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Abstract

In this paper, we consider regularity criteria for solutions to the 3D generalized MHD equations with fractional dissipative term
—(—=A)%u for the velocity field and —(—=A)Bb for the magnetic field. For the case o = f, it is proved that if the velocity field
belongs to LP4 with 2/ p 4+ 3/q < 2o — 1 or the gradient of velocity field belongs to LP-9 with 2a/p +3/g <3a —10n [0, T],
then the solution remains smooth on [0, T']. The significance is that there is no restriction on the magnetic field. Moreover, the
norms ||u| zp.q and || A%u||zp.q are scaling dimension zero for 2a/p + 3/q =20 — 1 and 2/ p + 3/q = 3 — 1 respectively. For
1 < B < «, we find that the minimum sum of « and g to guarantee the global existence of smooth solutions is 5/2. Furthermore,
we show that the weak solution actually is strong if the corresponding vorticity field w = V x u satisfies certain condition in the
high vorticity region.
© 2006 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Dans ce papier nous considérons des criteres de régularité pour les solutions des équations MHD en 3D généralisées avec un
terme de dissipation fractionnel —(—A)®u pour le champ de vitesse et un terme —(=M)Pp pour le champ magnétique. Pour le cas
a = B, il est démontré que si le champ de vitesse est dans LP9 avec 2a/p + 3/q < 2o — 1 ou le gradient de la vitesse est dans
LP9 avec 2a/p +3/q < 3a — 1 sur [0, T'], alors la solution reste réguliere sur [0, T]. Il est important de noter qu’il n’y a pas
de restriction sur le champ magnétique. En plus, les normes ||u|| 7 p.q et || A%u| zp.¢ ont une dimension sous changement d’échelle
égale a zéro pour 2a/p 4+ 3/q =2 — 1 et pour 2/ p 4+ 3/q = 3o — 1 respectivement. Pour 1 < 8 < «, nous trouvons que la
somme minimale de « et 8 qui garantit I’existence globale de solutions réguliéres est 5/2. En plus nous montrons que les solutions
faibles sont des solutions fortes si le champ de vorticité correspondant w = V X u satisfait une certaine condition dans la région de
vorticité.
© 2006 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider the following 3D generalized viscous MHD equations
oou+u-Vu—b-Vb+ VP =—(—A)%u,
ab+u-Vb—b-Vu=—(—A)Pb,
divu =divb =0,

u(x,0) =uo(x), b(x,0)=bo(x),

(1.1)

where u € R3 is the velocity field, b € RR3 is the magnetic field, P(x,t) is a scalar pressure, and u(x), bo(x) with
divug = div by = 0 in the sense of distribution are the initial velocity and magnetic fields. «, 8 > 1 are the parameters,
and the operator (—A)Y (y > 0) is defined by [13]

(=27 f &) =€ f,
where f denotes the Fourier transform of f. As usual, we write (—A)!/? as A.

This system is of interest for various reasons. For example, it includes some known equations, say Navier—Stokes
equation (¢ = 8 = 1, b = 0) and standard MHD equations (o« = 8 = 1). Moreover, it has similar scaling properties
and energy estimate as the Navier—Stokes and MHD equations. Heuristically, solutions of (1.1) should converge to
that of Navier—-Stokes and MHD equations as «, 8 — 1. We believe that the regularity studies of system (1.1) can
improve the understanding of the Navier—Stokes and MHD equations.

For this dissipative system, it is easy to prove (see [11] for « = 8 = 1) that problem (1.1) is local well-posed for any
given initial datum ug, by € H*® (R3), s 2 3. Moreover, just as what for other mechanical equations, say Navier—Stokes
and MHD equations, it is proved by Wu [15] that Eq. (1.1) has a weak solution for any given ug, by € L2(R3) with
div ug = div by = 0. But whether the unique local solution can exist globally or the weak solution is regular and unique
is an outstanding challenge problem, just as the situation for Navier—Stokes and MHD equations. So a lot of literatures
are devoted to find regularity criteria or prove partial regularity for these equations, such as [1-4,7,9,12,14,17-20,22]
for Navier—Stokes equations, and [5,10,16,21] for MHD equations.

The paper is organized as follows. In Section 2, we impose conditions on the velocity field, and consider 2 cases.
One is @ = B, the other is « > B. In Section 3, we prove that the weak solution actually is strong if the corresponding
vorticity field @ = V x u somehow is Holder continuous with exponent % —2a.

Before going to next section, we write down the definition of weak solutions to (1.1).

Definition 1.1. A measurable vector pair (u, b) is called a weak solution to generalized MHD equations (1.1), if (u, b)
satisfies the following properties

(i) u e L>®(0,T); LH N L*([0,T); H¥), b e L>®([0, T); L*) N L*([0, T); H?).
(i) (u, b) verifies (1.1) in the sense of distribution; that is

//( +(u- V)¢)udxdt+/uogb(x 0)dx = // uA*™¢+b-Vé-b)dxdt,

OR3 R3 0R3
//<—+(u V)¢)bdxdt+/bo¢(x 0)dx = // bA2ﬂ¢+b Vo - )dxdt
R3 0 R3

for all ¢ € C(C)’O(R3 x [0, T)) with div¢ = 0, and

T T
/[u-Vq)dxdt:O, //b~qudxdt:0

0 R3 0O R3
for every ¢ € C°(R? x [0, T)).
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(iii) The energy inequality; that is

t
nuawif+2/HA%unH;ds<num@b
0

t
\wawﬁ2+2/WAﬂmnH§ds<nmm§,
0

forO0<r<T.
Here, the space H*(R?), s € R, consists of functions f satisfying

nm%=/0+m¥H@F@<w

R3

Remark. The definition of weak solution for (1.1) is similar to that for the Navier—Stokes equations. In [15], Wu de-
fined the weak solutions without (iii), the energy inequality. However, from the existence proof (by Galerkin method),
we can find the existence of weak solutions possessing the energy inequality.

2. Regularity criteria in terms of the velocity field

The first result is a regularity criterion similar to Serrin’s [12] regularity class for the Navier—Stokes equations. To
this end, we introduce the space L*Y

! 1/p
(/mew;m> 1< p < oo,
0

llullLra =
esssup“u(-,t)”Lq if p=o0,
O<t<t
where
1/q
(/}u(x,t)}qu> if 1 <g < oo,
Juc. D] =1 ®
esssup|u(x,r)| if g = oo.
xeR3

We say v € LP? if ||v| Lra < 00.

Note that if « = 8 and (u(x, 1), b(x,1)) is a solution to (1.1), then (u,, b)) with any A > 0 is also a solution,
where uy (x, 1) = A2 Lu(rx, A2%1) and b, (x, 1) = A2~ 1b(hx, 22%1). Motivated by the work of Caffarelli, Kohn and
Nirenberg [4] for the Navier—Stokes equations, we say that the norm ||u||zr.¢ is scaling dimension zero for 2«/p +
3/q =2a — 1 in the sense that iy || r.e = |u||Lr.e holds for all A > 0 if and only if 2a/p + 3/qg =22 — 1.

The first regularity criterion reads

Theorem 2.1. Let | <a =8 < % Assume that the initial velocity and magnetic fields ug, by € H3(R?). If
2 3
w(x, 1) € P9, with = 4+ = <20 — 1,

P q 200 — 1
then the solution remains smooth on (0, T .

<q<oo, @.1)

Assume that Theorem 2.1 is true for a moment, just from the energy inequality for the weak solutions, then we
have a corollary as follows.

Corollary 2.2. Assume that the initial velocity and magnetic fields ug, bg € H>(R?). Ifa = B > %, then all the global
weak solutions to (1.1) are actually strong and unique.
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Proof. Due to the Gagliardo—Nirenberg inequality, for any weak solution defined by Definition 1.1, we have

1-1/2 1/(2
luall ez < Cllafl 2P0 A% 3%

Loo,2 L2,2
On the other hand,
20 L 3 _ 3 <2 :
4o 3725

is true, provided that o > %. Hence Corollary 2.2 follows from the result of Theorem 2.1 directly. O
Remark 2.1. The result of Corollary 2.2 was also showed by Wu [15] via a different approach.

Now we go to the proof of Theorem 2.1. Suppose f € H?, due to the fact that

3 f

3)6,' 3Xj

=0;0; f =—RiR;Af,

where R; is the Riesz transform, @(5) = —i(&; /1€ & (&) [13], and the boundedness of the operator R; : L? — LP?,
1 < p <00, we have

19;9; fliLr < CIIAfllLr, 1< p<o0. (2.2)

In order to prove Theorem 2.1, first we show
u,be L®(0,T; H')YNL*(0, T; H*M'), (2.3)

if (2.1) holds.
Multiplying the first equation of (1.1) by Au, after integration by parts and by taking the divergence free property
into account, we have

1d
EaHVuHiﬁ—||A“+1u||izz—/aiuk~8kuj ~8iujdx+f8,~bk-8kbj~8,»ujdx
R3 R3
—/bk - 0j0kuj - 0;b; dx. 24)
R3

Similarly, multiplying the second one by Ab, we obtain

1d 2 a+1p2
S IVOIT + 1A Bl = — [ Ouuc- 0ub; - iy dx + [ Biby - dgar - i d
R3 R3
+/bk'ak8iuj'aibjdx~ (2.5)
R3
Combining (2.4) and (2.5) yields

1d 2 2
55(||v14||§2+||v1a||i2)+ A%+ u] . + ||Aa+lb||L2=—f8iuk-8kuj-8iujdx+/3ibk-8kbj -9 dx
R3 R3
—/Ewk . 8kbj . Bibj dx +/3ibk . akuj . 8ibjdx
R3 R3
=1 +I+1+1V. (2.6)

Then we estimate the above terms one by one. First we do the estimates for g < co.
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=

/Mk(aikuj - Ojuj + Okuj - Ojiuj)
R3
CllullzalIVullzs | AullLy

<
< Cllulla 1Vl | A% ]| 501l | 4% )1
1
S35 ”AaH””iz + CI|M||i/q(9+5)||VM||iz 2.7)

where we used the Holder inequality, Young inequality and Gagliardo—Nirenberg inequality (a combination of the
interpolation and Sobolev inequalities) for the fractional Sobolev spaces [13] (see also [8], p. 89). The constants
l<s,y <ocoand 0<6,d < 1 satisfy

11 1
k= -=1,

s Y q

L1 (11 L 9)1 a+1 -
s 3 \2 3 2 3 ) (2.8)
1 2 11 1 1

Lol D ra—s(s %),

) 23 2 3

System (2.8) has 4 unknowns but 3 equations, so there are infinite many solutions. Note that o < % implies g > %,
then one solution to (2.8) can be written as

6 6 1/1 3
s=—d y=  pgos=_(-4+ )<l 2.9)
2g -3 4q -3 2

Moreover for any solution to (2.8), we have

2 2a
0+8 2a—-1-3/g

Similarly, one can obtain

|+ || + |IV] < Cllul| Lo I VD Ls | Ab| v
1-6 1-§
< ClullaIVBI9, | A% b L7 1V, | A% B -

2a
La

1 2 da—1-3
< gla b2+ Cllulzy 0y vb1, (2.10)

where s, y, 6 and § are constants given by (2.9).
Putting (2.7) and (2.10) into (2.6), we obtain

d 2 2 20/ (e —1-3
o (Va2 +19DI2) + | A w4 A+ b < Cllallz = 2 (1Vullf + 19517,). @.11)
Therefore, by applying the standard Gronwall inequality on (2.11), one has

T
sup (Va0 [+ b6 03 + [ (1A a0l + |47 b )
\t\

0

T
< (IVuoll3, + ||Vb0||iz)exp</C||u(.,t)“i!z/(%z13/q) dt>'
0

Thanks to the boundedness of # in L?-?-norm, the above inequality implies (2.3) for p < co.
If ¢ = 0o, we can use the Holder, Gagliardo—Nirenberg and Young inequalities to obtain
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lull oo (IVull 2| Aull 2 + VD] 2| Ab] 12)

1) || + |HI) + IV < C
< Clull oo (V2] 5570 | A%+ ]| 5+ 1900 5507 | 4%+ 5)

<!

2

(||A“+‘u||L2 A% D)%) + Cllul 22V (IVul2, + 1 Vul,). (2.12)

In this case, it is obvious that 5 1 < p. Finally, by combining (2.6) and (2.12), then we get (2.3).

After we have (2.3), the estlmates for higher order derivatives can be obtained by an inductive procedure.

This completes the proof of Theorem 2.1.

Under the above scaling, it is easy to check that ||A%ul||pr.¢ is scaling dimension zero; that is || A%u||pre =
| A%u; || Lr.a, if and only if 27“ + 3 = 3a — 1. The second regularity criterion concerned with A%u reads

Theorem 2.3. Let 1 <o =8 < % and assume that the initial velocity and magnetic fields uq, by € H3(R>). If on
[0, T, A%u satisfies
3 3 3

2
A%uel??, with—+—-<3a—-1, 1< p<oo, <g<—0o, (2.13)
P q 3 — 1 o—1

then the solution remains smooth on [0, T'].

Remark 2.2. When o = 8 = 4, a direct consequence of Theorem 2.3 is Corollary 2.2. In this case, the weak solution
defined by Definition 1.1 satisfies (2.13) with p =¢q =2.

Proof. We begin our proof from (2.6).

1< 19t < v LA a2

< 1A+ atup 2

IVul?,, (2.14)
where we used the Gagliardo—Nirenberg and Young inequalities. The constants satisfy
01+0+63=1,
NPT (LA PPN A PN (2.15)
—N273) g T3 27 T3 ) '
301 =2 — 365.

System (2.15) can be solved uniquely as

0 =1 11+3 9—1 9—11 ~|—3

Consequently, we have

20, 2a

0, 3a—1-3/q
On the other hand, by the Holder, Gagliardo—Nirenberg and Young inequalities, we obtain

< p.

\LT| + || + |1V < C| VullLr VB 5y 1)
<CWH}M%MAWW2WM“Mﬁ

||A"‘+1b||L2+C|| 1O qe | 20 v 2,
= 1A B2 (5O a2/ 2.16)

The constants y, 6 and § satisfy
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1 1_(1 9)1+91 o
y 3 2 g 3)
Y

—1 1 1 1 1 a+1
7—?“‘5)(5‘3)”(5‘ 3 ) @17

0 _ 20
1-8 3a—1-3/q

First, formally system (2.17) can be solved with

(5 —4a)3q 3 5/6—1/y

Y= 6 40@ql—a0+3) " 24y 124a/3-1/q

fl<a< %, it is obvious that the above solution can be reduced to

3q _ 3 _qU-w+3 o 561y .18

- (S— ) - -
gl —a)+3 20y 20q 1/24a/3—-1/q

14

When o = f—P we can define

. (5 —4a)3qg 3q
y = lim =
a=5/4 (5 —4a)(g(l—a)+3) q(l—a)+3

to get the same solution as (2.18).
Hence in (2.16), the following inequality was used

IVuller <€ A%1u] , < Cla%] .

Thanks to the energy inequality, we have

1 -
Sla b+ cllatu 7y O b, (2.19)

Combining (2.6), (2.14) and (2.19), we obtain

|+ [+ |IV] <

d —1-
g (1752 4 0VBIG) + A% s + A b < caul 50 (19l +19517:) . 220

Note that

200 < " 20 n 3 <3 |
T T L P U—7T 50— 1,
30 —1—-3/q P P q
then the bounds of ||u, bl o 7. 51y and [lu, bll ;2o 7. ge+1) follow from (2.20) and the Gronwall inequality.
The proof is finished. 0O

Remark 2.3. When o = B = 1, Theorem 2.3 still holds under the condition that Vu € L"* (see [21]). In fact, in this
case, (2.16) simply reduced to

| + | + IV < C|[Vul L= [ VDI7.

Remark 2.4. The regularity can be proved under the condition that the velocity field u belongs to L3/C2=D or A%y
belongs to [00:3/Ga=1) provided that [[u||;00,3/ca—1) OF || A%||;0,3/Ge—1) 18 sufficient small. The proof can be given by
the similar argument used in [21].

Theorems 2.1 and 2.3 establish regularity criteria in terms of the velocity field (see also the corresponding results for
MHD in [21]). It seems that the velocity field contributes more than the magnetic field for the effects of regularization.
Now we want to investigate the regularity criterion on the parameter « and 8 for o # 8. Our theorem reads
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Theorem 2.4. Let 1 < B < % <a< % Assume that the initial velocity and magnetic field ug, bo € H3(R>). If

o> % —B. (2.21)

then the global weak solutions are actually strong and unique.

Proof. We only need to prove (2.3) under the condition (2.21).
From (2.6) with o # 8, we do the following estimates. Taking g =2 in (2.14), the first term / can be bounded as

4o /(6a—5)

1] < ||A“+1u||L2+C||A“ I3 IVul?,. (2.22)

By the Holder, Gagliardo—Nirenberg and Young inequalities as well as the energy inequality for the weak solution,
we have

(| + I + IV < C||Vul ot VB 7.0,
< Cllul 2" Ay | AP B2 1vb13
1 _
EHAﬂ-i_lb“LZ“‘C” ”(1 91)/(1 02)’|A(xu”ilz/(l GZ)HVb”%z
1
—||A’3+1b||L +C|l a2 vn)2,. (2.23)
The constants satisfy
1 2
- + - = 15
al ay
1 1 1 1 «o
a——z(l_el)—-i-el 57 3) (2.24)
11 1 1 B+1
Z— _—(1—92)<—— g) +92<§ - T>,

where 0 < 01, 6, < 1. If (2.24) is solvable with
0
1-6, =
by putting (2.22) and (2.23) into (2.6), and due to the energy inequality, we get the a priori estimate (2.3). The higher

derivative estimates can be obtained similarly. Consequently, the weak solution actually is smooth.
The problem is to solve (2.24) under the condition (2.21). Letting 1/a; = b1, then (2.24) can be solved as

5 3 3b1
O=|=-—5b1)—, 0 2.25
1 (6 1) " h = 2% (2.25)
Then due to the condition 81 /(1 — 6,) < 2, we have
(5/6 —b1)3B/c
28 —3b;

Hence the restriction for « is

(5-6b1)B

<1l

Now, let
(5—6x)8
48 —6x ’

then f(x) >0 for | <B < 3.

flx)=
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From the condition 0 < 01, 6> < 1, thanks to (2.25), we get
5 « 5

2 _Z<h <2
6 3 1356

Therefore from (2.26), one obtains

5 «

Direct computation yields

o> é — B.
2
Actually, in this case, (2.24) can be solved as
o =1, al:L’ 225—20:’ b= 12 .
5 -2« 48 142«

Hence in (2.23), the following Sobolev inequality is used
IVullza < C[ A" Vu] o = CA%] .
The proof is complete. O

Remark 2.5. Corollary 2.2 and Theorem 2.4 show that if the indexes o and 8 satisfy | < B <o anda + 8 > % then
the weak solution to (1.1) is regular and unique. It should be very interesting if one can prove the global existence of
smooth solutions when o + 8 < %

3. Regularity criterion in terms of the vorticity field

In the study of fluid mechanics, the vorticity field is always an important and interesting issue. For example,
for 3-D Navier-Stokes equations, Constantin and Fefferman [7] proved that if the direction of the vorticity field
is somehow Lipschitz continuous in the high vorticity region, then the weak solution actually is a (unique) strong
solution. Recently, there are several interesting results [2,3,19] which improved the result of Constantin and Fefferman
by relaxing the condition on the vorticity field or by combining the regularity conditions on the direction of vorticity
field and the vorticity field itself.

In this section, we want to find some sufficient condition imposed on the vorticity field to guarantee the regularity
of weak solutions.

Taking curl operator on the system (1.1), one has

dotu-Vo—w-Vu—>b-Vj+j-Vb=—(—A)w,
qj+u-Vj—j-Vu—b-Vo+w-Vb=—(—A)Pj+2F®b,u),
w=Vxu, j=Vxb, 3.1
divu =divb =0,
wx,t=0)=wy(x), jx,t=0)=jox),
where
Oob - 03u — b - dhu
Fb,u)=1 03b-0iu—01b-03u
01b - 0u — 02b - 01u
Our main theorem in this section reads

Theorem 3.1. Let | Ca = < % and assume that the initial velocity and magnetic fields ug, bg € H>(R>). There

exist constants C, p and K independent of t, such that the vorticity field w =V X u satisfies
|a)(x +y,1) —ow(x, t)’ < C|w(x +, t)||y|8, for|y| < p and |a)(x, t)| > K, (3.2)

on [0, T], with§ = % — 2a. Then the corresponding weak solution (u, b) to (1.1) is strong and hence smooth.
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Remark 3.1. For « = 8 = 1, we recover the result of He and Xin [10]. Even though, the detailed and crucial estimates
established here are different from theirs.

Proof. Firstlet us recall some basic facts as used by Constantin and Fefferman. Thanks to Biot—Savart law (see [6] for
example), the velocity and magnetic fields can be expressed in terms of the vorticity and electrical fields respectively,

1 1
u(x,t):—E V<|y_|> xwx+y,t)dy,
R3

1 1
R3

The strain matrix S(x, ¢) in terms of w(x, t) is given by

S(x, 1) = S[](x, 1) = %(Vu(x, 1)+ (Vu(x,n)")

_3py fM(& w(x+y t))d—y
47 ’ Ty
R3
where
. y . 1., R R ~
=i MO0 =380 X0+ xwe5]

with (a ® b);j = a;b;. Moreover, we have

dy

1 N
w(x,t) = —P.V./o(y)w(x +y,1) 3
4 Iyl

R3
where o (3) =3y ® y — I, with I denoting the identity matrix.
From Calderé6n—Zygmund inequality [13], we have
IS0l <Cloenl,, [Tl <clitn],. (33)

for any 1 < p < oo, where C is a constant depending only on p.
Now we need to establish a priori estimates. To this end, multiply the first equation of (3.1) by w(x, ¢) and the
second by j(x, t) respectively, and take integral on the whole space, then we have

1d
24
=/(a)(x,t)-Vu(x,t) co(x,t)+ jx,t)-Vu(lx,t)- j(x,1)

R3
—jx,t)-Vb(x,t) - w(x,t) —w(x,t) - Vb(x,t)- j(x,1)

+2F(b,w)(x,t) - jx,0))dx=1L + b+ I+ 14+ Is. (3.4)

lo |22+ [i®]72) + | A%e®];. + A% ©)].

We do estimates one by one as follows.
Let K be the number in Theorem 3.1. We split w(x, t) as

AR o (x, )] _
o) =x( T Jotn+ (1-x( = ) Jow.n =016 + o0,

and split S(x, t) as

S(r.1) = x(""(j;’ ”')S<x, 0+ (1 —x (""(;“{—’”'»S(x, 1) =106, 1) + S2(x. 1),




Y. Zhou / Ann. I. H. Poincaré — AN 24 (2007) 491-505 501

where the smooth bump function x (1) € [0, 1], is identically equal to one for 0 < A < 1 and identically equal to zero
for A > 2 or A < —1. Hence it is obvious that

Joie. O] o < oDl [Sin0] L < [5G 0] L (3:5)

foranyi=1,2and | < p < o0.
Now, I7 is decomposed into

I =/w(x, t)-Vu(x,t) -ox,t)dx = f(S(x,t)a)(x, t)) ~w(x,t)dx

R3 R3

2
:Z/(Z (Si(x, Dwi (x, 1)) - @k (x, 1) + (Si (x, Dan (x, 1)) -a)l(x,t)> dx

k=1

+/(S1(x,t)wz(x,t)) ~w2(x,t)dx+/(Sz(x,t)wz(x,t)) -y (x, 1) dx
R3 R3
— 7 (©)) ©)
=L+ L7+
Now we do the estimates one by one.

2 2
1] < ZfZ(Sxx,t)wl(x,t))-wﬂx,f)dx *

i:lR3 k=1

KZZHS Of 2] 2 + KZHS O 2@ 2

i=1k=1
<Clo®|;.. (3.6)
where we used (3.3) and (3.5).

By using the Holder, Gagliardo—Nirenberg and Young inequalities and taking the boundedness of w; into account,
we have

17|

2
Z/(Si(x,l)wz(x,t)) -a)l(x,t)dx‘

i:l]R

< o1 | ae® | ale®]
<Clar®] o |57 | 4% 0 |15 oo .

1 o —
—zrlA“w<r>|\Lz+CHw 10T i PIGTR

“ A% (1) ”LZ +C || @) ” LZ/(&Y 3) “ ) ”LZ, .
where we used the following inequality
o1 s < Jlon @[ L] 2 < K P en o] 5

Therefore the constant C only depends on the given number K.
It follows from the definition of S(x) that

_ 3 (lok, D) dy
|Sz(x,t)|_4n<l x< IR ))PV/My,a)(x+y,t))||3

‘—( = ("“(x ”'))P.v. f M(y,w(x+y,r))|y%

yIZp

3 lw(x, 1) dy
+'E(1_X( IR ))P.V.[ My, w(x+y, t))m

lyI<p
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3 jo(x, 1) . dy
Z;<1_X<_7F—>>RV./ M@aw@+yJDB@

IyIZp
3 lw(x,1)] A dy
—P.V. 1-— — ) |M(y, 1) — D)) —=
*‘471 /( X( K >) (ot ty.n-e@0)ps
yI<p
5 dy
R3

since the mean on the unit sphere of M (y, -) is zero.
Therefore 1 1(3) can be estimated as

< o] 2 |o®] ] 201,
(07 + K)o 2 o®] .
2-6, 01462

<
<C
<C(p? + K)o 2o |2 A% @)

(@) Ly

1 _0,— _0,—
< a0l +c(e + K7 oo |25 o], (3.8)

where we used the Holder, Hardy-Littlewood—Sobolev, Gagliardo—Nirenberg and Young inequalities, where the pa-
rameters a, y, p, 01 and 6, satisfy

11 1
+E+;=l, ; > 3

s tra(2-2). Loa—alia(l-2 o
- Y227 3) pT Y227 3)

For any solution to the system (3.9), we have

1
2
1
a

2
=2,
2—601—6
provided that § = % —2a.
So consequently, it follows from (3.8) that
1
17 < Gl a5+ ™ + K)* o075 lo®] (3.10)

12

The question is that whether (3.9) can be solved. Since there are 5 unknowns and 4 equations, actually there are infinite
many solutions. For example, we have the following solutions

2o — 1 3 G
2o Y

Similarly, we split I, as

@3.11)

01 =6,=

Izsz(x,t)j(x,t)-j(x,t)dx

R3

= [ i jendr [ st e =i+ 1.

R3 R3

Just as 11(2), we have
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L < SOl uliol Lol
lor®] el i 5O 2

1
—2!|A“ i O[22+ Clan [ o7

<
<C

N G R 0] il FIOT A (3.12)
Similar to the estimates for / 1(3),

152 < i@ )i @

La S2(t) ||LV

<C(")_é"'K)”j([)”LZHj(Z) La w(t)”Lp
<C(e? +K)iO] i+ + )i O] 2|0,
<C(p P+ )0 liO1R " A% O[5 + o7 + K) 0] 2 le® ]2 a0 @3
< E(HA“J'U)HLz + [ 2%0®72) + (o™ + K)* i 015 (i O] + lo®]72). (3.13)
where a, y, p and 6 are given by (3.11).
13:/j(x,t)-Vb(x,t)'a)(x,t)dx
e
:/j(x,t)~Vb(x,t)~w1(x,t)dx+/j(x,t)-Vb(x,t)~a)2(x,t)dx:13(l)+l3(2).
R3 R3
1Y is trivial,
LSS VIO P A O PGT Pt
< C!IJ'U) [2li O] s ller @] o
SN 0%+ o] o] (3.14)

where we used the following inequality
IVflr <CIV x fliLr, forany f e WP with div f =0.

From the expression of w(x, t), we obtain that

L (, 0t O by ¢
E( _X( . >> . .fo<y)w<x+y >| e
R3
1 |w(x, )] N dy
g‘EO_X( X ))P.V. f a(y)w(x+y,f)W

w2 (x, )| =

lyI=Zp
Ly @@ DN py t
+‘E< _X< K )) i / c@Detty, )| E
lyl<p
~1L(s @@ DY py t
_‘E< _X( K )) Vo [ oweuty, )| B
lyIZp
1 lw(x, )] dy
—i—'EP.V. / (1—)(( 2 )) Mo +y.10)—o, z))W

yI<p

d
<C(p~ +K) /|w(x 30|
R3
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since the meanzon thze unit sphere of o (y) is zero.
Similar to I 13( ) can be estimated as

121 < O[Ol o2 0]

Cle™ +K) i@ 2[5 @)
1

<
<

La]lo@]

514 O[3 + [4%0® | 72) + (07 + &) i O3 (i 032 + o0 ] 72).

Lp

//\

where a, y and p are given by (3.11). I4 can be estimated exactly as /3,

1 o)/(Ba—3) | .
] < 55 (14 O] + 4% 0] 1) + Clo@ |5 0]
+C(7 + K [0 07 + lo®]2).

Now we pay our attention to the last term /5. First

[Is| <Cllj®] 2] ®
<Cli® |2 ]li®
215(1) _'_15(2)’

o®|,,

1]+ [J O] 27 ®

Ltl

La Lalle2@®]

where the constants a and y are given by (3.11).
The estimate of 15(2) is similar to that of 13(2

1 o . o .
17 < 5 (1415 + [4%0 0] 2) + (o7 + K)* [0 E (1 05 + o] 12).

15(1) is the crucial term, but can be treated as

1 < 5@l 7O s+ L0l s for
<cnm>||m LolEacilE " + o] sl 153

IIA“ O 72 +Cli@ 2 1i O+ Cli)] 2 |or@ |57 [ 4% 0)]) 2

(!IA“J<r>||Lz+ |A%w®)]72) + i35 @72 + Clom | E% "7

where we used the L°°-bounds of w1 (¢).
Combining (3.4), (3.6), (3.7), (3.10) and (3.12)—(3.19), we have

d
(o0l + [i0]5) + 4002 + |40}
<+ K) (Jloo 5+ OIS i[5 + le®]]2)
+Clo@F 0] + ez 0]
Thanks to the Gagliardo—Nirenberg inequality, we have
lo)]],» < CIVu® | 2 < Clu@ 5" | A% |5,

where C is an absolute constant independent of u# and 7. Similar inequality holds for j(x, 7).
By using the interpolation inequality

1-1/a

1
lAul 2 < Cllull); 1A%,

then energy inequality tells us that

1 ®]72.

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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T T
JUloo i+ 1wl < c [(anolis +|abw] ) o
0 0

< C(IulP2 | A%u 7z + 161252 A% 722)
< Clluoll2, + o) | 32) (3.21)
Finally, by (3.21) and noting that
da 2(6a — 5)
, <2,
8a —3 3

(2.3) is a straight consequence by applying the Gronwall inequality on (3.20).
This finishes the proof. O
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