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Abstract

Liouville-type theorems are powerful tools in partial differential equations. Boundedness assumptions of solutions are often im-
posed in deriving such Liouville-type theorems. In this paper, we establish some Liouville-type theorems without the boundedness
assumption of nonnegative solutions to certain classes of elliptic equations and systems. Using a rescaling technique and doubling
lemma developed recently in Poláčik et al. (2007) [20], we improve several Liouville-type theorems in higher order elliptic equa-
tions, some semilinear equations and elliptic systems. More specifically, we remove the boundedness assumption of the solutions
which is required in the proofs of the corresponding Liouville-type theorems in the recent literature. Moreover, we also investigate
the singularity and decay estimates of higher order elliptic equations.
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1. Introduction

The aim of this paper is to establish some Liouville-type theorems without the boundedness assumption on non-
negative solutions to certain classes of elliptic equations. Liouville-type theorems are powerful tools to prove a priori
bounds for nonnegative solutions in a bounded domain. Using the rescaling method (also called the “blow-up” method)
in the elegant paper [16], an equation in a bounded domain will blow up to become another equation in the whole
Euclidean space or a half space. With the aid of the corresponding Liouville-type theorem in the Euclidean space R

N

and half space R
N+ and a contradiction argument, the a priori bounds could be deduced. Moreover, the existence of

nonnegative solutions to elliptic equations is established by the topological degree method using a priori estimates
(see e.g. [11]).
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In [20], the authors develop a general method for the derivation of universal, pointwise a priori estimates of local
solutions from the Liouville-type theorem. Their results show that the universal bounds theorems for local solutions
and the Liouville-type theorem are essentially equivalent. By further exploring their rescaling method, we also obtain
that the boundedness assumption of solutions in proving the Liouville-type theorem is not essential in many cases.

We denote the Sobolev critical exponent by

pS :=
{

N+2m
N−2m

if N > 2m,

∞ if N � 2m,

where m ∈ N and N is the dimension of Euclidean space R
N or half space R

N+ . The Liouville-type theorem for the
subcritical higher order elliptic equations in Euclidean space was established in [25] as follows:

Theorem A. Let 1 < q < pS . If u is a classical nonnegative solution of

(−�)mu = uq in R
N, (1.1)

then u ≡ 0.

For the higher order elliptic equation in half space, generally speaking, two types of boundary conditions, i.e. the
Dirichlet boundary problem and the Navier boundary problem, are considered. The Liouville theorem for the Dirichlet
boundary type of higher order equation in half space has been obtained in [21].

Theorem B. Let 1 < q < pS . If u is a classical solution of⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−�)mu = uq in R
N+ ,

u � 0 in R
N+ ,

u = ∂u

∂xN

= · · · = ∂m−1u

∂xm−1
N

= 0 on ∂RN+ ,

(1.2)

then u ≡ 0.

The Liouville-type theorem for the Navier boundary problem of higher order elliptic equation in half space has
been studied in [3,13], and [23]. The authors consider higher order elliptic equation⎧⎨

⎩
(−�)mu = up in R

N+ ,

u � 0 in R
N+ ,

u = �u = · · · = �m−1u = 0 on ∂RN+ ,

(1.3)

under the following boundedness assumption on the solution:

supu < ∞, sup
∣∣�iu

∣∣ < ∞, i = 1,2, . . . ,m − 1. (1.4)

They established that the solutions in (1.3) are trivial if 2m + 1 < N and 1 < p < N−1+2m
N−1−2m

or if 2m + 1 � N and
1 < p < ∞. The proof of their results is based on an idea of [9]. The idea is the following: if there exists a solution of
(1.3) and one is able to show that any solution is increasing in the xN direction, then passing the limit as xN → ∞, one
could get a solution of the same equation in R

N−1, which in turn allows the use of the Liouville-type theorem in the
whole space. (Note that the critical exponent in (1.3) is N−1+2m

N−1−2m
.) We would like to mention that the Liouville-type

theorem for (1.3) in [9] is for the case of m = 1 with the assumption that the solution is bounded. Later on this result
was improved to hold for unbounded solution in [2], among many other results.

We also mention that Liouville-type theorems for differential inequalities and systems involving polyharmonic
operators and related to the Hardy–Littlewood–Sobolev inequalities have also been extensively studied. We refer the
reader to the paper by Caristi, D’Ambrosio and Mitidieri [5] and references therein (see also [19]).

A natural question is then whether the boundedness assumption for the Liouville-type theorem is necessary for
higher order elliptic equation or not. In particular, we are interested in the Liouville-type theorems for solutions to
polyharmonic equations. We show that it is indeed unnecessary for such equations and establish that
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Theorem 1. If u is a classical solution of (1.3) with 2m + 1 < N and 1 < p < N+2m
N−2m

or with 2m + 1 � N and
1 < p < ∞, then u ≡ 0.

In addition, we consider the a priori estimates of possible singularities for local solutions of higher order elliptic
equation

(−�)mu = f (u) (1.5)

when f satisfies certain conditions. More precisely, we will obtain

Theorem 2. Let 1 < p < pS and Ω �=R
N be a domain in R

N . Assume that the function f : [0,∞) → R is continuous,

lim
u→∞u−pf (u) = ρ ∈ (0,∞). (1.6)

Then there exists C(N,f,m) > 0 independent of Ω and u such that for any positive solution u of (1.5) in Ω , there
holds

2m−1∑
|ν|=0

∣∣Dνu(x)
∣∣ � C(N,f,m)

(
1 + dist−

2m
p−1 (x, ∂Ω)

)
, x ∈ Ω, (1.7)

where ν = {ν1, . . . , νN }, Dνu = D
ν1
x1u · · ·DνN

xN
u and dist(x, ∂Ω) is the distance of x from ∂Ω .

In particular, if Ω = BR \ {0} for some R > 0, then

2m−1∑
|ν|=0

∣∣Dνu(x)
∣∣ � C(N,f,m)

(
1 + |x|− 2m

p−1
)
, 0 < |x|� R

2
,

where BR is a ball centered at 0 with radius R.

In the special case of f (u) = up , more precise results can be given in bounded or exterior domains.

Theorem 3. Let 1 < p < pS and Ω �= R
N be a domain in R

N . Then there exists C(N,p,m) > 0 independent of Ω

and u such that any nonnegative solution u in (1.5) satisfies

2m−1∑
|ν|=0

∣∣Dνu(x)
∣∣ � C(N,p,m)dist−

2m
p−1 (x, ∂Ω), x ∈ Ω. (1.8)

In particular if Ω is an exterior domain, i.e. the set {x ∈ R
N ; |x| > R} ⊂ Ω for some R > 0, then

2m−1∑
|ν|=0

∣∣Dνu(x)
∣∣ � C(N,p,m)|x|− 2m

p−1 , |x|� 2R.

The Liouville-type theorems for semilinear elliptic equations in Euclidean space R
N and half space R

N+ are well
known in the literature. Among many results in [15], the Liouville-type theorem for the subcritical elliptic equation is
shown. Namely, there is no nontrivial C2 solution of the problem{−�u = up in R

N,

u� 0 in R
N,

(1.9)

if N � 3 and 1 < p < N+2
N−2 . See also [6] for a simpler proof with the Kelvin transform and moving plane method

of Gidas, Ni and Nirenberg [14]. In [10], the authors consider the following mixed (Dirichlet–Neumann) boundary
conditions in a half space, i.e. the problem
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�u = up in R
N+ ,

u � 0 in R
N+ ,

u = 0 on Γ0 := {
x ∈ ∂RN+

∣∣ xN = 0, x1 > 0
}
,

∂u

∂xN

= 0 on Γ1 := {
x ∈ ∂RN+

∣∣ xN = 0, x1 < 0
}
,

(1.10)

where N � 3 and 1 < p < N+2
N−2 . Using the idea of the Kelvin transform combined with the moving plane method,

they prove the nonexistence of nontrivial solutions in (1.10) under the assumption that the solution is bounded. In the
next theorem, we are able to remove this boundedness assumption of the solution. In fact, our theorem is stated as:

Theorem 4. If u ∈ C2(RN+) ∩ C(RN+) is a solution of (1.10) with N � 3 and 1 < p < N+2
N−2 , then u ≡ 0.

For the semilinear elliptic system, an important model is the Lane–Emden system:{−�u1 = u
p

2 in R
N,

−�u2 = u
q

1 in R
N.

(1.11)

It is conjectured that if

1

p + 1
+ 1

q + 1
>

n − 2

n
,

then there are no nontrivial classical solutions of (1.11) in R
N . The conjecture has been proved to be true for radial

solutions in all dimensions in [18]. The cases of N = 3,4 for the conjecture in general have been also solved recently
in [20] and [24] respectively. The interested reader can refer to the above papers and references therein for detailed
descriptions (see also the works [4,22], etc.). In [12], the authors study the elliptic system⎧⎪⎨

⎪⎩
�u1 + u

α1
1 + u

α1
α2−1
α1−1

2 = 0 in R
N,

�u2 + u
α2
2 + u

α2
α1−1
α2−1

1 = 0 in R
N,

(1.12)

and prove that (1.12) does not have bounded positive classical solutions in R
N if

1 < α1, α2 <
N + 2

N − 2
. (1.13)

We also show that the boundedness assumption of the solution for the elliptic system (1.12) is not necessary.
Indeed, we can establish that

Theorem 5. The classical positive solutions u1 and u2 in (1.12) are trivial under the assumption of (1.13).

We end our introduction by mentioning that nonexistence results of nonnegative solutions have been recently
established by the first and third authors [17] for certain classes of integral equations which are closely related to
polyharmonic equations in half spaces by a completely different method from that used in the current paper, namely,
the method of moving planes in integral form developed in [7].

The outline of the paper is as follows. Section 2 is devoted to obtaining the Liouville-type theorem, then singularity
and decay estimates for higher order elliptic equations. In Section 3, the Liouville-type theorem with mixed boundary
condition for semilinear elliptic equation is shown. The Liouville-type theorem for the elliptic systems is considered
in Section 4. Throughout the paper, C and c denote generic positive constants, which are independent of u and may
vary from line to line.

2. Higher order elliptic equations

We state the following technical lemma used frequently in this paper.
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Lemma 1 (Doubling lemma). Let (X,d) be a complete metric space and ∅ �= D ⊂ Σ ⊂ X, with Σ closed. Define
M : D → (0,∞) to be bounded on compact subsets of D and fix a positive number k. If y ∈ D is such that

M(y)dist(y,Γ ) > 2k,

where Γ = Σ \ D, then there exists x ∈ D such that

M(x)dist(x,Γ ) > 2k, M(x) � M(y)

and

M(z) � 2M(x), ∀z ∈ D ∩ B̄
(
x, kM−1(x)

)
.

Remark 1. If Γ = ∅, then dist(x,Γ ) := ∞.

The proof of the above lemma is given in [20]. Based on the doubling property, we can start the rescaling process to
prove local estimates of solutions of superlinear problems. The idea is by a contradiction argument. One can argue that
the local estimates of solutions are violated. By an appropriate rescaling, the blow-up sequence of solutions converges
to a bounded solution of a limiting equation in R

N . Then from the nonexistence of solutions in the limiting equation,
we could infer that the local estimates exist. In this spirit, we conclude the proof of Theorem 1. We first state the
lemma about the local a priori estimates for higher order elliptic equation (see [1] or [21]). Let u satisfy the following
equation

(−�)mu = g(x) in Ω. (2.1)

Then we have

Lemma 2. Let Ω be a ball {x ∈ R
N : |x| < R}. Suppose u ∈ W 2m,q satisfies (2.1). Then there exits a constant C > 0

depending only on Ω,N,m and R such that for any σ ∈ (0,1)

‖u‖W 2m,q (Ω∩BσR) �
C

(1 − σ)2m

(‖g‖Lq(Ω) + ‖u‖Lq(Ω)

)
. (2.2)

The following lemma is the Liouville-type theorem for higher order elliptic equations with boundedness assump-
tion in [23].

Lemma 3. The higher order elliptic equation (1.3) does not have positive solutions under assumption of (1.4) provided
p < N−1+2m

N−1−2m
and 2m + 1 < N (or N � 2m + 1 and p < ∞).

Proof of Theorem 1. Suppose that a solution u to Eq. (1.3) is unbounded in the sense that (1.4) is violated. Namely,
the following boundedness is not true

supu < ∞, sup
∣∣�iu

∣∣ < ∞, i = 1,2, . . . ,m − 1.

Then, there exists a sequence of (yk) ∈R
N such that

m−1∑
i=0

∣∣�iu(yk)
∣∣ → ∞

as k → ∞. Set

M(y) :=
(

m−1∑
i=0

∣∣�iu(y)
∣∣)

p−1
2m

: RN+ → R.

Then M(yk) → ∞ as k → ∞. By taking D = Σ = X = R
N+ in the doubling lemma and Remark 1 (see also, e.g. [21]),

there exists another sequence of (xk) such that
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M(xk) �M(yk)

and

M(z) � 2M(xk), ∀z ∈ Bk/M(xk)(xk) ∩R
N+ .

Define

dk := xk,NM(xk)

and

Hk := {
ξ ∈ R

N
∣∣ ξN > −dk

}
.

We introduce a new function

vk(ξ) := u(xk + ξ
M(xk)

)

M
2m
p−1 (xk)

.

Then, vk(ξ) is the nonnegative solution of{
(−�)mvk = v

p
k in Hk,

vk = �vk = · · · = �m−1vk = 0 on ∂Hk

(2.3)

satisfying

m−1∑
i=0

∣∣�ivk(0)
∣∣ p−1

2m+2(p−1)i = 1 (2.4)

and

m−1∑
i=0

∣∣�ivk(ξ)
∣∣ p−1

2m+2(p−1)i � 2, ∀ξ ∈ Hk ∩ Bk(0). (2.5)

Two cases may occur as k → ∞, either case (1)

xk,NM(xk) → ∞
for a subsequence still denoted as before, or case (2)

xk,NM(xk) → d

for a subsequence still denoted as before, here d � 0. If case (1) occurs, i.e. Hk ∩Bk(0) → R
N as k → ∞, then for any

smooth compact D in R
N , there exists k0 large enough such that D ⊂ (Hk ∩Bk(0)) as k � k0. By the classical W 2m,q

estimates for higher order elliptic equation in Lemma 2.2 and (2.5), we have ‖vk‖W 2m,q (D̄) � C for any 1 < q < ∞.

Therefore, we can extract a convergent subsequence vk → v in D, where v ∈ C2m−1,τ for some τ > 0. Furthermore,
using a diagonal line argument, vk → v in C

2m−1,τ
loc (RN) and v solves

(−�)mv = vp in R
N.

From Theorem A, u is trivial. However, (2.4) implies that

m−1∑
i=0

∣∣�iv(0)
∣∣ p−1

2m+2(p−1)i = 1,

which indicates that u is nontrivial. Obviously a contradiction is arrived.
If case (2) occurs, we make a further translation. Set

ṽk(ξ) := vk(ξ − dkeN) for ξ ∈ R
N+ .

Then ṽk satisfies
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{
(−�)mṽk = ṽ

p
k in R

N+ ,

ṽk = �ṽk = · · · = �m−1ṽk = 0 on ∂RN+ .
(2.6)

While

m−1∑
i=0

∣∣�iṽk(dkeN)
∣∣ p−1

2m+2(p−1)i = 1 (2.7)

and

m−1∑
i=0

∣∣�iṽk(ξ)
∣∣ p−1

2m+2(p−1)i � 2, ∀ξ ∈R
N+ ∩ Bk(dkeN). (2.8)

Observe that (2.6) could also be reduced to a system of elliptic equations. Let(
ṽk, . . . , (−�)m−1ṽk

) := (
w

(0)
k , . . . ,w

(m−1)
k

)
.

Then, (w
(0)
k , . . . ,w

(m−1)
k ) solves⎧⎪⎪⎨

⎪⎪⎩
−�w

(m−1)
k = (

w
(0)
k

)p in R
N+ ,

−�w
(i)
k = w

(i+1)
k in R

N+ , i = 0, . . . ,m − 2,

w
(0)
k = · · · = w

(m−1)
k = 0 on ∂RN+ .

(2.9)

Furthermore,

m−1∑
i=0

∣∣w(i)
k (dkeN)

∣∣ p−1
2m+2(p−1)i = 1

and

m−1∑
i=0

∣∣w(i)
k (ξ)

∣∣ p−1
2m+2(p−1)i � 2, ∀ξ ∈R

N+ ∩ Bk(dkeN).

For any smooth compact D in R
N+ , there exists k0 large enough such that D ⊂ (RN+ ∩ Bk(dkeN)) for any k > k0.

By the classical elliptic estimates,

m−1∑
i=0

∥∥w
(i)
k (ξ)

∥∥
C2,τ (D)

� C

for some τ > 0. Thanks to the Arzelá–Ascoli Theorem, there exists a function (v(0), . . . , v(m−1)) such that
(w

(0)
k , . . . ,w

(m−1)
k ) converges to (v(0), . . . , v(m−1)) in C2(D̄). Through a diagonal line argument, (w

(0)
k , . . . ,w

(m−1)
k )

converges in C2
loc(R

N+) to (v(0), . . . , v(m−1)), which solves⎧⎪⎨
⎪⎩

−�v(m−1) = (
v(0)

)p in R
N+ ,

−�v(i) = v(i+1) in R
N+ , i = 0, . . . ,m − 2,

v(0) = · · · = v(m−1) = 0 on ∂RN+ ,

(2.10)

and satisfies

m−1∑
i=0

∣∣v(i)(deN)
∣∣ p−1

2m+2(p−1)i = 1 (2.11)

and

m−1∑∣∣v(i)(ξ)
∣∣ p−1

2m+2(p−1)i � 2, ∀ξ ∈R
N+ . (2.12)
i=0
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From (2.10), v(0) actually solves{
(−�)mv(0) = (

v(0)
)p in R

N+ ,

v(0) = �v(0) = · · · = �m−1v(0) = 0 on ∂RN+ .
(2.13)

Hence v(0) ≡ 0 by Lemma 3. Note that N−1+2m
N−1−2m

> N+2m
N−2m

. Then v(1) ≡ · · · ≡ v(m−1) ≡ 0, which contradicts (2.11).
Therefore, the proof is completed. �

Next, we consider the singularity and decay estimates of the higher order elliptic equation. The main idea is the
same as the case of the semilinear elliptic equation in [20].

Proof of Theorem 2. Suppose (1.7) is not true. Then there exist sequences of Ωk , uk, yk ∈ Ωk such that uk solves (1.5)
on Ωk and the function

Mk :=
2m−1∑
|ν|=0

∣∣Dνuk

∣∣ p−1
2m+(p−1)|ν|

satisfies

Mk(yk) � 2k
(
1 + dist−1(yk, ∂Ω)

)
� 2k dist−1(yk, ∂Ω).

Adapting from the doubling lemma, there exists xk ∈ Ωk such that

Mk(xk) � Mk(yk),

Mk(xk) > 2k dist−1(xk, ∂Ωk)

and

Mk(z) � 2Mk(xk), if |z − xk|� kM−1
k (xk).

We introduce a new function

vk(ξ) := uk(xk + ξ
Mk(xk)

)

M
2m
p−1
k (xk)

, ∀|ξ | � k.

Then, the function vk solves

(−�)mvk(ξ) = fk

(
vk(ξ)

) := M

−2mp
p−1

k (xk)f
(
M

2m
p−1
k (xk)vk

)
. (2.14)

Also,

2m−1∑
|ν|=0

∣∣Dνvk

∣∣ p−1
2m+(p−1)|ν| (0) = 1 (2.15)

and

2m−1∑
|ν|=0

∣∣Dνvk

∣∣ p−1
2m+(p−1)|ν| (ξ) � 2, ∀|ξ | � k. (2.16)

By (1.6) and the continuity of f , we have

−c � f (s) � C
(
sp + 1

)
, for s � 0.

Furthermore, it follows that

−cM

−2mp
p−1

(xk) � fk

(
vk(ξ)

)
� C, ∀|ξ |� k.
k
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For any smooth compact D in R
N , there exists k0 large enough such that D ⊂ Bk(0) if k � k0. Using the classical

estimate of the higher order elliptic equation in (2.2) and (2.16), vk(ξ) ∈ W
2m,q

loc (RN) for any 1 < q < ∞ and

‖vk‖W 2m,q (D̄) � C.

By the Sobolev imbedding and a diagonal line argument, vk(ξ) converges in C
2m−1,τ
loc (RN) to a function v ∈

C
2m−1,τ
loc (RN) for some τ > 0. Since vk(ξ) is positive for ξ ∈ R

N , then

fk(vk) → ρvp as k → ∞.

Consequently, v is a nonnegative solution of

(−�)mv(ξ) = ρvp(ξ), ξ ∈ R
N.

By an appropriate rescaling, v is trivial from Theorem A, which contradicts (2.15). Hence, the conclusion holds. �
Next, we turn to the special case of f (u) = up .

Proof of Theorem 3. Suppose (1.8) fails, then, there exist sequences of Ωk , uk, yk ∈ Ωk such that uk solves (1.5)
in Ωk and the function

Mk :=
2m−1∑
|ν|=0

∣∣Dνuk

∣∣ p−1
2m+(p−1)|ν|

satisfies

Mk(yk) > 2k dist−1(yk, ∂Ωk).

By the doubling lemma, it follows that there exists xk ∈ Ωk such that

Mk(xk) � Mk(yk),

Mk(xk) > 2k dist−1(xk, ∂Ωk)

and

Mk(z) � 2Mk(xk), if |z − xk|� kM−1
k (xk).

As before, we introduce a new function

vk(ξ) := uk(xk + ξ
Mk(xk)

)

M
2m
p−1
k (xk)

, ∀|ξ | � k.

Then, the function vk satisfies

(−�)mvk(ξ) = v
p
k (ξ), ∀|ξ |� k (2.17)

with
2m−1∑
|ν|=0

∣∣Dνvk

∣∣ p−1
2m+(p−1)|ν| (0) = 1 (2.18)

and
2m−1∑
|ν|=0

∣∣Dνvk

∣∣ p−1
2m+(p−1)|ν| (ξ)� 2, ∀|ξ |� k.

For any smooth compact D in R
N , there exists k0 large enough such that D ⊂ Bk(0) if k � k0. By the classical

W 2m,q estimates for higher order elliptic equation in Lemma 2.2, we have ‖vk‖W 2m,q (D̄) � C for any 1 < q < ∞.
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Furthermore, using the Sobolev imbedding theorem and a diagonal line argument, vk → v in C
2m−1,τ
loc (RN) and v

solves

(−�)mv = vp.

With the aid of Theorem A, u is trivial. Nevertheless, from (2.18), it is impossible to be trivial. Hence, a contradiction
is arrived. Then the theorem is verified. �
3. Elliptic equation with mixed boundary condition

In this section, we consider the Liouville-type theorem with mixed boundary condition.

Lemma 4. Let u ∈ W
1,2
loc (RN+) ∩ C0(RN+) be a weak solution of (1.10). Then the only bounded solution is u ≡ 0.

The lemma above is the Liouville-type theorem with boundedness assumptions of solutions in [10].

Proof of Theorem 4. Suppose that there exists an unbounded solution u. Then, there exits a sequence (yk) ∈ R
N+

such that u(yk) → ∞ as k → ∞. Let M := u
p−1

2 : RN+ → R, then M(yk) → ∞ as k → ∞ since p > 1. Following

from the doubling lemma by taking D = Σ = X = R
N+ and Remark 1, there exists another sequence of (xk) such that

M(xk) �M(yk)

and

M(z) � 2M(xk), ∀z ∈ Bk/M(xk)(xk) ∩R
N+ .

Define

dk := xk,NM(xk)

and

Hk := {
ξ ∈ R

N
∣∣ ξN > −dk

}
.

As in Theorem 1, we introduce a new function

vk(ξ) = u(xk + ξ
M(xk)

)

M
2

p−1 (xk)

.

Then, vk(ξ) is the nonnegative solution of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�vk = v
p
k in Hk,

vk � 0 in Hk,

vk = 0 on Γ k
0 := {

ξ ∈ Hk

∣∣ ξN = −dk, ξ1 > 0
}
,

∂vk

∂ξN

= 0 on Γ k
1 := {

ξ ∈ Hk

∣∣ ξN = −dk, ξ1 < 0
} (3.1)

satisfying

vk(0)
p−1

2 = 1 (3.2)

and

v
p−1

2
k (ξ) � 2, ∀ξ ∈ Hk ∩ Bk(0). (3.3)

As before, two cases may occur as k → ∞, either case (1)

xk,NM(xk) → ∞
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for a subsequence still denoted as before, or case (2)

xk,NM(xk) → d

for a subsequence still denoted as before, here d � 0. If case (1) occurs, i.e. Hk ∩Bk(0) →R
N as k → ∞, then for any

smooth compact D in R
N , there exists k0 large enough such that D ⊂ (Hk ∩Bk(0)) as k � k0. By the classical elliptic

equation estimates and (3.3), we have ‖vk‖W 2,q (D̄) � C for any 1 < q < ∞. Therefore, from the Sobolev imbedding

theorem, we can extract a convergent subsequence vk that converges to v in D, where v ∈ C1,τ (D̄). Furthermore,
using a diagonalization argument, vk → v in C

1,τ
loc (RN) and v solves

−�v = vp in R
N.

By the classical Liouville theorem of semilinear elliptic equation in Euclidean space, u is trivial, which contra-
dicts (3.2).

If case (2) occurs, we make a further translation. Define

ṽk(ξ) := vk(ξ − dkeN) for ξ ∈ R
N+ .

Then ṽk satisfies⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�ṽk = ṽ
p
k in R

N+ ,

ṽk � 0 in R
N+ ,

ṽk = 0 on Γ̃ k
0 := {

ξ ∈ R
N+

∣∣ ξN = 0, ξ1 > 0
}
,

∂ṽk

∂ξN

= 0 on Γ̃ k
1 := {

ξ ∈ R
N+

∣∣ ξN = 0, ξ1 < 0
}
.

(3.4)

While,

ṽ
p−1

2
k (dkeN) = 1 (3.5)

and

ṽ
p−1

2
k (ξ) � 2, ∀ξ ∈ R

N+ ∩ Bk(dkeN). (3.6)

For any smooth compact neighborhood D of the origin in R
N+ , we have {ṽk} is uniformly bounded in C2,τ (K)∩Cτ (D̄)

for some 0 < τ < 1
2 , where K is a compact set of R̄N+ with dist(K, Γ̃ ) > 0 (the a priori estimates could be done in

Section 6 in [8]) and where Γ̃ := {ξ ∈ R
N+ | ξN = 0, ξ1 = 0}. By the Arzelá–Ascoli Theorem, ṽk converges to ṽ in

C2(K)∩C(D̄). In addition, by a diagonalization argument, ṽk converges locally in R
N+ to ṽ ∈ C2(RN+)∩C(RN+) such

that v satisfies⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�ṽ = ṽp in R
N+ ,

ṽ(ξ)� 2
2

p−1 in R
N+ ,

ṽ = 0 on Γ0 = {
ξ ∈R

N+
∣∣ ξN = 0, ξ1 > 0

}
,

∂ṽ

∂ξN

= 0 on Γ1 = {
ξ ∈R

N+
∣∣ ξN = 0, ξ1 < 0

}
.

(3.7)

Deduced from Lemma 4, we have ṽ ≡ 0. However, from (3.5), ṽ(deN) = 1. Clearly, a contradiction is achieved.
Therefore, the proof of Theorem 4 is complete. �
4. Elliptic systems

In the last section, we consider the elliptic systems. We could show that boundedness is removable in the Liouville
theorem of (1.12). The following lemma is established in [12].

Lemma 5. The system (1.12) does not have a bounded positive solution in R
N , provided

1 < α1, α2 <
N + 2

N − 2
.
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Proof of Theorem 5. Suppose by contradiction that there exists a sequence of (yk) such that u1(yk) → ∞ or
u2(yk) → ∞ as k → ∞. Let

M(y) := u
α1−1

2
1 (y) + u

α2−1
2

2 (y).

Then, M(yk) → ∞ as k → ∞. From the doubling lemma by letting D = Σ = X = RN and Remark 1, there exists a
sequence of (xk) such that

M(xk) �M(yk)

and

M(z) � 2M(xk), if |z − xk|� kM−1(xk).

Let α = 2
α1−1 and β = 2

α2−1 . We rescale (u1, u2) by

ṽ1,k(ξ) := u1(xk + ξ
M(xk)

)

Mα(xk)

and

ṽ2,k(ξ) := u2(xk + ξ
M(xk)

)

Mβ(xk)
.

Then, (ṽ1,k, ṽ2,k) satisfies⎧⎪⎨
⎪⎩

�ṽ1,k + ṽ
α1
1,k + ṽ

α1
α2−1
α1−1

2,k = 0,

�ṽ2,k + ṽ
α2
2,k + ṽ

α2
α1−1
α2−1

1,k = 0.

(4.1)

Moreover

ṽ
1
α

1,k(0) + ṽ
1
β

2,k(0) = 1

and

ṽ
1
α

1,k(ξ) + ṽ
1
β

2,k(ξ) � 2, ∀|ξ |� k.

For any smooth compact D in R
N , there exists k0 large enough such that D ⊂ Bk(0) if k � k0. Using the classical

W 2,q estimates for elliptic equation, we have

2∑
i=1

‖ṽi,k‖W 2,q (D) � C

for 1 < q < ∞. By the standard Sobolev imbedding theorem, there exists a sequence of (ṽ1,k, ṽ2,k) that converges to
(ṽ1, ṽ2) in C1,τ (D) for some τ > 0. Employing a diagonal line argument, we readily deduce that (ṽ1,k, ṽ2,k) converges
in C

1,τ
loc (RN) to a solution (ṽ1, ṽ2) in R

N which satisfies⎧⎪⎨
⎪⎩

�ṽ1 + ṽ
α1
1 + ṽ

α1
α2−1
α1−1

2 = 0,

�ṽ2 + ṽ
α2
2 + ṽ

α2
α1−1
α2−1

1 = 0.

(4.2)

Furthermore,

ṽ
1
α

1 (0) + ṽ
1
β

2 (0) = 1.

So (ṽ1, ṽ2) is nontrivial. This contradicts Lemma 5. Therefore, we then complete the proof of the theorem. �



G. Lu et al. / Ann. I. H. Poincaré – AN 29 (2012) 653–665 665
Acknowledgement

Part of the work was done when the first author was visiting Beijing Normal University in China.

References

[1] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equation satisfying general
boundary conditions, I, Comm. Pure Appl. Math. 12 (1959) 623–729.

[2] H. Berestycki, L. Caffarelli, L. Nirenberg, Further qualitative properties for elliptic equation in unbounded domains, Ann. Sc. Norm. Super.
Pisa Cl. Sci. 25 (1997) 69–94, Dedicated to Ennio De Giorgi.

[3] I. Birindelli, E. Mitidieri, Liouville theorems for elliptic inequalities and applications, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998) 1217–
1247.

[4] J. Busca, R. Manasevich, A Liouville-type theorem for Lane–Emden systems, Indiana Univ. Math. J. 51 (1) (2002) 37–51.
[5] G. Caristi, L. D’Ambrosio, E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville

theorems, Milan J. Math. 76 (2008) 27–67.
[6] W. Chen, C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991) 615–622.
[7] W. Chen, C. Li, B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (3) (2006) 330–343.
[8] E. Colorado, I. Peral, Semilinear elliptic problems with mixed Dirichlet–Neumann boundary conditions, J. Funct. Anal. 199 (2003) 468–507.
[9] E. Dancer, Some notes on the method of moving planes, Bull. Austral. Math. Soc. 46 (1992) 425–434.

[10] L. Damascelli, F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains, Rev. Mat. Iberoamer-
icana 20 (2004) 67–86.

[11] D.G. de Figueiredo, P.L. Lions, R.D. Nussbaum, A priori estimate and existence of positive solution to semilinear elliptic equations, J. Math.
Pures Appl. 61 (1982) 41–63.

[12] D. de Figueiredo, B. Sirakov, Liouville type theorem, monotonicity results and a priori bounds for positive solution of elliptic systems, Math.
Ann. 33 (2) (2005) 231–260.

[13] Y. Guo, J. Liu, Liouville-type theorems for polyharmonic equations in R
N and in R

N+ , Proc. Roy. Soc. Edinburgh Sect. A 138 (2008) 339–359.
[14] B. Gidas, W. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (3) (1979) 209–243.
[15] B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981)

525–598.
[16] B. Gidas, J. Spruck, A priori bounds for positive solutions for nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981)

883–901.
[17] G. Lu, J. Zhu, The axial symmetry and regularity of solutions to an integral equation in a half space, Pacific J. Math. 253 (2) (2011) 455–473.
[18] E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in R

N , Differential Integral Equations 9 (1996) 465–479.
[19] E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations 18 (1–2) (1993) 125–151.
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