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Abstract

We consider the evolution of fronts by mean curvature in the presence of obstacles. We construct a weak solution to the flow by
means of a variational method, corresponding to an implicit time-discretization scheme. Assuming the regularity of the obstacles,
in the two-dimensional case we show existence and uniqueness of a regular solution before the onset of singularities. Finally, we
discuss an application of this result to the positive mean curvature flow.
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1. Introduction

Motivated by several models in physics, biology and material science, there has been a growing interest in recent
years towards the rigorous analysis of front propagation in heterogeneous media, see [27,8,18,21,13] and references
therein. In this paper, we analyze the evolution by mean curvature of an interface in presence of hard obstacles
which can stop the motion. Even if this is a prototypical model of energy driven front propagation in a medium with
obstacles, to our knowledge there are no rigorous results concerning existence, uniqueness and regularity of the flow.
On the other hand, we mention that the corresponding stationary problem, the so-called obstacle problem, has been
studied in great detail, see [26,12] and references therein.

To be more precise, given an open set Ω ⊂ R
n, we consider the evolution of a hypersurface ∂E(t), with the con-

straint E(t) ⊂ Ω for all t � 0, where Ω is an open subset of Rn and R
n\Ω represents the obstacles. The corresponding

geometric equation formally reads (we refer to Section 4 for a precise definition):

v(x) =
{

κ(x) if x ∈ Ω,

max(κ(x),0) if x ∈ ∂Ω
(1)
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where v and κ denote respectively the normal inward velocity and the mean curvature of ∂E(t). Notice that the right-
hand side of (1) is discontinuous on ∂Ω , so that the classical viscosity theory [19] does not apply to this case (see
however [20,9] for a possible approach in this direction).

We are particularly interested in existence and uniqueness of smooth (that is C1,1) solutions to (1). We tackle this
problem by means of a variational method first introduced in [5,24] (see also [6] for a simpler description of the same
approach), which is based on an implicit time-discretization scheme for (1).

After showing the consistency of the scheme with regular solutions (Theorem 4.8), we obtain a comparison prin-
ciple and uniqueness of smooth solutions in any dimensions (Corollary 4.9). Moreover, in the two-dimensional case
we are also able to prove local in time existence of solutions (Theorem 5.3). Notice that in general one cannot expect
existence of regular solutions for all time, due to the presence of singularities of the flow (even in dimension 2). On
the other hand, due to the presence of the obstacles, regular solutions do not necessarily vanish in finite time and may
exist for all times. Eventually, we apply our result to the positive curvature flow in two dimensions, obtaining a short
time existence and uniqueness result (Corollary 6.5) for C1,1-regular flows. Indeed, such evolution can be seen as a
curvature flow where the obstacle is given by the complementary of the initial set.

We point out that the study of the positive curvature flow in Section 6 is related to some biological models which
originally motivated our work: in several recent studies of actomyosin cable contraction in morphogenesis and tis-
sue repair there is increasing evidence that the contractile structure forms only in the positive curvature part of
the boundary curve (see [4,3] and references therein). Since the contraction of such actomyosin structures can be
associated with curvature terms (see [22,1,2]), this leads very naturally to consider the positive curvature flow prob-
lem.

Notice that a set evolving according to this law is always nonincreasing with respect to inclusion, which is a
feature not satisfied by the usual curvature flow. This shows why assembling the contractile structure only in the
positive curvature portion of the boundary (instead of all around) and thus doing positive curvature flow (instead of
usual curvature flow) is an interesting way to evolve from the biological point of view: it corresponds to making our
wound (or hole) close in a manner where we never abandon any portion of the surface we have already managed to
cover since we started closing.

We also remark that the positive curvature flow is useful in the context of image analysis [28, p. 204], and appears
naturally in some differential games [23].

2. Notation

Given an open set A ⊆ R
n, a function u ∈ L1(A) whose distributional gradient Du is a Radon measure with finite

total variation in A is called a function of bounded variation, and the space of such functions will be denoted by
BV(A). The total variation of Du on A turns out to be

sup

{ ∫
A

udiv z dx: z ∈ C∞
0

(
A;Rn

)
,

∣∣z(x)
∣∣ � 1, ∀x ∈ A

}
, (2)

and will be denoted by |Du|(A) or by
∫
A

|Du|. The map u → |Du|(A) is L1(A)-lower semicontinuous, and BV(A)

is a Banach space when endowed with the norm ‖u‖ := ∫
A

|u|dx + |Du|(A). We refer to [7] for a comprehensive
treatment of the subject.

We say that a set E satisfies the exterior (resp. interior) R-ball condition, for some R > 0, if for any x ∈ ∂E

there exists a ball BR(x′), with x ∈ ∂BR(x′) and BR(x′) ∩ E = ∅ (resp. BR(x′) ⊆ E). Notice that a set E with
compact boundary satisfies both the interior and the exterior R-ball condition, for some R > 0, if and only if ∂E is of
class C1,1.

3. The implicit scheme

Following the celebrated papers [5,24], we shall define an implicit time discrete scheme for (1). As a preliminary
step, we consider solutions of the Total Variation minimization problem with obstacles; the scheme is then defined in
Definition 4.2 below.
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Let B ⊂ R
n be an open set and let v : B → [−∞,∞) be a measurable function, with v+ ∈ L2(B). Following

[5,15,24], given h > 0 and f ∈ L2(B), we let Sh,v(f,B) ∈ L2(B) ∩ BV(B) be the unique minimizer of the problem

min
u�v

∫
B

|Du| + 1

2h

∫
B

(u − f )2 dx. (3)

We have the following comparison result (see [15, Lemma 2.1]).

Proposition 3.1. The operator Sh,·(·,B) is monotone, in the sense that u1 = Sh,v1(f1,B) � u2 = Sh,v2(f2,B) when-
ever f1 � f2 and v1 � v2 a.e.

Proof. The idea is simply to compare the sum of the energies of u1 and u2, with the sum of the energy of u1 ∧ u2
(which is admissible in the problem defining u2) and of u1 ∨ u2 (which is admissible in the problem defining u1).
The conclusion follows from the uniqueness of the solution to (3). �
Proposition 3.2. Assume f, v+ ∈ L∞(B): then u = Sh,v(f,B) ∈ L∞(B) and∥∥Sh,v(f,B)

∥∥
L∞(B)

� max
(‖f ‖L∞(B),

∥∥v+∥∥
L∞(B)

)
.

Proof. Again, the proof is trivial. It is enough check that the energy of uM = (u ∨ −M) ∧ M is less than the energy
of u, while uM is admissible as soon as M � max(‖f ‖L∞(B),‖v+‖L∞(B)). �
Theorem 3.3. Let v : Rn → [−∞,+∞) be a measurable function with v+ ∈ L∞

loc(R
n), f ∈ L∞

loc(R
n), and h > 0.

There exists a unique function u ∈ L∞
loc(R

n) ∩ BV loc(R
n), which we shall denote by Sh,v(f ), such that for all R > 0

and p ∈ (n,+∞) there holds

lim
M→∞

∥∥u − Sh,v(f,BM)
∥∥

Lp(BR)
= 0.

This function is characterized by the fact that u � v a.e., and for any R and any ϕ ∈ BV(Rn) with support in BR

and u + ϕ � v a.e.,∫
BR

|Du| + 1

2h

∫
|u − f |2 dx �

∫
BR

∣∣D(u + ϕ)
∣∣ + 1

2h

∫
|u + ϕ − f |2 dx.

Proof. We shall show a bit more: for any M > 0, let us denote by uM an arbitrary local minimizer of (3), in the sense
that ∫

BM

|DuM | + 1

2h

∫
|uM − f |2 dx �

∫
BM

∣∣D(uM + ϕ)
∣∣ + 1

2h

∫
|uM + ϕ − f |2 dx (4)

for any ϕ ∈ BV(BM) with compact support. We will show that (uM)M�2R is a Cauchy sequence in Lp(BR), provided
p > n. The proof follows closely [14, Appendix C] but important changes are necessary to take into account the
obstacle.

To start, let us consider ψ : R → R+ a smooth, nondecreasing and bounded function with 0 � ψ(s) � Cs+ for
any s. Let M ′ > M > 0, and let ϕ ∈ C∞

c (BM ;R+), which we extend by zero to BM ′ . We denote u = uM , u′ = uM ′ .
Let t > 0: observe that

u′(x) + tψ
(
u(x) − u′(x)

)
ϕ(x) � u′(x) � v(x),

u(x) − tψ
(
u(x) − u′(x)

)
ϕ(x) � u(x) − tC supϕ

(
u(x) − u′(x)

)+

� u(x) − (
u(x) − u′(x)

)+

= min
{
u(x),u′(x)

}
� v(x)

for almost every x ∈ R
n, as soon as t � (C supϕ)−1.
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Hence, we deduce from (4) that for t small enough,∫
BM

∣∣D(
u − tψ

(
u − u′)ϕ)∣∣ + 1

2h

∫
BM

∣∣u − tψ
(
u − u′)ϕ − f

∣∣2
dx �

∫
BM

|Du| + 1

2h

∫
BM

|u − f |2 dx

and ∫
BM

∣∣D(
u′ + tψ

(
u − u′)ϕ)∣∣ + 1

2h

∫
BM

∣∣u′ + tψ
(
u − u′)ϕ − f

∣∣2
dx �

∫
BM

∣∣Du′∣∣ + 1

2h

∫
BM

∣∣u′ − f
∣∣2

dx,

which we sum to obtain

t

h

∫
BM

(
u − u′)ψ(

u − u′)ϕ dx

� t2

h

∫
BM

(
ψ

(
u − u′)ϕ)2

dx +
∫

BM

∣∣Du − tψ ′(u − u′)(Du − Du′)ϕ − tψ
(
u − u′)∇ϕ

∣∣
+ ∣∣Du′ + tψ ′(u − u′)(Du − Du′)ϕ + tψ

(
u − u′)∇ϕ

∣∣ − |Du| − ∣∣Du′∣∣.
For ρ � t‖ϕ‖∞‖ψ ′‖∞ � 1 and t small enough, the integrand in the right-hand side has the form∣∣p − ρ

(
p − p′) − tq

∣∣ + ∣∣p′ + ρ
(
p − p′) + tq

∣∣ − |p| − |q|
� 2t |q| + (1 − ρ)|p| + ρ

∣∣p′∣∣ + (1 − ρ)
∣∣p′∣∣ + ρ|p| − |p| − |q| = 2t |q|

and we obtain

t

h

∫
BM

(
u − u′)ψ(

u − u′)ϕ dx � t2

h

∫
BM

(
ψ

(
u − u′)ϕ)2

dx + 2t

∫
BM

ψ
(
u − u′)|∇ϕ|dx.

Dividing by t and letting t → 0, we deduce∫
BM

(
u − u′)ψ(

u − u′)ϕ dx � 2h

∫
BM

ψ
(
u − u′)|∇ϕ|dx. (5)

Consider now, for p > 2, the function ψ(s) = (s+)p−1: we want to show that (5) still holds. We approximate ψ with
ψk(s) = k tanh(ψ(s)/k), for k � 1. The functions ψk satisfy the assumptions which allowed us to establish (5), so
that it holds with ψ replaced with ψk . Moreover, limk→∞ ψk(u − u′) = supk�1 ψk(u − u′) = ψ(u − u′), and in the
same way supk�1(u − u′)ψk(u − u′) = (u − u′)ψ(u − u′). Hence, the monotone convergence theorem shows that (5)
also holds, in the limit, for ψ , as claimed.

We can take ϕ(x) = ϕ0(|x|/M)p , for some ϕ0 ∈ C∞
c ([0,1);R+) which is 1 on [0,1/2]. It follows from (5) and

Hölder’s inequality that∫
BM

[(
u − u′)+

ϕ0
(|x|/M)]p

dx � 2h

∫
BM

[(
u − u′)+

ϕ0
(|x|/M)]p−1 p

M

∣∣ϕ′
0

(|x|/M)∣∣dx

� 2h

[ ∫
BM

[(
u − u′)+

ϕ0
(|x|/M)]p]1− 1

p
[ ∫

BM

(
p

M

)p∣∣ϕ′
0

(|x|/M)∣∣p] 1
p

.

Hence∥∥∥∥(
u − u′)+

ϕ0

( | · |
M

)∥∥∥∥ � 2hpω
1/p
n

M1−n/p

∥∥ϕ′
0

∥∥∞

Lp(BM)
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with ωn the volume of the unit ball. Exchanging the roles of u and u′ in the previous proof, we find that

‖uM − uM ′‖Lp(BM/2) �
2hpω

1/p
n

M1−n/p

∥∥ϕ′
0

∥∥∞. (6)

As in particular uM (or uM ′ ) could, in this calculation, have been chosen to be the minimizer Sh,v(f,BM), which
is bounded by Proposition 3.2, we obtain that uM ′ ∈ Lp(BM/2) (as well as uM ). Hence, choosing R > 0, we see
that (uM)M�2R defines a Cauchy sequence in Lp(BR), provided p > n. It follows that it converges to some limit
u ∈ Lp(BR). As R is arbitrary, we build in this way a function u which clearly satisfies the thesis of the theorem. �
Corollary 3.4. Assume f � f ′, v � v′, h > 0, then Sh,v(f ) � Sh,v′(f ′).

Proof. It follows from Proposition 3.1 and the definition of Sh,v(f ). �
Corollary 3.5. If f, v are uniformly continuous on R

n, with a modulus of continuity ω(·), then Sh,v(f ) is also uni-
formly continuous with the same modulus of continuity.

Proof. It follows from the previous corollary. For z ∈ R
n, let v′(x) := v(x − z) − ω(|z|) � v(x) and f ′(x) :=

f (x − z) − ω(|z|) � f (x). Then, Sh,v′(f ′) = Sh,v(f )(· − z) − ω(|z|) � Sh,v(f ), which shows the corollary. �
Observe that, if f, v are uniformly continuous, then Sh,v(f,B) satisfies the elliptic equation

−div z + u − f

h
= 0 on

{
x ∈ B: u(x) > v(x)

}
, (7)

where the vector field z satisfies |z| = 1 and z = Du/|Du| whenever |Du| �= 0.

Proposition 3.6. Assume that f (x) → ∞ as |x| → ∞, and let s ∈ R. Then the set {Sh,v(f ) < s} is the minimal
solution of the problem

min
E⊂{v<s}P(E) +

∫
E

f − s

h
dx. (8)

Similarly, the set {Sh,v(f )� s} is the maximal solution of

min
E⊂{v�s}P(E) +

∫
E

f − s

h
dx. (9)

Proof. Let M > 0 and consider the set Es
M = {Sh,v(f,BM) < s}. Reasoning as in [11] (see also [16, Section 2.2.2])

one can show that Es
M is the minimal solution of

min
E⊂BM∩{v<s}P(E,BM) +

∫
E

f − s

h
dx.

Since f is coercive, the sets Es
M do not depend on M for M big enough, and coincide with the set {Sh,v(f ) < s}, so

that the result follows letting M → +∞.
The second assertion regarding the set {Sh,v(f )� s} can be proved analogously. �

4. Mean curvature flow with obstacles

Let us give a precise definition of the flow (1). Given a set E ⊂R
n we denote by

dE(x) := dist(x,E) − dist
(
x,Rn \ E

)
, x ∈R

n

the signed distance function from E, which is negative inside E and positive outside.
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Definition 4.1. Given a family of sets E(t), t ∈ [0, T ], we set

d(x, t) := dE(t)(x).

We say that E(t) is a C1,1 supersolution of (1) if there exists a bounded open set U ⊂ R
n such that E(t) ⊂ Ω and

∂E(t) ⊂ U for all t ∈ [0, T ],
d ∈ Lip

(
U × [0, T ]),∣∣∇2d

∣∣ ∈ L∞(
U × [0, T ]) (10)

and

∂d

∂t
� 	d + O(d) a.e. in U × [0, T ]. (11)

We say that E(t) is a C1,1 subsolution of (1) if (11) is replaced by

∂d

∂t
� 	d + O(d) a.e. in

(
U × [0, T ]) ∩ {d > dΩ}, (12)

and we say that E(t) is a C1,1 solution of (1) if it is both a supersolution and a subsolution.

We now fix an open set Ω ⊂R
n (representing the complement of the obstacle) and a compact set E ⊆ Ω . The case

when Ec is compact can be treated with minor modifications.
Since E is compact, without loss of generality we can assume that Ω is bounded. Indeed, as it will be clear from

the sequel, replacing Ω with Ω ∩ BM will not affect our construction, provided BM ⊃ E.

Definition 4.2. Let h > 0 and set

ThE := {
Sh,dΩ (dE) < 0

}
. (13)

Given t > 0, we let

Eh(t) := T
[t/h]
h E

be the discretized evolution of E defined by the scheme Th.

Notice that ThE is an open subset of Ω and, by Proposition 3.6, ThE is the minimal solution of the geometric
problem

min
F⊆Ω

P(F) + 1

h

∫
F

dE dx (14)

or equivalently

min
F⊆Ω

P(F) + 1

h

∫
F�E

|dE |dx.

When Ω =R
n this corresponds to the implicit scheme introduced in [5,24] for the mean curvature flow. Here, from (7)

it also follows that ThE satisfies

κ + dE

h
= 0 on ∂ThE \ ∂Ω. (15)

Remark 4.3. Observe that from Proposition 3.1 it follows

E1 ⊂ E2 ⇒ ThE1 ⊂ ThE2.

Moreover, by Corollary 3.4 we have Sh,dΩ (dE) � Sh,−∞(dE) which implies ThE ⊆ T̃hE := {Sh,−∞(dE) < 0}. Notice
that T̃hE is the scheme introduced in [5,24] for the (unconstrained) mean curvature flow.
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From the general regularity theory for minimizers of the perimeter with a smooth obstacle [26,12] we have the
following result.

Proposition 4.4. Let ∂Ω be of class C1,1, E ⊆ Ω and h > 0. Then there exists a closed set Σ ⊂ ∂ThE ∩ Ω such that
Hs(Σ) = 0 for all s > n − 8, ∂ThE \ Σ is of class C1,1, and (∂ThE ∩ Ω) \ Σ is C2,α for any α < 1.

Proposition 4.5. Let ∂Ω be of class C1,1. Then there exists C(Ω) > 0 such that

ThE = {
Sh,−∞

(
dE + ChχΩc

)
< 0

}
for all C � C(Ω). In particular ThE is a minimizer of the prescribed curvature problem

min
F

P (F ) + C|F \ Ω| + 1

h

∫
F

dE dx. (16)

Proof. We recall that Sh,−∞(dE + ChχΩc) is the limit, as M → ∞, of the minimizer uM of the variational problem

min
u∈BV(BM)

∫
BM

|Du| + 1

2h

∫
BM

(
u − dE − ChχΩc

)2
dx. (17)

From Proposition 3.6 it follows that ThE is the minimal solution to (14), while

F̄ = {
Sh,−∞

(
dE + ChχΩc

)
< 0

}
is the minimal solution to (16). If F̄ ⊂ Ω , then |F̄ \ Ω| = 0 and both F̄ and ThE solve the same problem, and they
must therefore coincide.

In order to show that F̄ ⊂ Ω , it is enough to find a positive constant C̃ such that for all x /∈ Ω , uM � C̃ > 0 for M

large enough.
By assumption, Ω satisfies an exterior R-ball condition, for some R > 0, that is, for any x /∈ Ω , there is a ball

BR(x′) with x ∈ BR(x′) and BR(x′) ∩ Ω = ∅. If M is large enough, we also have BR(x′) ∈ BM/2. Since E ⊂ Ω ,
dE + hCχΩc � hCχBR(x′), so that uM is larger than the minimizer u′ of

min
u∈BV(BM)

∫
BM

|Du| + 1

2h

∫
BM

(u − hCχBR(x′))
2 dx.

If C > n/R, then it is well known that for M large enough, u′ � (C − n/R)h a.e. in χBR(x′) [25]. The thesis then
follows. �
4.1. Existence of weak solutions

As a consequence of Proposition 4.5, when ∂Ω is of class C1,1 the scheme enters the framework considered
in [17]. In that case, we can also show existence of weak solutions in the sense of [5,24]. We observe that the results
in [6, p. 226] still apply and we can deduce the (approximate) 1/(n + 1)-Hölder-continuity in time of the discrete
flow starting from an initial set E0. As a consequence, following [6, Theorem 3.3], we can pass to the limit, up to a
subsequence, and deduce the existence of a flow E(t), which is Hölder-continuous in time in L1(Ω).

Theorem 4.6 (Existence of Hölder-continuous weak solutions). Let ∂Ω be of class C1,1, let E ⊂ Ω be a compact
set of finite perimeter and such that |∂E| = 0. Let Eh(t) be the discretized evolutions starting from E, defined in
Definition 4.2. Then there exist a constant C = C(n,E,Ω) > 0, a sequence hi → 0 and a map E(t) → P(Ω) such
that

• E(0) = E;
• E(t) is a compact set of finite perimeter for all t � 0;
• limi |Ehi

(t)	E(t)| = 0 for all t � 0;

• |E(t)	E(s)| � C|s − t | 1
n+1 for all s, t � 0, with |s − t |� 1.
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4.2. Consistency of the scheme

The main result of this section (Theorem 4.8) is showing that the implicit scheme is consistent with regular evolu-
tions, according to the following definition.

Definition 4.7. The scheme Th is consistent if and only if:

1. If E(·) is a supersolution (see Definition 4.1) in an interval [t1, t2], then for any t ∈ [t1, t2], any Hausdorff limit of
T n

h E(t1), n → ∞, h → 0, nh → t − t1, contains E(t).
2. If E(·) is a subsolution, this inclusion is reversed.

Theorem 4.8. The scheme Th is consistent.

Proof. The proof consists in building, arbitrarily close to ∂E(t), strict super and subsolutions of class C2, of the
curvature flow with forcing term CχΩc , for C large enough. Then, the consistency result in [17, Theorem 3.3] applies.

Step 1. Let E be a subsolution on [t1, t2] in the sense of Definition 4.1, let U ⊂R
n be the neighborhood associated to

∂E(t) (given by Definition 4.1). Without loss of generality we can assume t1 = 0.
Observe that there exists ρ > 0 such that {|d(·, t)| � ρ} ⊂ U for all t ∈ [0, t2], and the sets ∂Ω , ∂{d(·, t) � s},

|s| � ρ, satisfy the interior and exterior ρ-ball condition for all times (in particular ∂E(t) satisfies the condition with
radius 2ρ).

Let cρ � (n − 1)/ρ2, and for ε > 0 small, let

dε(x, t) = d(x, t) − ε − 4cρεt, t ∈ [0, t2].
Observe that for ε small enough, {|dε(·, t)| � ρ/2} ⊂ {|d(·, t)| � ρ} for all t . The constant cρ is precisely chosen so
that in this set, the curvature of two level surfaces {d(·, t) = s} and {d(·, t) = s′} at points along the same normal
vector ∇d(·, t) differ by at most cρ |s − s′|.

We have, for a.e. t ∈ (0, t2) and x ∈ {|d(·, t)|� ρ} ⊂ U ,

∂dε

∂t
(x, t) = ∂d

∂t

(
Π∂E(t)(x), t

) − 4cρε,

thus:

• If Π∂E(t)(x) ∈ Ω , then (by Definition 4.1)

∂dε

∂t
(x, t)� 	dε(x, t) − 4cρε + cρ |d|� 	dε(x, t) + cρ |dε| + cρ

(−4ε + ε(1 + 4cρt)
)

so that if t � t̄ = min(t2,1/(2cρ)) and |dε| � ε/2,

∂dε

∂t
(x, t)� 	dε(x, t) − cρ

ε

2
. (18)

• While if Π∂E(t)(x) ∈ ∂Ω , then d = dΩ and almost surely ∂d/∂t = 0, so that ∂dε/∂t = −4cρε. On the other hand,
there is a constant C̄ large enough (of order 1/ρ, and admissible for Proposition 4.5) such that |	dε| � C̄ a.e. in
{|d(·, t)| < ρ}, and we deduce

−4cρε = ∂dε

∂t
(x, t)� 	dε(x, t) + C̄ − 4cρε. (19)

Moreover, if dε � −ε/2, we have that dΩ = d � 4cρεt + ε/2.

Consider a function gε which is C̄ in {dΩ � ε/2}, 0 in Ω , and smoothly decreasing from C̄ to 0 as dΩ decreases
from ε/2 to 0: we deduce from (18) and (19) that

∂dε � 	dε + gε − cρ

ε

∂t 2
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a.e. in {(x, t): |dε(x, t)| � ε/2, t ∈ (0, t̄ )}. We have built a strict subflow, as close as we want from ∂E(t), for
t ∈ [0, t̄ ]. The fact that t̄ could be less than t2 is not an issue, as we will see in the end of the next step. On the other
hand, the consistency result in [17] requires that d is at least C2 in space, which is not the case here (and the proof
does not extend to C1,1 regularity). For this, we need an additional smoothing of the surface, which we perform in a
second step.

Step 2. Now consider a spatial mollifier ϕη(x) = η−nϕ(x/η), with η � ε. For all time let d
η
ε = ϕη ∗ dε , which is still

Lipschitz in t and now, smooth in x. If η is small enough, and since gε is continuous, we have

∂d
η
ε

∂t
� 	dη

ε + gε − cρ

ε

4

for a.e. x, t with |dε(x, t)| � ε/2 − η. We can rewrite this equation as a curvature motion equation with some error
term, as follows

∂d
η
ε

∂t
�

∣∣∇dη
ε

∣∣(div
∇d

η
ε

|∇d
η
ε | + gε

)
− cρ

ε

4
+ gε

(
1 − ∣∣∇dη

ε

∣∣) + (D2d
η
ε ∇d

η
ε ) · ∇d

η
ε

|∇d
η
ε |2 . (20)

Now, we have that

1 �
∣∣∇dη

ε

∣∣� 1 − cη (21)

almost everywhere, for some constant c > 0, of order 1/ρ. Hence, if η is small enough, we have

gε

(
1 − ∣∣∇dη

ε

∣∣)� cρε/16. (22)

We claim that the following estimate holds: there exists a constant c > 0 (of order 1/ρ2) such that∣∣D2dη
ε ∇dη

ε

∣∣� cη. (23)

This will be shown later on (see Step 3). Using (21) and (23), we find that

(D2d
η
ε ∇d

η
ε ) · ∇d

η
ε

|∇d
η
ε |2 � cρε/16

if η is small enough. Thus (20) becomes, using (22),

∂d
η
ε

∂t
�

∣∣∇dη
ε

∣∣(div
∇d

η
ε

|∇d
η
ε | + gε

)
− cρ

ε

8
. (24)

Since |D2dε| � 1/ρ for a.e. t and x with |dε(x, t)| � ε/2, this is also true for |D2d
η
ε | (for |dε(x, t)| � ε/2 − η),

and using (21) we can easily deduce that the boundaries of the level sets Eε(t) = {dη
ε (·, t) � 0} have an interior and an

exterior ball condition with radius ρ/2. Together with (24), and using gε � C̄χΩc , we find that Eε(t), 0 � t � t̄ , is a
strict subflow for the motion with normal speed V = −κ − C̄χΩc , and [17, Theorem 3.3] holds. We deduce that there
exists h0 > 0 such that if h < h0, T h(Eε(t)) ⊆ Eε(t + h) for any t ∈ [0, t̄ − h], where T h is the evolution scheme
defined by

T hE = {
Sh,−∞(dE + C̄hχΩc) < 0

}
for any bounded set E. (It corresponds to the time-discretization of the mean curvature flow with discontinuous forcing
term −CχΩc .) Recall that if E ⊂ Ω , Proposition 4.5 shows that T hE = ThE ⊂ Ω . In particular, for the subflow E(·)
considered here, we have T n

h (E(0)) = T n
hE(0), for all n and h > 0. By induction, it follows that as long as nh� t̄ ,

T n
h E(0) = T n

hE(0) ⊆ Eε(nh),

hence T
�t/h�
h E(0) is in a 3ε-neighborhood of E(t). Since t̄ only depends on ρ > 0 (the regularity of the subflow E(·)),

we can split [0, t2] into a finite number of intervals of size at most t̄ and reproduce this construction on each interval,
making sure that the ε parameter of each interval is less than one third of the ε of the next interval.

We deduce that for any δ > 0, if h > 0 is small enough, then T n
h E(0) ⊂ {dE(nh) � δ}, for 0 � nh � t2. This shows

the consistency of Th with subflows, assuming (23) holds.
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Step 3: Proof of estimate (23). Recall that since dε is a distance function, |∇dε| = 1 almost everywhere. Now, let us
compute, for η > 0 small and x, y ∈ {d(·, t)� ε/2 − η}:∣∣∇dη

ε (x, t)
∣∣2 − ∣∣∇dη

ε (y, t)
∣∣2 = (∇dη

ε (x, t) − ∇dη
ε (y, t)

) · (∇dη
ε (x, t) + ∇dη

ε (y, t)
)

=
∫
Bη

∫
Bη

(∇dε(x − z, t) − ∇dε(y − z, t)
) · (∇dε

(
x − z′, t

) + ∇dε

(
y − z′, t

))
ϕη(z)ϕη

(
z′)dzdz′. (25)

As |D2dε| � 1/ρ, ∇dε(·, t) is 1/ρ-Lipschitz, using |∇dε(x − z, t)|2 − |∇dε(y − z, t)|2 = 0 it follows(∇dε(x − z, t) − ∇dε(y − z, t)
) · (∇dε

(
x − z′, t

) + ∇dε

(
y − z′, t

))
�

∣∣∇dε(x − z, t) − ∇dε(y − z, t)
∣∣ 2

ρ

∣∣z − z′∣∣� 2

ρ2
|x − y|∣∣z − z′∣∣

and it follows from (25) that

∣∣∇dη
ε (x, t)

∣∣2 − ∣∣∇dη
ε (y, t)

∣∣2 � 4

ρ2
|x − y|η.

We deduce (letting y → x) that

2
∣∣D2dη

ε (x, t)∇dη
ε (x, t)

∣∣ � 4

ρ2
η,

which is estimate (23).

Step 4. Consistency with superflows: the proof is almost identical (reversing the signs and inequalities), but simpler
for superflows. Indeed, all the sets we now consider stay in Ω and we do not need to take into account the constraint
or the forcing term C̄χΩc . �

We can define a generalized flow as limit of the scheme Th as h → 0. Given an initial set E ⊆ Ω , for all t � 0 we
let

Eh(t) = T
[t/h]
h E and Eh =

⋃
t�0

Eh(t) × {t} ⊂R
n × [0,+∞). (26)

Then there exists a sequence (hk)k�1 such that both Ehk
and R

n × [0,+∞) \ Ehk
= cEhk

converge in the Hausdorff
distance (locally in time) to E∗ and cE∗ respectively.

From Corollary 3.4 and Theorem 4.8 we obtain a comparison and uniqueness result for solutions of (1).

Corollary 4.9. Let E1(t) and E2(t) be respectively a sub- and a supersolution of (1) for t ∈ [0, T ], in the sense of
Definition 4.1. Then, if E1(0) ⊆ E2(0), it follows that E1(t) ⊆ E2(t) for all t ∈ [0, T ]. In particular, if ∂E is compact
and of class C1,1, there exists at most one solution E(t) starting from E. Moreover, by Remark 4.3, E(t) is contained
in the solution to the (unconstrained) mean curvature flow starting from E.

5. Short time existence and uniqueness in dimension two

In this section we assume n = 2 and ∂Ω of class C1,1. In the bidimensional case, the mean curvature is the same
as the total curvature of the boundary ∂E. Hence, any estimate on the mean curvature yields a global estimate on the
regularity of E. This will be the key of our construction, for showing the existence of regular (C1,1) solutions to the
mean curvature flow with obstacles. In higher dimension, this is not true anymore, and showing the existence of such
solutions remains an open problem.

The following result follows as in [11, Lemma 7].

Lemma 5.1. Let h > 0 and let E ⊆ Ω with ∂E of class C1,1. Let δE be the maximum δ > 0 such that both ∂E and
∂Ω satisfy the δ-ball condition, and let u = Sh,dΩ (dE). Then, for all δ′ ∈ (0, δE) we have
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|u − dE |� h

δE − δ′ in
{|dE | � δ′} (27)

for all h < (δE − δ′)2/3.

Lemma 5.2. Let E ⊆ Ω with ∂E of class C1,1. Then, there exist δ > 0 and T > 0 such that

∂Eh(t) satisfies the δ-ball condition for all t ∈ [0, T ]. (28)

Proof. Let δE be as in Lemma 5.1, and let K = 2/δE . By Lemma 5.1, applied with δ′ = Kh, we get

dH(∂ThE, ∂E)� h

δE − Kh
� h

δE

(
1 + K

δE

h + Ĉ
K2

δ2
E

h2
)

for all h� h0 := δ2
E/12, where the constant Ĉ > 0 is independent of E. Recalling (15) and Proposition 4.4, we get

‖κ‖L∞(∂ThE) �
1

δE

(
1 + K

δE

h + Ĉ
K2

δ2
E

h2
)

which implies

δThE � min

(
1

‖κ‖L∞(∂ThE)

, δE − dH(∂ThE, ∂E)

)

� δE · min

(
1 − h

δ2
E

(
1 + K

δE

h + Ĉ
K2

δ2
E

h2
)

,

(
1 + K

δE

h + Ĉ
K2

δ2
E

h2
)−1)

(29)

for all h� h0. By iterating (29) we obtain (28). �
We now prove a short time existence and uniqueness result for solutions to (1).

Theorem 5.3. Let ∂Ω be of class C1,1 and let E ⊆ Ω with ∂E of class C1,1. Then there exists T > 0 such that (1)
admits a unique C1,1 solution E(t) on [0, T ] with E(0) = E.

Proof. Let Eh be as in (26) and let

dh(t) =
(

1 +
[

t

h

]
− t

h

)
dEh(t) +

(
t

h
−

[
t

h

])
dEh(t+h).

By Lemmas 5.1 and 5.2 there exist an open set U ⊂R
n and T > 0 such that ∂Eh(t) ⊂ U for all t ∈ [0, T ] and |∇2dh| ∈

L∞(U × [0, T ]); moreover, recalling (27) we also have dh ∈ Lip(U × [0, T ]). By the Arzelà–Ascoli Theorem the
functions dh converge uniformly in U ×[0, T ], up to a subsequence as h → 0, to a limit function d ∈ Lip(U ×[0, T ])
such that |∇2d| ∈ L∞(U × [0, T ]) and |∇d| = 1 in U × [0, T ]. Letting E(t) = {x: d(x, t) < 0}, for all t ∈ [0, T ] we
then have E(0) = E, E(t) ⊂ Ω and ∂E(t) is of class C1,1.

It remains to show that (11) and (12) hold in U × [0, T ]. From Theorem 4.8 it follows that, given a supersolution
Ẽ(t) on [t1, t2] ⊂ [0, T ] with Ẽ(t1) ⊆ E(t1), we have Ẽ(t) ⊆ E(t) for all t ∈ [t1, t2], and the same holds with reversed
inclusions if Ẽ(t) is a subsolution. This implies that (see [10] for details)

∂d

∂t
= 	d a.e. in

(
U × [0, T ]) ∩ {d > dΩ} ∩ {d = 0},

which proves (12). Observe that, by parabolic regularity, ∂E(t) ∩ Ω is an analytic curve and the equality holds
everywhere.
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As we have

∂d

∂t
= 0 a.e. in

(
U × [0, T ]) ∩ {d = dΩ},

the proof of (11) amounts to show

	d � 0 a.e. in
(
U × [0, T ]) ∩ {d = dΩ}. (30)

Assume by contradiction that there exist (x̄, t̄ ) ∈ (U × (0, T )) ∩ {d = dΩ} such that

∂d

∂t
(x̄, t̄ ) = 0 < 	d(x̄, t̄ ) = 	dΩ(x̄). (31)

Without loss of generality we can assume d(x̄, t̄ ) = dΩ(x̄) = 0, and dΩ is twice differentiable (in the classical sense)
at x̄.

Let us take an open set Ω̃ ⊃ Ω with (compact) boundary of class C∞ and such that

x̄ ∈ ∂Ω̃ and 	dΩ̃(x̄) �	dΩ(x̄) > 0.

We let Ω̃(t), for t ∈ [0, τ ] and τ > 0, be the evolution by curvature of Ω̃ [5], and observe that Ê(t) = Ω̃(t − t̄ ),
t ∈ [t̄ , t̄ + τ ], is a subsolution in the sense of Definition 4.1. In particular, by Theorem 4.8

E(t) ⊆ Ê(t) for all t ∈ [t̄ , t̄ + τ ],
but this implies, letting d̂(x, t) = dÊ(t)(x) and recalling (31),

0 = ∂d

∂t
(x̄, t̄ ) � ∂d̂

∂t
(x̄, t̄ ) = 	dΩ̃(x̄) � 	dΩ(x̄) > 0,

leading to a contradiction. This proves (30) and thus (11).
Finally, the uniqueness of E(t) follows from Corollary 4.9. �

Remark 5.4. Notice that in Theorem 5.3 it is enough to assume that Ω satisfies the exterior R-ball condition for some
R > 0, which is a weaker assumption than requiring ∂Ω to be of class C1,1. Indeed, we can approximate Ω with the
sets

Ωρ :=
⋃

Bρ(x)⊆Ω

Bρ(x), ρ > 0.

Notice that Ωρ ⊆ Ω and ∂Ωρ is of class C1,1, for all ρ > 0. If we take ρ small enough so that E ⊆ Ωρ then, by
Theorem 5.3 applied with Ω replaced by Ωρ , we obtain a solution Eρ(t) on [0, Tρ]. However, Eρ(t) is also a solution
of the original problem, with constraint Ω instead of Ωρ , since Ωρ is a subsolution to (1) in the sense of Definition 4.1.

6. Positive mean curvature flow

In this section we consider the geometric equation

v = max(κ,0). (32)

Notice that, by passing to the complementary set, (32) includes the evolution by negative mean curvature v =
min(κ,0).

Definition 6.1. Given a family of sets E(t), t ∈ [0, T ], we set

d(x, t) := dE(t)(x).

We say that E(t) is a C1,1 solution of (32) if there exists a bounded open set U ⊂ R
n such that ∂E(t) ⊂ U for all

t ∈ [0, T ],
d ∈ Lip

(
U × [0, T ]), ∣∣∇2d

∣∣ ∈ L∞(
U × [0, T ])
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and

∂d

∂t
= max(	d,0) + O(d) a.e. in U × [0, T ]. (33)

Lemma 6.2. Let E1(t) and E2(t), with t ∈ [t1, t2], be two C1,1 solutions of (32) in the sense of Definition 6.1. Then,
if E1(t1) ⊆ E2(t1), it follows that E1(t) ⊆ E2(t) for all t ∈ [t1, t2]. In particular, if ∂E is compact and of class C1,1,
there exists at most one solution E(t) starting from E.

Proof. Notice that it is enough to prove the thesis with t2 = t1 + τ , for some τ > 0, since the general claim then
follows by iteration. Fix ε > 0, let dε(x, t) := dE2(t)(x) + ε + Cεt and let

Eε(t) := {
x: dε(x, t)� 0

}
, t ∈ [t1, t1 + τ ],

where the positive constants C,τ will be determined later. Notice that ∂Eε is compact and of class C1,1 for all ε small
enough, and Eε(t) → E2(t) as ε → 0. A direct computation gives

∂dε

∂t
� max

(
	dε + ε

(
C − CK2τ − K2),0

) + O(dε) a.e. in U × [t1, t1 + τ ], (34)

where

K = sup
x∈[t1,t2]

‖	dE2(t)‖L∞(∂E2(t)).

If we choose C = 2K2 and τ < 1/C, (34) implies that Eε(t) is a supersolution of (32). Letting Dε(t) :=
dist(∂E1(t), ∂Eε(t)), we have that Dε is Lipschitz continuous, Dε(0) � ε and D′

ε(t) � 0 for a.e. t ∈ [t1, t1 + τ ].
As a consequence, Eε(t) ⊆ E1(t) for all t ∈ [t1, t1 + τ ], and the thesis follows by letting ε → 0. �
Remark 6.3. Notice that the viscosity theory [19] applies to Eq. (32), since the function κ → max(κ,0) is continuous.
Then, Lemma 6.2 implies that, if the initial set has compact boundary of class C1,1, the corresponding viscosity
solution does not create fattening, i.e. is unique, before the onset of singularities. Corollary 6.5 below will establish
the existence of such C1,1 solutions.

Given E ⊂R
n and h > 0, we set E0

h = Ẽ0
h = E and, by iteration,

Ẽn
h := {

Sh,d
Ẽ

n−1
h

(d
Ẽn−1

h
) < 0

}
,

En
h := {

Sh,dE
(d

En−1
h

) < 0
}

(35)

for all n ∈ N. We also let Ẽh(t) := Ẽ
[t/h]
h and Eh(t) := E

[t/h]
h . Notice that Eh(t) is the discretized evolution corre-

sponding to the mean curvature flow with obstacle Ω = E (see Definition 4.2), while Ẽh(t) is an implicit scheme
for (32).

Proposition 6.4. Let h > 0 and let E ⊂R
n be a set with compact boundary. Then

Ẽh(t) = Eh(t) for all t � 0.

In particular

Eh(t2) ⊆ Eh(t1) for all t1 � t2. (36)

Proof. We have to show that Ẽn
h = En

h for all n ∈ N. By the definition we have Ẽ1
h = E1

h =: F . If we also show that
Ẽ2

h = E2
h, then the thesis follows by iteration. As dF � dE , by Proposition 3.1 we have that Sh,dE

(dF ) � Sh,dE
(dE),

so that

E2
h = {

Sh,dE
(dF ) < 0

} ⊂ {
Sh,dE

(dE) < 0
} = F. (37)
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By Proposition 3.6 we know that E2
h is the minimal solution of

min
X⊂E

P (X) + 1

h

∫
X

dF dx.

Recalling (37) it then follows that E2
h is also the minimal solution of

min
X⊂F

P (X) + 1

h

∫
X

dF dx

and hence coincides with Ẽ2
h, again by Proposition 3.6. �

Proposition 6.4 implies that the evolution (32), with initial set E, can be seen as a particular case of (1) with Ω = E.
As a consequence, from Theorem 5.3 we get a short time existence result for regular solutions to (32).

Corollary 6.5. Let E ⊂ R
2 with compact boundary of class C1,1. Then there exists T > 0 such that (32) admits a

unique solution E(t) on [0, T ] with E(0) = E and ∂E(t) a compact set of class C1,1 for all t ∈ [0, T ]. Moreover

E(t2) ⊆ E(t1) for all t1 � t2. (38)

Proof. Thanks to Theorem 5.3 there exist T > 0 and a unique solution E(t) of (1) on [0, T ], with E(0) = E = Ω and
∂E(t) of class C1,1. By Proposition 6.4, for all t̄ ∈ [0, T ), E(t) is the solution of (1) on [t̄ , T ] with obstacle Ω = E(t̄ ).
In particular, letting as above d(x, t) = dE(t)(x) and recalling (11), this implies

∂d

∂t
= max

(
	d + O(d),0

)
a.e. in U × [0, T ],

that is, E(t) is the solution of (32) in the sense of Definition 6.1.
The uniqueness of E(t) follows from Lemma 6.2, and (38) follows from (36). �
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