
Available online at www.sciencedirect.com
Ann. I. H. Poincaré – AN 29 (2012) 761–781
www.elsevier.com/locate/anihpc

The space of 4-ended solutions to the Allen–Cahn equation
in the plane

Michał Kowalczyk a,1, Yong Liu a,2, Frank Pacard b,∗

a Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS), Universidad de Chile, Casilla 170,
Correo 3, Santiago, Chile

b Institut Universitaire de France et Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau, France

Received 7 October 2011; accepted 13 April 2012

Available online 14 May 2012

Abstract

We are interested in entire solutions of the Allen–Cahn equation �u−F ′(u) = 0 which have some special structure at infinity. In
this equation, the function F is an even, double well potential. The solutions we are interested in have their zero set asymptotic to
4 half oriented affine lines at infinity and, along each of these half affine lines, the solutions are asymptotic to the one dimensional
heteroclinic solution: such solutions are called 4-ended solutions. The main result of our paper states that, for any θ ∈ (0,π/2),
there exists a 4-ended solution of the Allen–Cahn equation whose zero set is at infinity asymptotic to the half oriented affine lines
making the angles θ , π − θ , π + θ and 2π − θ with the x-axis. This paper is part of a program whose aim is to classify all 2k-ended
solutions of the Allen–Cahn equation in dimension 2, for k � 2.
© 2012
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1. Introduction

In this paper, we are interested in entire solutions of the Allen–Cahn equation

�u − F ′(u) = 0, (1.1)

in R
2, where the function F is a smooth, double well potential. This means that F is even, nonnegative and has only

two zeros which will be chosen to be at ±1. Moreover, we assume that

F ′′(0) �= 0, F ′′(±1) �= 0,
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and also that

F ′(t) �= 0, for all t ∈ (0,1).

It is known that (1.1) has a solution whose nodal set is any given straight line. These special solutions, which will
be referred to as the heteroclinic solutions, are constructed using the heteroclinic, one dimensional solution of (1.1),
namely the function H defined on R, solution of

H ′′ − F ′(H) = 0, (1.2)

which is odd and tends to −1 (respectively to +1) at −∞ (respectively at +∞).
More precisely, we have the:

Definition 1.1. Given r ∈ R and e ∈ R
2 such that |e| = 1, the heteroclinic solutions with end λ := re⊥ + Re is

defined by

u(x) := H
(
x · e⊥ − r

)
,

where ⊥ denotes the rotation of angle π/2 in the plane.

Observe that this construction extends in any dimension to produce solutions whose level sets are hyperplanes.
The famous De Giorgi’s conjecture asserts that (in space dimension less than or equal to 8), if u is a bounded

solution of (1.1) which is monotone in one direction, then u has to be one of the above defined heteroclinic solutions.
This conjecture is known to hold when the space dimension is equal to 2 [10], in dimension 3 [1] and in dimensions 4
to 8 [17] under some mild additional assumption. Counterexamples have been constructed in all dimensions N � 9
in [7], showing that the conjecture is indeed sharp.

In this paper, we are interested in entire solutions of (1.1) which are defined in R
2 and which have some special

structure at infinity, namely their zero set is, at infinity, asymptotic to 4 oriented affine lines: such solutions are called
4-ended solutions and will be precisely defined in the next section. The main result of our paper states that, for any
θ ∈ (0,π/2), there exists a 4-ended solution of (1.1) whose zero set is asymptotic at infinity to the half oriented affine
lines making angles θ,π − θ,π + θ and 2π − θ with the x-axis.

2. The space of 4-ended solutions

In order to proceed, we need to define precisely the class of entire solutions of (1.1) we are interested in. As already
mentioned, these solutions have the property that their nodal sets are, away from a compact, asymptotic to a finite
(even) number of half oriented affine lines, which are called the ends of the solutions. The concept of solutions with a
finite number of ends was first introduced in [5] and, for the sake of completeness, we recall the precise definitions in
the case of 4-ended solutions.

An oriented affine line λ ⊂R
2 can be uniquely written as

λ := re⊥ +Re,

for some r ∈ R and some unit vector e ∈ S1, which defines the orientation of λ. We recall that ⊥ denotes the rotation
by π/2 in R

2. Writing e= (cos θ, sin θ), we get the usual coordinates (r, θ) which allow to identify the set of oriented
affine lines with R× S1.

Assume that we are given 4 oriented affine lines λ1, . . . , λ4 ⊂R
2 which are defined by

λj := rje
⊥
j +Rej ,

and assume that these oriented affine lines have corresponding angles θ1, . . . , θ4 satisfying

θ1 < θ2 < θ3 < θ4 < 2π + θ1.

In this case, we will say that the 4 oriented affine lines are ordered and we will denote by Λ4
ord the set of 4 oriented

affine lines. It is easy to check that for all R > 0 large enough and for all j = 1, . . . ,4, there exists sj ∈R such that:
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(i) The point rje⊥
j + sjej belongs to the circle ∂BR .

(ii) The half affine lines

λ+
j := rje

⊥
j + sjej +R

+ej (2.3)

are disjoint and included in R
2 − BR .

(iii) The minimum of the distance between two distinct half affine lines λ+
i and λ+

j is larger than 4.

The set of half affine lines λ+
1 , . . . , λ+

4 together with the circle ∂BR induce a decomposition of R2 into 5 slightly
overlapping connected components

R
2 = Ω0 ∪ Ω1 ∪ · · · ∪ Ω4,

where Ω0 := BR+1 and

Ωj := (
R

2 − BR−1
) ∩ {

x ∈R
2: dist

(
x, λ+

j

)
< dist

(
x, λ+

i

) + 2, ∀i �= j
}
, (2.4)

for j = 1, . . . ,4. Here, dist(·, λ+
j ) denotes the distance to λ+

j . Observe that, for all j = 1, . . . ,4, the set Ωj contains

the half affine line λ+
j .

Let I0, I1, . . . , I4 be a smooth partition of unity of R2 which is subordinate to the above decomposition. Hence

4∑
j=0

Ij ≡ 1,

and the support of Ij is included in Ωj . Without loss of generality, we can also assume that I0 ≡ 1 in

Ω ′
0 := BR−1,

and Ij ≡ 1 in

Ω ′
j := (

R
2 − BR−1

) ∩ {
x ∈R

2: dist
(
x, λ+

j

)
< dist

(
x, λ+

i

) − 2, ∀i �= j
}
,

for j = 1, . . . ,4. Finally, without loss of generality, we can assume that

‖Ij‖C2(R2) � C.

With these notations at hand, we define

uλ :=
4∑

j=1

(−1)j IjH
(
dists(·, λj )

)
, (2.5)

where λ := (λ1, . . . , λ4) and

dists(x, λj ) := x · e⊥
j − rj (2.6)

denotes the signed distance from a point x ∈R
2 to λj .

Observe that, by construction, the function uλ is, away from a compact and up to a sign, asymptotic to copies of
the heteroclinic solution with ends λ1, . . . , λ4.

Let S4 denote the set of functions u which are defined in R
2 and which satisfy

u − uλ ∈ W 2,2(
R

2), (2.7)

for some ordered set of oriented affine lines λ1, . . . , λ4 ⊂R
2. We also define the decomposition operator J by

J : S4 → W 2,2(
R

2) × Λ4
ord

u �→ (u − uλ,λ).

The topology on S4 is the one for which the operator J is continuous (the target space being endowed with the product
topology).

We now have the:
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Definition 2.1. The set M4 is defined to be the set of solutions u of (1.1) which belong to S4.

It is known that M4 is not empty. For example, the saddle solution constructed in [4] belongs to M4, the nodal
set of this solution is the union of the two lines y = ±x. Another important fact, also proven in [4] or in [11], is that
up to a sign and a rigid motion, the saddle solution is the unique bounded solution whose nodal set coincides with the
union of the two lines y = ±x. The solutions constructed in [6] are also elements of M4 and we shall return to this
point later on.

Recall from [5], that a solution u of (1.1) is said to be nondegenerate if there is no w ∈ W 2,2(R2) − {0} which is in
the kernel of

L := −� + F ′′(u),

and which decays exponentially at infinity.
As far as the structure of the set of 4-ended solutions is concerned, the main result of [5] asserts that:

Theorem 2.1. (See [5].) Assume that u ∈ M4 is nondegenerate, then, close to u, M4 is a 4-dimensional smooth
manifold.

Observe that, given u ∈M4, translations and rotations of u are also elements of M4 and this accounts for 3 of the
4 formal dimensions of M4, moreover, if u ∈ M4 then −u ∈ M4.

All the 4-ended solutions constructed so far have two axes of symmetry and in fact, it follows from a result of
C. Gui [12] that:

Theorem 2.2. (See [12].) Assume that u ∈ M4. Then, there exists a rigid motion g such that ū := u ◦ g is even with
respect to the x-axis and the y-axis, namely

ū(x, y) = ū(−x, y) = ū(x,−y). (2.8)

In addition, ū is a monotone function of both the x and y variables in the upper right quadrant Q� defined by

Q� := {
(x, y) ∈ R

2: x > 0, y > 0
}
,

and, changing the sign of ū if this is necessary, we can assume that

∂xū < 0 and ∂yū > 0,

in Q�.

Thanks to this result, we can define the moduli space of 4-ended solutions by:

Definition 2.2. The set Meven
4 is defined to be the set of u ∈ S4 which are solutions of (1.1), are even with respect

to the x-axis and the y-axis and which tend to +1 at infinity along the y-axis (and tend to −1 at infinity along the
x-axis). In particular,

∂xu < 0 and ∂yu > 0,

in the upper right quadrant Q�.

When studying Meven
4 , we restrict our attention to functions which are even with respect to the x-axis and the

y-axis and, in this case, a solution u ∈ Meven
4 is said to be even-nondegenerate if there is no w ∈ W 2,2(R2) − {0},

which is symmetric with respect to the x-axis and the y-axis, belongs to the kernel of

L := −� + F ′′(u),

and which decays exponentially at infinity.
In the equivariant case (namely solutions which are invariant under both the symmetry with respect to the x-axis

and the y-axis), Theorem 2.1 reduces to:
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Theorem 2.3. (See [5].) Assume that u ∈ Meven
4 is even-nondegenerate, then, close to u, Meven

4 is a 1-dimensional
smooth manifold.

Any solution u ∈Meven
4 has a nodal set which is asymptotic to 4 half oriented affine lines and, given the symmetries

of u, these half oriented affine lines are images of each other by the symmetries with respect to the x-axis and the
y-axis. In particular, there is at most one of these half oriented affine line

λ := re⊥ +Re,

which is included in the upper right quadrant Q�. Writing e= (cos θ, sin θ) where θ ∈ (0,π/2), we define

F : Meven
4 → (−π/4,π/4) ×R,

u �→ (θ − π/4, r).

For example, the image by F of the saddle solution defined in [4] is precisely (0,0), while the images by F of the
solutions constructed in [6] correspond to parameters (θ, r) where θ is close to ±π/4 and r is close to ∓∞.

Remark 2.1. Let us observe that, if u ∈Meven
4 , then ū defined by

ū(x, y) = −u(y, x),

also belongs to Meven
4 and

F(ū) = −F(u).

In this paper, we are interested in the understanding of Meven
4 . To begin with, we prove that:

Theorem 2.4 (Nondegeneracy). Any u ∈ M4 is nondegenerate and hence any u ∈Meven
4 is even-nondegenerate.

As a consequence of this result, we find that all connected components of Meven
4 are one-dimensional smooth

manifolds. Moreover, as a byproduct of the proof of this result, we also obtain that the image by F of any connected
component of Meven

4 is a smooth immersed curve in (−π/4,π/4) ×R. Thanks to Remark 2.1, we find that the image
of Meven

4 by F is invariant under the action of the symmetry with respect to (0,0).
To proceed, we define the classifying map to be the projection of F onto the first variable

P :Meven
4 → (−π/4,π/4),

u �→ θ − π/4.

Our second result reads:

Theorem 2.5 (Properness). The mapping P is proper, i.e. the pre-image of a compact in (−π/4,π/4) is compact
in Meven

4 (endowed with the topology induced by the one of S4).

The solutions with almost parallel ends constructed in [6] belong to one of the connected component of Meven
4 and

we also know that the saddle solution belongs to a connected component of Meven
4 . In principle, it could be possi-

ble that Meven
4 contained many different connected components and it could also be possible that Meven

4 contained
connected components which are diffeomorphic to S1. Nevertheless, we prove that:

Theorem 2.6. All connected components of Meven
4 are diffeomorphic to R, i.e. there is no closed loop in Meven

4 .

Looking at the image by P of the connected component of Meven
4 which contains the saddle solution, we conclude

from the above results that:

Theorem 2.7 (Surjectivity of P). The mapping P is onto.
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As a consequence, for any θ ∈ (0,π/2), there exists a solution u ∈ Meven
4 whose nodal set at infinity is asymptotic

to the half oriented affine lines whose angles with the x-axis are given by θ,π − θ,π + θ and 2π − θ .
Given all the evidence we have, it is tempting to conjecture that Meven

4 has only one connected component and that
the image of Meven

4 by F is a smooth embedded curve. Moreover, it is very likely that P is a diffeomorphism from
Meven

4 onto (−π/4,π/4). Observe that Theorem 2.7 already proves that P is onto.
To give credit to the above conjecture, in [15], we will show that Meven

4 has only one connected component which
contains both the saddle solution and the solutions constructed in [6]. The proof of this last result is rather technical
and uses tools which are different from the one needed to prove the results in the present paper and this is the reason
why, we have chosen to present it in a separate paper [15].

To complete this list of results, we mention an interesting by-product of the proof of Theorem 2.4. Assume that u

is a solution of (1.1) and denote by

L := −� + F ′′(u),

the linearized operator about u. Recall that, if Ω is a bounded domain in R
2, then the index of L in Ω is given by the

number of negative eigenvalues of the operator L which belong to W
1,2
0 (Ω). Following [9], we have the:

Definition 2.3. The Morse index of a function u, solution of (1.1) is the supremum of the index of −� + F ′′(u) over
bounded domains of R2.

For example the Morse index of the saddle solution is 1 [18]. In this paper, we prove the:

Theorem 2.8 (Morse index). Any 2k-ended solution of (1.1) has finite Morse index.

The proof follows from the result of Proposition 3.1 together with a result of [8].
Since the Morse index of a 2k-ended solution u is finite (equal to m), we know from [9], that there exists a

finite dimensional subspace E ⊂ L2(R2), with dimE = m, which is spanned by the eigenfunctions φ1, . . . , φm of the
operator L, corresponding to the negative eigenvalues μ1, . . . ,μm of L.

We now sketch the plan of our paper.
In Section 3, we prove that any element of Meven

4 is even-nondegenerate (we also prove that it is nondegenerate,
even though we do not need this result). The proof follows the line of the proof in [14] where it is proven that the
saddle solution is nondegenerate. This will prove Theorem 2.4 and, thanks to this result, it will then follow from
the Implicit Function Theorem (see Section 8 and Theorem 2.2 in [5]) that any connected component of Meven

4 is
1-dimensional.

In Section 4, we recall two key tools which will be needed in the analysis of the properness of the classifying
map P . The first is a well known a priori estimate for solutions of (1.1) which states that, away from its zero set, the
solutions of (1.1) tend to ±1 exponentially fast. The second tool is a balancing formula which holds for any solution
of (1.1). This balancing formula reflects the invariance of our problem under translations and rotations and can be
understood as a consequence of Noether’s Theorem.

In Section 5, we prove the properness of the classifying map P . Assume that (un)n�0 is a sequence of solutions
of Meven

4 such that P(un) remains bounded away from −π/4 and from π/4, further assume that (un)n�0 converges
on compacts to u (thanks to elliptic estimates, this can always be achieved up to the extraction of a subsequence). We
will show that u ∈Meven

4 and also that

P(u) = lim
n→∞P(un).

The key tool in the proof is the use of the balancing formula introduced in the previous section which allows to control
the nodal sets of un as n tends to infinity. As we will see, this compactness result implies that the image by P of the
connected component of Meven

4 which contains the saddle solution, is the entire interval (−π/4,π/4).
Section 6 is devoted to the proof of the nonexistence of compact components in Meven

4 . We will show that a
connected component in Meven

4 cannot be compact (i.e. cannot be diffeomorphic to S1).
Our results are very much inspired from a similar classification result which was obtained in a very different

framework: the theory of minimal surfaces. Let us briefly explain the analogy between our result and the corresponding
result in the theory of minimal surfaces in R

3.
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In 1834, H.F. Scherk discovered an example of a singly-periodic, embedded, minimal surface in R
3 which, in a

complement of a vertical cylinder, is asymptotic to 4 half planes with angle π/2 between them (these planes are called
ends). This surface, after an appropriate rigid motion and scaling, has two planes of symmetry, say the x2 = 0 plane
and the x1 = 0 plane, and it is periodic, with period 2π in the x3 direction. If θ ∈ (0,π/2) denotes the angle between
the asymptotic end of the Scherk’s surface contained in {(x1, x2, x3) ∈ R

3: x1 > 0, x2 > 0} and the x2 = 0 plane, then
for the original Scherk surface corresponds to θ = π/4. This surface is the so-called Scherk’s second surface and it
will be denoted here by Sπ/4.

In 1988, H. Karcher [13] found a one parameter family of Scherk’s type surfaces with 4-ends including the original
example. These minimal surfaces are parameterized by the angle θ ∈ (0,π/2) between one of their asymptotic planes
and the x2 = 0 plane. The one parameter family (Sθ )θ∈(0,π/2) of these surfaces, normalized in such a way that the
period in the x3 direction is 2π , is the family of Scherk singly periodic minimal surfaces.

We note that the 4-ended elements of Scherk family are given explicitly in terms of the Weierstrass representation,
or alternatively they can be represented implicitly as the solutions of

cos2 θ cosh

(
x1

cos θ

)
− sin2 θ cosh

(
x2

cos θ

)
= cosx3.

More generally, Scherk’s surfaces with 2k-ends have also been constructed by H. Karcher [13]. They have been clas-
sified by J. Perez and M. Traizet in [16]. In some sense our result can be understood as an analog of the classification
result of J. Perez and M. Traizet for 4-ended Scherk’s surfaces.

3. The nondegeneracy of 4-ended solutions

In this section, we prove that any u ∈ Meven
4 is even-nondegenerate. The proof follows essentially the proof of the

nondegeneracy of the saddle solution in [14]. The main result is the:

Theorem 3.1. Assume that u ∈ Meven
4 and δ > 0. Further assume that ϕ ∈ e−δ(1+|x|2)W 2,2(R2) is a solution of

(
� − F ′′(u)

)
ϕ = 0,

in R
2 which is symmetric with respect to both the x-axis and the y-axis, then ϕ ≡ 0.

As in [14], the proof of this proposition relies on the construction of a supersolution for the operator L, away from
a compact (similar idea was also used by X. Cabré in [3]). To explain the main idea of the proof, let us digress slightly
and consider the heteroclinic solution (x, y) �→ H(x) and define

L0 := −� + F ′′(H ′),
the linearized operator about the heteroclinic solution. Clearly, the function

Ψ0(x, y) := H ′(x)

is positive and is a solution of L0Ψ0 = 0. Since any u ∈ Meven
4 is asymptotic to a heteroclinic solution, we can

transplant H ′ along the ends of u to build a positive supersolution for L := −�+F ′(u). More precisely, we have the:

Proposition 3.1. Under the above assumptions, there exist R0 > 0 and a function Ψ > 0 defined in R
2 such that

(
� − F ′′(u)

)
Ψ � 0,

in R
2 − B(0,R0).

Proof. The proof follows from a direct construction of the function Ψ . In the upper right quadrant Q�, the zero set of
u is asymptotic to the half of an oriented affine line

λ = re⊥ +Re,
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with e := (cos θ, sin θ). Without loss of generality, we can assume that θ ∈ [π/4,π/2) since, if this is not the case, we
just compose −u with a rotation by π/2. The intersection of λ with the closure of the upper right quadrant, Q� will
be denoted by

λ̄+
1 := Q� ∩ λ,

and its image by the symmetry with respect to the y-axis will be denoted by λ̄+
2 , while its image by the symmetry

with respect to the x-axis will be denoted by λ̄+
4 . Finally, the image of λ̄+

2 by the symmetry with respect to the x-axis
is equal to the image of λ̄+

4 by the symmetry with respect to the y-axis and will be denoted by λ̄+
3 . So, at infinity, the

zero set of u is asymptotic to λ̄+
1 , . . . , λ̄+

4 . We denote by q+
j the end points of λ̄+

j , namely
{
q+
j

} := ∂λ̄+
j .

Observe that {q+
j : j = 1, . . . ,4} contains at most 2 points and we denote by Γ the line segment joining these two

points. Also observe that R2 − (λ̄+
2 ∪ Γ ∪ λ̄+

4 ) has two connected components, one of which contains λ̄+
1 and will be

denoted by U1 while the other, which contains λ̄+
3 , will be denoted by U3.

The crucial observation is the following: If

f (x, y) := (
1 − e−μy

)
H ′(x),

then, using the fact that (� − F ′′(H))H ′ = 0, we get(
� − F ′′(H)

)
f = −μ2e−μyH ′ < 0.

We define the function h by

h
(
(r + s)e⊥ + te

) = (
1 − e−μt

)
H ′(s).

Observe that the function h is defined in all R2. Nevertheless, since we are only interested in this function in U1, we
define a smooth cutoff function χ which is identically equal to 1 in U1 at distance 1 from ∂U1 and which is identically
equal to 0 in U3 := R

2 − U1. As usual, we assume that |∇χ | � C, for some C > 0, as we are entitled to do.
Using χ and h, we build our supersolution in such a way that it is invariant under the symmetry with respect to the

x-axis and under the symmetry with respect to the y-axis. We define

Ψ (x, y) := χ(x, y)h(x, y) + χ(−x,−y)h(−x,−y) + χ(x,−y)h(x,−y) + χ(−x, y)h(−x, y).

We know from the Refined Asymptotics Theorem (Theorem 2.1 in [5]) that, as t tends to infinity, (s, t) �→ u((r +
s)e⊥ + te) converges exponentially fast to (s, t) �→ H(s) uniformly in s ∈ [−ρ,ρ]. Using this property, we see that
we can chose μ > 0 close enough to 0 such that

LΨ < −μ2

2
e−μtH ′ (3.9)

in a tubular neighborhood of width ρ around ∂U1 and away from a ball of radius R0 large enough, centered at the
origin. Observe that the choice of μ only depends on the decay of (s, t) �→ u((r + s)e⊥ + te) towards (s, t) �→ H(s)

and does not depend on the choice of ρ. However, increasing ρ affects the minimal value of R0 for which (3.9) holds.
Now, we choose ρ > 0 and R0 > 0 large enough, so that

LΨ < −μ2

2
e−μtH ′,

away from BR0 and away from a tubular neighborhood of width ρ around λ̄1 ∪ · · · ∪ λ̄+
4 . Here, we simply use the fact

that F ′′(u) converges uniformly to F ′′(±1) away from the nodal set of u. This completes the proof of result. �
Observe that this construction is not specific to the case of 4-ended solutions of (1.1) and in fact a similar con-

struction would hold for any 2k-ended solution. With this lemma at hand, we can adapt the argument in [14] where
the nondegeneracy of the saddle solution is proven and we simply adapt it to the general case where u is any 4-ended
solution.
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Proof of Theorem 3.1. Recall that, by definition, since u ∈ Meven
4 , we have

∂yu > 0 when y > 0,

and

∂xu < 0 when x > 0.

Let ϕ be the function as in the statement of Theorem 3.1. It follows from the Linear Decomposition Lemma
(Lemma 4.2 in [5]) that ϕ decays exponentially at infinity. More precisely, there exist constants α,C > 0 such that∣∣ϕ(x)

∣∣ � Ce−α|x|,

for all x ∈ R
2 − B(0,1).

Step 1. We assume that ϕ is not identically equal to 0 and define Z to be the zero set of ϕ. Since ϕ is assumed to
be symmetric with respect to both the x-axis and the y-axis, so is the set Z . Clearly Proposition 3.1 together with the
maximum principle, implies that R2 −Z has no bounded connected component included in R

2 − B(0,R0), since Ψ

can be used as a supersolution to get a contradiction.
Step 2. We claim that any unbounded connected component of R

2 − Z necessarily contains R
2 − B(0,R) for

some R large enough. Indeed, if this were not the case then, using the symmetries of ϕ, one could find Ω ⊂ R
2, an

unbounded connected component of R2 −Z , which is included in one of the four half spaces {(x, y) ∈ R
2: ±x > 0}

or {(x, y) ∈R
2: ±y > 0}. For example, let us assume that

Ω ⊂ {
(x, y) ∈R

2: y > 0
}
.

Following [14], we adapt the proof of De Giorgi’s conjecture in dimension 2 by N. Ghoussoub and C. Gui to derive a
contradiction.

We define ψ := ∂yu which is a solution of (�−F ′′(u))ψ = 0 in R
2. Moreover, ψ > 0 in {(x, y) ∈ R

2: y > 0} and
we check from direct computation that

div
(
ψ2∇h

) = 0, (3.10)

where h := ϕ
ψ

. For all R � 1, we consider a cutoff function ζR which is identically equal to 1 in B(0,R), identically

equal to 0 outside R
2 − B(0,2R) and which satisfies |∇ζR| � C/R for some constant C > 0 independent of R � 1.

We multiply (3.10) by ζ 2
Rh and integrate the result over Ω . We find after an integration by parts∫

Ω

|∇h|2ψ2ζ 2
R dx+ 2

∫
Ω

ψ2hζR∇h∇ζR dx= 0.

Observe that, in the integration by parts, some care is needed when the boundary of Ω touches the x-axis but it is not
hard to see that the integration by parts is also legitimate in this case (we refer to [14] for details). Then, Cauchy–
Schwarz inequality yields

∫
Ω

|∇h|2ψ2ζ 2
R dx� 2

( ∫
Ω∩AR

|∇h|2ψ2ζ 2
R dx

)1/2( ∫
Ω∩AR

ϕ2|∇ζR|2 dx

)1/2

, (3.11)

where AR := B(0,2R) − B(0,R) contains the support of ∇ζR . Hence,∫
Ω

|∇h|2ψ2ζ 2
R dx� 4

(
sup
AR

|ϕ|2
) ∫
Ω∩AR

|∇ζR|2 dx.

By construction of ζR , the integral on the right hand side is bounded independently of R and since ϕ ∈ W 2,2(R2) we
know that ϕ tends to 0 at infinity. Letting R tend to infinity, we conclude that∫

|∇h|2ψ2 dx= 0,
Ω
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which then implies that h ≡ 0 in Ω and hence we also have ϕ ≡ 0 in this set. Finally, ϕ ≡ 0 in R
2 by the unique

continuation theorem. This is certainly a contradiction and the proof of the claim is complete.
Step 3. By the above, we know that ϕ does not change sign away from a compact and, without loss of generality,

we can assume that ϕ > 0 in R
2 − B(0,R) for some R > 0 large enough. As in [14], we proceed by analyzing the

projection of ϕ onto H ′ (composed with a suitable rotation).
The nodal set of u in the upper right quadrant Q� is asymptotic to an oriented half line which is denoted by λ and

is given by

λ = re⊥ +Re,

where e= (cos θ, sin θ). Up to a rotation by π/2 and a possible change of sign, we can assume that θ ∈ [π/4,π/2).
The image of λ through the symmetry with respect to the y-axis will be denoted by λ̄. Notice that, since u is symmetric
with respect to the y-axis, λ̄ is also asymptotic to the zero set of u.

Given the expression of λ, we define

ũ(s, t) := u
(
(r + s)e⊥ + te

)
and ϕ̃(s, t) := ϕ

(
(r + s)e⊥ + te

)
.

We consider the function g defined by

g(t) :=
∫
R

ϕ̃(s, t)H ′(s) ds.

Since ϕ > 0 away from a compact, we conclude that g � 0 for t > 0 large enough. We have, using the equation
satisfied by ϕ

g′′(t) :=
∫
R

∂2
t ϕ̃(s, t)H ′(s) ds = −

∫
R

(
∂2
s − F ′′(ũ(s, t)

))
ϕ̃(s, t)H ′(s) ds,

and an integration by parts yields

g′′(t) := −
∫
R

ϕ̃(s, t)∂2
s H ′(s) ds +

∫
R

F ′′(ũ(s, t)
)
ϕ̃(s, t)H ′(s) ds.

Finally, using the equation satisfied by H ′, we conclude that

g′′(t) =
∫
R

(
F ′′(ũ(s, t)

) − F ′′(H(s)
))

ϕ̃(s, t)H ′(s) ds.

Observe that ϕ tends exponentially to 0 at infinity and hence so does g. Integrating the above equation from t to ∞,
we conclude that

g′(t) = −
∞∫
t

∫
R

(
F ′′(ũ(s, z)

) − F ′′(H(s)
))

ϕ̃(s, z)H ′(s) ds dz.

Recall that λ̄ is the image of λ through the symmetry with respect to the y-axis and that we can parameterize λ̄ by

λ̄ = r̄ē⊥ +Rē,

with obvious relations between e and ē. We define

ḡ(t) :=
∫
R

ϕ
(
(r̄ + s)ē⊥ + tē

)
H ′(s) ds.

Observe that, by symmetry of both u and ϕ, we have

ḡ(t) = g(t),

for all t � 0.
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We claim that there exist constants C > 0 and β > 0 such that

∣∣g′(t)
∣∣ � Ce−βt

+∞∫
t

g(z) dz, (3.12)

for all t > 0 large enough. Assuming that we have already proven this inequality, it is then a simple exercise to check
that the only solution to this differential inequality is identically equal to 0. Hence∫

R

ϕ̃(s, t)H ′(s) ds = 0,

for all t > 0 large enough. Since the integrand is nonnegative this implies that ϕ̃(s, t) ≡ 0 for all s ∈ R and all t > 0
large enough. Therefore, ϕ ≡ 0 by the unique continuation theorem. This is again a contradiction and hence this
completes the proof of the theorem.

It remains to prove (3.12). Observe that, in the definition of g, the domain of integration contains both a half of
λ and λ̄ (this is where we use the fact that θ ∈ [π/4,π/2)). We use the fact that, thanks to the Refined Asymptotics
Theorem (Theorem 2.1 in [5]), u is exponentially close to the sum of the heteroclinic solution H ′ along λ and also
along λ̄. Close to λ, we can therefore estimate∣∣F ′′(ũ(s, t)

) − F ′′(H(s)
)∣∣� Ce−βt ,

for some β > 0. In fact this estimate holds at any point of {(x, y) ∈ R
2: y > 0} which is closer to λ than to λ̄.

We can write any point (r + s)e⊥ + te close to λ̄ as (r̄ + s̄)ē⊥ + t̄ē. Therefore, at any such point which is closer
to λ̄ than to λ, we simply use the fact that∣∣(F ′′(u(

(r + s)e⊥ + te
)) − F ′′(H(s)

))
H ′(s)

∣∣ � Ce−βt̄H ′(s̄),
and we conclude that∣∣∣∣∣

∞∫
t

∫
R

(
F ′′(ũ(s, z)

) − F ′′(H(s)
))

ϕ̃(s, z)H ′(s) ds dz

∣∣∣∣∣ � Ce−βt

∞∫
t

(
g(z) + ḡ(z)

)
dz.

Finally, the estimate (3.12) follows from the fact that ḡ = g. �
We now explain how to prove that any u ∈ Meven

4 is nondegenerate. If φ ∈ e−δ(1+|x|2)W 2,2(R2) is a solution of
(� − F ′(u))φ = 0, we can decompose φ = φe + φo into the sum of two functions, one of which φe being even under
the action of the symmetry with respect to the x-axis and the other one φo being odd under the action of the same
symmetry. Since φo vanishes on the x-axis, we can use the argument already used in Step 2 to prove that φo ≡ 0
and hence φ is even under the action of the symmetry with respect to the x-axis. Using similar arguments one also
prove that φ is even under the action of the symmetry with respect to the y-axis and the nondegeneracy follows from
Theorem 3.1.

Thanks to Theorem 3.1, we can apply the Implicit Function Theorem (see Section 8 and Theorem 2.2 in [5])
to show that any connected component of M4 is 4-dimensional and, equivalently, we conclude that any connected
component of Meven

4 is 1-dimensional (the rational being that, the formal dimension of the moduli space of solutions
of (1.1) is equal to the number of ends but, because of the symmetries, elements of Meven

4 have only one end in
the quotient space). Moreover, a consequence of this Implicit Function Theorem is that close to u ∈ Meven

4 , the space
Meven

4 can either be parameterized by the angle θ or by the distance r and this implies that the image of any connected
component of Meven

4 by the mapping F is an immersed curve.

4. Two useful tools

4.1. An a priori estimate

It is well known that any solution u of (1.1) which satisfies |u| < 1 tends to ±1 exponentially fast away from its
nodal set. In particular, we have the:



772 M. Kowalczyk et al. / Ann. I. H. Poincaré – AN 29 (2012) 761–781
Lemma 4.1. Given δ ∈ (0,1), there exists ρδ > 0 such that, for any solution of (1.1) which satisfies |u| < 1, we have

B(x,2ρδ) ⊂R
2 −Z(u) ⇒ ∣∣u2 − 1

∣∣� δ in B(x, ρδ), (4.13)

where

Z(u) := {
x ∈ R

2: u(x) = 0
}

denotes the nodal set of the function u.

This result is a simple corollary of the result below, whose proof can already be found in [2] (see Lemma 3.1–
Lemma 3.3 therein) and also in [10]:

Lemma 4.2. There exist constants C > 0 and α > 0 such that, for any solution of (1.1) which satisfies |u| < 1, we
have ∣∣u(x)2 − 1

∣∣ + ∣∣∇u(x)
∣∣ + ∣∣∇2u(x)

∣∣ � Ce−αdist(x,Z(u)), (4.14)

for all x ∈R
2.

Proof. Since this lemma plays a central role in our result, we give here a complete proof for the sake of completeness.
We denote by φR the eigenfunction which is associated to the first eigenvalue of −� on the ball of radius R, under

0 Dirichlet boundary conditions. We assume that φR is normalized so that φR(0) = supB(0,R) φR = 1. Recall that the
associated eigenvalue μR satisfies μR = μ1/R

2.
Given δ ∈ (0,1), we choose R0 > 0 such that

−F ′(s)R2
0 > μ1s,

for all s ∈ [0,1 − δ]. Assume that R > R0 and that B(x,2R) ⊂ R
2 − Z(u). To simplify the discussion, let us also

assume that u > 0 in B(x,2R).
We claim that u � 1 − δ in B(x,R). Indeed, if this is not the case then there exists x̄ ∈ B(x,R) such that u(x̄) <

1 − δ. In this case, we define ε > 0 to be the largest positive real such that

u� εφR(· − x̄),

in B(x̄,R). Certainly ε � 1 − δ and there exists z ∈ B(x̄,R) such that

u(z) = εφR(z− x̄) � 1 − δ.

By construction of R, we can write

−ε�φR = μ1

R2
εφR < F ′(εφR).

Since −�u = −F ′(u) we conclude that

−�(εφR − u) < 0,

at the point z and this contradicts the fact that u − εφR has a local minimum at z. The proof of the claim is complete.
We now fix α > 0 such that α2 < F ′′(1) and we choose δ ∈ (0,1) close to 1 so that F ′′(t) � α2 for all t ∈ [1− δ,1].

According to the above claim, we know that for all R > R0, u� 1 − δ (or u < δ − 1) in B(x̄,R) provided B(x̄,2R) ⊂
R

2 −Z(u). Therefore, we get

−�(1 − u) = −F ′(u) − F ′(1)

u − 1
(1 − u) � −α2(1 − u),

in B(x̄,R). A direct computation shows that

(−� + α2)e−α
√

1+r2 � 0,

where r := |x− x̄|. This, together with the maximum principle, implies the exponential decay of 1 − u2 away from
Z(u), the zero set of u. �
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4.2. The balancing formulae

We describe the balancing formulae for solutions of (1.1) in the form they were introduced in [5]. Assume that u

is a smooth function defined in R
2 and X a vector field also defined in R

2. We define the vector field

Ξ(X,u) :=
(

1

2
|∇u|2 + F(u)

)
X − X(u)∇u.

Recall that Killing vector fields are vector fields which generate the group of isometries of R2. They are linear
combinations (with constant coefficients) of the constant vector fields ∂x and ∂y generating the group of translations
and the vector field x∂y − y∂x which generates the group of rotations in R

2.
We have the:

Lemma 4.3 (Balancing formulae). (See [5].) Assume that u is a solution of (1.1) and that X is a Killing vector field.
Then divΞ(X,u) = 0.

Proof. To prove this formula, just multiply Eq. (1.1) by X(u) and use simple manipulations on partial derivatives. �
This result is nothing but an expression of the invariance of (1.1) under the action of rigid motions. To see how

useful this result will be for us, let us assume that u ∈ Meven
4 . By definition, the nodal set of u is, in the upper right

quadrant Q� of R2, asymptotic to an oriented half line

λ := re⊥ +Re,

where r ∈ R and e ∈ S1. We write e := (cos θ, sin θ) and, since we assume that the oriented line λ lies in Q�, we have
θ ∈ (0,π/2).

Given R > 0, we define the plain triangle

TR := {
(x, y) ∈ R

2: x > 0, y > 0 and (x, y) · e< R
}
.

The divergence theorem implies that∫
∂TR

Ξ(X,u) · ν ds = 0, (4.15)

where ν is the (outward pointing) unit normal vector field to ∂TR .
We set

c0 :=
+∞∫

−∞

(
1

2

(
H ′)2 + F(H)

)
ds. (4.16)

Taking X := ∂x and letting R tend to infinity, we conclude, using the fact that u is asymptotic to ±H along the half
line λ, that

c0 cos θ =
∫

x=0,y>0

(
1

2
|∂yu|2 + F(u)

)
dy. (4.17)

Observe that we have implicitly used the fact that ∂xu = 0 along the y-axis. Similarly, taking X := ∂y and letting R

tend to infinity, we conclude that

c0 sin θ =
∫

y=0,x>0

(
1

2
|∂xu|2 + F(u)

)
dx. (4.18)

Finally, taking X = x∂y − y∂x and letting R tend to infinity, we get

c0r =
∫ (

1

2
|∂yu|2 + F(u)

)
y dy −

∫ (
1

2
|∂xu|2 + F(u)

)
x dx. (4.19)
x=0,y>0 y=0,x>0
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The key observation is that it is possible to detect both the angle θ and the parameter r which characterize the half
line λ just by performing some integration over the x-axis and the y-axis. As one can guess this property will be very
useful in the compactness analysis we are going to perform now. In some sense it will be enough to pass to the limit
in the above integrals to guarantee the convergence of the parameters characterizing the asymptotics of the zero set of
the solutions of (1.1). Note that similar type of identities has been used by Gui [11,12] to analyze the entire solutions
of the Allen–Cahn equation.

5. Properness

In this section, we prove a compactness result for the set of 4-ended solutions of (1.1). More precisely, we prove
that, given (un)n�0, with un ∈ Meven

4 , a sequence of solutions of (1.1) whose angles θn := π/4 +P(un) converge to
some limit angle θ∗ ∈ (0,π/2), one can extract a subsequence which converges to a 4-ended solution u∗ with angle θ∗.
Naturally, the fact that one can extract a subsequence which converges uniformly (at least on compacts of R2) to a
solution u∗ of (1.1) is not surprising since the functions un are uniformly bounded and, by elliptic regularity, have
gradient which is uniformly bounded, hence this compactness result simply follows from the application of Ascoli–
Arzela’s Theorem. In general, it is hard to say anything about the limit solution u∗. It turns out that it is possible
to control the zero set of the limit solution u∗ and prove that u∗ is also a 4-ended solution. As we will see, a key
ingredient in this analysis is provided by the balancing formulae defined in the previous section.

Theorem 5.1. Assume that we are given a sequence (un)n�0, with un ∈Meven
4 , which converge uniformly on compacts

to a solution u∗. If (P(un))n�0 converges in (−π/4,π/4), then, u∗ ∈Meven
4 ,

lim
n→∞P(un) =P(u∗),

and

lim
n→∞un = u∗,

in the topology of S4.

The proof of this theorem is decomposed into many small lemmas. Assume that we are given a sequence (un)n�0,
with un ∈Meven

4 . Recall that

∂xun < 0 and ∂yun > 0, (5.20)

in the right upper quadrant

Q� := {
(x, y) ∈ R

2: x > 0, and y > 0
}
.

We denote by

Zn := {
(x, y) ∈R

2: un(x, y) = 0
}
,

the nodal set of un. Monotonicity of un in Q� implies that the zero set of un is either a graph over the x-axis or a
graph over the y-axis. In particular, Zn ∩ ∂Q� contains exactly one point which we denote by pn

Zn ∩ ∂Q� = {pn}.
We define θn := π/4 + P(un) and rn to be the parameters describing the asymptotics of Zn in the right upper

quadrant Q�. In other words, Zn ∩ Q� is asymptotic to the oriented half line

λn := rne
⊥
n +Ren,

where en := (cos θn, sin θn). Finally, we assume that

lim
n→∞ θn = θ∗ ∈ (0,π/2).

First, we prove that the point pn where the zero set of un meets the boundary of the upper right quadrant Q�
remains bounded as n tends to infinity.
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Lemma 5.1. Under the above assumptions, the sequence (pn)n�0 remains bounded, and, up to a subsequence, can
be assumed to converge.

Proof. We argue by contradiction and for example assume that, up to a subsequence, pn = (0, yn) with
limn→∞ yn = +∞.

We define

wn(x, y) := un(x, y + yn).

Standard arguments involving elliptic estimates and Ascoli–Arzela’s Theorem imply that, up to a subsequence, the
sequence (wn)n�0 converges uniformly on compacts to some function w which is defined on R

2 and which is again
a solution of (1.1). Since ∂yun > 0 for y > 0, we conclude that

∂yw � 0

in R
2. Moreover, w(0,0) = 0 and ∂xw(0, y) = 0 for all y ∈ R since un is even with respect to the y-axis.

Observe that, since wn is not identically equal to 0, we may apply Lemma 4.1 to conclude that w is not identically
equal to 0. Indeed, thanks to (5.20) we know that the zero set of un is a graph over the x-axis for some function which
is increasing and un < 0 in the set Bn := {(x, y) ∈ R

2: |y| < yn}. In particular, provided n is chosen large enough,
discs of arbitrary large radii can be inserted in Bn and Lemma 5.20 implies that |u2

n − 1|� 1/2 in {(x, y) ∈ R
2: |y| <

yn − ρ1/2}.
Therefore, w is bounded, monotone increasing in y, even with respect to the y-axis and according to De Giorgi’s

conjecture in dimension 2 which is proven in [10], we conclude that

w(x,y) = H(y).

Now, we use (4.17) which tells us that

c0 cos θn =
∫

x=0,y>0

(
1

2
|∂yun|2 + F(un)

)
dy.

Passing to the limit as n tends to infinity, we conclude that

c0 cos θ∗ = lim
n→∞

∫
x=0,y>0

(
1

2
|∂yun|2 + F(un)

)
dy.

However, given y∗ > 0,∫
x=0,y>0

(
1

2
|∂yun|2 + F(un)

)
dy �

∫
x=0,y−yn∈[−y∗,y∗]

(
1

2
|∂yun|2 + F(un)

)
dy

=
∫

x=0,y∈[−y∗,y∗]

(
1

2
|∂ywn|2 + F(wn)

)
dy,

for all n large enough so that yn − y∗ > 0. Passing to the limit as n tends to infinity, we conclude that

lim
n→∞

∫
x=0,y>0

(
1

2
|∂yun|2 + F(un)

)
dy �

∫
[−y∗,y∗]

(
1

2

∣∣H ′(s)
∣∣2 + F

(
H(s)

))
ds.

Hence

c0 cos θ∗ �
∫

[−y∗,y∗]

(
1

2

∣∣H ′(s)
∣∣2 + F

(
H(s)

))
ds.

Since y∗ can be chosen arbitrarily large, we get
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c0 cos θ∗ �
∫
R

(
1

2

∣∣H ′(s)
∣∣2 + F

(
H(s)

))
ds = c0,

which is clearly in contradiction with the fact that θ∗ > 0. If pn = (xn,0) with xn tending to infinity, similar arguments
using (4.18) and the fact that θ∗ < π/2. This completes the proof of the result. �

Thanks to the above lemma, we know that u∗ is not identically constant equal to 0 or ±1. Therefore, according
to Theorem 4.4 in [11] we know that the nodal set of u∗ in the upper right quadrant Q� must be an asymptotically
straight line which is not parallel to the x-axis nor to the y-axis. The Refined Asymptotic Theorem (Theorem 2.1
in [5]) then implies that u∗ is a 4-ended solution. Some comment is due in the way the Refined Asymptotic Theorem
(Theorem 2.1 in [5]) is used. Indeed, in the statement of this result, one start with a solution of (1.1) which differs from
the model heteroclinic solution sharing the same end by some W 2,2 function. Nevertheless, close inspection of the
proof of Theorem 2.1 in [5] shows that the result remains valid provided we start from a solution which is asymptotic
to the model heteroclinic solution in the L∞ sense, and this is precisely the situation in which we need the result.

To proceed, we prove that we have a uniform control on the nodal set of un away from a compact set. Again, the
balancing formulae will play an important role in the control of the nodal set of un.

To fix the ideas, we assume that the nodal set of un in the upper right quadrant Q� is the graph of a function
y = fn(x). Since un is a 4-ended solution and given the notations introduced at the beginning of this section, we know
that fn is asymptotic to the affine function given by

f̃n(x) := tan θnx + rn

cos θn

.

In particular, given δ > 0 and n� 0, there exists xn,δ > 0 such that∣∣f ′
n(x) − tan θn

∣∣ < δ,

for all x � xn,δ . In the next lemma, we prove that xn,δ can be chosen to be independent of n � 0. In other words, this
provides a uniform control on the derivative of fn away from a compact set.

Lemma 5.2. For all δ > 0, there exists xδ > 0 such that∣∣f ′
n(x) − tan θn

∣∣ < δ,

for all n� 0 and for all x � xδ .

Proof. We now argue by contradiction. Observe that the result is true if we restrict our attention to a finite number of
the un. Hence, if the result were not true, there would exist δ∗ > 0 and sequences (xk)k�0 and (nk)k�0 both tending
to infinity such that

sup
x�xk

∣∣f ′
nk

(x) − tan θnk

∣∣ � δ∗.

We define x̄k � xk to be the supremum of the x > 0 such that |f ′
nk

(x) − tan θnk
| � δ∗. Observe that x̄k is well

defined since

lim
x→∞f ′

nk
(x) = tan θnk

.

By definition, we have∣∣f ′
nk

(x̄k) − tan θnk

∣∣ = δ∗, (5.21)

and

sup
x�x̄k

∣∣f ′
nk

(x) − tan θnk

∣∣ � δ∗. (5.22)

Moreover, the sequence (x̄k)k�0 tends to infinity as k tends to infinity and, if we define

ȳk := fnk
(x̄k),
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we find that the sequence (ȳk)k�0 also tends to infinity as k does. This latter fact is just a consequence of the fact
that (un)n�0 converges on compacts to u∗ which is a 4-ended solution and hence the zero set of u∗ is the graph of a
function which tends to infinity at infinity.

We now consider the domain Dk of Q� which contains the graph of fnk
for x large enough and which is bounded

by the half line t �→ (0, ȳk − x̄k + t) for t > 0, the segment joining (0, ȳk − x̄k) to (x̄k + ȳk,0) and the half line
t �→ (x̄k + ȳk + t,0) for t > 0. Observe that ∂Dk contains the point (x̄k, ȳk). Applying the analysis of Section 4, we
conclude that∫

∂Q�

Ξ(∂x,unk
) · ν ds =

∫
∂Dk

Ξ(∂x,unk
) · ν ds,

where ν denotes the outward pointing normal vector to the sets Q� and Dk . Using (4.17), we conclude that

c0 cos θnk
=

∫
∂Dk

Ξ(∂x,unk
) · ν ds.

Observe that, up to a subsequence, the sequence of functions

(x, y) �→ unk
(x + x̄k, y + ȳk)

converges, uniformly on compacts, to the heteroclinic solution whose zero set is the line passing through the origin,
of slope limk→∞ f ′

nk
(x̄k). Moreover, thanks to (5.22) we see that there exist constants C > 0 and β > 0, independent

of k � 0, such that
∣∣u2

nk
(x) − 1

∣∣ + ∣∣∇unk
(x)

∣∣ � Ce−β|x−x̄k |,

for all x ∈ ∂Dk , where x̄k := (x̄k, ȳk). This property, together with the result of Lemma 4.2 allows one to conclude
that

lim
k→∞

∫
∂Dk

Ξ(∂x,unk
) · ν ds = c0 cos θ̃∗,

where θ̃∗ is defined by

tan θ̃∗ = lim
k→∞f ′

nk
(x̄k).

This is clearly in contradiction with (5.21) which implies that | tan θ∗ − tan θ̃∗| = δ∗. This completes the proof of the
result. �

As a consequence, we have the:

Lemma 5.3. Under the above assumptions, we have limn→∞ P(un) =P(u∗).

Since un converges on compacts to u∗ which is a 4-ended solution, we conclude, with the help of the previous
lemma that the distance from a point x ∈ Zn to the x-axis and the y-axis, tends to infinity as |x| tends to infinity. We
now prove a more quantitative version of this assertion in the:

Lemma 5.4. There exist constants C > 0 and α > 1, such that

Zn ∩ Q� ⊂
{
(x, y) ∈R

2: x > 0, y > 0, and
x

α
− C � y � αx + C

}
.

Proof. According to Lemma 5.2, we have a uniform control on the slopes of the nodal sets of un away from a tubular
neighborhood of the x-axis and y-axis. This means that these slopes are bounded away from 0 and ∞ independently
of n. Next, in a ball of fixed radius, un converges uniformly to u∗ and the result then follows at once. �
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Recall that

F(un) = (θn − π/4, rn).

We set

(θ∗ − π/4, r∗) := F(u∗).

Now that we have understood the behavior of the sequence (θn)n�0, we turn to the behavior of the sequence (rn)n�0,
the other parameter which characterizes the asymptotic of the nodal set of un. We have the:

Lemma 5.5. Under the above assumptions, limn→∞ rn = r∗.

Proof. Again, the proof uses the balancing formula (4.15) but this time, we will use the vector field

X = x∂y − y∂x.

Recall that (4.19) yields

c0rn =
∫

x=0,y>0

(
1

2
|∂yun|2 + F(un)

)
y dy −

∫
y=0,x>0

(
1

2
|∂xun|2 + F(un)

)
x dx.

The key ingredients are Lemma 5.4 and Lemma 4.2, from which we get an exponential decay of the solution un

along the coordinate axis as |x| tends to infinity, the decay being uniform in n� 0. Once this decay is proven one uses
the fact that (un)n�0 converges in C1 topology to u∗ uniformly on any given ball.

Using these remarks, one can pass to the limit as n tends to infinity in the above equality to get

c0 lim
n→∞ rn =

∫
x=0,y>0

(
1

2
|∂yu∗|2 + F(u∗)

)
y dy −

∫
y=0,x>0

(
1

2
|∂xu∗|2 + F(u∗)

)
x dx.

Since the right hand side is equal to c0r∗, the proof is complete. �
At this point, we have shown that the sequence (un)n�0 converges uniformly on compacts to u∗ and the ends of

un also converges to the end of u∗. However, this is not quite enough since our aim is to show the convergence of
(un)n�0 to u∗ in S4.

Recall that Zn, the zero set of un, is asymptotic to

λn := rne
⊥
n +Ren,

in Q�, where en = (cos θn, sin θn). We define vn in Q� by

vn(x) := un(x) − H
(
x · e⊥

n − rn
)
.

Then |vn| → 0 as |x| tends to infinity in Q�.
In the next lemma, we prove that this convergence is in fact uniform in n� 0.

Lemma 5.6. As |x| tends to infinity, |vn(x)| converges to 0 uniformly with respect to n� 0.

Proof. The proof is by contradiction. If the result were not true, there would exist ε > 0, a sequence (Rj )j�0 tending
to infinity, a sequence (xj )j�0 such that |xj | �Rj and a sequence (nj )j�0 such that∣∣vnj

(xj )
∣∣� ε. (5.23)

Up to a subsequence we can assume that (θnj
, rnj

)j�0 converges to (θ∗, r∗).
Observe that the distance from xj to λnj

is necessarily bounded since, according to Lemma 4.2, vnj
tends to 0

away from λnj
. Let x̄j be the orthogonal projection of xj onto λnj

.
Making use of elliptic estimates and the Arzela–Ascoli Theorem, we can assume, up to a subsequence, that

(unj
(· − x̄j ))j�0 converges uniformly on compacts to a solution of (1.1) which is nontrivial and which, thanks to
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De Giorgi’s conjecture, is a heteroclinic solution ū of (1.1). The end of this heteroclinic solution is the affine line
of angle θ̄ . As in the proof of Lemma 5.4, we use the vector field X = ∂x in the balancing formula to conclude that
θ∗ = θ̄ .

Therefore, the parameters of the end of ū are given by (θ∗, r̄). As in the proof of Lemma 5.4, we use the vector
field X = x∂y − y∂x in the balancing formula to conclude that r∗ = r̄ . This is clearly a contradiction with (5.23). �

Thanks to the Refined Asymptotics Theorem (Theorem 2.1 in [5]) we can decompose

un = vn + uλn,

and

u∗ = v∗ + uλ∗ ,

where λn,λ∗ ∈ Λ4
ord and where vn, v∗ ∈ e−δ(1+|x|2)W 2,2(R2) for some δ > 0. Observe that, a priori, the parameter

δ can vary with n but close inspection of the proof of Theorem 2.1 in [5] shows that δ > 0 can indeed be chosen
independently of n� 0 since the ends λn converge to a fixed end λ∗.

This, together with the fact that (un)n�0 converges uniformly on compacts to u∗ implies that (un)n�0 converges to
u∗ in the topology of S4. This completes the proof of the properness of the classifying map P .

Let M be the connected component of Meven
4 which contains the saddle solution. We claim that the properness of

P implies that the image by P of M is the entire interval (−π/4,π/4). The proof of this claim goes as follows: we
argue by contradiction and assume that P : M → (−π/4,π/4) is not onto. Recall that if u ∈ Meven

4 , then ū defined
by

ū(x, y) := −u(y, x)

also belongs to Meven
4 and M is also invariant under this transformation. We will write ū = Ju. The properness of P

implies that M is compact and one dimensional. Hence, it must be diffeomorphic to S1. Obviously J : M → M is a
diffeomorphism and the saddle solution is a fixed point of J . Since M is diffeomorphic to S1, there must be at least
another fixed element v ∈ M which is a fixed point of J . Then, the zero set of v is union of the two lines y = ±x. But,
according to [4] or [11], a solution of (1.1) having as zero set the two lines y = ±x is the saddle solution. This is a
contradiction and the proof of the claim is complete. Note that this argument does not guarantee that there are no other
compact connected components in Meven

4 . To prove this fact, we will need one more result which will be described
in the next section. In any case, instead of using the argument outlined above to show that P is onto, one can use the
next section of the paper.

6. Connected component of Meven
4 are not compact

We have shown in Section 3 that elements in Meven
4 are even-nondegenerate. According to the moduli space theory

for solutions of (1.1) (see Section 8 and Theorem 2.2 in [5]), any connected component of Meven
4 is a one dimensional

manifold and its image by F is a smooth (possibly immersed) curve in (−π/4,π/4) ×R. In particular, any compact
connected component M ⊂ Meven

4 would have to be diffeomorphic to S1. In this section, we show that this cannot
happen.

Theorem 6.1. All connected components of Meven
4 are not compact, namely, there is no closed loop in Meven

4 .

Proof. We argue by contradiction and assume that Meven
4 contains a connected component M which is diffeomorphic

to S1. We choose a smooth regular parameterization of M by

σ ∈ S1 �→ u(·, σ ) ∈ M,

so that

�u(·, σ ) − F ′(u(·, σ )
) = 0,



780 M. Kowalczyk et al. / Ann. I. H. Poincaré – AN 29 (2012) 761–781
for all σ ∈ S1 and ∂σ u �= 0 for all σ ∈ S1. Differentiation with respect to σ implies that ∂σ u ∈ TuS4 satisfies(
� − F ′′(u)

)
∂σ u = 0.

Observe that, for all x ∈ R
2,

0 = u(x,2π) − u(x,0) =
2π∫

0

∂σ u(x, σ ) dσ.

Choosing x to be the origin, this implies that there exists σ∗ ∈ S1, such that ∂σ u((0,0), σ∗) = 0. We define

φ := ∂σ u(·, σ∗).

Observe that φ �= 0 and that φ is even with respect to the symmetry about both the x-axis and the y-axis.
By definition, any element u of S4 can be decomposed into the sum of a function in W 2,2(R2) and an element of

the form uλ as defined in (2.5). Moreover, because of the symmetries, uλ only depends on the two parameters r and θ

which characterize λ. In particular, the tangent space of S4 at u can be decomposed as

TuS4 = W 2,2(
R

2) ⊕D,

where

D := Span{∂ruλ, ∂θuλ}.
It is easy to check that ∂θuλ is linearly growing along the zero set of u while ∂ruλ is bounded.

Since φ(0,0) = 0 and since φ is symmetric with respect to the x-axis and the y-axis, there exists Ω , a nodal
domain of φ, which is included in one of the four half spaces {(x, y) ∈ R

2: ±x > 0} or {(x, y) ∈ R
2: ±y > 0}. We

claim that this nodal domain can be chosen so that φ is bounded on it. Indeed, if φ ∈ W 2,2(R2) ⊕ Span{∂ruλ}, then φ

is bounded and one can select any nodal domain contained in a half space.
The other case to consider is the case where φ = a∂θuλ + φ̃ where φ̃ is bounded. Inspection of ∂θuλ near the end

of u shows that, away from a large ball B(0,R), the function φ does not vanish along the zero set of u. In this case,
it is enough to select a nodal domain of φ which is unbounded and which, away from B(0,R), does not contain the
zero set of u. It is easy to check that φ is bounded in such a nodal domain.

For example, let us assume that the nodal domain Ω ⊂ {(x, y) ∈R
2: x > 0}. Then, one can repeat the argument of

Step 2 in the proof of Theorem 3.1, with ψ = ∂xu, to prove that
∫
Ω

|∇h|2ψ2ζ 2
R dx� 2

( ∫
Ω∩AR

|∇h|2ψ2ζ 2
Rdx

)1/2( ∫
Ω∩AR

φ2|∇ζR|2 dx

)1/2

, (6.24)

where h := φ
ψ

. Using the fact that φ is bounded, and letting R tend to infinity, we conclude that
∫
Ω

|∇h|2ψ2 dx< +∞.

Using this information back into (6.24), and letting R tend to infinity, we conclude that∫
Ω

|∇h|2ψ2 dx= 0,

and this implies that φ ≡ 0 in Ω . The unique continuation theorem then implies that φ ≡ 0, which is a contradic-
tion. �

We observe that from the above considerations, we can give a different proof of Theorem 2.7. Indeed, we choose
M to be the connected component of Meven

4 which contains the saddle solution. Using the Implicit Function Theorem
(Theorem 2.2 in [5]), which applies since we have proven that any element of Meven

4 is even-nondegenerate, we
conclude that M is a smooth, one dimensional manifold. By Theorem 6.1, M is necessarily noncompact and the
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image of M by P cannot be compact either. Hence the image of M by P contains either an interval of the form
(−π/4, δ) or (δ,π/4). Since the image by P of the saddle solution is 0, we conclude that (−π/4, δ) or (δ,π/4)

contains 0. Moreover, the image of M by P is symmetric with respect to 0 and hence it has to be the whole interval
(−π/4,π/4).
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