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Abstract

We study the eigenvalue problem for positively homogeneous, of degree one, elliptic ODE on finite intervals and PDE on
balls. We establish the existence and completeness results for principal and higher eigenpairs, i.e., pairs of an eigenvalue and its
corresponding eigenfunction.
© 2012

1. Introduction

We consider the eigenvalue problem for fully nonlinear elliptic PDE{
F

(
D2u,Du,u, x

) + μu = 0 in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in RN , u : Ω̄ → R and μ ∈ R represent the unknown function (eigenfunction) and
constant (eigenvalue), respectively, and F :SN ×RN ×R× Ω → R is a given function, where SN denotes the space
of real symmetric N × N matrices.

Recently there has been much interest in eigenvalue problems for fully nonlinear PDE since the work of P.-L. Li-
ons [15]. See [3,13,4,18,1,17] for these developments. See also [2,8,12] for some earlier related works. In this regard,
most of work has been devoted to the questions concerning principal eigenvalues, while recent work by Esteban,
Felmer and Quaas [10] (see also [4]) has established the existence of other eigenvalues beyond the principal eigen-
values and of the corresponding eigenfunctions in the one-dimensional or the radially symmetric problem. In this
paper we extend the scope of the work of Esteban, Felmer and Quaas [10] to the eigenvalue problem set in the Lq

framework.
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We thus study (1.1) in the one-dimensional or radially symmetric domains. That is, in what follows, we are con-
cerned with the case where Ω is an open interval (a, b), with −∞ < a < b < ∞, or an open ball BR = BR(0) in RN

of radius R ∈ (0,∞) with center at the origin.
We now introduce our basic assumptions (F1)–(F3) on the function F . Given constants λ ∈ (0,∞) and Λ ∈ [λ,∞],

P ± denote the Pucci operators defined as the functions on SN given, respectively, by P +(M) ≡ P +(M;λ,Λ) =
sup{trAM: A ∈ SN, λIN � A � ΛIN } and P −(M) = −P +(−M), where IN denotes the N × N identity matrix
and the relation, X � Y , is the standard order relation between X,Y ∈ SN . Note that if N = 1 and Λ = ∞, then
P +(m) = λm for m � 0 and P +(m) = ∞ for m > 0.

(F1) The function F :SN × RN × R × Ω → R is a Carathéodory function, i.e., the function x �→ F(M,p,u, x) is
measurable for any (M,p,u) ∈ SN ×RN+1 and the function (M,p,u) �→ F(M,p,u, x) is continuous for a.a.
x ∈ Ω .

(F2) There exist constants λ ∈ (0,∞), Λ ∈ [λ,∞], q ∈ [1,∞] and functions β,γ ∈ Lq(Ω) such that

F(M1,p1, u1, x) − F(M2,p2, u2, x)� P +(M1 − M2) + β(x)|p1 − p2| + γ (x)|u1 − u2|
for all (M1,p1, u1), (M2,p2, u2) ∈ SN ×RN+1 and a.a. x ∈ Ω .

(F3) F(tM, tp, tu, x) = tF (M,p,u, x) for all t � 0, all (M,p,u) ∈ SN ×RN+1 and a.a. x ∈ Ω .

Of course, if Λ = ∞ and M1 �M2, then the inequality in condition (F2) is trivially satisfied.
We make an additional assumption in the multi-dimensional case.

(F4) The function F is radially symmetric in the sense that for any (m, l, q,u) ∈R4 and a.a. r ∈ (0,R), the function

ω �→ F
(
mω ⊗ ω + l(IN − ω ⊗ ω), qω,u, rω

)
is constant on the unit sphere SN−1 ⊂ RN . Here and henceforth x ⊗ x denotes the matrix in SN with the (i, j)

entry given by xixj if x ∈RN .

We study the eigenvalue problem (1.1) in the Sobolev space W 2,q (Ω). For any pair (μ,ϕ) ∈ R× W 2,1(Ω) which
satisfies the PDE in the almost everywhere sense and the boundary condition of (1.1) in the pointwise sense, we call
μ and ϕ an eigenvalue and eigenfunction of (1.1), respectively, provided ϕ(x) 
≡ 0. We call such a pair an eigenpair
of (1.1).

We state our main results in this paper.

Theorem 1.1. Let N = 1 and Ω = (a, b), and assume that (F1), (F2), with Λ = ∞, and (F3) hold. Then:

(i) For any n ∈ N, there exist eigenpairs (μ+
n ,ϕ+

n ), (μ−
n ,ϕ−

n ) ∈ R × W 2,q(a, b) of (1.1) and finite sequences
(x+

n,j )
n
j=0, (x

−
n,j )

n
j=0 ⊂ [a, b] such that⎧⎪⎨

⎪⎩
a = x+

n,0 < x+
n,1 < · · · < x+

n,n = b, a = x−
n,0 < x−

n,1 < · · · < x−
n,n = b,

(−1)j−1ϕ+
n (x) > 0 in

(
x+
n,j−1, x

+
n,j

)
for j = 1, . . . , n,

(−1)jϕ−
n (x) > 0 in

(
x−
n,j−1, x

−
n,j

)
for j = 1, . . . , n.

(ii) The eigenpairs (μ+
n ,ϕ+

n ) and (μ−
n ,ϕ−

n ) are complete in the sense that for any eigenpair (μ,ϕ) ∈ R× W 2,q (a, b)

of (1.1), there exist n ∈ N and θ > 0 such that either (μ,ϕ) = (μ+
n , θϕ+

n ) or (μ,ϕ) = (μ−
n , θϕ−

n ) holds.

For q ∈ [1,∞], let W
2,q
r (BR) denote the space of those functions ϕ ∈ W 2,q (BR) which are radially symmetric. We

may identify any function f in W
2,q
r (BR) with a function g on [0,R] such that f (x) = g(|x|) for a.a. x ∈ BR and we

employ the standard abuse of notation: f (x) = f (|x|) for x ∈ BR . We set λ∗ = λ/Λ and q∗ = N/(λ∗N + 1 − λ∗) if
Λ < ∞. Note that 0 < λ∗ � 1 and q∗ ∈ [1,N).

Theorem 1.2. Let N � 2 and Ω = BR , and assume that (F1), (F2) with Λ < ∞, (F3) and (F4) hold. Assume that
q > max{N/2, q∗} and that β ∈ LN(BR) if q < N . Then:
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(i) For each n ∈ N, there exist eigenpairs (μ+
n ,ϕ+

n ), (μ−
n ,ϕ−

n ) ∈ R × W
2,q
r (BR) of (1.1) and finite sequences

(r±
n,j )

n
j=0 ⊂ [0,R] such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 = r+
0,n < r+

n,1 < · · · < r+
n,n = R, 0 = r−

0,n < r−
n,1 < · · · < r−

n,n = R,

(−1)j−1ϕ+
n (r) > 0 in

(
r+
n,j−1, r

+
n,j

)
for j = 1, . . . , n,

(−1)jϕ−
n (r) > 0 in

(
r−
n,j−1, r

−
n,j

)
for j = 1, . . . , n,

ϕ+
n (0) > 0 > ϕ−

n (0).

(ii) The eigenpairs (μ+
n ,ϕ+

n ) and (μ−
n ,ϕ+

n ) are complete in the sense that for any eigenpair (μ,ϕ) ∈ R× W
2,q
r (BR)

of (1.1), there exist n ∈ N and θ > 0 such that either (μ,ϕ) = (μ+
n , θϕ+

n ) or (μ,ϕ) = (μ−
n , θϕ−

n ) is valid.

A comparison of these results with those of [10] might be in order. The results above treat the same eigenvalue
problems as in [10]. The main differences are twofold: one is our weaker regularity assumptions on F and the other is
in the method of proof. In the above results the regularity of F is imposed through (F1) and (F2), where the functions
β and γ are assumed to be in some Lq space. We use here fairly elementary arguments to prove the existence of the
principal eigenvalues and the higher eigenvalues based, respectively, on the so-called inverse power method and on
the monotonicity on the domains of the eigenvalues.

Another feature of this article is this. Regarding the regularity hypotheses (F1) and (F2) on F in case N � 2, our
requirement on β in Theorem 1.2 is only that β ∈ Lq(BR)∩LN(BR). From the viewpoint of the existence of a solution,
this requirement seems relatively sharp in comparison with the known results [11,14,19,9,5,6]. See Theorem 7.5 in
this connection. We refer also to [16] for some recent results concerning regularity of axially symmetric solutions of
uniformly elliptic Hessian equations.

In general, condition (F4) on F is different from Eq. (1.1) being Hessian. Let N � 2. For simplicity of the argument,
we assume that F depends only on M ∈ SN . According to [20], the uniformly elliptic equation (1.1) is called Hessian
(cf. [7]) if the function F :SN → R is invariant under conjugation of the orthogonal matrices, i.e., F(Q−1MQ) =
F(M) for all M ∈ SN and Q ∈ O(N), where O(N) denotes the group of orthogonal matrices of order N . This
condition is stated as F(M) being a symmetric function of the eigenvalues of M .

Note that the eigenvalues of the matrix M = mω ⊗ ω + l(IN − ω ⊗ ω), with ω ∈ SN−1 and m, l ∈ R, are m and l.
If F(M) is a symmetric function of the eigenvalues of M , then

F
(
mω ⊗ ω + l(IN − ω ⊗ ω)

)
, with ω ∈ SN−1 and m, l ∈ R,

is a function of m, l. That is, if (1.1) is Hessian, then F satisfies (F4).
If N = 2, then any symmetric matrix M ∈ SN can be represented as M = λ1ω ⊗ ω + λ2(I2 − ω ⊗ ω), where λ1

and λ2 are the eigenvalues of M and ω ∈ S1 is an eigenvector corresponding to λ1, and therefore, we see that (1.1) is
Hessian if and only if F satisfies (F4).

However, if N � 3, then there are functions F which satisfy (F4) but are not invariant under conjugation of the
matrices Q ∈ O(N). For such an example see Appendix A.

The rest of this article is organized as follows. Section 2 is devoted to the study of the solvability of the Dirichlet
problem for fully nonlinear ODE on a finite interval as well as some estimates of solutions of fully nonlinear ODE. In
Section 3 we establish the existence of principal eigenpairs of fully nonlinear (homogeneous) ODE, and in Section 4
we present basic properties of eigenpairs of fully nonlinear ODE. Section 5 is devoted to completing the proof of one
of the main results, Theorem 1.1. In Section 6, we turn the multi-dimensional radially symmetric problem (1.1) into
one-dimensional problem. Section 7 collects several estimates on radial functions including the W 2,q estimates of
radial solutions of fully nonlinear PDE. Section 8 is devoted to the proof of Theorem 1.2. In Appendix A, we give an
example of F which satisfies (F1)–(F4) but is not invariant under conjugation of the orthogonal matrices when N � 3
(i.e., (1.1) is not a Hessian equation).

2. Solvability of the Dirichlet problem in one dimension

In this section we deal with the one-dimensional case and study the solvability of the Dirichlet problem
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F
(
u′′, u′, u, x

) = 0 in (a, b), (2.1)

u(a) = u(b) = 0, (2.2)

where u′ = du/dx and u′′ = d2u/dx2.
We assume throughout this section that (F1) and (F2), with q = 1 and Λ = ∞, hold. We thus use P ±(m) to denote

P ±(m;λ,∞) in this section.
In what follows, we use the following notation. For any function u ∈ W 2,1(a, b), F [u](x) := F(u′′(x), u′(x),

u(x), x) and P ±[u](x) = P ±(u′′(x)). In particular, we have F [0](x) = F(0,0,0, x). A function u ∈ W 2,1(a, b) is
said to be a subsolution (resp., supersolution) of (2.1) if F [u](x) � 0 (resp., F [u](x) � 0) a.e. in (a, b).

The following lemma is an adaptation of [10, Lemma 2.1].

Lemma 2.1. There is a function gF :R2 ×(a, b) →R such that for a.a. x ∈ (a, b) and all (m,p,u) ∈ R3, we have m =
gF (p,u, x) (resp., m < gF (p,u, x) or m > gF (p,u, x)) if and only if F(m,p,u, x) = 0 (resp., F(m,p,u, x) < 0 or
F(m,p,u, x) > 0). The function gF satisfies∣∣gF (p1, u1, x) − gF (p2, u2, x)

∣∣� λ−1(β(x)|p1 − p2| + γ (x)|u1 − u2|
)

for all (p1, u1), (p2, u2) ∈R2 and a.a. x ∈ (a, b). Moreover, we have∣∣gF (0,0, x)
∣∣ � λ−1

∣∣F(0,0,0, x)
∣∣ for a.a. x ∈ (a, b).

Proof. Observe by (F1) and (F2) that for a.a. x ∈ (a, b) and any (p,u) ∈ R2, the function m �→ F(m,p,u, x) is
continuous on R and, if m1,m2 ∈ R and m1 < m2, then we have

F(m1,p,u, x) − F(m2,p,u, x) � λ(m1 − m2),

which implies that the function m �→ F(m,p,u, x) is (strictly) increasing on R and has the range R. Hence, for
a.a. x ∈ (a, b) and any (p,u) ∈ R2, there exists a unique gF = gF (p,u, x) such that m = gF (p,u, x) (resp., m >

gF (p,u, x) or m < gF (p,u, x)) if and only if F(m,p,u, x) = 0 (resp., F(m,p,u, x) > 0 or F(m,p,u, x) < 0).
Next we check the Lipschitz property of the function gF :R2 × (a, b) → R. Let (p1, u1), (p2, u2) ∈ R2 and set

gi = gF (pi, ui, x), with i = 1,2. If g1 < g2, then, by (F2), we have

0 = F(g1,p1, u1, x) − F(g2,p2, u2, x)

� λ(g1 − g2) + β(x)|p1 − p2| + γ (x)|u1 − u2| for a.a. x ∈ (a, b),

which ensures the required Lipschitz property of gF . Moreover, for a.a. x ∈ (a, b), we get similarly to the above,

F(0,0,0, x) � −λgF (0,0, x) if gF (0,0, x) > 0,

and

−F(0,0,0, x)� λgF (0,0, x) otherwise,

and we have |gF (0,0, x)| � λ−1|F(0,0,0, x)| for a.a. x ∈ (a, b). �
Let gF be the function from Lemma 2.1. It is clear that (2.1) is equivalent to the ordinary differential equation

(ODE for short) of the normal form

u′′(x) = gF

(
u′(x), u(x), x

)
in (a, b). (2.3)

Together with this observation and Lemma 2.1, the standard theory of ODE guarantees the existence of a solution to
the Cauchy problem for (2.1) as stated in the following.

Theorem 2.2. Let α1, α2 ∈ R and c ∈ [a, b]. Assume that the function F [0] ∈ L1(a, b). Then there exists a unique
solution u ∈ W 2,1(a, b) of (2.1) satisfying u(c) = α1 and u′(c) = α2.
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We remark that the mapping (α1, α2) �→ u from R2 to C([a, b]) is continuous, where u is the solution of (2.1)
given by the above theorem. We omit here giving the proof of the above theorem and this remark on the continuous
dependence of the solution of (2.1).

In what follows, given a function f on [a, b], we denote by f+ and f− the functions x �→ max{f (x),0} and
x �→ max{−f (x),0}, respectively.

Lemma 2.3. Let c ∈ [a, b], f ∈ L1(a, b) and u ∈ W 2,1(a, b). Assume that

λu′′(x) + β(x)
∣∣u′(x)

∣∣ + f (x) � 0 a.a. x ∈ (a, b).

Then we have

(
u′)

−(x) �
(
u′)

−(c) exp

( x∫
c

λ−1β(r)dr

)

+
x∫

c

λ−1f+(r) exp

( x∫
r

λ−1β(t)dt

)
dr for all x ∈ [c, b], (2.4)

(
u′)

+(x) �
(
u′)

+(c) exp

( c∫
x

λ−1β(r)dr

)

+
c∫

x

λ−1f+(r) exp

( r∫
x

λ−1β(t)dt

)
dr for all x ∈ [a, c], (2.5)

and, if u(a) � 0 and u(b) � 0,

max[a,b] u� (b − a) exp
(∥∥λ−1β

∥∥
L1(a,b)

)∥∥λ−1f+
∥∥

L1(a,b)
. (2.6)

To see the role of the above lemma in the context of (2.1), it is worth noting that, if f (x) � 0, the inequality
λu′′(x) + β(x)|u′(x)| + f (x) � 0 is equivalent to the inequality P +[u](x) + β|u′(x)| + f (x) � 0.

The assertion (2.6) can be regarded as a weak version of the Aleksandrov–Bakelman–Pucci maximum principle.
In the following arguments, we use the fact that if f is absolutely continuous on [a, b], then f+ and f− are

absolutely continuous on [a, b] and, for a.a. x ∈ (a, b),⎧⎨
⎩

(f+)′(x) = f ′(x) and (f−)′(x) = 0 if f (x) > 0,

(f+)′(x) = 0 and (f−)′(x) = −f ′(x) if f (x) < 0,

(f+)′(x) = (f−)′(x) = 0 if f (x) = 0.

Proof of Lemma 2.3. We write β̂ and f̂ for λ−1β and λ−1f , respectively. Setting v = (u′)− and w = (u′)+, we
observe that v′ � β̂v + f̂+ and w′ � −β̂w − f̂+ a.e. in (a, b). Hence, (2.4) and (2.5) are consequences of Gronwall’s
inequality.

For the proof of (2.6), we may assume that max[a,b] u > 0. We may moreover assume by replacing the interval
[a, b] by a smaller interval that u(x) > 0 for all x ∈ (a, b). We choose a point c in (a, b) so that u(c) = max[a,b] u,
and apply (2.5), to obtain

max[a,c]
(
u′)

+ � exp
(‖β̂‖L1(a,c)

)‖f̂+‖L1(a,c),

and moreover

u(c) � u(c) − u(a) =
c∫

a

u′(r)dr �
c∫

a

(
u′)

+(r)dr � (b − a) exp
(‖β̂‖L1(a,b)

)‖f̂+‖L1(a,b),

which completes the proof. �
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Let u,v ∈ W 2,1(a, b), and observe that for a.a. x ∈ (a, b),

F [u](x) − F [v](x) � P +[u − v](x) + β(x)
∣∣u′(x) − v′(x)

∣∣ + γ (x)
∣∣u(x) − v(x)

∣∣. (2.7)

Henceforth we fix any κ � 0, and define the function Fκ on R3 × (a, b) by

Fκ(m,p,u, x) = F(m,p,u, x) − κu.

As above, for any u,v ∈ W 2,1(a, b) and a.a. x ∈ (a, b), we have

Fκ [u](x) − Fκ [v](x) � P +[u − v](x) + β(x)
∣∣u′(x) − v′(x)

∣∣
+ (

γ (x) − κ
)
+
(
u(x) − v(x)

)
if u(x) � v(x). (2.8)

We set

σ = σκ := (b − a) exp
(
λ−1‖β‖L1(a,b)

)∥∥λ−1(γ − κ)+
∥∥

L1(a,b)
, (2.9)

and note that limκ→∞ σκ = 0.
The following comparison principle holds for (2.1).

Theorem 2.4. Let f,g ∈ L1(a, b) and u,v ∈ W 2,1(a, b). Assume that σκ < 1, u(x) � v(x) for x = a, b, and

Fκ [v](x) + g(x) � Fκ [u](x) + f (x) for a.a. x ∈ (a, b).

Then

max[a,b](u − v) � b − a

(1 − σκ)
exp

(∥∥λ−1β
∥∥

L1(a,b)

)∥∥λ−1(f − g)+
∥∥

L1(a,b)
.

Proof. Set w = u − v. As in the proof of Lemma 2.3, we may assume that max[a,b] w > 0 and w(x) > 0 in (a, b).
By (2.8), we get for a.a. x ∈ (a, b),

P +[w](x) + β(x)
∣∣w′(x)

∣∣ + (
γ (x) − κ

)
+w(x) + (f − g)+(x) � 0.

Applying Lemma 2.3 yields

max[a,b] w � (b − a) exp
(‖β̂‖L1(a,b)

)∥∥λ−1((γ − κ)+w + (f − g)+
)∥∥

L1(a,b)
,

where β̂ = λ−1β . Hence, we get

max[a,b] w � σκ max[a,b] w + (b − a) exp
(‖β̂‖L1(a,b)

)∥∥λ−1(f − g)+
∥∥

L1(a,b)
,

from which we easily obtain the desired bound on max[a,b] w. �
A simple consequence of the above theorem is the following.

Corollary 2.5. Let u ∈ W 2,1(a, b) and v ∈ W 2,1(a, b) be, respectively, a subsolution and a supersolution of (2.1),
with F replaced by Fκ . Assume σκ < 1. If u(x) � v(x) for x = a, b, then u(x) � v(x) for all x ∈ [a, b].

Next, we state and prove a strong comparison principle for (2.1).

Theorem 2.6. Let u,v ∈ W 2,1(a, b) satisfy

F [v](x) � F [u](x) for a.a. x ∈ (a, b)

and u(x) � v(x) in [a, b]. Then either u(x) ≡ v(x) or u(x) < v(x) holds in (a, b). Furthermore if u(x) < v(x) in
(a, b), then

max
{
(v − u)(a), (v − u)′(a)

}
> 0 and max

{
(v − u)(b),−(v − u)′(b)

}
> 0.
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Proof. Set w = v − u and observe that

P −[w] − β
∣∣w′∣∣ − γw � 0 a.e. in (a, b).

It is enough to show that if either max{w(a),w′(a)} � 0, or max{w(b),−w′(b)} � 0, or w(c) = 0 for some
c ∈ (a, b), then w(x) ≡ 0 in [a, b]. Moreover, it is enough to show that if either max{w(a),w′(a)} � 0 or
max{w(b),−w′(b)} � 0, then w(x) ≡ 0 in [a, b]. Indeed, observing that if w(c) = 0 for some c ∈ (a, b), then
w(c) = w′(c) = 0 and applying the above assertion in the intervals [a, c] and [c, b], we deduce that w(x) ≡ 0 in
both of two intervals [a, c] and [c, b].

We consider the case where w(a) � 0 and w′(a) � 0. Since w � 0 in [a, b], we have indeed w(a) = w′(a) = 0.
Since z := −w satisfies P +[z] + β|z′| + γw � 0 a.e. in [a, b], we deduce from Lemma 2.3 that for all r ∈ [a, b],

(
w′)

+(r) � exp
(‖β̂‖L1(a,b)

) r∫
a

γ̂ (t)w(t)dt,

where β̂ = λ−1β and γ̂ = λ−1γ . Integrating this over [a, x], we get for x ∈ [a, b],

w(x) � exp
(‖β̂‖L1(a,b)

) x∫
a

dr

r∫
a

γ̂ (t)w(t)dt � (b − a) exp
(‖β̂‖L1(a,b)

) x∫
a

γ̂ (t)w(t)dt.

From this, using Gronwall’s inequality, we see that w(x) ≡ 0 in [a, b].
An argument parallel to the above ensures that if max{w(b),−w′(b)} = 0, then w(x) ≡ 0 in [a, b]. �

Theorem 2.7. Let κ ∈ [0,∞). Assume that F [0] ∈ L1(a, b) and σκ < 1, where σκ is the constant defined by (2.9). Then
there is a unique solution u ∈ W 2,1(a, b) of the Dirichlet problem (2.1) and (2.2), with Fκ in place of F . Moreover, if
β,γ,F [0] ∈ Lq(a, b) for some q ∈ (1,∞], then u ∈ W 2,q (a, b).

Proof. The uniqueness assertion is a direct consequence of Corollary 2.5. It is thus enough to show the existence of a
solution in W 2,1(a, b) of (2.1) and (2.2), with Fκ in place of F .

For any d ∈R, we denote by u(x;a, d) the unique solution in W 2,1(a, b) of the Cauchy problem for (2.1), with Fκ

in place of F , satisfying the initial condition (u(a;a, d),u′(a;a, d)) = (0, d), where u′(x;a, d) := ∂u(x;a, d)/∂x.
As we have remarked after Theorem 2.2, we know that the function d �→ u(b;a, d) is continuous from R to R.

Let d1, d2 ∈ R be such that d1 > d2. Set w(x) = u(x;a, d1) − u(x;a, d2) for x ∈ [a, b]. Since w ∈ C1([a, b]) and
w′(a) = d1 − d2 > 0, there is a point c ∈ (a, b] such that w′(x) > 0 for all (a, c].

Fix such a point c ∈ (a, b]. Noting that w′(x) > 0 and w(x) > 0 for all x ∈ (a, c] and P +[w] + β|w′| + (γ −
κ)+w � 0 a.e. in (a, c), we find by Lemma 2.3 that for all x ∈ [a, c],

d1 − d2 = (
w′)

+(a) � eB̂

(
w′(x) + w(x)

x∫
a

λ−1(γ (t) − κ
)
+ dt

)
, (2.10)

where B̂ := ‖λ−1β‖L1(a,b).
We show that w′(x) > 0 for all x ∈ [a, b]. Indeed, if this is not the case, there is a point e ∈ (a, b] such that

w′(e) = 0 and w′(x) > 0 for all x ∈ [a, e). Using Lemma 2.3 again, we get for all x ∈ [a, e],

w′(x) � eB̂w(e)

e∫
x

λ−1(γ (t) − κ
)
+ dt = eB̂w(e)

∥∥λ−1(γ − κ)+
∥∥

L1(a,b)
. (2.11)

Integrating (2.11) over (a, e), we get w(e)� σκw(e), which yields w(e)� 0. This is a contradiction, and we conclude
that w′(x) > 0 for all x ∈ [a, b], which shows that (2.10) holds with c = b. Integrating (2.10) over (a, b), we get

(b − a)(d1 − d2) � eB̂w(b)
(
1 + (b − a)

∥∥λ−1(γ − κ)+
∥∥

L1(a,b)

)
.

That is,

u(b;a, d1) − u(b;a, d2) �
(b − a)(d1 − d2)

eB̂ (1 + (b − a)‖λ−1(γ − κ) ‖ 1 )
.

+ L (a,b)
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This strict monotonicity and the continuity of the function d �→ u(b;a, d) guarantee that there is a unique d∗ ∈ R such
that u(b;a, d∗) = 0. The function u(x;a, d∗) of x is a solution of (2.1) and (2.2), with Fκ in place of F .

Now, we assume that β,γ,F [0] ∈ Lq(a, b) for some q ∈ (1,∞]. Observe by (F2) that both ϕ = u and ϕ = −u

satisfy

λϕ′′(x) + β(x)
∣∣ϕ′(x)

∣∣ + (
γ (x) + κ

)∣∣ϕ(x)
∣∣ + ∣∣F [0](x)

∣∣ � 0 for a.a. x ∈ (a, b).

Hence,∣∣u′′(x)
∣∣ � λ−1(β(x)

∣∣u′(x)
∣∣ + (

γ (x) + κ
)∣∣u(x)

∣∣ + ∣∣F [0](x)
∣∣) for a.a. x ∈ (a, b).

Noting that u ∈ C1([a, b]), we conclude that u′′ ∈ Lq(a, b) and, accordingly, u ∈ W 2,q (a, b). �
Remark 2.8. The same assertion as Theorem 2.7 concerning the existence, uniqueness and regularity of solutions u ∈
W 2,1(a, b) of the Dirichlet problem for (2.1) is valid under the general boundary condition u(a) = d1 and u(b) = d2,
where d1, d2 ∈ R are any given constants. Indeed, one can prove this assertion in the same fashion as in the proof
above.

3. Principal eigenvalues in one dimension

This section is devoted to the existence of principal eigenpairs of (1.1) in one dimension under hypotheses (F1)–
(F3).

Throughout this section we assume that N = 1, Ω = (a, b), where −∞ < a < b < ∞, and (F1), (F2) with Λ = ∞
and (F3) hold. We remark that, by assumption (F3), we have F [0] = 0.

We fix a constant κ � 0 so that

σ = σκ := (b − a) exp
(∥∥λ−1β

∥∥
L1(a,b)

)∥∥λ−1(γ − κ)+
∥∥

L1(a,b)
< 1, (3.1)

and, as before, set Fκ(m,p,u, x) := F(m,p,u, x) − κu. We consider the eigenvalue problem{
Fκ

(
u′′, u′, u, x

) + νu = 0 in (a, b),

u(a) = u(b) = 0.
(3.2)

We prove here the following proposition, which is obviously a special case (i.e., the case n = 1) of Theorem 1.1.

Theorem 3.1. There exist eigenpairs (ν+, ϕ+), (ν−, ϕ−) ∈ R × W 2,q (a, b) of (3.2) such that ϕ+(x) > 0 and
ϕ−(x) < 0 in (a, b).

The constants ν+ and ν− in the above theorem are called, respectively, the positive and negative principal eigenval-
ues of (3.2). The functions ϕ+ and ϕ− are called, respectively, positive and negative principal eigenfunctions of (3.2).
Similarly, the pairs (ν+, ϕ+) and (ν−, ϕ−) are called, respectively, positive and negative principal eigenpairs of (3.2).

Let f ∈ Lq(a, b), and we consider the Dirichlet problem{
Fκ

(
u′′, u′, u′, x

) + f = 0 in (a, b),

u(a) = u(b) = 0.
(3.3)

Set F̃ (m,p,u, x) := Fκ(m,p,u, x) − f (x). Then it is easily seen that F̃ satisfies (F1), (F2) and F̃ [0] ∈ Lq(a, b).
Hence, according to Theorem 2.7, there is a unique solution u ∈ W 2,q (a, b) of (3.3). We introduce the solution map-
ping T : Lq(a, b) → W 2,q (a, b) by Tf = u.

Basic properties of the map T are stated in the following lemma.

Lemma 3.2.

(i) The map T is positively homogeneous of degree one, i.e., T (sf ) = sTf for all s � 0 and f ∈ Lq(a, b).
(ii) If f ∈ Lq(a, b) and f (x) � 0 for a.a. x ∈ (a, b), then (Tf )(x) � 0 in [a, b]. Furthermore, if f 
≡ 0, then

(Tf )(x) > 0 in (a, b), (Tf )′(a) > 0 and (Tf )′(b) < 0.



N. Ikoma, H. Ishii / Ann. I. H. Poincaré – AN 29 (2012) 783–812 791
(iii) There is a constant C > 0, depending only on b − a, κ , λ, ‖β‖Lq(a,b) and ‖γ ‖Lq(a,b), such that

‖Tf − T g‖W 2,q (a,b) � C‖f − g‖Lq(a,b) for all f,g ∈ Lq(a, b). (3.4)

Proof. Let f ∈ Lq(a, b). By assumption (F3), we see that sTf , with s � 0, is a solution of (3.3) with f replaced
by sf , which tells us that sTf = T (sf ), proving the homogeneity of T .

Suppose that f is a nonnegative function. We observe by (F3) that v ≡ 0 is a subsolution of Fκ [v] + f = 0 in
(a, b). Theorem 2.4 tells us that Tf (x) � 0 in [a, b]. In the case where f (x) 
≡ 0, we have (Tf )(x) 
≡ 0. Hence, we
find by Theorem 2.6 (or the uniqueness assertion of Theorem 2.2) that u(x) > 0 in (a, b), u′(a) > 0 and u′(b) < 0.

Let f,g ∈ Lq(a, b) and set u = Tf − T g. By Theorem 2.4 we have

‖u‖L∞(a,b) �
(b − a)eB̂

1 − σ

∥∥λ−1(f − g)
∥∥

L1(a,b)
� (b − a)

2− 1
q eB̂

1 − σ

∥∥λ−1(f − g)
∥∥

Lq(a,b)
,

where B̂ = ‖λ−1β‖L1(a,b). Both of the functions ϕ = u and ϕ = −u satisfy

λϕ′′ + β
∣∣ϕ′∣∣ + (γ + κ)|ϕ| + |f − g| � 0 a.e. in (a, b). (3.5)

Hence, noting that u′(c) = 0 for some c ∈ (a, b) and applying (2.4) and (2.5) of Lemma 2.3, we get∥∥u′∥∥
L∞(a,b)

� eB̂
{∥∥λ−1(γ + κ)

∥∥
L1(a,b)

‖u‖L∞(a,b) + ∥∥λ−1(f − g)
∥∥

L1(a,b)

}
.

Finally, we observe by (3.5) that∥∥u′′∥∥
Lq(a,b)

� λ−1(‖β‖Lq(a,b)

∥∥u′∥∥
L∞(a,b)

+ ‖γ + κ‖Lq(a,b)‖u‖L∞(a,b) + ‖f − g‖Lq(a,b)

)
,

proving (3.4). �
Next we define

X := {
f ∈ C1([a, b]): f (a) = f (b) = 0, f ′(a) > 0, f ′(b) < 0, f (x) > 0 in (a, b)

}
,

and observe by Lemma 3.2 that Tf ∈ X if f ∈ X. We introduce the mapping R from X to the functions on [a, b] as
follows:

Rf (x) :=
⎧⎨
⎩

Tf (x)
f (x)

if x ∈ (a, b),

(Tf )′(x)
f ′(x)

if x = a, b.

It follows from the homogeneity of T that for each t > 0 and f ∈ X,

R(tf )(x) = Rf (x) for all x ∈ [a, b]. (3.6)

Lemma 3.3.

(i) For any f ∈ X, we have Rf ∈ C([a, b]) and

0 < min
x∈[a,b]Rf (x) = inf

x∈(a,b)

Tf (x)

f (x)
� sup

x∈(a,b)

Tf (x)

f (x)
= max

x∈[a,b]Rf (x) < ∞.

(ii) The map R :X → C([a, b]) is continuous, provided that X is equipped with the C1([a, b]) topology.

Proof. Since f,Tf ∈ X, l’Hôpital’s rule tells us that Rf is continuous at a and b, and thus Rf ∈ C([a, b]). It is then
clear that the other assertions of (i) hold.

Next we prove the continuity of R. Let ψ denote the function on (a, b) given by ψ(x) = (x − a)−1(b − x)−1.
Note that 0 < infa<x<b ψ(x)f (x) < ∞ for any f ∈ X. Note also that for any function f ∈ C1([a, b]) satisfying
f (a) = f (b) = 0,

∣∣ψ(x)f (x)
∣∣ �

{
ψ(x)

∫ x

a
|f ′(t)|dt � 2

(b−a)
‖f ′‖L∞(a,b) for a < x � (a + b)/2,

ψ(x)
∫ b |f ′(t)|dt � 2 ‖f ′‖L∞(a,b) for (a + b)/2 � x < b.

x (b−a)
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Using these observations, we compute that for any f,g ∈ X and x ∈ (a, b),∣∣Rf (x) − Rg(x)
∣∣ = |g(x)(Tf (x) − T g(x)) + (g(x) − f (x))T g(x)|

f (x)g(x)

� 4
‖g′‖L∞(a,b)‖(Tf − T g)′‖L∞(a,b) + ‖(f − g)′‖L∞(a,b)‖(T g)′‖L∞(a,b)

(b − a)2 inf(a,b) ψ2fg
.

From this we see that R :X → C([a, b]) is continuous. �
Lemma 3.4. Let f ∈ X and u = Tf . Then

min[a,b]Rf � min[a,b]Ru � max[a,b] Ru � max[a,b] Rf.

Moreover, if min[a,b] Rf = min[a,b] Ru, then

T u(x) =
(

min[a,b]Rf
)
u(x) for every x ∈ [a, b].

Proof. Set v = T u and θ = min[a,b] Rf . Since θf (x) � u(x) for all x ∈ [a, b], the function v is a supersolution
of (3.3), with f replaced by θf . By the homogeneity of Fκ , the function θu is a solution of (3.3), with f replaced
by θf . By Theorem 2.4, we get θu � v in [a, b], which yields min[a,b] Rf = θ � min[a,b] Ru. In a similar fashion one
can prove that max[a,b] Ru � max[a,b] Rf .

Now, we assume that min[a,b] Rf = min[a,b] Ru. Setting θ = min[a,b] Rf , we note that θf � u in [a, b] and
Fκ [v] = −u � −θf = Fκ [θu] a.e. in (a, b). By Theorem 2.6, we have either θu(x) ≡ v(x) in [a, b], or else θu(x) <

v(x) in (a, b), v′(a) > θu′(a) > 0 and v′(b) < θu′(b) < 0. If the latter is the case, then we have θ < min[a,b] Ru,
which is a contradiction. Thus we must have θu = v in [a, b]. �
Proof of Theorem 3.1. Fix f0 ∈ X so that ‖f0‖C([a,b]) = 1, and define the sequences (uk)k∈N, (fk)k∈N ⊂ X and
(Mk)k∈N by setting inductively uk := Tfk−1, Mk := max[a,b] uk and fk(x) := uk(x)/Mk for k ∈ N. Then set θk :=
min[a,b] Ruk and Θk := max[a,b] Ruk . From (3.6) and Lemma 3.4, we obtain θk � θk+1 � Θk+1 � Θk . Hence, the
sequence (θk)k∈N is convergent. We set θ := limk→∞ θk .

Since ‖fk‖C([a,b]) = 1, the sequence (uk) is bounded in W 2,q (a, b) thanks to (3.4). Hence, by the Ascoli–Arzela
theorem, (uk) has a subsequence (ukj

) converging to a nonnegative function u in C1([a, b]). Since Rfk(x) =
Ruk(x) = uk+1(x)/fk(x) for all x ∈ (a, b), we have

θkfk(x) � uk+1(x) � Θkfk(x) for all x ∈ [a, b]. (3.7)

Since ‖fk‖C([a,b]) = 1, we therefore get θk � max[a,b] uk+1 = Mk+1 � Θk . Noting that fkj
(x) = M−1

kj
ukj

(x), we see

that, as j → ∞, fkj
→ f := (max[a,b] u)−1u in C1([a, b]). By Lemma 3.2, we see that the sequence (Tfkj

) converges
to Tf in C1([a, b]), which reads that (ukj +1) converges to Tf in C1([a, b]). Setting v := Tf , by Lemma 3.3, we thus
obtain

min[a,b]Rv = lim
j→∞ min[a,b]Rukj +1 = lim

j→∞ θkj +1 = θ. (3.8)

Since RT ukj +1 = RTfkj +1 = Rukj +2, we obtain as above

min[a,b]RT v = lim
j→∞ min[a,b]Rukj +2 = θ. (3.9)

Consequently, by Lemma 3.4, we get T v(x) ≡ θv(x) in [a, b], which implies that v is a solution of (3.2) with ν = θ−1.
The pair (ν+, ϕ+) = (θ−1, v) is an eigenpair of (3.2) satisfying ϕ+(x) > 0 for all x ∈ (a, b).

Note that the function G(m,p,u, x) := −F(−m,−p,−u,x) satisfies (F1)–(F3), with the same constants λ, Λ =
∞ and functions β,γ . If we define the function Gκ by the formula Gκ(m,p,u, x) = G(m,p,u, x) − κu, then we
have Gκ(m,p,u, x) = −Fκ(−m,−p,−u,x). Observe also that u ∈ W 2,q (a, b) satisfies Fκ [u]+ νu = 0 a.e. in (a, b)

if and only if v := −u satisfies Gκ [v]+ νv = 0 a.e. in (a, b). We apply the previous observation on the existence of an
eigenpair of (3.2) to the eigenvalue problem (3.2), with Gκ in place of Fκ , to find an eigenpair (ν−,ψ−) of (3.2), with
Gκ in place of Fκ , such that ψ−(x) > 0 for all x ∈ (a, b). If we put ϕ−(x) = −ψ−(x), then (μ−, ϕ−) is an eigenpair
of (3.2) such that ϕ−(x) < 0 for all x ∈ (a, b). �
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Remark 3.5. The above proof is based on the so-called inverse power method. Indeed, combining the above proof
with the uniqueness result of the principal eigenpairs, Theorem 4.1, we see easily that the sequences (θk) and (Θk)

converge to the constant θ and (fk) converges to the function f in C(Ω̄). Moreover, it is not hard to see that the
positive principal eigenvalue is given by the formula minf ∈X supx∈(a,b) f (x)/Tf (x).

4. Basic properties of principal eigenpairs in one dimension

In this section we study basic properties, like uniqueness and dependence on intervals Ω , of principal eigenpairs
of (1.1) in one dimension.

As in the previous section, we assume throughout this section that N = 1, Ω = (a, b) for some −∞ < a < b < ∞,
and (F1)–(F3) hold with Λ = ∞.

Let (μ+, ϕ+) and (μ−, ϕ−) denote eigenpairs of (1.1) such that ϕ+(x) > 0 and ϕ−(x) < 0 for all x ∈ (a, b). The
existence of such eigenpairs has been established in Theorem 3.1.

Theorem 4.1. If (μ,ϕ) ∈ R × W 2,q (a, b) is an eigenpair of (1.1) such that ϕ(x) � 0 (resp., ϕ(x) � 0) for all x ∈
(a, b), then there exists a constant θ > 0 such that (μ,ϕ) = (μ+, θϕ+) (resp. (μ,ϕ) = (μ−, θϕ−)).

The above theorem says that the principal eigenvalues μ+ and μ− are unique and “half simple”.

Proof. Let (μ,ϕ) ∈ R × W 2,q(a, b) be an eigenpair of (1.1) such that either ϕ � 0 or ϕ � 0 in (a, b). The assertion
with a nonpositive ϕ can be reduced to that of with a nonnegative ϕ by replacing the functions ϕ−, ϕ and F by the
functions −ϕ−, −ϕ and −F(−m,−p,−u,x), respectively. We may thus assume that ϕ � 0 in (a, b).

Using Theorem 2.6, we compare the functions ϕ+ and ϕ with the constant function zero, to find that ϕ+(x) > 0
and ϕ(x) > 0 in (a, b), (ϕ+)′(a) > 0, ϕ′(a) > 0, (ϕ+)′(b) < 0 and ϕ′(b) < 0.

To prove that μ+ = μ, we suppose that μ+ 
= μ, and obtain a contradiction. By symmetry, we may assume that
μ+ < μ. Now, if we set θ = inf(a,b) ϕ/ϕ+, then 0 < θ < ∞ and ϕ � θϕ+ in [a, b]. Since μ+ϕ < μϕ in (a, b), we
have

F [ϕ] + μ+ϕ < F [ϕ] + μϕ = 0 = F
[
θϕ+] + μ+(

θϕ+)
a.e. in (a, b).

In particular, we have ϕ(x) 
≡ θϕ+(x) in [a, b]. Applying Theorem 2.6 again, we see that ϕ(x) > θϕ+(x) for all
x ∈ (a, b), ϕ′(a) > θ(ϕ+)′(a) and ϕ′(b) < θ(ϕ+)′(b). But this tells us that θ < inf(a,b) ϕ/ϕ+, which contradicts the
definition of θ .

Having shown that μ+ = μ, if we suppose that ϕ 
= θϕ+ and repeat the same argument as above, then we get a
contradiction, which guarantees that ϕ = θϕ+. �

For any nonempty subinterval [s, t] ⊂ [a, b], we denote by μ+(s, t) and μ−(s, t), respectively, the positive and
negative principal eigenvalues of the eigenvalue problem (1.1), with Ω = (s, t). Such positive and negative principal
eigenvalues μ+(s, t), μ−(s, t) exist and are unique due to Theorems 3.1 and 4.1.

Theorem 4.2.

(i) Let [s1, t1] and [s2, t2] be nonempty subintervals of [a, b] such that [s2, t2] � [s1, t1]. Then μ+(s1, t1) <

μ+(s2, t2) and μ−(s1, t1) < μ−(s2, t2).
(ii) The functions μ+(s, t) and μ−(s, t) are continuous in {(s, t) ∈R2: a � s < t � b}.

(iii) The functions μ+(s, t) and μ−(s, t) diverge to infinity uniformly as t − s → 0, that is,

lim
ε→0+ inf

{
μ+(s, t),μ−(s, t): a � s < t � b, t − s < ε

} = ∞. (4.1)

Proof. As before, we only prove the assertion for μ+(s, t).
We first prove the assertion (i). Let [s1, t1] and [s2, t2] be two intervals such that [a, b] ⊃ [s1, t1]� [s2, t2] 
= ∅. Set

μ1 = μ+(s1, t1) and μ2 = μ+(s2, t2). Let ϕ1 ∈ W 2,q (s1, t1) and ϕ2 ∈ W 2,q (s2, t2) be eigenfunctions corresponding to
μ1 and μ2, respectively, such that ϕi(x) > 0 for x ∈ (si , ti ) and i = 1,2. Setting θ = inf(s2,t2) ϕ1/ϕ2, we observe that
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ϕ1 � θϕ2 in [s2, t2]. Observe also by the definition of θ that if we set u(x) := ϕ1(x) − θϕ2(x) for x ∈ [s2, t2], then
we have either u(x0) = 0 for some x0 ∈ (s2, t2), or u′(s2) = 0, or u′(t2) = 0. Suppose by contradiction that μ2 � μ1.
As in the proof of Theorem 4.1, since μ2ϕ1 � μ1ϕ1 in (s2, t2), we have F [ϕ1] + μ2ϕ1 � 0 = F [θϕ2] + μ2θϕ2 a.e.
in (s2, t2). By Theorem 2.6, we deduce that ϕ1(x) ≡ θϕ2(x) in (s2, t2), but this is impossible since we have either
ϕ1(s2) > ϕ2(s2) = 0 or ϕ1(t2) > ϕ(t2) = 0. We therefore conclude that μ+(s2, t2) > μ+(s1, t1).

Next we turn to (ii). Consider two sequences (sj )j∈N, (tj )j∈N ⊂ [a, b] such that sj < tj and s0 := limj→∞ sj <

t0 := limj→∞ tj . For each j ∈ N, let (μj ,ϕj ) be an eigenpair associated with the interval (sj , tj ) satisfying ϕj > 0 in
(sj , tj ). Moreover, we may suppose that max[sj ,tj ] ϕj = 1. Let ϕ0 ∈ W 2,q (s0, t0) be the eigenfunction associated with
the interval (s0, t0) and the eigenvalue μ0 := μ+(s0, t0) such that ϕ0(x) > 0 for all x ∈ (s0, t0) and max[s0,t0] ϕ0 = 1.

We intend to show that the eigenpairs (μj ,ϕj ) converge to the eigenpair (μ0, ϕ0) in the sense that, as j → ∞,
maxIj

|ϕj − ϕ0| + |μj − μ0| → 0, where

Ij := [s0, t0] ∩ [sj , tj ] = [
max{s0, sj },min{t0, tj }

]
.

To this end, we argue by contradiction and assume that this is not the case. We may choose a subsequence of
(μj ,ϕj )j∈N so that the infimum over the subsequence of the quantities maxIj

|ϕj − ϕ0| + |μj − μ0| is positive. For
notational simplicity, we denote this subsequence by the same symbol.

Fix constants ζ and η so that s0 < ζ < η < t0. We may assume by focusing our attention to sufficiently large j

that sj < ζ < η < tj . In particular, we have [ζ, η] ⊂ [sj , tj ] ⊂ [a, b] and μ+(ζ, η)� μj � μ+(a, b), which shows that
the sequence (μj ) is bounded. We may therefore assume by passing again to a subsequence if necessary that (μj )

converges to a constant μ.
We fix κ � 0 as in Section 3 so that (3.1) holds. If we define Fκ as in Section 3, then we have Fκ [ϕj ]+(κ +μj )ϕj =

0 a.e. in (sj , tj ). According to (iii) of Lemma 3.2, there is a constant C0 > 0, independent of j , such that

‖ϕj‖W 2,q (sj ,tj ) � C0
(
κ + |μj |

)‖ϕk‖L∞(sk,tk) = C0
(
κ + ∣∣μ+(a, b)

∣∣ + ∣∣μ+(ζ, η)
∣∣).

Using the Ascoli–Arzela theorem, we may assume that (ϕj ) converges to a nonnegative function ϕ ∈ C1([s0, t0]) in
the sense that maxIj

|ϕj − ϕ| → 0 as j → ∞. Moreover, it is easily seen that max[s0,t0] ϕ = 1.
Now, in view of Theorem 2.7, let ψ ∈ W 2,q (s0, t0) be the solution of the Dirichlet problem Fκ [ψ] + (κ + μ)ϕ = 0

a.e. in (s0, t0) and ψ(s0) = ψ(t0) = 0. Set dj = max∂Ij
ψ and ej = max∂Ij

ϕj . Note here that ∂Ij consists of exactly
two points max{s0, sj } and min{t0, tj } for j ∈ N. Observe that for each j , the function u(x) := ψ(x) − dj satisfies
u|∂Ij

� 0 and

0 = Fκ [ψ] + (κ + μ)ϕ = Fκ [u + dj ] + (κ + μ)ϕ

� Fκ [u] + djγ + (κ + μ)ϕ a.e. in Ij .

Apply Theorem 2.4 to the functions u and ϕj , to find a constant C1 > 0, independent of j , such that

max
Ij

(ψ − ϕj )� dj + C1
∥∥djγ + κ|ϕ − ϕj | + |μϕ − μjϕj |

∥∥
Lq(Ij )

.

Similarly, we obtain

max
Ij

(ϕj − ψ)� ej + C1
∥∥ejγ + κ|ϕ − ϕj | + |μϕ − μjϕj |

∥∥
Lq(Ij )

.

These inequalities show in the limit as j → ∞ that ψ = ϕ in [s0, t0]. Thus, the pair (μ,ϕ) is an eigenpair of (1.1),
ϕ � 0 in [s0, t0] and max[s0,t0] ϕ = 1. Theorem 4.1 ensures that (μ,ϕ) = (μ0, ϕ0). This is a contradiction, which
proves that the eigenpairs (μj ,ϕj ) converge to the eigenpair (μ0, ϕ0) in the sense that, as j → ∞, maxIj

|ϕj − ϕ0| +
|μj − μ0| → 0. In particular, we see that μj → μ0 as j → ∞, proving the continuity of (s, t) �→ μ+(s, t).

Finally we prove the assertion (iii). Let (μ,ϕ) be an eigenpair of (1.1) with Ω = (s, t), where a � s < t � b,
satisfying ϕ(x) > 0 in (s, t). Applying Theorem 2.4 yields

max[s,t] ϕ � (t − s)C2(κ + μ)+ max[s,t] ϕ,

where C2 is a positive constant independent of s, t , μ and ϕ. Hence, we have 1 � C2(κ + μ)+(t − s), which shows
that

lim
ε→0+ inf

{
μ+(s, t): a � s < t � b, t − s < ε

} = ∞. �
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5. General eigenvalues in one dimension

In this section, we complete the proof of Theorem 1.1. We thus establish the existence of general eigenpairs of
(1.1) and their uniqueness and “half simplicity” in one dimension under hypotheses (F1)–(F3).

Throughout this section we assume as in the previous section that N = 1, Ω = (a, b) for some −∞ < a < b < ∞,
and (F1)–(F3) hold with Λ = ∞.

Before going into the detail of the proof of Theorem 1.1, we illustrate very briefly how the proof goes.
The case n = 1 of Theorem 1.1 is a direct consequence of Theorems 3.1 and 4.1. As before, let μ+(s, t) and

μ−(s, t) denote, respectively, the positive and negative principal eigenvalues of (1.1) with Ω = (s, t), where a � s <

t � b. For the proof in the case n = 2, we consider the function g2(s) = μ+(a, s)−μ−(s, b) on the interval (a, b) and
observe by Theorem 4.2 that g2 is continuous and decreasing in (a, b),

lim
s→a+0

g2(s) = ∞ and lim
s→b−0

g2(s) = −∞.

Hence there is a unique τ2 ∈ (a, b) such that g2(τ2) = 0, i.e., μ+(a, τ2) = μ−(τ2, b). Set μ+
2 := μ+(a, τ2) =

μ−(τ2, b). We then choose a positive eigenfunction ϕ+ on (a, τ2) and a negative eigenfunction ϕ− on (τ2, b) cor-
responding to the eigenvalue μ+

2 . Here, by multiplying ϕ− by a positive constant if needed, we may assume that
(ϕ+)′(τ2 − 0) = (ϕ−)′(τ2 + 0). Setting ϕ+

2 (x) = ϕ+(x) for x ∈ [a, τ2] and ϕ+
2 (x) = ϕ−(x) for x ∈ [τ2, b], we ob-

tain an eigenpair (μ+
2 , ϕ+

2 ) of (1.1), which proves one half of assertion (i) of Theorem 1.1. The other half is proved
similarly.

Regarding assertion (i), the next step is to show that the second eigenvalues μ±
2 (s, t) corresponding to the interval

[s, t] ⊂ [a, b] have the monotonicity, continuity and unboundedness properties as (i), (ii) and (iii) of Theorem 4.2.
Then, we proceed to introduce the function g3(s) = μ+

2 (a, s) − μ+(s, b) on (a, b), to choose a constant τ3 ∈ (a, b) so
that g3(τ3) = 0, to define μ+

3 := μ+
2 (a, τ3) = μ+(τ3, b), and so on. To make it logically precise, we will employ the

induction argument. The completeness assertion (ii) will follow from the strong maximum principle for (1.1), which
is a consequence of Theorem 2.6 or the uniqueness assertion of Theorem 2.2.

We begin the detail with two lemmas.

Lemma 5.1. Let (μ, ν) = (μ−,μ+) or (μ, ν) = (μ+,μ−). Let h : (a, b) → (a, b) be a nondecreasing continuous
function such that h(s) � s in (a, b). Then there exists a unique function τ : (a, b] → (a, b) such that τ(t) < t and
μ(a,h(τ(t))) = ν(τ (t), t) for each t ∈ (a, b]. Moreover, the function τ is continuous and (strictly) increasing in (a, b].

Proof. According to Theorem 4.2, the functions μ(s, t) and ν(s, t) are continuous on {(s, t): a � s < t � b}, in-
creasing as functions of s in (a, t) and decreasing as functions of t in (s, b). We define the continuous function g

on {(s, t) ∈ R2: a < s < t � b} by g(s, t) = μ(a,h(s)) − ν(s, t). Observe that the function g(s, t) is decreasing as a
function of s in (a, t) and increasing as a function of t in (s, b).

Using Theorem 4.2, we deduce that

lim
s→a+g(s, t) = ∞ and lim

s→t−g(s, t) = −∞.

It is now obvious that for each t ∈ (a, b] there exists a unique τ(t) ∈ (a, t) such that g(τ(t), t) = 0. It is easily seen by
the monotonicity of g(s, t) in s and in t that the function τ : (a, b] → (a, b) is increasing.

Finally, to check the continuity of τ , we fix a sequence (tk)k∈N ⊂ (a, b] converging to a point t0 ∈ (a, b] and prove
that limk→∞ τ(tk) = τ(t0). We may assume that tk > c for all k and some c ∈ (a, b). By the monotonicity of τ ,
we have b > τ(b) > τ(tk) � τ(c) > a for all k. If we set s+ := lim supk→∞ τ(tk) and s− := lim infk→∞ τ(tk), then
a < s− � s+ < t0, by Theorem 4.2(iii), and g(s+, t0) = g(s−, t0) = 0 by the continuity of g. Hence, we must have
limk→∞ τ(tk) = τ(t0). �
Lemma 5.2. Let n ∈ N and (xj )

n
j=0, (yj )

n
j=0 ⊂ [a, b] be increasing finite sequences such that [x0, xn] ⊂ [y0, yn].

Then there exists an index j ∈ {1, . . . , n} such that [xj−1, xj ] ⊂ [yj−1, yj ] and moreover, if [x0, xn] 
= [y0, yn], then
[xj−1, xj ] 
= [yj−1, yj ].
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Proof. First we consider the case [x0, xn] � [y0, yn]. If y0 < x0, then we set k := max{j : 0 � j � n − 1, yj < xj }
and observe that [xk, xk+1] � [yk, yk+1]. Otherwise, we have xn < yn. If we set � := min{j : 1 � j � n, xj < yj },
then [x�−1, x�] � [y�−1, y�].

Next we consider the case [x0, xn] = [y0, yn]. If either x1 � y1 or yn−1 � xn−1 hold, then our claim follows.
Otherwise, we find [x1, xn−1] � [y1, yn−1] and our claim follows from the above argument. �

Henceforth we use this notation: we denote by sj the symbols +, if j is odd, and − if j is even. For instance,
ψ s2 = ψ−, ψ s3 = ψ+ and so on.

Proof of Theorem 1.1. We here prove the assertion for (μ+
n ,ϕ+

n ) since this assertion is easily converted to that for
(μ−

n ,ϕ−
n ) by replacing the function F(m,p,u, x) by −F(−m,−p,−u,x).

We treat the existence assertion (i). As noted above, the case n = 1 has already been shown in Theorem 3.1. We
are thus concerned with the case where n� 2.

We show by induction that for any n ∈ N, there exists a sequence (xn,j )
n
j=1 of functions on (a, b] such that

a < xn,1(t) < xn,2(t) < · · · < xn,n(t) = t for every t ∈ (a, b], (5.1)

xn,j (t) is a (strictly) increasing continuous function on (a, b] for all j , (5.2)

μsj
(
xn,j−1(t), xn,j (t)

) = μs1
(
a, xn,1(t)

)
for all t ∈ (a, b] and j � 2. (5.3)

In the case where n = 1, the function x1,1(t) = t trivially satisfies (5.1)–(5.3).
Now, suppose that we are given a finite sequence (xn,j )

n
j=1 satisfying (5.1)–(5.3) for some n ∈ N. We apply

Lemma 5.1, to find an increasing continuous function τ on (a, b] such that τ(t) < t and μs1(a, xn,1(τ (t))) =
μsn+1(τ (t), t) for all t ∈ (a, b]. From (5.3), we get μsj (xn,j−1(τ (t)), xn,j (τ (t))) = μs1(a, xn,1(τ (t))) for all t ∈
(a, b] and j = 2, . . . , n. We define the finite sequence (xn+1,j )

n+1
j=1 by setting xn+1,j = xn,j ◦ τ if 1 � j � n and

xn+1,n+1(t) = t . It is clear that (xn+1,j )
n+1
j=1 satisfies (5.1)–(5.3) with n+ 1 in place of n. This completes our induction

argument.
Next, fix n � 2 and set x+

0 = a, x+
j = xn,j (b) for j = 1, . . . , n, and μ+

n = μs1(a, x+
1 ). It follows from (5.3) that

μsj (x+
j−1, x

+
j ) = μ+

n for j = 1, . . . , n. We choose functions ϕn,j ∈ W 2,q (x+
j−1, x

+
j ), with j = 1, . . . , n, so that if j

is odd (resp., even), then the function ϕn,j is a positive (resp., negative) principal eigenfunction corresponding to
μ+(x+

j−1, x
+
j ) (resp., μ−(x+

j−1, x
+
j )). From Theorem 2.6, we see that for all j = 1, . . . , n − 1,

(−1)jϕ′
n,j

(
x+
j − 0

)
> 0 and (−1)jϕ′

n,j+1

(
x+
j + 0

)
> 0.

Hence we can choose a finite sequence (θj )
n
j=1 of positive numbers so that θ1 = 1 and

θjϕ
′
n,j

(
x+
j − 0

) = θj+1ϕ
′
n,j+1

(
x+
j + 0

)
for all j = 1, . . . , n − 1.

Set

ϕ+
n (x) = θjϕn,j (x) if x ∈ [

x+
j−1, x

+
j

]
and 1 � j � n,

and observe that ϕ+
n ∈ W 2,q (a, b) and (μ+

n ,ϕ+
n ) is an eigenpair of (1.1) having the property that (−1)j−1ϕn(x) > 0

in (x+
j−1, x

+
j ) for j = 1, . . . , n.

Now, we deal with the assertion (ii). Fix an n ∈ N and let (μ+
n ,ϕ+

n ) ∈ R× W 2,q(a, b) be an eigenpair obtained in
the above. Let (x+

j )nj=0 be the increasing finite sequence of the zeroes in [a, b] of ϕ+
n . Let (μ,ϕ) ∈ R × W 2,q (a, b)

be any eigenpair of (1.1) such that the function ϕ vanishes exactly at n + 1 distinct points in [a, b]. Let (yj )
n
j=0 be the

increasing finite sequence of zeroes of ϕ so that y0 = a and b = yn.
To proceed, we may focus on the case where ϕ(x) > 0 in (y0, y1). We intend to show that μ+

n = μ and there is a
constant θ > 0 such that ϕ = θϕ+

n . If n = 1, then this is a consequence of Theorem 4.1. We may therefore assume that
n� 2.

From Theorem 2.2 or 2.6, we see that (−1)jϕ′(yj ) > 0 for all j = 0,1, . . . , n and accordingly, (−1)j−1ϕ(x) > 0
in (yj−1, yj ) for j = 1, . . . , n. By Theorem 4.1, we have μ+

n = μsj (x+ , x+) and μ = μsj (yj−1, yj ) for 1 � j � n.
j−1 j
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Applying Lemma 5.2, we find j, k ∈ {1, . . . , n} satisfying [x+
j−1, x

+
j ] ⊂ [yj−1, yj ] and [yk−1, yk] ⊂ [x+

k−1, x
+
k ]. In

view of Theorem 4.2, we obtain

μ+
n = μsj

(
x+
j−1, x

+
j

)
� μsj (yj−1, yj ) = μ = μsk (yk−1, yk) � μsk

(
x+
k−1, x

+
k

) = μ+
n ,

which yields μ = μ+
n .

By Theorem 4.2(i) and the fact that μ = μn+, we infer that yj = x+
j for all 1 � j � n − 1. Furthermore, by

Theorem 4.1, we see that there is a finite sequence (θj )
n
j=1 of positive numbers so that ϕ = θjϕ

+
n in [x+

j−1, x
+
j ] for

1 � j � n. But, since ϕ and ϕ+
n are both C1 functions on [a, b], we see that the constants θj are all the same. Thus,

ϕ = θϕ+
n in [a, b] for some constant θ > 0.

What remains is to show that every eigenfunction of (1.1) has a finite number of zeroes. To this end, we suppose
by contradiction that there is an eigenpair (μ,ϕ) of (1.1) such that ϕ has infinitely many zeroes. This means that
there exists an accumulation point c ∈ [a, b] of zeroes of ϕ. We see immediately that ϕ(c) = 0, and moreover by
using Rolle’s theorem that ϕ′(c) = 0. Theorem 2.2 now allows us to conclude that ϕ(x) ≡ 0 in [a, b], which is a
contradiction. This proves that every eigenfunction of (1.1) has a finite number of zeroes. �

Next, we give basic properties of the sequence (μ±
n )n∈N.

Proposition 5.3. Let (μ+
n ) and (μ−

n ) be sequences of eigenvalues given by Theorem 1.1. Then

lim
n→∞ min

{
μ+

n ,μ−
n

} = ∞, (5.4)

max
{
μ+

n ,μ−
n

}
< min

{
μ+

n+1,μ
−
n+1

}
for each n ∈N. (5.5)

Proof. Let ϕ be an eigenfunction corresponding to μ+
n and (xj )

n
j=0 the finite sequence of zeroes of ϕ. Since μ+

n =
μsj (xj−1, xj ) for 1 � j � n and min1�j�n(xj − xj−1)� (b − a)/n, we see that

μ+
n � inf

{
μ+(s, t),μ−(s, t): a � s < t � b, t − s � (b − a)/n

}
.

Similarly, we get

μ−
n � inf

{
μ+(s, t),μ−(s, t): a � s < t � b, t − s � (b − a)/n

}
.

Thus, by Theorem 4.2(iii), (5.4) holds.
Next let ϕ+

n , ϕ−
n and ϕ+

n+1 be eigenfunctions corresponding to the eigenvalues μ+
n , μ−

n and μ+
n+1, respectively.

Also let (x+
j )nj=0, (y−

j )nj=0 and (z+
j )n+1

j=0 be the finite sequences of the zeroes of ϕ+
n , ϕ−

n and ϕ+
n+1, respectively. By

Lemma 5.2, there is a k ∈ {1, . . . , n} such that [z+
k−1, z

+
k ]� [x+

k−1, x
+
k ]. Using Theorem 4.2, we have

μ+
n+1 = μsk

n

(
z+
k−1, z

+
k

)
> μsk

n

(
x+
k−1, x

+
k

) = μ+
n .

Similarly, we deduce that there is an integer � ∈ {2, . . . , n+1} satisfying [z+
�−1, z

+
� ] � [y−

�−2, y
−
�−1] and [z+

�−1, z
+
� ] 
=

[y−
�−2, y

−
�−1] and that

μ+
n+1 = μs�

(
z+
�−1, z

+
�

)
> μs�

(
y−
�−2, y

−
�−1

) = μ−
n .

Thus we have μ+
n+1 > max{μ+

n ,μ−
n }. Similarly, we obtain μ−

n+1 > max{μ+
n ,μ−

n }, which completes the proof. �
Finally, by reviewing the proof of Theorem 1.1, we note that the eigenvalues μ+

n and μ−
n , with any n ∈ N, are

continuous as functions of (a, b) on the set {(x, y) ∈R2: x < y}.

6. Radially symmetric solutions

In the rest of this paper, we assume that N � 2 and study radially symmetric solutions of PDE of the form

F
(
D2u,Du,u, x

) = 0 in BR, (6.1)

where 0 < R < ∞.
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Let u be a smooth function on B̄R . Assume that u is radially symmetric, i.e., u(x) = g(|x|) in BR for some function
g on [0,R]. Note that for 1 � q < ∞,

∫
BR

∣∣u(x)
∣∣q dx = αN

R∫
0

∣∣g(r)
∣∣qrN−1 dr, (6.2)

where αN is the surface measure of the unit sphere SN−1, and that if u ∈ C2(BR), then

Du(x) = g′(|x|) x

|x| and D2u(x) = g′′(|x|)Px + g′(|x|)
|x| (IN − Px) for x 
= 0, (6.3)

where Px denotes the matrix x ⊗ x/|x|2 = (xixj /|x|2) which represents the orthogonal projection in RN onto the
one-dimensional space spanned by the vector x. In the above situation, we have

∣∣D2u(x)
∣∣ :=

(∑
i,j

∣∣∣∣ ∂2u

∂xi∂xj

(x)

∣∣∣∣
2)1/2

=
(∣∣g′′(|x|)∣∣2 + (N − 1)

|g′(|x|)|2
|x|2

)1/2

. (6.4)

With these observations at hand, we introduce the function spaces L
q
r (a,R) and W

2,q
r (a,R), where 0 � a < R

and q ∈ [1,∞], as follows: if q < ∞, L
q
r (a,R) denotes the space of all measurable functions g on (a,R) such that

r �→ |g(r)|qrN−1 is integrable on (a,R), with norm given by

‖g‖L
q
r (a,R) =

( R∫
a

∣∣g(r)
∣∣qrN−1 dr

)1/q

,

and W
2,q
r (a,R) denotes the space of all functions g ∈ L

q
r (a,R) such that the functions r �→ (|g′(r)|/r)qrN−1 and

r �→ |g′′(r)|qrN−1 are integrable on (a,R), with norm given by

‖g‖
W

2,q
r (a,R)

= ‖g‖L
q
r (a,R) + ∥∥g′/r

∥∥
L

q
r (a,R)

+ ∥∥g′′∥∥
L

q
r (a,R)

,

where g′/r denotes conveniently the function r �→ g′(r)/r . In the case where q = ∞, we set L∞
r (a,R) = L∞(a,R)

and W
2,∞
r (a,R) = {g ∈ W 2,∞(a,R): g′(0) = 0} if a = 0 and = W 2,∞(a,R) otherwise.

We remark that L
q
r (a,R) ⊂ L

p
r (a,R) and W

2,q
r (a,R) ⊂ W

2,p
r (a,R), if p � q , by Hölder’s inequality and that

Lq(a,R) = L
q
r (a,R) and W 2,q(a,R) = W

2,q
r (a,R), if a > 0, together with the equivalence of their respective norms.

We recall that W
2,q
r (BR) is the subspace of the usual Sobolev space W 2,q (BR) consisting of all radially symmetric

functions u ∈ W 2,q (BR), with norm

‖u‖W 2,q (BR) = ‖u‖Lq(BR) + ‖Du‖Lq(BR) + ∥∥∣∣D2u
∣∣∥∥

Lq(BR)
.

The following lemma says that W
2,q
r (BR) can be identified with W

2,q
r (0,R).

Lemma 6.1. Let q ∈ [1,∞] and u and g be measurable functions on BR and (0,R), respectively. Assume that
u(x) = g(|x|) a.e. in BR . Then, u ∈ W

2,q
r (BR) if and only if g ∈ W

2,q
r (0,R). Furthermore, in this case we have

Du(x) = g′(|x|) x

|x| and D2u(x) = g′′(|x|)Px + g′(|x|)
|x| (IN − Px) a.e.

Proof. We treat here only the case where q < ∞, and leave it to the reader to prove the assertion in the case where
q = ∞.

First, we assume that u ∈ W 2,q(BR), and show that g ∈ W
2,q
r (0,R). Choose a sequence (uk)k∈N of smooth radial

functions on B̄R so that limk→∞ ‖uk − u‖W 2,q (BR) = 0. The existence of such a sequence (uk) can be shown by the
combination of the mollification technique and scaling of functions by multiplying the independent variables by a
positive constant less than one. For more detail on this, we note first that one can approximate u in W 2,q (BR) by
the family of functions uη(x) := u(ηx), where 0 < η < 1, as η → 1 − 0 and secondly that if ρε denotes the standard
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mollification kernel with support in Bε , then, for each 0 < η < 1, the convolution ρε ∗ uη belongs in C∞(B̄R) for
every ε > 0 sufficiently small and ρε ∗ uη → uη in W 2,q (BR) as ε → 0+.

Define the function gk on [0,R] by setting gk(r) = uk(x) if |x| = r . Combining (6.2)–(6.4) applied to (uk, gk)

yields

α
1/q
N ‖gk‖W

2,q
r (0,R)

� 2‖uk‖W 2,q (BR),

which is still valid if one replaces (uk, gk) by (uk −uj , gk −gj ). Accordingly, the sequence (gk) is a Cauchy sequence

in W
2,q
r (0,R), which implies that g ∈ W

2,q
r (0,R) and moreover, α

1/q
N ‖g‖

W
2,q
r (0,R)

� 2‖u‖W 2,q (BR).

Next, we assume that g ∈ W
2,q
r (0,R), and prove that u ∈ W 2,q(BR). Note that g ∈ W 2,q(a,R) ⊂ C1([a,R]) for

any a ∈ (0,R). We calculate for 0 < a < R,

∣∣g(R) − g(a)
∣∣aN−2 � aN−2

R∫
a

∣∣g′(t)
∣∣dt �

R∫
a

∣∣∣∣g′(t)
t

∣∣∣∣tN−1 dt �
∥∥g′/r

∥∥
L1

r (0,R)
,

and

aN−1
∣∣g(a)

∣∣� aN−1
∣∣g(R)

∣∣ + a
∥∥g′/r

∥∥
L1

r (0,R)
. (6.5)

Now, let ψ ∈ C1
0(BR) and 0 < a < R. Using the divergence theorem, we get

−
∫

BR\Ba

ψxi
u(x)dx =

∫
∂Ba

ψ(x)g(a)
xi

|x| dS +
∫

BR\Ba

ψ(x)g′(|x|) xi

|x| dx,

where dS denotes the surface measure. Noting by (6.5) that∣∣∣∣
∫

∂Ba

ψ(x)g(a)
xi

|x| dS

∣∣∣∣� ∣∣g(a)
∣∣αNaN−1‖ψ‖L∞(BR) → 0 as a → 0,

we get

−
∫
BR

ψxi
u(x)dx =

∫
BR

ψ(x)g′(|x|) xi

|x| dx.

Thus, we have Du(x) = g′(|x|)x/|x| a.e. in BR .
Let 0 < a < b < R, and compute that

∣∣g′(b) − g′(a)
∣∣aN−1 �

b∫
a

∣∣g′′(t)
∣∣tN−1 dt �

∥∥g′′∥∥
L1

r (0,b)
,

and

aN−1
∣∣g′(a)

∣∣ � aN−1
∣∣g(b)

∣∣ + ∥∥g′′∥∥
L1

r (0,b)
. (6.6)

Note here that the right-hand side converges to ‖g′′‖L1
r (0,b) as a → 0 and ‖g′′‖L1

r (0,b) → 0 as b → 0. As before, let

ψ ∈ C1
0(BR) and 0 < a < b < R. By the divergence theorem, we get

−
∫

BR\Ba

ψxi
(x)uxj

(x)dx = −
∫

BR\Ba

ψxi
(x)g′(|x|) xj

|x| dx

=
∫

ψ(x)g′(a)
xixj

|x|2 dS +
∫

ψ(x)

(
g′′(|x|)xixj

|x|2 + g′(|x|)δij |x|2 − xixj

|x|3
)

dx,
∂Ba BR\Ba
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where δij = 1 if i = j and = 0 if i 
= j . The last equality is clearly valid when g is smooth. In general it may need a
justification, which can be done by approximating g by smooth functions. By (6.6), we get

lim
a→0+

∣∣∣∣
∫

∂Ba

ψ(x)g′(a)
xixj

|x|2 dS

∣∣∣∣ = 0,

and accordingly,

−
∫
BR

ψxi
(x)uxj

(x)dx =
∫
BR

ψ(x)

(
g′′(|x|)xixj

|x|2 + g′(|x|)δij |x|2 − xixj

|x|3
)

dx.

Thus, we have

D2u(x) = g′′(|x|)Px + g′(|x|)
|x| (IN − Px) a.e. in BR.

Finally, a simple calculation shows that

‖u‖W 2,q (BR) � α
1/q
N (R + √

N − 1)‖g‖
W

2,q
r (0,R)

.

We therefore conclude that u ∈ W 2,q (BR). �
We assume in the rest of this section that F satisfies (F1), (F2) with Λ < ∞ and (F4). Let u ∈ W

2,q
r (BR) and

g ∈ W
2,q
r (0,R) satisfy u(x) = g(|x|) a.e. in BR . In view of Lemma 6.1, we see that u is a solution of (6.1) if and only

if for a.a. (r,ω) ∈ (0,R) × SN−1,

F

(
g′′(r)ω ⊗ ω + g′(r)

r
(IN − ω ⊗ ω),g′(r)ω,g(r), rω

)
= 0.

Thanks to (F4), this last condition is equivalent to the condition: for any fixed ω ∈ SN−1,

F

(
g′′(r)ω ⊗ ω + g′(r)

r
(IN − ω ⊗ ω),g′(r)ω,g(r), rω

)
= 0 a.e. r ∈ (0,R).

We fix a point ω0 ∈ SN−1 and define the function F :R4 × (0,R) → R by

F(m, l,p,u, r) = F
(
mω0 ⊗ ω0 + l(IN − ω0 ⊗ ω0),pω0, u, rω0

)
.

Also, we introduce radial versions P+,P− :R2 →R of the Pucci operators adapted to this circumstance by

P+(m, l) = P +(
mω0 ⊗ ω0 + l(IN − ω0 ⊗ ω0)

)
,

and P−(m, l) = −P+(−m,−l). By (F2), we have

F(m1, l1,p1, u1, r) −F(m2, l2,p2, u2, r)

�P+(m1 − m2, l1 − l2) + β(rω)|p1 − p2| + γ (rω)|u1 − u2| (6.7)

for all (mi, li , pi, ui, r) ∈ R4, i = 1,2, and a.a. (r,ω) ∈ (0,R) × SN−1. In view of Fubini’s theorem in the polar
coordinates, there is a choice of ω ∈ SN−1 having the properties that the inequality (6.7), with this ω, holds for
all (mi, li , pi, ui) ∈ R4, i = 1,2, and a.a. r ∈ (0,R) and that the functions r �→ β(rω) and r �→ γ (rω) belong to
L

q
r (0,R). We fix such an ω, call it ω1, and, with abuse of notation, we write β and γ the functions r �→ β(rω1) and

r �→ γ (rω1), respectively. In other words, under the assumptions (F1), (F2) and (F4), we conclude the following:

(F5) There exist functions β,γ ∈ L
q
r (0,R) such that

F(m1, l1,p1, u1, r) −F(m2, l2,p2, u2, r) � P+(m1 − m2, l1 − l2) + β(r)|p1 − p2| + γ (r)|u1 − u2|
for all (mi, li , pi, ui) ∈R4, i = 1,2, and a.a. r ∈ (0,R).
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7. Estimates on radial functions

We establish a priori type estimates on functions in W
2,q
r (a,R), motivated by the boundary value problem for the

ODE F(u′′, u′/r,u′, u, r) = 0 in (a,R), where a ∈ [0,R), with the boundary condition

u′(a) = 0 if a > 0, and u(R) = 0.

Throughout this section we assume that N � 2, fix two constants 0 < λ � Λ < ∞, and set λ∗ = λ/Λ and q∗ =
N/(1 + λ∗(N − 1)) = N/(λ∗N + (1 − λ∗)).

Lemma 7.1. Let a ∈ [0,R), q ∈ (q∗,∞], g ∈ LN
r (0,R) and f ∈ L

q
r (a,R). Let v be a measurable function on [a,R]

such that for each b > 0 v is absolutely continuous on [a,R] ∩ [b,R]. Assume that f � 0 a.e. in (a,R), v/r ∈
L

q
r (a,R), v � 0 in [a,R], v(a) = 0 if a > 0 and

v′(r) + λ∗(N − 1)
v(r)

r
� g(r)v(r) + f (r) for a.a. r ∈ (a,R).

Then there exists a constant C > 0, depending only on λ∗, q , ‖g‖LN
r (0,R) and N , such that

‖v/r‖L
q
r (a,R) � C‖f ‖L

q
r (a,R). (7.1)

An important point of the above estimate is that the constant C can be chosen independently of the parameter a.

Proof. Set ε = λ∗(N − 1), so that v′ + εv � gv + f a.e. in (a,R). Note that (rεv)′ � gvrε + f rε a.e. in (a,R).
Accordingly, if b ∈ (a,R), then we have for all r ∈ [b,R],

rεv(r) � bεv(b) exp

( r∫
b

g(s)ds

)
+

r∫
a

f (t)tεe
∫ r
t g ds dt. (7.2)

Since q > N/(1 + ε), we have 1 + ε − N/q > 0. We fix

δ = 1

2

(
1 + ε − N

q

)
,

so that δ > 0. By Hölder’s inequality, for a < t < r � R, we have

r∫
t

g ds �
( r∫

t

g(s)NsN−1 ds

)1/N( r∫
t

s−1 ds

)1−1/N

�
(

log
r

t

)1−1/N

‖g‖LN
r (0,R).

By Young’s inequality, we get

r∫
t

g ds � ‖g‖LN
r (0,R)

(
log

r

t

)1−1/N

� δ log
r

t
+ (N − 1)N−1

NNδN−1
‖g‖N

LN
r (0,R)

.

Setting

B = (N − 1)N−1

NNδN−1
‖g‖N

LN
r (0,R)

,

we obtain

exp

( r∫
t

g ds

)
�

(
r

t

)δ

eB. (7.3)

Consider the case where a = 0. By comparison of the integrable function r → (v(r)/r)qrN−1 on (0,R) and the
nonintegrable function r → 1/r , we deduce that there is a sequence (bk)k∈N ⊂ (0,R) converging to zero such that(

v(bk)
)q

bN−1
k � 1

for all k,

bk bk
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that is, bε
kv(bk) � b

ε+1−N/q
k = b2δ

k for all k. This together with (7.3) yields

bε
kv(bk) exp

( r∫
bk

g ds

)
� (bkr)

δeB.

Thus, sending b → a in (7.2) (along the sequence b = bk if a = 0), we obtain

rεv(r) �
r∫

a

f (t)tεe
∫ r
t g ds dt for all r ∈ [a,R]. (7.4)

Combining (7.4) and (7.3), we get

v(r) � eBrδ−ε

r∫
a

f (t)tε−δ dt for r ∈ [a,R]. (7.5)

Now, if q = ∞, we note that ε − δ = δ − 1 and get from (7.5)

v(r) � eBr1−δ‖f ‖L∞(a,R)

δ

(
rδ − aδ

)
� eBr‖f ‖L∞(a,R)

δ
for all r ∈ [a,R],

which gives the desired estimate (7.1) in the case q = ∞.
Next, let q < ∞ and note that ε − δ = (N − 1 + δ)/q + (−1 + δ)(q − 1)/q and

rN−1
(

v

r

)q

� eqBrN−1−q+(δ−ε)q

( r∫
a

f (t)tε−δ dt

)q

= eqBr−1−δq

( r∫
a

f (t)tε−δ dt

)q

.

By Hölder’s inequality we get

r∫
a

f (t)tε−δ dt �
( r∫

a

f (t)q tN−1+δ dt

)1/q( r∫
a

t−1+δ dt

)1−1/q

�
( r∫

a

f (t)q tN−1+δ dt

)1/q(
rδ

δ

)1−1/q

,

and hence,

R∫
a

rN−1
(

v(r)

r

)q

dr � eqB

δq−1

R∫
a

f (t)q tN−1+δ dt

b∫
t

r−1−δ dr � eqB

δq

R∫
a

f (t)q tN−1 dt,

from which we get the estimate (7.1) with eB/δ. �
Lemma 7.2. Let q ∈ (N/2,∞] and a ∈ [0,R). Let u be a function on [a,R] such that for each b ∈ (a,R], the
function u is absolutely continuous on [b,R], u(R) � 0 and ‖(u′)−/r‖L

q
r (a,R) < ∞. Then there exists a constant

C > 0, depending only on q and N , such that

sup
(a,R]

u� C
(
R

2q−N
q−1 − a

2q−N
q−1

) q−1
q

∥∥(
u′)

−/r
∥∥

L
q
r (a,R)

.

As a consequence of the Sobolev embedding theorem, we have W
2,q
r (BR) ⊂ C([0,R]). This inclusion can be

deduced by the above lemma as follows. Let u ∈ W
2,q
r (0,R). By the above lemma, we get

‖u‖L∞(0,R) �
∣∣u(R)

∣∣ + C
∥∥u′/r

∥∥
L

q
r (0,R)

.

But, this inequality tells us that if we select a sequence (uk) of smooth functions which approximates u in W
2,q
r (0,R),

then it also approximates u in C([0,R]).
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Proof of Lemma 7.2. Fix any r ∈ (a,R]. We have

u(R) − u(r) =
R∫

r

u′(t)dt.

Accordingly, if q < ∞, we get

u(r) �
R∫

a

(u′)−(t)

t
t dt �

∥∥(
u′)

−/r
∥∥

L
q
r (a,R)

( R∫
a

t
q−N+1

q−1 dt

)(q−1)/q

�
(

q − 1

2q − N

)(q−1)/q(
R

2q−N
q−1 − a

2q−N
q−1

) q−1
q

∥∥(
u′)

−/r
∥∥

L
q
r (a,R)

.

If q = ∞, we get

u(r) �
R∫

a

(u′)−(t)

t
t dt � (R2 − a2)

2

∥∥(
u′)

−/r
∥∥

L∞(a,R)
. �

Lemma 7.3. Let a ∈ [0,R) and u ∈ W
2,N
r (a,R). Assume in addition that u′(a) = 0 if a > 0. Then∥∥u′∥∥

L∞(a,R)
� N1/N

∥∥u′/r
∥∥1−1/N

LN
r (a,R)

∥∥u′′∥∥1/N

LN
r (a,R)

.

We remark that the above lemma implies that WN
r (0,R) ⊂ C1([0,R]).

Proof. Note that any function v ∈ W
2,N
r (BR) can be approximated by a sequence of smooth radial functions in

W
2,N
r (BR). Thus, even in the case where a = 0, we may assume by approximation that u is smooth and u′(a) = 0.
For any a � r � R, we have

∣∣u′(r)N
∣∣ �

r∫
a

N
∣∣u′(t)N−1u′′(t)

∣∣dt = N

r∫
a

∣∣(u′(t)/t
)N−1

u′′(t)
∣∣tN−1 dt

�N
∥∥u′/r

∥∥N−1
LN

r (a,R)

∥∥u′′∥∥
LN

r (a,R)
,

and hence the conclusion follows. �
A simple consequence of the above lemma is that if g ∈ L

q
r (0,R) and u ∈ W

2,q
r (0,R) for some q � N , then

gu′ ∈ L
q
r (0,R). The next lemma shows that a similar regularity result holds for q < N under the assumption that

g ∈ LN
r (0,R).

Lemma 7.4. Let a ∈ [0,R), q ∈ (1,N) and u ∈ W
2,q
r (a,R). Assume that u′(a) = 0 if a > 0 and that g ∈ LN

r (0,R).
Then there exists a constant C > 0, depending only on q and N , such that∥∥gu′∥∥

L
q
r (a,R)

� C‖g‖LN
r (a,R)

(∥∥u′/r
∥∥(q−1)/q

L
q
r (a,R)

∥∥u′′∥∥1/q

L
q
r (a,R)

+ ∥∥u′/r
∥∥

L
q
r (a,R)

)
.

Proof. We may assume by approximation that u is smooth and u′(a) = 0.
Fix any ε > 0, and note that for r ∈ (a,R),

rN−q+ε
∣∣u′∣∣q = (N − q + ε)

r∫
a

tN−1−q+ε
∣∣u′(t)

∣∣q dt + q

r∫
a

tN−q+ε
∣∣u′∣∣q−2

u′(t)u′′(t)dt.

Observe that∥∥gu′∥∥q
q � (N − q + ε)A + qB, (7.6)
Lr (a,R)
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where

A :=
R∫

a

tN−1−q+ε
∣∣u′(t)

∣∣q dt

R∫
t

∣∣g(r)
∣∣qr−N+q−εrN−1 dr, (7.7)

and

B :=
R∫

a

tN−q+ε
∣∣u′∣∣q−1∣∣u′′(t)

∣∣dt

R∫
t

∣∣g(r)
∣∣qr−N+q−εrN−1 dr. (7.8)

Now, noting that q/N + (N − q)/N = 1, we compute that for t ∈ (a,R),

R∫
t

∣∣g(r)
∣∣qr−N+q−εrN−1 dr � ‖g‖q

LN
r (a,R)

( R∫
t

rN(q−N−ε)/(N−q)rN−1 dr

)(N−q)/N

� ‖g‖q

LN
r (a,R)

(
N − q

Nε
t
− Nε

N−q

)(N−q)/N

.

Combining this with (7.7) and (7.8) yields

A �
(

N − q

Nε

)(N−q)/N

‖g‖q

LN
r (a,R)

R∫
a

∣∣u′(t)
∣∣q tN−1−q dt

=
(

N − q

Nε

)(N−q)/N

‖g‖q

LN
r (a,R)

∥∥u′/r
∥∥q

L
q
r (a,R)

,

and

B �
(

N − q

Nε

)(N−q)/N

‖g‖q

LN
r (a,R)

R∫
a

∣∣u′/t
∣∣q−1∣∣u′′(t)

∣∣tN−1 dt

�
(

N − q

Nε

)(N−q)/N

‖g‖q

LN
r (a,R)

∥∥u′/r
∥∥q−1

L
q
r (a,R)

∥∥u′′∥∥
L

q
r (a,R)

.

Thus, we get

∥∥gu′∥∥q

L
q
r (a,R)

�
(

N − q

Nε

)(N−q)/N

‖g‖q

LN
r (a,R)

× (
(N − q + ε)

∥∥u′/r
∥∥q

L
q
r (a,R)

+ q
∥∥u′/r

∥∥q−1
L

q
r (a,R)

∥∥u′′∥∥
L

q
r (a,R)

)
. �

Theorem 7.5. Let a ∈ [0,R), q ∈ (max{N/2, q∗},∞], β ∈ LN
r (0,R) ∩ L

q
r (0,R), f 1, f 2 ∈ L

q
r (a,R) and u ∈

W
2,q
r (a,R). Assume that β � 0 a.e. in (a,R) and that⎧⎨

⎩
P+(

u′′, u′/r
) + β

∣∣u′∣∣ + f 1 � 0 a.e. in (a,R),

P−(
u′′, u′/r

) − β
∣∣u′∣∣ − f 2 � 0 a.e. in (a,R),

u′(a) = 0 if a > 0, and u(R) = 0.

Then there exists a constant C > 0, depending only on q , λ, Λ, N , R, ‖β‖LN
r (0,R) and ‖β‖L

q
r (0,R), such that

‖u‖
W

2,q
r (a,R)

� C
(∥∥f 1+

∥∥
L

q
r (a,R)

+ ∥∥f 2+
∥∥

L
q
r (a,R)

)
.

The above theorem gives the W 2,q estimates on the radial solutions of (6.1). Although these estimates apply only
to radial solutions, in comparison with known results (see [19,9,6,14]), they are relatively sharp in the exponent q and
the requirement on β that β ∈ LN

r (0,R) ∩ L
q
r (0,R).
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Proof of Theorem 7.5. Fix any (m, l, d) ∈ R3 such that P+(m, l) + d � 0 and d � 0. Assume that l � 0. We have
0 � λm + λ(N − 1)l + d if m � 0 and 0 � Λm + λ(N − 1)l + d if m > 0. Dividing the former and latter inequalities,
respectively, by λ and Λ, after some manipulations, we get 0 � m + λ∗(N − 1)l + λ−1d. That is, we have

m + λ∗(N − 1)l + λ−1d � 0 if l � 0. (7.9)

Similarly, we have 0 � λm + Λ(N − 1)|l| + d if m < 0, and hence

m + λ−1∗ (N − 1)|l| + λ−1d � 0. (7.10)

If we set v = (u′)−, then we have v(r) = −u′(r) and v′(r) = −u′′(r) a.e. if v(r) > 0, and v(r) = 0 and v′(r) = 0
a.e. if v(r) � 0. Using (7.9), we get

−v′ − λ∗(N − 1)
v

r
+ λ−1βv + λ−1f 1+(r) � 0 a.e. in (a,R).

By Lemma 7.1, there exists a constant C1 > 0, depending only on λ∗, q , N and ‖λ−1β‖LN
r (0,R), such that∥∥(

u′)
−/r

∥∥
L

q
r (a,R)

� C1
∥∥λ−1f 1+

∥∥
L

q
r (a,R)

.

Similarly, since

P+(−u′′,−u′/r
) + β

∣∣u′∣∣ + f 2 � 0 a.e. in (a,R), (7.11)

we get∥∥(
u′)

+/r
∥∥

L
q
r (a,R)

� C1
∥∥λ−1f 2+

∥∥
L

q
r (a,R)

.

Thus, setting M = ‖λ−1f 1+‖L
q
r (a,R) + ‖λ−1f 2+‖L

q
r (a,R), we have∥∥u′/r

∥∥
L

q
r (a,R)

� C1M. (7.12)

Using (7.10) and (7.11), we observe that∣∣u′′∣∣� λ−1∗ (N − 1)
|u′|
r

+ λ−1β
∣∣u′∣∣ + λ−1(f 1+ + f 2+

)
a.e. in (a,R). (7.13)

By Lemma 7.2 and (7.12), we can choose a constant C2 > 0, depending only on q , R and N , for which we have

‖u‖L∞(a,R) � C1C2M. (7.14)

Also, by Lemmas 7.3 and 7.4 with g = λ−1β , and by Young’s inequality, for each ε > 0, we find a constant C3 > 0,
depending only on ε, q , N , R, ‖λ−1β‖LN

r (0,R) and ‖λ−1β‖L
q
r (0,R), for which we have∥∥λ−1βu′∥∥

L
q
r (a,R)

� ε
∥∥u′′∥∥

L
q
r (a,R)

+ C1C3M. (7.15)

Combining this, with ε = 1/2, and (7.13), we get

1

2

∥∥u′′∥∥
L

q
r (a,R)

� λ−1∗ (N − 1)
∥∥u′/r

∥∥
L

q
r (a,R)

+ C1C3M + ∥∥λ−1(f+ + g+)
∥∥

L
q
r (a,R)

�
(
λ−1∗ (N − 1)C1 + C1C3 + 1

)
M.

This inequality together with (7.14) and (7.15) yields an estimate on ‖u‖
W

2,q
r (a,R)

with the desired properties. �
A weak maximum principle is stated as follows.

Theorem 7.6. Let q ∈ (max{N/2, q∗},∞], a ∈ [0,R), u ∈ W
2,q
r (a,R) and f ∈ L

q
r (a,R). Assume that β ∈ LN

r (0,R),
β � 0 a.e. in (a,R), u(R) = 0, u′(a) = 0 if a > 0, and u satisfies

P+(
u′′, u′/r

) + β
∣∣u′∣∣ + f � 0 a.e. in (a,R).

Then there exists a constant C > 0, depending only on λ, Λ, q , N and ‖β‖LN
r (0,R), such that

max[a,R]u � C
(
R

2q−N
q−1 − a

2q−N
q−1

) q−1
q ‖f+‖L

q
r (a,R).
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Proof. As in the previous proof, by Lemma 7.1, there exists a constant C1 > 0, depending only on λ∗, q , N and
‖λ−1β‖LN

r (0,R), such that∥∥(
u′)

−/r
∥∥

L
q
r (a,R)

� C1
∥∥λ−1f+

∥∥
L

q
r (a,R)

.

Next, by Lemma 7.2, there is a constant C2 > 0, depending only on q and N , such that

max[a,R]u� C2
(
R

2q−N
q−1 − a

2q−N
q−1

) q−1
q

∥∥(
u′)

−/r
∥∥

L
q
r (a,R)

.

We combine these two inequalities, to obtain the desired estimate. �
The next theorem is a version for radial functions of the strong maximum principle.

Theorem 7.7. Let q ∈ (max{N/2, q∗},∞], u ∈ W
2,q
r (0,R), β ∈ LN

r (0,R) and γ ∈ L
q
r (0,R). Assume that u � 0 in

[0,R] and

P−(
u′′, u′/r

) − β
∣∣u′∣∣ − γ u� 0 a.e. in (0,R).

Then either u(r) ≡ 0 in [0,R] or u(r) > 0 for all r ∈ [0,R).

It should be noticed that the second possibility in the last statement includes the inequality u(0) > 0.

Proof. Note that for any fixed ε ∈ (0,R), the function (m,p,u, r) �→P−(m,p/r)−β(r)|p|− γ (r)u on R3 × (ε,R)

satisfies (F1)–(F3), with Ω = (ε,R). In view of Theorem 2.6, it is enough to show that if u(0) = 0, then u(r) ≡ 0 in
[0, a] for some 0 < a < R.

To this end, we suppose that u(0) = 0. Let a ∈ (0,R) be a constant to be fixed later on. We may assume by replacing
q by min{q,N} if needed that q � N . As in the previous proof, if we set v = (u′)+, then we have

v′ + λ∗(N − 1)
v

r
� λ−1(βv + γ u) a.e. in (0,R).

Hence, by Lemma 7.1, we get∥∥(
u′)

+/r
∥∥

L
q
r (0,a)

� C1‖γ u‖L
q
r (0,a) � C1‖γ ‖L

q
r (0,a) max

[0,a]
u,

where C1 > 0 is a constant independent of the choice of a. Applying Lemma 7.2 to the function r �→ u(c) − u(r),
with 0 < c � a, we get

max
0�r�c

(
u(c) − u(r)

)
� C2c

2q−N
q

∥∥(
u′)

+/r
∥∥

L
q
r (0,c)

,

where C2 > 0 is a constant independent of c and a. In particular, since u(0) = 0, we have

max
0�c�a

u(c) � C2a
2q−N

q
∥∥(

u′)
+/r

∥∥
L

q
r (0,a)

.

Thus, we get

max
[0,a]

u� C1C2a
2q−N

q ‖γ ‖L
q
r (0,a) max

[0,a]
u.

We now fix a ∈ (0,R) small enough so that

C1C2a
2q−N

q ‖γ ‖L
q
r (0,a) < 1,

and find that max[0,a] u = 0. �
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8. Existence and uniqueness of eigenpairs in the radial case

This section is devoted to the proof of Theorem 1.2. Throughout this section we assume that N � 2 and (F1)–
(F4) hold with Λ < ∞. Let β and γ be the functions from (F5), and we assume throughout this section that β ∈
L

q
r (0,R) ∩ LN

r (0,R) and γ ∈ L
q
r (0,R) for some q ∈ (max{N/2, q∗},∞].

As discussed in Section 6, the Dirichlet problem (1.1) for radial solutions is equivalent to the following problem
for functions u ∈ W

2,q
r (0,R),{

F
(
u′′, u′/r,u′, u, r

) + μu = 0 in (0,R),

u(R) = 0.
(8.1)

For notational simplicity, we write F[u](r) and P±[u](r) for F(u′′(r), u′(r)/r, u′(r), u(r), r) and
P±(u′′(r), u′(r)/r), respectively.

Proof of Theorem1.2(i). As usual, we are concerned only with (μ+
n ,ϕ+

n ). In view of the argument in Section 6, we

may work in the framework of the space W
2,q
r (0,R), but not in that of W

2,q
r (BR).

Let ε ∈ (0,R/4), and define the function Fε on R3 × [2ε − R,R] by

Fε(m,p,u, r) :=
{
F(m,p/r,p,u, r) if ε � r � R,

F(m,−p/(2ε − r),−p,u,2ε − r) if 2ε − R � r � ε.

Next set Iε = (2ε − R,R), and note that for all (m,p,u, r) ∈ R3 × Iε ,

Fε(m,p,u, r) =Fε(m,−p,u,2ε − r) if r 
= ε, (8.2)

and Fε satisfies hypotheses (F1)–(F4) with Ω = Iε and an appropriate choice of β and γ . The identity (8.2) is a
manifestation of the symmetry in our problem with respect to the reflection at r = ε. Indeed, using (8.2), we easily
see that if u ∈ W 2,q (Iε) and v(r) := u(2ε − r), then Fε[v](r) = Fε[u](2ε − r) for a.e. r ∈ Iε . Thus, for any constant
μ ∈R we have Fε[u](r) + μu(r) = 0 a.e. r ∈ Iε if and only if Fε[v](r) + μv(r) = 0 a.e. r ∈ Iε .

Now, let n ∈N. By Theorem 1.1, there exist an eigenpair (με,ϕε) ∈R× W
2,q
r (Iε) and a finite sequence 2ε − R =

aε,n < aε,n−1 < · · · < aε,1 < bε,1 < · · · < bε,n = R such that⎧⎨
⎩
Fε[ϕε] + μεϕε = 0 a.e. in Iε,

ϕε(r) > 0 in (aε,1, bε,1),

(−1)jϕε(r) > 0 in (aε,j+1, aε,j ) ∪ (bε,j , bε,j+1) for 1 � j � n − 1.

Observe by the symmetry with respect to the reflection at r = ε that the function r �→ ϕε(2ε−r) is an eigenfunction
of (1.1), with Ω = (2ε − R,R) and F replaced by Fε , corresponding to με . By the half simplicity of the eigenvalues
(Theorem 1.1(ii)), we may deduce that ϕε(r) = ϕε(2ε − r) for all r ∈ Īε . In particular, we have ϕ′

ε(ε) = 0 and (aε,j +
bε,j )/2 = ε for all j = 1, . . . , n.

Next, we show that (με)0<ε<R/4 is bounded. To give an upper bound of (με)0<ε<R/4, we divide the interval
(R/4,R) into n intervals, J1 := (R/4,R/4 +hn), . . . , Jn := (R −hn,R), where hn := 3R/4n. For each j = 1, . . . , n,
let ν+

j and ν−
j be the positive and negative principal eigenvalues of (1.1), with F = Fε , in place of F , and Ω = Jj .

Since there are at most n − 1 zeroes of the function ϕε in the interval (R/4,R), we may choose an interval Jj , with
j ∈ {1, . . . , n}, in which ϕε does not vanish. This means that either Jj ⊂ (aε,1, bε,1) or Jj ⊂ (bε,k−1, bε,k) for some
k ∈ {2, . . . , n}. By the monotonicity (Theorem 4.2(i)) on the domains of the principal eigenvalues, we infer that

με � max
{
ν+
j , ν−

j

}
� max

{
ν+
i , ν−

i : i = 1, . . . , n
}
, (8.3)

the right-hand side of which gives an upper bound of (με)0<ε<R/4 independent of ε.
To see that (με) is bounded from below, we set mε := maxr∈[ε,bε,1] ϕε(r) and note that ϕ′(ε) = 0, ϕε(bε,1) = 0 and

P+(
ϕ′′

ε , ϕ′
ε/r

) + β
∣∣ϕ′

ε

∣∣ + (γ + με)ϕε(r) � 0 a.e. in (ε, bε,1).

By Theorem 7.6, there is a constant C1 > 0, independent of ε, such that

mε � mεC1
∥∥(γ + με)+

∥∥ q . (8.4)

Lr (0,R)
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Since limt→−∞ ‖(γ + t)+‖L
q
r (0,R) = 0, we may choose σ0 ∈ R such that C1‖(γ + t)+‖L

q
r (0,R) < 1 if t � σ0. Thus,

from (8.4), we deduce that the inequality σ0 < με holds, and conclude that (με) is bounded.
Now, we prove that there exists a constant δ0 > 0, independent of ε, such that bε,1 − ε � δ0 and bε,j − bε,j−1 �

δ0 for all j = 2, . . . , n. To this end, we set bε,0 := ε, mε,j := max[bε,j−1,bε,j ] |ϕε| for 1 � j � n. Also set u = |ϕε|
temporarily, and observe that, depending on the parity of j , we have two possibilities: either u(r) = ϕε(r) for all
r ∈ (bε,j−1, bε,j ), or u(r) = −ϕε(r) for all r ∈ (bε,j−1, bε,j ). In either cases, we have P+[u]+β|u′|+(γ +με)+u� 0
a.e. in (bε,j−1, bε,j ). Hence, as a consequence of Theorem 7.6, we have

mε,j � mε,jC2
(
b

2q−N
q−1

ε,j − b

2q−N
q−1

ε,j−1

) q−1
q

∥∥(γ + με)+
∥∥

L
q
r (0,R)

, (8.5)

for some constant C2 independent of ε. Since mε,j > 0 for all j = 1, . . . , n, we see from the above inequality that

1 � C2
(
b

2q−N
q−1

ε,j − b

2q−N
q−1

ε,j−1

) q−1
q

∥∥(γ + με)+
∥∥

L
q
r (0,R)

,

which, together with the boundedness of (με), gives a lower bound δ0 > 0, independent of ε, of bε,j − bε,j−1, with
j = 1, . . . , n.

We next note that u := ϕε satisfies a.e. in (ε,R),

P+[u] + β
∣∣u′∣∣ + (

γ + |με|
)|u| � 0 � P−[u] − β

∣∣u′∣∣ − (
γ + |με|

)|u|.
We may assume without loss of generality that ‖ϕε‖L∞(ε,R) = 1 for all ε. By Theorem 7.5, there exists a constant
C3 > 0, independent of ε, such that

‖ϕε‖W
2,q
r (ε,R)

� C3
∥∥(

γ + |με|
)
ϕε

∥∥
L

q
r (ε,R)

� C3
∥∥γ + |με|

∥∥
L

q
r (ε,R)

. (8.6)

We extend the domain of definition of ϕε to [0,R] by setting ϕ̂ε(r) = ϕε(r), if ε � r � R, and = ϕε(ε) otherwise.
We note that ϕ̂ε ∈ W

2,q
r (0,R) and that, by (8.6), (ϕ̂ε) is bounded in W

2,q
r (0,R). Hence there exist a sequence (εk)

∞
k=1

converging to zero, a constant μ ∈R, a sequence 0 = r0 � r1 � · · ·� rn = R and a function ϕ ∈ W
2,q
r (0,R) such that,

as k → ∞, μεk
→ μ, bεk,j → rj for all j = 1, . . . , n − 1, ‖ϕ̂εk

− ϕ‖L∞(0,R) → 0 and ‖ϕ̂′
εk

− ϕ′‖L∞(a,R) → 0 for any
a ∈ (0,R). It is obvious that rj − rj−1 � δ0, ϕ(rj ) = 0 and (−1)j−1ϕ(r) � 0 in (rj−1, rj ) for all 1 � j � n.

We show that ϕ is a solution of F[ϕ]+μϕ = 0 in (0,R). Fix any a ∈ (0,R), and observe that the function Fε =F
on R3 × [a,R] satisfies (F2) with β replaced by the function β + Λ(N − 1)/a. We choose a constant κ > 0 so large
as in Section 3 that

(R − a) exp
(∥∥λ−1β + Λ(N − 1)/a

∥∥
L1(a,R)

)∥∥λ−1(γ − κ)+
∥∥

L1(a,R)
< 1,

and set Fκ(m, l,p,u, r) =F(m, l,p,u, r) − κu for (m, l,p,u, r) ∈ R4 × [a,R]. Note that Fκ [ϕε] + (με + κ)ϕε = 0
a.e. in (a,R). Let ψ ∈ Lq(a,R) be the unique solution of Fκ [ψ] + (μ + κ)ϕ = 0 with the boundary condition
ψ(a) = ϕ(a) and ψ(R) = 0. We define the functions ψ+

ε ,ψ−
ε by putting ψ±

ε (r) = ψ(r)±|(ϕε −ϕ)(a)|. Observe that
for a.e. r ∈ (a,R),

Fκ

[
ψ+

ε

]
(r) =F

[
ψ+

ε

]
(r) − κψ+

ε (r) �Fκ [ψ](r) + (
γ (r) − κ

)∣∣(ϕε − ϕ)(a)
∣∣,

and hence, Fκ [ψ+
ε ](r)+ (μ+κ)ϕ(r)−γ (r)|(ϕε −ϕ)(a)| � 0. Similarly, we get Fκ [ψ−

ε ]+ (μ+κ)ϕ(r)+γ (r)|(ϕε −
ϕ)(a)| � 0 for a.e. r ∈ (a,R). We apply Theorem 2.4 to the pairs (ϕε,ψ

+
ε ) and (ψ−

ε , ϕε), to find that

‖ϕε − ψ‖L∞(a,R) � C
(‖ϕε − ϕ‖L∞(a,R) + |με − μ|)

for some constant C independent of ε. This guarantees that ψ = ϕ in [a,R] and hence ϕ is a solution of F[ϕ]+μϕ = 0
in (a,R). It is now clear that ϕ is a solution of F[ϕ] + μϕ = 0 in (0,R). Thus, the pair of μ and the function ϕ is an
eigenpair of (8.1).

To complete the proof, we show that ϕ(r) > 0 in [0, r1) and (−1)j−1ϕ(r) > 0 in (rj−1, rj ) for all j = 2, . . . , n.
We suppose by contradiction that either ϕ(0) = 0, or else ϕ(b) = 0 for some b ∈ (rj−1, rj ) and j ∈ {1, . . . , n}. By
Theorem 7.7, if ϕ(0) = 0, then ϕ(r) ≡ 0 in [0, r1], and if the latter is the case, then ϕ(b) = ϕ′(b) = 0. Then, by the
uniqueness of solution of the Cauchy problem (Theorem 2.2), we see that ϕ(r) ≡ 0 in [0,R], which is a contradiction.
The function ϕ has therefore the right sign property. �

The next lemma states analogues in the radial case of Theorems 4.1 and 4.2(i).
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Lemma 8.1.

(i) Let (μ,ϕ) ∈ W
2,q
r (0,R) be an eigenpair of (8.1). Assume that the function ϕ is nonnegative (resp., nonpositive)

on [0,R]. Then we have ϕ > 0 (resp., ϕ < 0) in [0,R).
(ii) If (μ,ϕ), (ν,ψ) ∈ R × W

2,q
r (0,R) are eigenpairs of (8.1) and either ϕ > 0 and ψ > 0 in [0,R), or else ϕ < 0

and ψ < 0 in [0,R), then μ = ν and ϕ = θψ in (0,R) for some constant θ > 0.
(iii) Let 0 < a < b � R. Let (μ,ϕ) ∈R×W

2,q
r (0, a) and (ν,ψ) ∈R×W

2,q
r (0, b) be eigenpairs of (8.1) in (0, a) and

in (0, b), respectively. Assume that either ϕ > 0 in [0, a) and ψ > 0 in [0, b) or else ϕ < 0 in [0, a) and ψ < 0 in
[0, b). Then we have μ > ν.

Proof. The assertion (i) is a direct consequence of Theorem 7.7.
To check (ii), we may assume by symmetry that μ � ν. We treat only the case where ϕ > 0 and ψ > 0 in [0,R);

the other case can be treated similarly. Set θ = inf[0,R) ψ/ϕ. We have either θ = ψ(s)/ϕ(s) for some s ∈ [0,R) or
else, in view of l’Hôpital’s rule and the strong maximum principle (Theorem 2.6), θ = ψ ′(R)/ϕ′(R). As in the proof
of Theorem 4.1, we see that the function u := ψ − θϕ satisfies

0 �F[ψ] + μψ −F[θϕ] − μθϕ � P−[u] − β
∣∣u′∣∣ − (

γ + |μ|)u a.e. in (0,R),

and that either u(s) = 0 for some s ∈ [0,R) or u′(R) = 0. Applying Theorems 7.7 and 2.6 to the function u, we find
that u(r) ≡ 0 in [0,R], that is, ψ = θϕ. Furthermore, if μ < ν, then νψ = −F[ψ] = −F[θϕ] = μθϕ = μψ in (0,R),
which is impossible. That is, we have μ = ν.

We prove that (iii) holds. Again, we treat only the case where both ϕ and ψ are positive in [0,R). Suppose
by contradiction that μ � ν. Set θ = inf[0,a) ψ/ϕ. Clearly, we have ψ(s) = θϕ(s) for some s ∈ [0, a). If we set
u := ψ − θϕ, then u satisfies P−[u] − β|u′| − (γ + |μ|)u � 0 a.e. in (0, a). Hence, we deduce as above that u(r) ≡ 0
in [0, a], while we have u(a) > 0. This contradiction shows that μ > ν. �
Proof of Theorem 1.2(ii). Let (μ,ϕ) ∈ R × W

2,q
r (0,R) be an eigenpair of (8.1). We treat only the case where

ϕ(0)� 0, since the other case can be dealt with in a parallel way.
We first prove that ϕ has at most a finite number of zeroes. For this, we suppose by contradiction that it has

infinitely many zeroes. As a result, the set of zeroes of ϕ has an accumulation point a in [0,R]. We first suppose
that a > 0. Clearly we have ϕ(a) = 0. Moreover, by Rolle’s theorem, we see that ϕ′(a) = 0. By the uniqueness result
(Theorem 2.2) for the Cauchy problem for ODE, we find that ϕ(r) ≡ 0 in [0,R], which is a contradiction. We next
suppose that a = 0. By the above argument, we have (ϕ(r), ϕ′(r)) 
= (0,0) for all r ∈ (0,R]. Because of the choice
of a, there are sequences (ak), (bk) ⊂ (0,R) such that 0 < ak < bk for all k, bk → 0 as k → ∞, ϕ(ak) = ϕ(bk) = 0
for all k and ϕ(r) > 0 for all r ∈ (ak, bk) and all k. Since bk − ak → 0 as k → ∞, following the argument which led
to (8.5), we get a contradiction. Thus, ϕ has at most a finite number of zeroes.

We note here by Theorem 7.7 that ϕ(0) > 0. Let (rk)
n
k=1 be the finite sequence of all zeroes of ϕ such that r0 :=

0 < r1 < · · · < rn = R. If n = 1, then our claim is a consequence of Lemma 8.1(i) and (ii).
We may thus assume that n� 2. Fix any eigenpair (ν,ψ) ∈R× W

2,q
r (0,R) having exactly n zeroes in [0,R] such

that ψ(0) > 0. It is enough to show that μ = ν and that there is a constant θ > 0 such that ψ = θϕ in [0,R].
Let (sk)

n
k=1 be the finite sequence of all zeroes of ψ such that s0 := 0 < s1 < · · · < sn = R. By Lemma 5.2, there

are two indices k, j ∈ {1, . . . , n} such that [rk−1, rk] ⊂ [sk−1, sk] and [sj−1, sj ] ⊂ [rj−1, rj ]. Hence, Theorem 4.2(i)
and Lemma 8.1 together imply that μ = ν and [rj−1, rj ] = [sj−1, sj ] for some j ∈ {1, . . . , n}. Applying the same
argument repeatedly for complementary intervals, we infer that [rk−1, rk] = [sk−1, sk] for all k = 1, . . . , n. Now, by
Lemma 8.1, we may choose a constant θ > 0 so that ψ = θϕ in [0, r1]. Theorem 2.2 (a uniqueness result for the
Cauchy problem for ODE) allows us to conclude that ψ = θϕ in [0,R]. �

The following proposition is analogous to Proposition 5.3.

Proposition 8.2. Let (μ+
n ) and (μ−

n ) be the sequences of eigenvalues given by Theorem 1.2. Then

lim
n→∞ min

{
μ+

n ,μ−
n

} = ∞, (8.7)

max
{
μ+

n ,μ−
n

}
< min

{
μ+ ,μ− }

for every n ∈ N. (8.8)
n+1 n+1
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Proof. Fix n ∈ N, and let ϕ ∈ W
2,q
r (0,R) be an eigenfunction corresponding to μ+

n . Let (rj )
n
j=1 be the increasing

finite sequences of zeroes of the eigenfunction ϕ. Set r0 = 0. Obviously, there exists j ∈ {1, . . . , n} such that rj −
rj−1 � R/n. Fix j ∈ {1, . . . , n} so that rj − rj−1 � R/n. Set m = max[rj−1,rj ] |ϕ| and

εn = max
0�r�R

((
r + R

n

) 2q−N
q−1 − r

2q−N
q−1

) q−1
q

.

Similarly to how we have obtained (8.5), we get m � Cεn‖(γ +μ+
n )+‖L

q
r (0,R)m for some constant C > 0 independent

of n. It is then easily seen that μ+
n → ∞ as n → ∞. Similarly, we find that μ−

n → ∞ as n → ∞. Thus, (8.7) is valid.
The inequality (8.8) is proved in the same way as the proof of (5.5) in Proposition 5.3, and we do not give here the

detail. �
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Appendix A. An example of F

Let N � 3, and we give an example of F :SN → R which satisfies (F1)–(F4) but is not invariant under conjugation
of the orthogonal matrices Q ∈ O(N).

For any matrix M ∈ SN , let λ1(M) � λ2(M) � · · · � λN(M) denote the eigenvalues of M . Let ‖M‖ de-
note the norm of the matrix M given by ‖M‖ = maxω∈SN−1 |Mω · ω|. It is well known and easily seen that
‖M‖ = max{|λ1(M)|, |λN(M)|}. In view of the Courant minimax theorem, which states that

λi(M) = min
V

max
ω∈SN−1∩V

Mω · ω,

where the minimum is taken over all i-dimensional subspaces V of RN , we see that the functions λi(M) of M are
Lipschitz continuous on SN . In fact, as is easily seen, we have∣∣λi(X) − λi(Y )

∣∣ � ‖X − Y‖ for all X,Y ∈ SN and i = 1, . . . ,N.

Define the function g :SN →R by

g(M) = min
{∣∣λ1(M) − λ2(M)

∣∣, ∣∣λN(M) − λ2(M)
∣∣, |Me1 · e1|

}
,

where e1 = (1,0, . . . ,0) ∈RN . Note that g is Lipschitz continuous on SN . More precisely, we have∣∣g(X) − g(Y )
∣∣ � 2‖X − Y‖ for all X,Y ∈ SN and i = 1, . . . ,N. (A.1)

Now, we define the function F :SN → R by

F(M) = trM + 1

4
g(M).

Proposition A.1. The function F given by the above formula satisfies (F1)–(F4), but it is not invariant under conju-
gation of the matrices Q ∈ O(N).

Proof. It is clear that F satisfies (F1) and (F3).
For any X,Y ∈ SN we have

F(X) − F(Y ) � tr(X − Y) + 1‖X − Y‖.

2
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Moreover, choosing a vector ω ∈ SN−1 so that

‖X − Y‖ = ∣∣(X − Y)ω · ω∣∣,
we observe that if (X − Y)ω · ω � 0, then

F(X) − F(Y ) � tr(X − Y) + 1

2
(X − Y)ω · ω = tr

(
IN + 1

2
ω ⊗ ω

)
(X − Y),

and if (X − Y)ω · ω < 0, then

F(X) − F(Y ) � tr

(
IN − 1

2
ω ⊗ ω

)
(X − Y).

Hence, if we set λ = 1/2 and Λ = 3/2, then we have

F(X) − F(Y ) � P +(X − Y) for all X,Y ∈ SN.

(Recall that P +(M) = max{trAM: λIN �A � ΛIN }.) This shows that F satisfies condition (F2).
Now, we show that F satisfies (F4). For any m, l ∈R and ω ∈ SN−1, we set

M = mω ⊗ ω + l(IN − ω ⊗ ω).

If m < l, then we have

m = λ1(M) < l = λ2(M) = · · · = λN(M),

which shows that g(M) = |λN(M) − λ2(M)| = 0 and F(M) = trM = m + (N − 1)l. If m > l, then

l = λ1(M) = · · · = λN−1(M) < m = λN(M),

from which we see that g(M) = 0 and F(M) = m + (N − 1)l. Similarly, if m = l, then F(M) = Nm = Nl. Thus,
F(M) is a function of m and l and does not depend on ω. This proves that F satisfies (F4).

Next we show that F is not invariant under conjugation of the matrices Q ∈ O(N). Let M ∈ SN be the diagonal
matrix given by

M = diag(0,1, . . . ,N − 1).

We have

F(M) = trM + 1

4
g(M) = trM + 1

4
min{1,N − 2,0} = trM.

Let Q ∈ O(N) be the matrix given by

Q =

⎛
⎜⎜⎜⎜⎝

0 −1 0 · · · 0
1 0 0 · · · 0
0 0
...

... IN−2
0 0

⎞
⎟⎟⎟⎟⎠ .

Then we have Q−1MQ = diag(1,0,2, . . . ,N − 1) and

F
(
Q−1MQ

) = trM + 1

4
g(M) = trM + 1

4
min{1,N − 2,1} � trM + 1

4
.

Thus, F(Q−1MQ) > F(M) and F is not invariant under conjugation of the matrices Q ∈ O(N). �
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