ∈ L(H 2
�,e(R),H 1

�,e(R)) is invertible (whereas the kernel of Lp in a space including odd functions is nonvoid, ∂svp

being always in the kernel).

Lemma 4.5. There exists τ0 > 0 such that for all 0 < τ < τ0, if

p = 2π

(
1 − 1

2
τ 2
)−1

,

then the operator Lp ∈L(H 2
�,e(R),H 1

�,e(R)) is invertible.

Proof of Lemma 4.5. To prove this lemma we solve the equation

Lpw = f, f ∈ H 1
�,e(R). (90)

We define the real number τ � 0 by

2π

p
= 1 − 1

2
τ 2,

so that v0 = 1 + τ + O(τ 3) and we obtain the following expansion of vp

vp = 1 + τ cos+O
(
τ 2).

The operator Lp can also be expanded as follows

Lpw = Lw + τL(1)
τ w + τ 2L(2)

τ w, (91)

where L is defined by Lw = −w +H�(w
′) and L

(1)
τ and L

(2)
τ are given by the following relations

L(1)
τ w = −2w cos,

L(2)
τ w = −1

2
H�(w

′) − 2w
(
cos2 −1

)+ O(τ )w.

Since the kernel of L in H 2
�,e(R) is spanned by the function cosine, we decompose w as follows

w = w0 cos+v, v ∈ H 2
�,p(R), P0(v) = 0, w0 ∈ R.
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Replacing w in (90) and using the expansion of Lp given in (91), we obtain

L(v) − 2τw0 cos2 −2τv cos+τ 2L(2)
τ (w0 cos+v) = f. (92)

To solve this equation, we use the Lyapunov–Schmidt method. We project (92) on the range of L by using the op-
erator Q(v) = v − P0(v) cos and on the kernel of L by using P0. We also need the following relations P0(cos) = 1,
P0(cos2) = 0. It results that Eq. (92) is equivalent to the following system

L(v) − 2τw0 cos2 −2τQ(v cos) + τ 2QL(2)
τ (w0 cos+v) = Q(f ), (93)

−2τP0(v cos) + τ 2P0L
(2)
τ (w0 cos+v) = P0(f ). (94)

Using the pseudo-inverse L̃−1 of L, Eq. (93) can be written as

Lτ (v) = L̃−1{Q(f ) + 2τw0 cos2 −τ 2w0QL(2)
τ (cos)

}
, (95)

where Lτ ∈ L(H 2
�,e(R)) is defined by

Lτ (v) = L̃−1QLp(v) = v − 2τ L̃−1Q(v cos) + τ 2L̃−1QL(2)
τ (v),

= (
I + O(τ )

)
v.

In particular, for 0 � τ < τ0, Lτ is invertible and its inverse reads

L−1
τ v = v + 2τ L̃−1Q(v cos) + O

(
τ 2)v.

Using L̃−1(cos2) = − sin2, Eq. (95) becomes

Lτ (v) = L̃−1{Q(f )
}− 2τw0 sin2 −τ 2w0L̃

−1{QL(2)
τ (cos)

}
. (96)

Now using L−1
τ (sin2) = sin2 +O(τ ), we deduce that, for 0 � τ < τ0, v = vτ (w0, f ) is given by

vτ (w0, f ) = L−1
τ L̃−1{Q(f )

}− 2τw0L−1
τ

(
sin2)− τ 2w0L−1

τ L̃−1{QL(2)
τ (cos)

}
,

= L−1
τ L̃−1{Q(f )

}− 2τw0 sin2 +O
(
τ 2)w0. (97)

We now replace v by vτ (w0, f ) given by (97) in (94)

−2τP0
(
vτ (w0, f ) cos

)+ τ 2P0L
(2)
τ

(
w0 cos+vτ (w0, f )

)= P0(f ). (98)

We compute P0(vτ (w0, f ) cos) by using the relation (97)

P0
(
vτ (w0, f ) cos

)= P0
(
L−1

τ L̃−1{Q(f )
}

cos
)− 1

2
τw0 + O

(
τ 2)w0, (99)

since P0(sin2 cos) = 1/4. Now, using (99) in (98), we find

τ 2w0 + O
(
τ 3)w0 = P0(f ) + O(τ )f. (100)

For 0 < τ < τ0, we can solve (100) and we obtain w0 in function of f , then vτ (w0, f ) and finally w ∈ H 2
�,e(R)

solution of (90). �
Remark. The operator Lp is not invertible in L(H 2

� (R),H 1
� (R)) since the odd function ∂svp is in the kernel of Lp

for the values of p � 2π .

The following lemma proves that Lp is invertible for a given open set of values of p.

Lemma 4.6. There exists a set P ⊂ (2π,+∞) which differs from the interval (2π,+∞) by a discrete set without
point of accumulation, such that for all p ∈P , the operator Lp ∈ L(H 2 (R),H 1 (R)) is invertible.
�,e �,e
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Proof of Lemma 4.6. We define the operator Tp ∈L(H 2
�,e(R)) by the relation

Tp(w) = 2

(
1 + 2π

p
H�(∂x)

)−1

(vpw), w ∈ H 2
�,e(R). (101)

The family Tp (Rep > 2π ) is an analytic family of compact operators and satisfies

1 − Tp =
(

1 + 2π

p
H�(∂x)

)−1

Lp. (102)

Thanks to Lemma 4.5, we know that 1 −Tp is invertible for p > 2π close to 2π , then the function p 
→ (1 −Tp)−1 is
meromorphic in the neighborhood of (2π,+∞) (see Theorem 1 in [10]). It results that there is a discrete set without
point of accumulation of values of p > 2π for which 1 − Tp is not invertible. �

We now solve (88) with respect to w thanks to the implicit function theorem and obtain the following result:

Theorem 4.7. Let p ∈ P , then there exist ε0 > 0 (which depends on p), κ1 > κ0 > 0, such that for all 0 < ε < ε0 and
κ ∈ (κ0, κ1), Eq. (71) admits an even solution v

p
κ,ε ∈ H 2

�,e(R) which satisfies

vp
κ,ε(s) = uκ,p(s) + O(ε). (103)

Let us now give the end of proof of Theorem 3.3.

End of proof of Theorem 3.3. The periodic solutions of Theorem 3.3 are obtained from the solutions v
p
κ,ε of (71)

and thanks to Theorem 4.2.
Theorem 4.7 proves the existence of a family of solutions v

p
κ,ε of (64) with p ∈ P (i.e. for almost all the values of

p ∈ (2π,+∞)) and c = (κ2 − 1)/(2ac0). Thanks to Theorem 4.2, we obtain the family of periodic solutions V p
κ,ε of

Theorem 3.3

V p
κ,ε = vp

κ,εξ0 + εY�,ε

(
vp
κ,ε

)
.

Notice that in this theorem, the values of p lies in a compact set K ⊂P in order to have an ε0 which does not depend
on p. Hence Theorem 3.3 is proved. �
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