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Abstract

We consider the Schrödinger system with Newton-type interactions that was derived by R. Klein, A. Majda and K. Damodaran
(1995) [17] to modelize the dynamics of N nearly parallel vortex filaments in a 3-dimensional homogeneous incompressible fluid.
The known large time existence results are due to C. Kenig, G. Ponce and L. Vega (2003) [16] and concern the interaction of
two filaments and particular configurations of three filaments. In this article we prove large time existence results for particular
configurations of four nearly parallel filaments and for a class of configurations of N nearly parallel filaments for any N � 2. We
also show the existence of travelling wave type dynamics. Finally we describe configurations leading to collision.
© 2012

1. Introduction

In this paper we study the dynamics of N interacting vortex filaments in a 3-dimensional homogeneous incom-
pressible fluid. We focus on filaments that are all nearly parallel to the z-axis. They are described by means of
complex-valued functions Ψj (t, σ ) ∈ C, 1 � j � N , where t ∈ R is the time, σ ∈ R parameterizes the z-axis, and
Ψj (t, σ ) is the position of the j -th filament. A simplified model for the dynamics of such nearly parallel filaments has
been derived by R. Klein, A. Majda and K. Damodaran [17] in the form of the following 1-dimensional Schrödinger
system of equations⎧⎪⎨⎪⎩

i∂tΨj + Γj∂
2
σ Ψj +

∑
k �=j

Γk

Ψj − Ψk

|Ψj − Ψk|2 = 0, 1 � j � N,

Ψj (0, σ ) = Ψj,0(σ ).

(1.1)

* Corresponding author.
E-mail addresses: Valeria.Banica@univ-evry.fr (V. Banica), Evelyne.Miot@math.u-psud.fr (E. Miot).

1 Partially supported by the French ANR project R.A.S. ANR-08-JCJC-0124-01.

L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
0294-1449/$ – see front matter © 2012 . .
http://dx.doi.org/10.1016/j.anihpc.2012.04.005

L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.anihpc.2012.04.005
http://www.elsevier.com/locate/anihpc
mailto:Valeria.Banica@univ-evry.fr
mailto:Evelyne.Miot@math.u-psud.fr
http://dx.doi.org/10.1016/j.anihpc.2012.04.005


814 V. Banica, E. Miot / Ann. I. H. Poincaré – AN 29 (2012) 813–832
Here Γj is a real number representing the circulation of the j -th filament.2 In the case where Ψj (t, σ ) = Ψj (t) = Xj(t)

are exactly parallel filaments, system (1.1) reduces to the well-known point vortex system arising in 2-dimensional
homogeneous incompressible fluids⎧⎪⎨⎪⎩

i
dXj

dt
+

∑
k �=j

Γk

Xj − Xk

|Xj − Xk|2 = 0, 1 � j � N,

Xj (0) = Xj,0.

(1.2)

The system (1.1) combines on the one hand the linearized self-induction approximation for each vortex filament,
given by the linear Schrödinger equation, and on the other hand the interaction of the filaments, for any σ , by the
point vortex system. Solutions of the simplified model (1.1) have remarkable mathematical and physical properties, as
described in [20]. The main issue in this context is the possibility of collision of at least two of the filaments in finite
time at some point σ .

Before presenting the known results on nearly parallel vortex filaments let us briefly review some classical facts
on the point vortex system (1.2). Its dynamics preserves the center of inertia

∑
j ΓjXj (t), the angular momentum∑

j Γj |Xj(t)|2 and the quantities∑
j �=k

ΓjΓk ln
∣∣Xj(t) − Xk(t)

∣∣2
,

∑
j �=k

ΓjΓk

∣∣Xj(t) − Xk(t)
∣∣2

.

In case of circulations having all the same signs this implies that no collision among the vortices can occur in finite
time. Therefore there exists a unique global C1 solution (Xj (t))j to (1.2). For N = 2 global existence still holds
independently of the circulation signs since |X1(t) − X2(t)| remains constant. When dealing with more than two
vortices the single-sign assumption of the circulations really matters – explicit examples of configurations leading
to collapse in finite time have been given by self-similar shrinking triangles [1]. For any circulations the equilateral
triangle is a rotating or translating configuration, and for identical circulations the ends and the middle of a segment
form also a relative equilibrium configuration. For N � 4 and identical circulations Γj = Γ ∀j , vertices of regular
polygons also form relative equilibrium configurations. They rotate around the center of inertia with constant angular
velocity ω = Γ (N − 1)/(2R2), where R is the size of the polygon. These polygon configurations are stable if and
only if N � 7. The proof of this result, conjectured by Kelvin in 1878, was recently completed by L.G. Kurakin and
V.I. Yudovitch in 2002 [18] (see also [22]). Finally, the configuration formed by adding to an N -polygon configuration
one point of arbitrary circulation Γ0 at the center of inertia, is a relative equilibria rotating with constant angular
velocity ω = [Γ (N − 1) + 2Γ0]/(2R2). A natural observation to be done is that as N increases the dynamics gets
more and more sophisticated.

The first result on nearly parallel vortex filaments has been given in [17]. The authors proved that for N = 2 the
linearized system around the exactly parallel filaments solution of (1.2) is stable if the circulations have the same
sign and unstable otherwise. Moreover, they made numerical simulations suggesting global existence for (1.1) in the
first case and collision in finite time in the second case. Their first conjecture on global existence was proved then
by C. Kenig, G. Ponce and L. Vega [16] for filaments Ψj obtained as small H 1 perturbations of exactly parallel
filaments Xj ,

Ψj (t, σ ) = Xj(t) + uj (t, σ ), 1 � j � N. (1.3)

More precisely, it has been proved in [16] (see also the survey [23]) that for uj (0) sufficiently small in H 1(R) – and
therefore in L∞(R) – global existence and uniqueness of the solution to system (1.1) hold for all vortex solutions
(Xj )j of equal circulations and such that |Xj(t) − Xk(t)| = d for 1 � j �= k � N . The only such possible config-
urations are N = 2 with any pair (X1,X2), and N = 3 with (X1,X2,X3) an equilateral triangle. Moreover, local
existence and uniqueness hold for any number N of filaments and any circulations Γj and the solution exists at least
up to times of order |ln∑

j ‖uj (0)‖H 1 |.
Finally, let us mention that P.-L. Lions and A. Majda [19] developed an equilibrium statistical theory for nearly

parallel filaments using the approximation given by system (1.1).

2 The free Schrödinger operator derived in [17] is actually i∂t + αj Γj ∂2
σ , where αj is another vortex core parameter related to the j -th filament.

For simplicity we assume throughout the paper that αj = 1.
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The purpose of this article is to study other specific configurations of vortex filaments. In order to obtain large time
existence results we will strongly use the symmetry properties of the configuration of the straight filaments (Xj )j in
itself, and those of the perturbation (uj )j on the other hand.

In the first part of this paper we focus on the case where N � 3 and (Xj )j is a regular rotating polygon of radius 1
with N vertices, with or without its center. The index j = 0 refers to the center of the polygon and 1 � j � N to the
vertices of the polygon. Since (1.1) is invariant under translations, we can suppose that the center of inertia of the
polygon is set at the origin, i.e. X0(t) = 0 for all t . We shall impose that the circulations in the vertices have the same
value Γ and that ω has the same sign as Γ . For simplicity we consider

Γj = 1, 1 � j � N.

In the cases where the center of the polygon is not considered, the angular speed ω is (N − 1)/2, hence positive. In
the cases when the center of the polygon is considered, the circulation Γ0 must be larger than −(N − 1)/2.

We will consider very specific perturbations of the configuration (Xj )j , assuming that all the perturbations are the
same for each of the straight filaments, a dilation combined with a rotation. More precisely we shall focus on solutions
having the form

Ψj (t, σ ) = Xj(t)Φ(t, σ ), (1.4)

with Ψ (t, σ ) close to Xj(t) in some sense as |σ | → ∞. Let us notice that this dilation–rotation type of perturbations
keeps the symmetry of the polygon for all (t, σ ). A natural example of such perturbations are the ones with Φ − 1
small in H 1(R). Our result below allows to handle a larger class of perturbations of the regular rotating polygon,
including also for example all small constant rotations of the polygon.

Theorem 1.1. Let N � 3 and (Xj )j be the equilibrium solution given by a regular rotating polygon of radius 1, with
or without its center, with Γj = 1 for 1 � j �N and positive angular velocity ω. Assume that

Ψj,0(σ ) = Xj,0Φ0(σ ),

with Φ0 such that

E(Φ0) = 1

2

∫
|∂σ Φ0|2 + ω

2

∫ (|Φ0|2 − 1 − ln |Φ0|2
)

satisfies E(Φ0) � η1, where η1 is an absolute constant.3 Then there exists a unique global solution (Ψj )j of (1.1),
with this initial datum, such that

Ψj (t, σ ) = Xj(t)Φ(t, σ ), t ∈ R

with Φ − Φ0 ∈ C(R,H 1(R)). Moreover

3

4
� |Ψj (t, σ ) − Ψk(t, σ )|

|Xj(t) − Xk(t)| � 5

4
, t, σ ∈ R.

In particular, if Φ0(σ )
|σ |→∞−→ 1 then Ψj (t, σ )

|σ |→∞−→ Xj(t) ∀t , and if Φ0 ∈ 1 + H 1(R) then Ψj − Xj ∈ C(R,H 1(R)).

Remark 1. Theorem 1.1 does not assert that if initially ‖Φ0 − 1‖H 1 is small then ‖Φ(t) − 1‖H 1 remains small for
all t .

Our analysis is based on the observation that the solution (Ψj )j to system (1.1) satisfies (1.4) if and only if Φ is
solution to the equation

i∂tΦ + ∂2
σ Φ + ω

Φ

|Φ|2
(
1 − |Φ|2) = 0. (1.5)

3 Introduced in Lemma 2.1 below.
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Eq. (1.5) is a hamiltonian equation, which preserves the energy

E(Φ) = 1

2

∫
|∂σ Φ|2 + ω

2

∫ (|Φ|2 − 1 − ln |Φ|2). (1.6)

Note that in the setting of Theorem 1.1 the solutions satisfy |Φ| 	 1, so that Eq. (1.5) is formally similar to the
well-known Gross–Pitaevskii equation

i∂tΦ + ∂2
σ Φ + ωΦ

(
1 − |Φ|2) = 0, (1.7)

with energy given by

EGP(Φ) = 1

2

∫
|∂σ Φ|2 + ω

4

∫ (|Φ|2 − 1
)2

.

In fact we shall see that both functionals E(Φ) and EGP(Φ) are comparable whenever |Φ| 	 1. A key point in the
proof is, as in [16], the fact that if E(Φ0) is small then the solution Φ enjoys the property

sup
t∈R

∥∥∣∣Φ(t)
∣∣2 − 1

∥∥
L∞ � 1

4
. (1.8)

This allows us to establish Theorem 1.1 by using the techniques introduced in [24] by P.E. Zhidkov (see also P. Gérard
[11,12]) for solving the Gross–Pitaevskii equation in the energy space.

In the case where Φ0 ∈ 1 + H 1(R) we mention that the proof in [16] can be adapted here, by showing that some
quantities are still conserved even though |Xj(t) − Xk(t)| are not all the same.

As far as we have seen, global existence and uniqueness of the filaments hold for N = 2 with any (Xj )j and any
small perturbations, for N = 3 with (Xj )j the equilateral triangle stable equilibrium and any small perturbations, for
any N � 2 with (Xj )j the regular polygon equilibrium and any small perturbations with strong symmetry conditions.
We expect then that global existence might hold for small N and less restrictive conditions on the perturbations.

In the second part of this paper we study the case

N = 4, Γj = 1,

and we assume that (Xj )j = (X1,X2,X3,X4) is a square of radius 1 rotating with constant angular speed. Again,
since (1.1) is invariant under translations, we can suppose that the square is centered at the origin. Our main result in
this case may be formulated as follows.

Theorem 1.2. Let N = 4 and (Xj )j be the equilibrium solution given by a rotating square of radius 1 with Γj = 1.
Let (uj,0)j ∈ H 1(R)4 and set Ψj,0 = Xj,0 + uj,0.

We introduce the energy4

E0 = 1

2

∑
j

∫ ∣∣∂σ Ψj,0(σ )
∣∣2

dσ

+ 1

2

∑
j �=k

∫
− ln

( |Ψj,0(σ ) − Ψk,0(σ )|2
|Xj,0 − Xk,0|2

)
+

( |Ψj,0(σ ) − Ψk,0(σ )|2
|Xj,0 − Xk,0|2 − 1

)
dσ.

We also introduce the quantity

Ẽ0 = max

{
E0;

‖u1,0 + u3,0‖2
L2

2
+ ‖u2,0 + u4,0‖2

L2

2

}
and we assume that

Ẽ0 � η2

4 Note that E0 � 0.
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for an absolute small constant η2 > 0. Then there exists an absolute constant C > 0, and there exists a time T , with

T � C min

{
1

Ẽ0
1/4

maxj,k ‖uj,0 − uk,0‖1/2
L2

,
1

Ẽ0
1/3

}
,

such that there exists a unique corresponding solution (Ψj )j to system (1.1) on [0, T ], satisfying Ψj = Xj + uj , with
uj ∈ C([0, T ],H 1(R)), and such that

3

4
� |Ψj (t, σ ) − Ψk(t, σ )|

|Xj(t) − Xk(t)| � 5

4
, t ∈ [0, T ], σ ∈R.

Finally, if the initial perturbation is parallelogram-shaped, namely

‖u1,0 + u3,0‖L2 = ‖u2,0 + u4,0‖L2 = 0,

then the solution (Ψj )j is globally defined.

Remark 2. In the proof of Theorem 1.2 we shall actually establish a local existence result for any N , any parallel
configuration (Xj )j , any set of positive circulations (Γj )j and any perturbations with small energy, but not necessarily
small in H 1. This is a slight improvement of the result in [16], see also the next two remarks.

Remark 3. As we shall see, we can infer from the smallness of the energy E0 and from Sobolev embeddings that the
nearly parallel filaments Ψj,0 are not too far from the straight filaments Xj,0 and that E0 � C

∑
j ‖uj,0‖2

H 1 . Conversely,

if we assume that
∑

j ‖uj,0‖H 1 is sufficiently small then one can show that Ẽ0 � C
∑

j ‖uj,0‖2
H 1 and the assumptions

of Theorem 1.2 are satisfied. Therefore the hypothesis on the energy is less restrictive than the one on the H 1 norm,
see also the next remark.

Remark 4. From 0 � E0 � C
∑

j ‖uj,0‖2
H 1 it follows that Ẽ0 � C

∑
j ‖uj,0‖2

H 1 so the time of existence is a priori
larger than in [16]. Moreover, for all ε > 0 Theorem 1.2 allows for initial perturbations of the form

Ψ ε
j,0(σ ) = eiϕε(σ )Xj,0 + T ε(σ ),

with ϕε,T ε such that ‖(ϕε, T ε)‖H 1 = O(1). This amounts to rotating and translating the square (Xj )j at each level σ .
By taking oscillating phases of the form ϕε(σ ) = √

εϕ0(εσ ) with a fixed ϕ0 ∈ H 1, which implies ‖ϕε‖L2 � O(1),
‖∇ϕε‖L2 = O(ε) and by choosing T ε such that ‖T ε‖H 1 = O(ε) we compute

Ẽ0 = O
(
ε2), ∑

j

‖uj,0‖2
H 1 � O(1).

Therefore Theorem 1.2 provides a unique solution at least up to time of order 1/
√

ε, while the H 1 norm of the
perturbations is of order one. This suggests that the energy space is more appropriate for the analysis of (1.1) than
classical Sobolev spaces.

The proof of Theorem 1.2 follows the one of Theorem 1.1 combined with the one in [16]. In particular, we consider,
as in [16], the energy

E(t) = 1

2

∑
j

∫ ∣∣∂σ Ψj (t, σ )
∣∣2

dσ

+ 1

2

∑
j �=k

∫
− ln

( |Ψj (t, σ ) − Ψk(t, σ )|2
|Xj(t) − Xk(t)|2

)
+

( |Ψj (t, σ ) − Ψk(t, σ )|2
|Xj(t) − Xk(t)|2 − 1

)
dσ, (1.9)

and show that the solution can be extended as long as E(t) remains small. For this purpose we show that uj can be
extended locally from a time t0 by a fixed point argument for small H 1 perturbations wj of the linear evolutions of the
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initial data, i.e. uj (t) = ei(t−t0)∂
2
σ uj (t0) + wj(t). In here we use crucially the fact that the deviation ei(t−t0)∂

2
σ uj (t0) −

uj (t0) can be upper-bounded in L∞ in terms of the energy at the initial time E(t0). As observed in [16], for any
two parallel filaments and for the equilateral triangle configuration the energy is conserved, i.e. E(t) = E(0) = E0, so
that global existence follows for small energy perturbations. Unfortunately, under the assumptions of Theorem 1.2
the energy is no longer conserved (unless the perturbation (uj )j is parallelogram-shaped). Instead, we estimate its
evolution in time, showing that it does not increase too fast, and this control enables us to obtain a large time of
existence.

We finally mention another collection of dynamics that is governed by the linear Schrödinger equation. For shifted
perturbations Ψj = Xj + u, for any Xj with Γj the same, we obtain that u is a solution of the linear Schrödinger
equation. So if u is regular enough, it has constant H 1 norm, so the filaments remain separated for all time. Moreover,
due to the dispersive inequality for the linear Schrödinger equation, the perturbations spread in time along the parallel
configuration Xj . Finally, we get examples of C∞ perturbations decaying at infinity that generate a singularity in
finite time by considering less regular perturbations than H 1 that lead to an L∞ dispersive blow-up for the linear
Schrödinger. The self-similar linear Schrödinger solution constructed from homogeneous data |x|−p with 0 < p < 1
in [6] leads to solutions blowing up in L∞ in finite time at one point. Also, the linear Schrödinger evolution of
ei|x|2/(1 + |x|2)m with 1/2 < m � 1 has been proved in [5] to be an L2 solution whose modulus blows up in finite
time at one point.

The third part of this work is devoted to travelling waves for system (1.1). Let us recall that in the case of one
single filament, a travelling wave dynamics was exhibited by H. Hasimoto [14] and experimentally observed by
E.J. Hopfinger and F.K. Browand [15]. Here we construct travelling waves for several filaments via finite energy
travelling wave solutions to Eq. (1.5), i.e. solutions of the form Φ(t, σ ) = v(σ + ct), with v solution of the equation

icv′ + v′′ + ω
v

|v|2
(
1 − |v|2) = 0 (1.10)

and having finite energy,

E(v) = 1

2

∫
|∂σ v|2 + ω

2

∫ (|v|2 − 1 − ln |v|2) < ∞. (1.11)

As in Theorem 1.1 we assume that ω > 0. In order to avoid having v approaching zero we shall impose that the energy
is small.

Existence, stability issues and qualitative behaviour near the speed of sound of travelling waves for Gross–
Pitaevskii-type equations and related problems were extensively studied in the past years (see for instance [9,25,4,
10,13,3,21,8] and the references therein). For the 1-dimensional Gross–Pitaevskii equation (1.7), finite energy travel-
ling waves (referred to as “grey solitons” in the context of non-linear optics) are known to exist for all 0 < c <

√
2ω,

and they have the explicit form (see e.g. [13])

v(σ ) = vc(σ ) =
√√√√1 −

1
2ω

(2ω − c2)

cosh2(

√
2ω−c2

2 σ)

e
i arctan ωe

√
2ω−c2σ +c2−ω

c
√

2ω−c2
−i arctan c√

2ω−c2 .

The modulus |vc| of such maps is close to 1 when c is close to
√

2ω, in which case E(vc) � CEGP(vc) � C(2ω−c2)3/2

(see [13]), so the energy is finite and as small as needed. Note that therefore the maps vc, with c close to
√

2ω enter
the class of perturbations presented in Theorem 1.1. Our next result in this context is the following.

Theorem 1.3. Let c be such that 0 < 2ω − c2 < η3 for an absolute small constant η3 > 0. There exists a travelling
wave solution to system (1.1)

Ψj (t, σ ) = eitω+i
2πj
N v(σ + ct),

where v ∈ C∞(R) is a solution to Eq. (1.10), with finite energy E(v) � C(2ω − c2)3/2, such that v never vanishes.
The modulus |v| is an even function, increasing on [0,∞) and satisfying on R

0 < 1 − ∣∣v(σ )
∣∣2

< min

{
3 (

2ω − c2), C
√

2ω − c2e−
√

2ω−c2
−|σ |

}
.

2ω
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Finally, we have a limit at infinity

v(σ ) → exp(iθ±), σ → ±∞, with |θ+ − θ−|� C
√

2ω − c2.

Here C denotes an absolute numerical constant.

It has been noticed in [16] that the Galilean invariance of system (1.1) leads to helix-shaped vortex filaments. In
here, on one hand Eq. (1.5) is invariant under Galilean transform, i.e. Φν(t, σ ) = e−itν2+iνσ Φ(t, σ − 2tν) is also a

solution ∀ν ∈R. On the other hand Xj(t) = eitω+i
2πj
N for j �= 0, so

Ψj,ν(t, σ ) = eit (ω−ν2)+iνσ+i
2πj
N Φ(t, σ − 2tν)

= eit (ω−ν2)+iνσ+i
2πj
N v

(
σ + t (c − 2ν)

)
.

Therefore, choosing ν = √
ω, we obtain a stationary (θ+ − θ−)-twisted N -helix filament configuration with some

localized perturbation travelling in time on each of its filaments.
Last but not least, in the last part of this paper we describe configurations of nearly parallel filaments that lead to a

collision in finite time. They are obtained by the same kind of dilation–rotation perturbations as in Theorem 1.1.

Theorem 1.4. Let N � 2 and (Xj )j be the stationnary configuration given by a regular N -polygon with its center
and circulations Γj = 1 for 1 � j � N , Γ0 = −(N − 1)/2. Then the initial condition

Ψj,0(σ ) = Xj(0)

(
1 − e− σ2

1−4i√
1 − 4i

)
yields a solution (Ψj )j for system (1.1), with Ψj − Xj ∈ C(R,H 1(R)), that collide at time t = 1 at σ = 0.

The remainder of this paper is organized as follows. In Section 2 we derive Eq. (1.5). We then present some
preliminary lemmas about its energy, which lead to the proof of Theorem 1.1. Section 3 is devoted to the proof
of Theorem 1.2. Section 4 contains the construction of travelling waves for Theorem 1.3. Finally, in Section 5 we
construct the collision dynamics in Theorem 1.4. In all the following the notation C denotes an absolute constant
which can possibly change from a line to another.

2. Proof of Theorem 1.1

We first derive Eq. (1.5). Plugging the ansatz Ψj (t, σ ) = Xj(t)Φ(t, σ ) into system (1.1) with Γj = 1 for 1 � j � N

we obtain

iXj ∂tΦ + i∂tXjΦ + Xj∂
2
σ Φ + Φ

|Φ|2
∑
k �=j

Xj − Xk

|Xj − Xk|2 = 0.

Next we use (1.2) to get

Xj

(
i∂tΦ + ∂2

σ Φ
) − i∂tXj

Φ

|Φ|2
(
1 − |Φ|2) = 0.

Now if we consider a configuration rotating with speed ω around its steady center of inertia X0 = 0, for 1 � j � N

we have Xj(t) = eitω+iθj , so that −i∂tXj = ωXj and hence we obtain Eq. (1.5),

i∂tΦ + ∂2
σ Φj + ω

Φ

|Φ|2
(
1 − |Φ|2) = 0.

Conversely, assume that Φ is a solution to Eq. (1.5) and set Ψj = XjΦ . Reversing the previous arguments, we obtain

i∂tΨj + ∂2
σ Ψj +

∑ Ψj − Ψk

|Ψj − Ψk|2 = 0, 1 � j � N,
k �=j
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while, since Ψ0(t, σ ) = 0 for all (t, σ ),

i∂tΨ0 = ∂2
σ Ψ0 = 0 and

N∑
k=1

Ψ0 − Ψk

|Ψ0 − Ψk|2 = − Φ

|Φ|2
N∑

k=1

Xk

|Xk|2 = 0

and therefore (Ψj )j is a solution to system (1.1).

2.1. Some preliminary lemmas

Lemma 2.1. There exists an absolute constant η1 and a time t1 depending only on η1 such that:

(i) If E(f )� η1 then∥∥|f |2 − 1
∥∥

L∞ � 1

4
.

(ii) If ‖∂σ f ‖L2 � η1 then for all 0 � t � t1

1√
2

∥∥eit∂2
σ f − f

∥∥
L∞ �

∥∥eit∂2
σ f − f

∥∥
H 1 �

1

4
.

Proof. (i) The function a(x) = x − 1 − lnx is positive and convex, and vanishes only at x = 1, therefore we can adapt
standard arguments already used in the context of Ginzburg–Landau-type functionals (see e.g. [2]). More precisely,
we assume by contradiction that ||f (σ0)|2 − 1| > 1/4 for some σ0 ∈ R. For example, |f (σ0)| >

√
5/4. Next, since

‖∂σ f ‖2
L2 � 2E(f ) we have by Cauchy–Schwarz inequality

∣∣f (σ )
∣∣� ∣∣f (σ0)

∣∣ −
∣∣∣∣∣

σ∫
σ0

∂xf (x) dx

∣∣∣∣∣�
√

5

4
− √

2E(f )|σ − σ0|.

It follows that |f | > √
9/8 on I = [σ0 − 1/(500E(f )), σ0 + 1/(500E(f ))]. Therefore

E(f )� 1

2
a

(
9

8

)
|I | = 1

500E(f )
a

(
9

8

)
,

a contradiction if E(f )� η1 is sufficiently small.
(ii) The property (ii) is a known one used in the Gross–Pitaevskii study (see Lemma 3 in [11]) to which we recall

the short proof: the Fourier transform of eit∂2
σ f − f can be written as e−itξ2 −1

ξ
ξ f̂ (ξ), so the L2 norm is bounded by

C
√

t‖∂σ f ‖L2 and the Ḣ 1 norm is bounded by C‖∂σ f ‖L2 , i.e.∥∥eit∂2
σ f − f

∥∥
H 1 � C(1 + √

t )‖∂σ f ‖L2 � C(1 + √
t )η1.

We choose η1 small enough and t1 small with respect to η1 such that for 0 � t � t1,∥∥eit∂2
σ f − f

∥∥
H 1 �

1

4
,

and the conclusion of the lemma follows. �
Since (x − 1)2/4 � x − 1 − lnx � 10(x − 1)2 on [3/4,5/4] we immediately obtain the second lemma.

Lemma 2.2. If ‖|f |2 − 1‖L∞ � 1/4 then we can compare the energies:

EGP(f ) ≡ 1

2
‖∂σ f ‖2

L2 + ω

8

∥∥|f |2 − 1
∥∥2

L2 � E(f ) � 5EGP(f ).
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So, if we consider an initial perturbation such that Φ0 − 1 is sufficiently small in H 1, we infer from Sobolev
embedding that EGP(Φ0) < ∞ and that ‖|Φ0|2 − 1‖L∞ < 1/4. Hence Lemma 2.2 ensures that Φ0 belongs to the
energy space associated to Eq. (1.5).

We will also need the following transposition of a standard property of the Gross–Pitaevskii energy (see [7,11,12]).

Lemma 2.3. Let f be such that E(f ) � η1, with η1 defined in Lemma 2.1. Let h ∈ H 1(R) with ‖h‖H 1 � 1/2. Then
the energy E(f + h) is finite. More precisely we have, for absolute numerical constants C, C′,

E(f + h) � CEGP(f + h) � C′(1 + E(f )
)(

1 + ‖h‖2
H 1

)
.

Moreover,∥∥|f + h| − 1
∥∥

L∞ � 2 + √
2

4
< 1.

Proof. We first infer from Lemma 2.1(i) that ‖|f |−1‖L∞ � 1/4, and from Lemma 2.2 that EGP(f ) < ∞. Next, apply-
ing Gagliardo–Nirenberg inequality we get ‖h‖L∞ �

√
2‖h‖H 1 �

√
2/2, so that ‖|f +h|− 1‖L∞ � (2 +√

2 )/4 < 1.
By Lemma 2.2 it follows that E(f + h) � CEGP(f + h). Using that EGP(f ) < ∞ and h ∈ H 1 as well as Sobolev in-
equalities we conclude that EGP(f +h) is finite, with the corresponding estimate (see also, e.g., Lemma 2 in [11]). �
2.2. Proof of Theorem 1.1

First we will establish local well-posedness for Eq. (1.5) by performing a fixed point argument for the operator

A(w)(t) = i

t∫
0

ei(t−τ)∂2
τ

eiτ∂2
σ Φ0 + w(τ)

|eiτ∂2
σ Φ0 + w(τ)|2

(
1 − ∣∣eiτ∂2

σ Φ0 + w(τ)
∣∣2)

dτ

on the ball

BT =
{
w ∈ C

([0, T ],H 1), sup
0�t�T

∥∥w(t)
∥∥

H 1 �
1

4

}
,

with T small to be chosen later. Then Φ(t) = eit∂2
σ Φ0 +w(t) will be a solution for (1.5) on [0, T ] with initial data Φ0.

Observe that the proof of Lemma 2.1(ii) yields that t �→ (eit∂2
σ Φ0 −Φ0) ∈ C([0, T ],H 1(R)). So the map Φ will belong

to the energy space if Φ0 belongs to the energy space (by Lemma 2.3 applied to f = Φ0 and h = eit∂2
σ Φ0 −Φ0 +w(t)

for T � t1 with t1 from Lemma 2.1), and it will belong to 1 + H 1(R) if Φ0 is in 1 + H 1(R).
The hypothesis of Theorem 1.1 is that we start with Φ0 verifying

E = E(Φ0) = 1

2
‖∂σ Φ0‖2

L2 + ω

2

∫ (− ln |Φ0| + |Φ0|2 − 1
)
� η1.

We first impose T � t1, with t1 defined in Lemma 2.1. Let w ∈ BT , and set for 0 � t � T

Φ̃(t) = eit∂2
σ Φ0 + w(t) = Φ0 + (

eit∂2
σ Φ0 − Φ0 + w(t)

)
.

By Lemma 2.1(ii) and by choice of BT , we have ‖Φ̃(t) − Φ0‖H 1 � 1/2 on [0, T ]. Therefore, applying Lemma 2.3
to f = Φ0 and h = Φ̃(t) − Φ0 we obtain that ‖|Φ̃(t)| − 1‖L∞ � (2 + √

2 )/4 on [0, T ]. In particular, since C−1 �
|Φ̃|� C for C > 0 we can estimate the action of the operator as follows∥∥A(w)(t)

∥∥
H 1 � t sup

0�τ�t

∥∥∥∥ Φ̃(τ )

|Φ̃(τ )|2
(
1 − ∣∣Φ̃(τ )

∣∣2)∥∥∥∥
H 1

� C t sup
0�τ�t

(∥∥1 − ∣∣Φ̃(τ )
∣∣2∥∥

L2 + ∥∥∂σ Φ̃(τ )
∥∥

L2

)
� C t sup

√
EGP

(
Φ̃(τ )

)
.

0�τ�t
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We use again Lemma 2.3 and the bound ‖Φ̃(τ ) − Φ0‖H 1 � 1/2 to obtain

sup
0�t�T

∥∥A(w)(t)
∥∥

H 1 � C T (1 + E).

Arguing similarly, we readily check that for w1,w2 ∈ BT

sup
0�t�T

∥∥A(w1)(t) − A(w2)(t)
∥∥

H 1 � C T (1 + E) sup
0�t�T

∥∥w1(t) − w2(t)
∥∥

H 1 .

Hence imposing a second smallness condition on T with respect to E we obtain a fixed point w for A in BT . Therefore
local well-posedness holds for Eq. (1.5) on [0, T ] with T depending only on E .

Next, since the energy of Eq. (1.5) is conserved

E
(
Φ(T )

) = E
(
Φ(0)

) = E,

we re-iterate the local in time argument to get the global existence. Finally, Lemma 2.1 insures us that

sup
t∈R

∥∥∣∣Φ(t)
∣∣2 − 1

∥∥
L∞ � 1

4
,

so the solution satisfies indeed

1

4
�

∣∣Φ(t, σ )
∣∣ � 5

4
, t, σ ∈R.

3. Proof of Theorem 1.2

3.1. Some useful quantities

From now on we will write Ψjk = Ψj − Ψk , Xjk = Xj − Xk and ujk = uj − uk .
We first introduce some useful quantities. In the general case where N � 1 and Γj ∈ R, the dynamics of system

(1.1) preserves the following quantities:
The energy

1

2

∑
j

Γ 2
j

∫ ∣∣∂σ Ψj (t, σ )
∣∣2

dσ − 1

2

∑
j �=k

ΓjΓk

∫
ln

∣∣Ψjk(t, σ )
∣∣2

dσ,

the angular momentum∑
j

Γj

∫ ∣∣Ψj (t, σ )
∣∣2

dσ,

and ∑
j �=k

ΓjΓk

∫ ∣∣Ψjk(t, σ )
∣∣2

dσ.

However the previous quantities are not well defined in the framework of Theorem 1.2, not even formally, since
Ψj (t, σ ) and Ψjk(t, σ ) do not tend to zero at infinity. As in [16], we modify them in order to get well-defined quantities,
introducing

H = 1

2

∑
j

Γ 2
j

∫ ∣∣∂σ Ψj (t, σ )
∣∣2

dσ − 1

2

∑
j �=k

ΓjΓk

∫
ln

( |Ψjk(t, σ )|2
|Xjk(t)|2

)
dσ,

A=
∑
j

Γj

∫ (∣∣Ψj (t, σ )
∣∣2 − ∣∣Xj(t)

∣∣2)
dσ,

T =
∑

ΓjΓk

∫ (∣∣Ψjk(t, σ )
∣∣2 − ∣∣Xjk(t)

∣∣2)
dσ.
j �=k
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Note that, in view of the properties of the point vortex system (1.2) mentioned in the introduction, the renormalized
quantities H, A and T are still formally preserved in time.

Finally, we also introduce the time-dependent quantity

I(t) = 1

2

∑
j �=k

ΓjΓk

∫ ( |Ψjk(t)|2
|Xjk(t)|2 − 1

)
dσ,

and we consider the energy

E(t) =H+ I(t), (3.1)

which have been already introduced in (1.9) in the introduction.
As noticed in [16], a useful consequence of the convexity estimate (x − 1)2/4 � x − 1 − lnx � 10(x − 1)2 on

[3/4,5/4] is the inequality

1

2

∑
j

Γ 2
j

∫ ∣∣∂σ Ψj (t, σ )
∣∣2

dσ + 1

8

∑
j �=k

ΓjΓk

∫ ( |Ψjk(t, σ )|2
|Xjk(t)|2 − 1

)2

dσ � E(t), (3.2)

which holds as long as the filaments satisfy 3/4 � |Ψjk(t)|2/|Xjk(t)|2 � 5/4.

3.2. The approach

In this subsection we briefly sketch how to combine elements from [16] and from Section 2 to prove local existence
and uniqueness of a solution to system (1.1) in the general case of N filaments, with N � 2, and the way to extend
this solution as long as the energy E(t) remains sufficiently small. Here we take positive circulations

Γj > 0, 1 � j � N.

Therefore there exists a unique global solution (Xj )j to system (1.2). We denote by d > 0 the minimal distance
between the point vortices for all time. Here we shall make the extra-assumption that

uj,0 = Ψj,0 − Xj,0 ∈ H 1(R).

We look for a solution u = (uj )j ∈ C([0, T ],H 1(R))N to the system⎧⎪⎨⎪⎩
i∂tuj + Γj∂

2
σ uj +

∑
k �=j

Γk

(
Xjk + ujk

|Xjk + ujk|2 − Xjk

|Xjk|2
)

= 0,

uj (0) = uj,0, 1 � j � N.

(3.3)

By similar arguments as in Section 2, our purpose is to find a fixed point in the Banach space

BT =
{
w = (w1, . . . ,wN) ∈ C

([0, T ],H 1)N
, sup

0�t�T

∥∥w(t)
∥∥

H 1 �
d

4

}
for the operator A(w) = (Aj (w))j defined by

Aj(w)(t) = i

t∫
0

∑
k �=j

Γk

(
Xjk(τ ) + eiτΓj ∂2

σ uj,0 + wj(τ) − eiτΓk∂
2
σ uk,0 − wk(τ)

|Xjk(τ ) + eiτΓj ∂2
σ uj,0 + wj(τ) − eiτΓk∂

2
σ uk,0 − wk(τ)|2 − Xjk(τ )

|Xjk(τ )|2
)

dτ,

and for T sufficiently small with respect to η2,
∑

j ‖uj,0‖H 1 , (Γj )j and d .
Then as in Section 2 the solution will be given by

uj (t) = eitΓj ∂2
σ uj,0 + wj(t).

By transposing the arguments of Section 2 we obtain the following local well-posedness result.
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Lemma 3.1. Let (uj,0)j ∈ H 1(R)N be such that E0 < 10η2, with E0 defined in Theorem 1.2 and η2 = η2(d) a small
constant depending only on d . There exists T > 0, depending only on η2,

∑
j ‖uj,0‖H 1 , (Γj )j and d , and there exists

a unique solution (uj )j ∈ C([0, T ],H 1(R))N to system (3.3) satisfying

sup
0�t�T

∥∥uj (t)
∥∥

H 1 � ‖uj,0‖H 1 + d

4
, 1 � j � N.

Moreover we can choose T such that

T

(
1 + η2 +

∑
j

‖uj,0‖H 1

)
� C

(
d, (Γj )j

)
for some constant C(d, (Γj )j ) depending only on d and (Γj )j .

Remark 5. As a byproduct of Lemma 3.1 we realize that the solution (uj )j to (3.3) exists as long as the energy E(t)

remains bounded by 10η2. Indeed note that the norm
∑

j ‖uj (t)‖H 1 can grow exponentially, but it cannot blow up as
long as the energy is sufficiently small.

Proof. Let 0 < Γ � 1 such that 0 < Γ � minj Γj . Since all the (Γj )’s are positive, we have

max
j �=k

E
(

Ψjk,0

Xjk,0

)
� 1

Γ 2
E0,

where we recall that E is defined by (1.6) (taking ω = 1).
In particular, if η2 is such that 10η2/Γ

2 � η1, with η1 defined in Lemma 2.1, then 3/4 � |Ψjk,0|/|Xjk,0|� 5/4 for
all j �= k. Then we have for w ∈ BT∣∣Xjk(τ ) + eiτΓj ∂2

σ uj,0 + wj(τ) − eiτΓk∂
2
σ uk,0 − wk(τ)

∣∣
= ∣∣Ψjk,0 + (

Xjk(τ ) − Xjk,0
) + (

eiτΓj ∂2
σ uj,0 − uj,0

) − (
eiτΓk∂

2
σ uk,0 − uk,0

) + wjk(τ )
∣∣

� |Ψjk,0| −
∣∣Xjk(τ ) − Xjk,0

∣∣ − √
2
∥∥(

eiτΓj ∂2
σ uj,0 − uj,0

) − (
eiτΓk∂

2
σ uk,0 − uk,0

) + wjk(τ )
∥∥

H 1

� 3d

4
− 2(

∑
j Γj )

d
T − C(1 + T )η2 −

√
2d

4
� d

4

provided that η2 is small with respect to d , and that T is small in terms of η2, d, (Γj )j . In the last inequality we have

used the proof of Lemma 2.1(ii) together with the mean-value theorem for Xjk . Now, since Xjk(τ ) + eiτΓj ∂2
σ uj,0 +

wj(τ) − eiτΓk∂
2
σ uk,0 − wk(τ) is bounded from below, direct estimates show that A is a contraction on BT as long as

T

(
1 + η2 +

∑
j

‖uj,0‖H 1

)
� C

(
d, (Γj )j

)
and the conclusion of Lemma 3.1 follows. �
3.3. Proof of Theorem 1.2

We present now the proof of Theorem 1.2. By Remark 5, there exists a unique solution as long as E(t) remains
sufficiently small. In the cases considered in [16] where the |Xjk(t)| are all the same and constant equal to d , I(t) =
T /(2d2) so E(t) is conserved. Also under the hypothesis of Theorem 1.1, we have

I(t) = 1

2

∑
j �=k

ΓjΓk

∫ ( |Ψjk(t)|2
|Xjk|2 − 1

)
dσ = 1

2

∑
j �=k

ΓjΓk

∫ (∣∣Φ(t, σ )
∣∣2 − 1

)
dσ = ωA,

so, although |Xjk| are not all equal, I(t) and E(t) are still formally preserved. In fact, under the assumptions of
Theorem 1.1 we have E(t) = NE(Φ(t)) so we retrieve the fact that it is constant. Under the general hypothesis of
Theorem 1.2 E(t) is no longer constant, but it will still be a useful quantity for which we can achieve some control.
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We recall that E0 � η2. From now on we consider T > 0 and the unique solution to system (3.3) on [0, T ], with
E(t) < 10Ẽ0 � 10η2, given by Lemma 3.1. We take T maximal in the sense that E(T ) = 10Ẽ0 (but T is not necessarily
the largest time of existence). We thus have 3/4 < |Ψjk(t, σ )| < 5/2 on [0, T ] ×R for all j �= k.

Proposition 3.2. We have for t ∈ [0, T ]

E(t) =H+ 1

2
T −A+ ‖(u1 + u3)(t)‖2 + ‖(u2 + u4)(t)‖2

2
.

Proof. Since (X1,X2,X3,X4) is a square of radius 1 we have∣∣Xjk(t)
∣∣2 = 2 if |j − k| = 1,

∣∣Xjk(t)
∣∣2 = 4 if |j − k| = 2.

It follows that∑
j �=k

( |Ψjk|2
|Xjk|2 − 1

)
=

∑
j �=k

|Ψjk|2 − |Xjk|2
|Xjk|2

= 1

2

∑
j �=k

(|Ψjk|2 − |Xjk|2
) + 2

(
1

4
− 1

2

)(|Ψ13|2 − |X13|2 + |Ψ24|2 − |X24|2
)
.

On the other hand, we compute

|Ψ13|2 + |Ψ24|2 − |X13|2 − |X24|2 = 2
4∑

j=1

|Ψj |2 − |Ψ1 + Ψ3|2 − |Ψ2 + Ψ4|2 − 8

= 2
4∑

j=1

(|Ψj |2 − |Xj |2
) − (|Ψ1 + Ψ3|2 + |Ψ2 + Ψ4|2

)
,

so integrating with respect to σ and using that Ψ1 + Ψ3 = u1 + u3 and Ψ2 + Ψ4 = u2 + u4 we are led to the conclu-
sion. �
Corollary 3.3. In the case of the parallelogram ‖(u1 + u3)(0)‖2

L2 = ‖(u2 + u4)(0)‖2
L2 = 0, so it follows that ‖(u1 +

u3)(t)‖2
L2 = ‖(u2 + u4)(t)‖2

L2 = 0 for all times, using the fact that if (Ψ1,Ψ2,Ψ3,Ψ4) is a solution of (1.1) then
(−Ψ3,−Ψ4,−Ψ1,−Ψ2) is also a solution. Then I is conserved in time and global existence follows.

Remark 6. One can do similar computations in others particular cases, for instance for ends and the middle of the
segment,

E(t) = −H+ I − 3

2
A+ 3

4

(∥∥u1(t)
∥∥2

L2 + ∥∥(u2 + u3)(t)
∥∥2

L2

)
,

or for hexagon,

E(t) = −H+ I − 7

2
A+ 2

3

2∑
j=1

∥∥(uj + uj+2 + uj+4)(t)
∥∥2

L2 + 3

4

3∑
j=1

∥∥(uj + uj+3)(t)
∥∥2

L2 .

But these quantities have no reason to be conserved, unless the perturbations have the same shape as the shape of
(Xj ), which enters the framework of the first part of this article. Moreover, when trying to control the growth of
‖u1(t)‖L2 for instance in the first example, the time of control is not satisfactory due to the presence of linear terms
in the equation of u1, that cannot be resorbed.

In order to control the evolution of the energy we have to control the quantity ‖(u1 +u3)(t)‖2
L2 +‖(u2 +u4)(t)‖2

L2 .
We are led to introduce the new unknowns

v = u1 + u3, w = u2 + u4.
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Proposition 3.4. We have for t ∈ [0, T ], with v = u1 + u3 and w = u2 + u4,∥∥v(t)
∥∥

L2 + ∥∥w(t)
∥∥

L2 �
∥∥v(0)

∥∥
L2 + ∥∥w(0)

∥∥
L2

+ Ct sup
s∈[0,T ]

max
j �=k

∥∥ujk(s)
∥∥1/2

L2 E(s)1/4(∥∥v(s)
∥∥

L2 + ∥∥w(s)
∥∥

L2 + E(s)1/2).
Proof. In view of system (1.1) and system (1.2), we have

i∂t v + ∂2
σ v = −

∑
k �=1,3

{(
Ψ1k

|Ψ1k|2 − X1k

|X1k|2
)

+
(

Ψ3k

|Ψ3k|2 − X3k

|X3k|2
)}

= −
∑

k �=1,3

{
X1k

(
1

|Ψ1k|2 − 1

|X1k|2
)

+ X3k

(
1

|Ψ3k|2 − 1

|X3k|2
)}

−
∑

k �=1,3

{
u1k

(
1

|Ψ1k|2 − 1

|X1k|2
)

+ u3k

(
1

|Ψ3k|2 − 1

|X3k|2
)}

−
∑

k �=1,3

{
u1k

|X1k|2 + u3k

|X3k|2
}
.

We infer that

i∂t v + ∂2
σ v = Lv(u) +Rv(u),

where Lv denotes the linear part,

Lv(u) = 2
∑

k �=1,3

{
X1k

�e(u1kX1k)

|X1k|4 + X3k

�e(u3kX3k)

|X3k|4
}

−
∑

k �=1,3

{
u1k

|X1k|2 + u3k

|X3k|2
}

and where the remainder Rv is quadratic in u,

Rv(u) =
∑

k �=1,3

{
X1k

|X1k|4 |u1k|2 + X3k

|X3k|4 |u3k|2
}

−
∑

k �=1,3

{
X1k

( |X1k|2 − |Ψ1k|2
|X1k|2

)(
1

|Ψ1k|2 − 1

|X1k|2
)

+ X3k

( |X3k|2 − |Ψ3k|2
|X3k|2

)(
1

|Ψ3k|2 − 1

|X3k|2
)}

−
∑

k �=1,3

{
u1k

(
1

|Ψ1k|2 − 1

|X1k|2
)

+ u3k

(
1

|Ψ3k|2 − 1

|X3k|2
)}

=R1
v(u) +R2

v(u) +R3
v(u).

We claim that Lv(u) = 0. Indeed, using that |X1k|2 = |X3k|2 = 2 for k �= 1,3,

Lv(u) = 1

2

∑
k �=1,3

(
X1k�e(u1kX1k) + X3k�e(u3kX3k)

) − 1

2

∑
k �=1,3

(v − 2uk)

= 1

2

∑
k �=1,3

(
X1k�e(u1kX1k) + X3k�e(u3kX3k)

) − v + w.

Now we compute, using that X12 = −X34 and X23 = X14,∑
k �=1,3

(
X1k�e(u1kX1k) + X3k�e(u3kX3k)

)
= X12�e(u12X12) + X32�e(u32X32) + X14�e (u14X14) + X34�e(u34X34)

= X12�e(u12X12) + X12�e(u34X12) + X32�e(u32X32) + +X32�e(u14X32)

= X12�e
(
(u12 + u34)X12

) + X32�e
(
(u32 + u14)X32

)
.
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We observe that

u12 + u34 = u32 + u14 = u1 + u3 − (u2 + u4) = v − w.

Therefore, inserting that iX12 = X23 and that |X12|2 = 2 in the previous formula we find∑
k �=1,3

(
X1k�e(u1kX1k) + X3k�e(u3kX3k)

) = X12�e
(
(v − w)X12

) − iX12�m
(
(v − w)X12

)
= 2(v − w),

and finally Lv(u) = 0.
We next estimate the remainder terms. Since 3/4 < |Ψjk| < 5/2 we have ||Xjk|2 − |Ψjk|2|� C|ujk| on [0, T ] and

therefore∣∣R2
v(u) +R3

v(u)
∣∣ � C max

j �=k
|ujk|

∣∣∣∣ |Ψjk|2
|Xjk|2 − 1

∣∣∣∣. (3.4)

Expanding the first term R1
v(u) and using the symmetries of (X1,X2,X3,X4), we then have

R1
v(u) = 1

4

∑
k �=1,3

{
X1k|u1k|2 + X3k|u3k|2

}
= 1

4

{
X12

(|u12|2 − |u34|2
) + X14

(|u14|2 − |u32|2
)}

= 1

2

{
X12�e

(
u12 − u34(v − w)

) + X14�e
(
u14 − u32(v − w)

)}
,

so that∣∣R1
v(u)

∣∣ � C max
j,k

|ujk||v − w|. (3.5)

We perform similar computations for w and from (3.4)–(3.5) we infer the estimate

∥∥v(t)
∥∥

L2 + ∥∥w(t)
∥∥

L2 �
∥∥v(0)

∥∥
L2 + ∥∥w(0)

∥∥
L2 +

t∫
0

(∥∥Rv(u)(s)
∥∥

L2 + ∥∥Rw(u)(s)
∥∥

L2

)
ds

�
∥∥v(0)

∥∥
L2 + ∥∥w(0)

∥∥
L2

+ t sup
s∈[0,t]

max
j �=k

∥∥ujk(s)
∥∥

L∞

(∥∥∥∥ |Ψjk(s)|2
|Xjk(s)|2 − 1

∥∥∥∥
L2

+ ∥∥v(s)
∥∥

L2 + ∥∥w(s)
∥∥

L2

)
.

Finally we apply Gagliardo–Nirenberg inequality and (3.2) to obtain the conclusion. �
Proposition 3.5. We have for t ∈ [0, T ]∑

j �=k

∥∥ujk(t)
∥∥

L2 � C
∑
j �=k

∥∥ujk(0)
∥∥

L2 + C t sup
s∈[0,t]

E(s)1/2.

Proof. By (3.3),

i∂tujk + ∂2
σ ujk = −

∑
l �=j

ujl

|Ψjl |2 +
∑
l �=k

ukl

|Ψkl |2 −
∑
l �=j

Xjl

(
1

|Ψjl |2 − 1

|Xjl |2
)

+
∑
l �=k

Xkl

(
1

|Ψkl |2 − 1

|Xkl |2
)

.

We multiply the equation by ujk , take the imaginary part and perform the sum over j and k, cancelling the first two
terms in the right-hand side. Indeed,
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∑
j,k

∑
l �=j

�m(ujkujl)

|Ψjl |2 =
∑
j,k

∑
l �=j

�m((ujl + ulk)ujl)

|Ψjl |2

=
∑
j,k

∑
l �=j

�m(ulkujl)

|Ψjl |2

= −
∑
j,k

∑
l �=j

�m(ujkujl)

|Ψjl |2 ,

by exchanging j and l in the last equality. Therefore the latter sum vanishes. By the same arguments we also have∑
j,k

∑
l �=k

�m(ujkukl)

|Ψkl |2 = 0.

It follows that

d

dt

∑
j �=k

‖ujk‖2
L2 � C

∑
j �=k

∑
l �=j

∫
|ujk||Xjl | 1

|Ψjl |2
∣∣∣∣ |Ψjl |2
|Xjl |2 − 1

∣∣∣∣dσ

� C

(∑
j �=k

‖ujk‖2
L2

)1/2

max
j �=k

∥∥∥∥ |Ψjk|2
|Xjk|2 − 1

∥∥∥∥
L2

,

and we finally obtain by (3.2)∣∣∣∣ d

dt

(∑
j,k

∥∥ujk(t)
∥∥2

L2

)1/2∣∣∣∣� CE(t)1/2.

The conclusion follows. �
We are now able to control the evolution of E(t) and to complete the proof of Theorem 1.2. First we recall that by

Proposition 3.2,

1

2

(∥∥v(t)
∥∥2

L2 + ∥∥w(t)
∥∥2

L2

) − Ẽ0 � E(t) � Ẽ0 + 1

2

(∥∥v(t)
∥∥2

L2 + ∥∥w(t)
∥∥2

L2

)
so in particular

E(t) + ∥∥v(t)
∥∥2

L2 + ∥∥w(t)
∥∥2

L2 � CẼ0 on [0, T ].
Next, in view of Proposition 3.4 we have

E(t)� Ẽ0 + (∥∥v(t)
∥∥

L2 + ∥∥w(t)
∥∥

L2

)2 � Ẽ0 + 2
(∥∥v(0)

∥∥
L2 + ∥∥w(0)

∥∥
L2

)2

+ Ct2 sup
s∈[0,t]

max
j,k

∥∥ujk(s)
∥∥

L2E(s)1/2(E(s)1/2 + ∥∥v(s)
∥∥

L2 + ∥∥w(s)
∥∥

L2

)2

� 9Ẽ0 + Ct2 sup
s∈[0,t]

max
j,k

∥∥ujk(s)
∥∥

L2 Ẽ0
3/2

and finally by Proposition 3.5

E(t)� 9Ẽ0 + Ct2 max
j,k

‖ujk,0‖L2 Ẽ0
3/2 + Ct3Ẽ0

2
.

Setting t = T in the above inequality and recalling that E(T ) = 10Ẽ0, we infer that

1 � Ct2 max
j,k

‖ujk,0‖L2 Ẽ0
1/2 + Ct3Ẽ0.

We conclude that T is larger than

C min

{
1

Ẽ0
1/4

maxj,k ‖ujk,0‖1/2
L2

,
1

Ẽ0
1/3

}
,

as we wanted. This concludes the proof of Theorem 1.2.
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4. Proof of Theorem 1.3

Before proving Theorem 1.3 we start with some preliminary computations. We mainly follow the Appendix of [13].
Assume that v is a C∞ small energy solution to Eq. (1.10) such that v′ vanishes at infinity. We set

η = 1 − |v|2,
then η vanishes at infinity. We decompose v into its real and imaginary parts, v = v1 + iv2. Eq. (1.10) gives then the
system⎧⎪⎪⎨⎪⎪⎩

−cv′
2 + v′′

1 + ω
v1

v2
1 + v2

2

− ωv1 = 0,

cv′
1 + v′′

2 + ω
v2

v2
1 + v2

2

− ωv2 = 0.

By subtracting the first equation multiplied by v2 from the second one multiplied by v1(
v1v

′
2 − v′

1v2 − c

2
η

)′
= 0,

so since v has finite energy we can integrate from infinity and get

v1v
′
2 − v′

1v2 = c

2
η. (4.1)

Next we add the first equation multiplied by v′
1 to the second one multiplied by v′

2,(
v′2

1 + v′2
2 + ω ln

(
v2

1 + v2
2

) − ω
(
v2

1 + v2
2

))′ = 0,

so ∣∣v′∣∣2 = −ω ln(1 − η) − ωη. (4.2)

Finally, in view of (4.1) and (4.2) we can compute

η′′ = −2
∣∣v′∣∣2 − 2

(
v1v

′′
1 + v2v

′′
2

)
= −2

∣∣v′∣∣2 − 2v1

(
cv′

2 − ω
v1

v2
1 + v2

2

+ ωv1

)
− 2v2

(
−cv′

1 − ω
v2

v2
1 + v2

2

+ ωv2

)
= −2

∣∣v′∣∣2 − 2c
(
v1v

′
2 − v′

1v2
) + 2ω − 2ω

(
v2

1 + v2
2

)
= 2ω ln(1 − η) + 4ωη − c2η.

So we find

η′′ − 2ω ln(1 − η) + (
c2 − 4ω

)
η = 0. (4.3)

Multiplying by η′ and integrating we obtain(
η′)2 + (

c2 − 4ω
)
η2 − 4ω

(
(η − 1) ln(1 − η) − η

) = 0,

which is satisfied if η verifies

η′ = α
(−(

c2 − 4ω
)
η2 + 4ω

(
(η − 1) ln(1 − η) − η

))1/2
, α = α(σ) = ±1. (4.4)

We now turn to the proof of Theorem 1.3. From now on we look for solutions such that η is sufficiently small on
the whole of R and for which the right-hand side in (4.4) makes sense. We introduce

a(η) = −(
c2 − 4ω

)
η2 + 4ω

(
(η − 1) ln(1 − η) − η

)
.

For 0 < η < 1, we perform a Taylor expansion for a,

a(η) = (
2ω − c2)η2 − 2ω

η3

3
− 4ω

∑ ηk

k(k − 1)

k�4
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therefore

b(η) ≡ a(η)

η2
= 2ω − c2 − 2ω

η

3
+ r(η)

with r(η) = o(η) � 0 such that r ′(η) = O(η). Let us set

σ0 = 2ω − c2

2ω
3

> 0,

then b(σ0) � 0. Since on the other hand b(0) > 0, there exists σ1 ∈ (0, σ0] such that b(σ1) = 0. Moreover, since for
η ∈ [0, σ0] we have b′(η) = − 2ω

3 + r ′(η) � − 2ω
3 + C(2ω − c2) < 0 for 2ω − c2 sufficiently small, we infer that b is

strictly decreasing on [0, σ0] and therefore σ1 is the unique zero of a on ]0, σ0].
Next, we fix a small parameter ε > 0 and we consider the ODE{

y′
ε(σ ) = −

√
a
(
yε(σ )

)
,

yε(0) = σ1 − ε.

Since
√

a is Lipschitz on [0, x1 − ε/2) we can find a unique maximal solution on some interval I containing the
origin. We claim that sup I = +∞. We show first that 0 < yε < σ1 − ε on I ∩ [0,∞). Indeed, yε is strictly decreasing
on I ∩ [0,∞). Assume by contradiction that there exists σ such that yε(σ ) = 0 and yε > 0 on [0, σ ). We recall that
b(y) ∼ 2ω − c2 when y → 0. Therefore

y′
ε(σ ) � −2

√
2ω − c2yε(σ ) for σ ∈ [σ − δ, σ ]

with δ small. Integrating the differential inequality above yields

yε(σ ) � yε(σ − δ) exp
(−2

√
2ω − c2(σ − σ + δ)

)
on [σ − δ, σ ],

which contradicts the fact that yε(σ ) = 0. Next, since y �→ √
a(y) is Lipschitz and bounded on [0, σ1 −ε] the maximal

solution yε exists on [0,∞) which proves the claim.
We next let ε → 0. Noting that yε and y′

ε are uniformly bounded on [0,∞) we can pass to the limit to find a
solution5 y to the ODE{

y′ = −√
a(y), σ � 0,

y(0) = σ1.

We finally set

η(σ ) = y(σ ) for σ ∈ [0,+∞) and η(−σ) = η(σ ) = y(σ ) for σ ∈ (−∞,0].
Thanks to η(0) = σ1 and a(σ1) = 0 we check that η ∈ C∞(R) is a solution of the ODE (4.3). Moreover, by the same
kind of arguments as before we have η → 0, hence η′(σ ) ∼ −√

2ω − c2η(σ ) as σ → ∞, which yields the exponential
decay η(σ ) � Cδη(0) exp(−(

√
2ω − c2 − δ)|σ |) for all 0 < δ <

√
2ω − c2.

We complete the proof of Theorem 1.3 by looking for a solution of the form

v = √
1 − η exp(iθ). (4.5)

Then according to (4.1) we must have

(1 − η)θ ′ = cη

2
(4.6)

(note that in particular θ is an increasing function on R). Therefore for θ(σ ) = θ0 + ∫ σ

0
cη

2(1−η)
dτ where θ0 ∈R, then

∣∣θ(+∞) − θ(−∞)
∣∣ � Cη(0)√

2ω − c2
� C

√
2ω − c2.

5 We do not claim that such a solution is unique or maximal.
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Also, the map defined by (4.5) is a solution to (1.10). It only remains to show that v has finite energy. This clearly
holds in view of the exponential decay of η, of η′ (by (4.4)) and of θ ′ (by (4.6)) at infinity. Moreover in view of (4.6)
we obtain

E(v) � C‖η‖2
H 1 � C

(
2ω − c2)3/2

and the conclusion of Theorem 1.3 follows.

5. Proof of Theorem 1.4

Under the hypothesis of Theorem 1.4, the angular speed of the configuration (Xj )j is ω = 0 so if we set

Ψj (t, σ ) = Xj(t)Φ(t, σ )

a solution of system (1.1), we have shown in Section 2 that Φ has to solve the linear Schrödinger equation,

i∂tΦ + ∂2
σ Φ = 0.

Since the linear evolution of a Gaussian G0(σ ) = e−σ 2
is

eit∂2
σ G0(t, σ ) = e− σ2

1+4it√
1 + 4it

,

it follows that the linear evolution of

Φ0(σ ) = 1 − e− σ2
1−4i√

1 − 4i

is precisely

Φ(t, σ ) = 1 − e
− σ2

1−4i(1−t)√
1 − 4i(1 − t)

.

We notice that Φ(t, σ )
|σ |→∞−→ 1 for t ∈ [0,1], and for t ∈ [0,1[∣∣Φ(t, σ )

∣∣ > 1 − 1√
1 + 16(1 − t)2

> 0.

On the other hand we have

Φ(1, σ ) = 1 − e−σ 2
,

so σ = 0 is a vanishing point at t = 1 and Theorem 1.4 follows.
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