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Abstract

The energy functional of linear elasticity is obtained as Γ -limit of suitable rescalings of the energies of finite elasticity. The
quadratic control from below of the energy density W(∇v) for large values of the deformation gradient ∇v is replaced here by
the weaker condition W(∇v) � |∇v|p , for some p > 1. Energies of this type are commonly used in the study of a large class of
compressible rubber-like materials.
© 2012

1. Introduction

Consider an elastic body occupying a reference configuration Ω ⊆ R
n, with n � 2, subject to some deformation

v : Ω → R
n. Assuming that the body is homogeneous and hyperelastic, the stored energy can be written as∫

Ω

W(∇v)dx,

where ∇v is the deformation gradient and the energy density W(F) � 0 is defined for every F ∈ R
n×n and is finite

only for detF > 0. We assume that the energy density W is minimized at the value 0 by the identity matrix I , which
amounts to saying that the reference configuration is stress free. We assume also that W is frame indifferent, i.e.,
W(F) = W(RF) for every F ∈ R

n×n and every R in the space SO(n) of rotations.
Since the deformation v(x) = x is an equilibrium when no external loads are applied, we expect that small external

loads εl(x) will produce deformations of the form v(x) = x + εu(x), so that the total energy is given by∫
Ω

W(I + ε∇u)dx − ε2
∫
Ω

ludx. (1.1)

In the case ∇u bounded, by Taylor-expanding W(I + ε∇u) around I and rescaling (1.1) by ε−2, we obtain in the
limit ε → 0 the formula
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1

2

∫
Ω

D2W(I)[∇u]2 dx −
∫
Ω

ludx, (1.2)

where D2W(I)[F ]2 is the second differential of W at I applied to the pair [F,F ]. By frame indifference, the first
summand in (1.2) depends only on the symmetric part e(u) of the displacement gradient ∇u, i.e.,

1

2

∫
Ω

D2W(I)[∇u]2 dx = 1

2

∫
Ω

D2W(I)
[
e(u)

]2
dx.

This functional is the linearized elastic energy associated with the displacement u.
This elementary derivation of linear elasticity requires only C2 regularity of W near I , and hence in a neighbour-

hood of SO(n), by frame indifference. However, it does not guarantee that the minimizers of the most natural boundary
value problems for (1.1) converge to the minimizer of the corresponding problems for the limit functional (1.2).

Convergence of minimizers has been established in [5] in the framework of Γ -convergence, under the assumption

W(F) � d
(
F,SO(n)

)2
, (1.3)

where d(F,SO(n)) is the distance of F from SO(n). The main result of the present paper is that the same conclusion
holds if (1.3) is satisfied only in a neighbourhood of SO(n), while the weaker condition

W(F) � cd
(
F,SO(n)

)p
, for some 1 < p � 2 and c > 0, (1.4)

is assumed far from SO(n). Similar results have been obtained in [11] assuming also a bound of order p from above.
The reason for considering energies satisfying (1.4) without any bound from above is not purely academic. Indeed,

for a large class of compressible rubber-like materials, (1.4) is the appropriate behaviour (see Remark 2.8 and the
discussion in [1] for a multiwell case).

The main tool for the proof of the compactness of the minimizers considered in [5] is the Geometric Rigidity
Lemma of [8]. To obtain the same result when (1.3) holds only near SO(n), while (1.4) holds far from SO(n), we need
a version with two exponents of the Geometric Rigidity Lemma, similar to those used in [3,10,11].

The proof of the Γ -convergence in the present paper has been renewed with respect to [5], and also with respect to
the further improvements introduced in [12]. The main simplification relies on some arguments developed in [8] for
the rigorous proof of dimension reduction results.

Moreover, the strong convergence in W 1,p of the minimizers is obtained by adapting to our techniques some ideas
introduced in [12] for the case of multiwell energies satisfying the analog of (1.3). We hope that all our results can be
extended to multiwell energies satisfying only (1.4) far from the wells.

2. Setting of the problem and main results

Throughout the paper, d(·,·) denotes the Euclidean distance both between two points and between a point and a set.
The space of n × n real matrices is identified with R

n×n; SO(n) is the set of rotations, Sym(n) and Skw(n) the sets
of symmetric and skew-symmetric matrices, respectively, Psym(n) the set of positive definite symmetric matrices,
Lin+(n) the set of invertible matrices with positive determinant. Given M ∈ R

n×n, symM and skwM denote the
symmetric and the skew-symmetric part of M , respectively.

The reference configuration Ω is a bounded connected open set of R
n with Lipschitz boundary ∂Ω . We will

prescribe a Dirichlet condition on a part ∂DΩ of ∂Ω with Lipschitz boundary in ∂Ω , according to the following
definition.

Definition 2.1. Let us define

Q := (−1,1)n, Q+ := (−1,1)n−1 × (0,1),

Q0 := (−1,1)n−1 × {0}, Q+
0 := (−1,1)n−2 × (0,1) × {0}.

We say that E ⊆ ∂Ω has Lipschitz boundary in ∂Ω if it is nonempty and for every x in the boundary of E for
the relative topology of ∂Ω there exist an open neighbourhood U of x in R

n and a bi-Lipschitz homeomorphism
ψ : U → Q such that

ψ(U ∩ Ω) = Q+, ψ(U ∩ ∂Ω) = Q0, ψ(U ∩ E) = Q+
0 .
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The Sobolev space W 1,p(Ω,Rn) will be denoted by W 1,p . To deal with the Dirichlet boundary condition, for every
h ∈ W 1,p we introduce the set

W
1,p
h := {

u ∈ W 1,p: u = h H n−1-a.e. on ∂DΩ
}
, (2.1)

where the equality on ∂DΩ refers to the traces of the functions on the boundary ∂Ω , and H n−1 denotes the (n − 1)-
dimensional Hausdorff measure.

We suppose the material to be hyperelastic and that the stored energy density W : Ω ×R
n×n → [0,∞] is L × B-

measurable, where L and B are the σ -algebras of the Lebesgue measurable subsets of Rn and Borel measurable
subsets of Rn×n, respectively. We assume that W satisfies the following properties for a.e. x ∈ Ω :

(i) W(x, ·) is frame indifferent;
(ii) W(x, ·) is of class C2 in some neighbourhood of SO(n), independent of x, where the second derivatives are

bounded by a constant independent of x;
(iii) W(x,F ) = 0 if F ∈ SO(n);
(iv) W(x,F ) � gp(d(F,SO(n))), for some 1 < p � 2, where gp : [0,∞) → R is defined by

gp(t) :=
{

t2

2 , if 0 � t � 1,

tp

p
+ 1

2 − 1
p
, if t > 1.

(2.2)

Observe that these assumptions are compatible with the condition W(x,F ) = ∞, if detF � 0, which is classical in
the context of finite elasticity. Also, observe that gp is a convex function. In what follows D2 denotes the second
differential with respect to the variable F ∈ R

n×n, so that D2W(x,F )[M]2 means the second differential of the
function W with respect to F , evaluated at the point (x,F ) and applied to the pair [M,M]. By frame indifference, for
a.e. x ∈ Ω we have that

D2W(x, I)[M]2 = D2W(x, I)[symM]2, for every M ∈ R
n×n. (2.3)

Together with assumption (iv), this implies that the quadratic form D2W(x, I)[·]2 is null on Skw(n) and satisfies the
coerciveness condition

D2W(x, I)[symM]2 � |symM|2, for a.e. x ∈ Ω and every M ∈R
n×n. (2.4)

Energy densities for which estimate (iv) holds only with 1 < p < 2 are commonly used in the study of compressible
elastomers (see Remark 2.8).

The load is modelled by a continuous linear functional L : W 1,p → R. If v ∈ W 1,p represents the deformation of
the elastic body, the stable equilibria of the elastic body are obtained by minimizing the functional∫

Ω

W(x,∇v)dx − L (v),

under the prescribed boundary conditions. We are interested in the case where the load has the form εL and we want
to study the behaviour of the solution as ε tends to zero. We write

v = x + εu

and we assume Dirichlet boundary condition of the form

v = x + εh H n−1-a.e. on ∂DΩ,

with a prescribed h ∈ W 1,∞. The corresponding minimum problem for u becomes

min
W 1,p

{∫
Ω

W(x, I + ε∇u)dx − εL (εu)

}
, (2.5)

where the term εL (x) has been neglected since it does not depend on u. The following theorem is the main result of
the paper. It describes the behaviour of the minimizers of (2.5).
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Theorem 2.2. Assume that W : Ω × R
n×n → [0,∞] satisfies conditions (i)–(iv) for some 1 < p � 2, and let

h ∈ W 1,∞. For every ε > 0 let

mε := inf
u∈W

1,p
h

{
1

ε2

∫
Ω

W(x, I + ε∇u)dx − L (u)

}
, (2.6)

and let {uε}ε>0 be a sequence such that

1

ε2

∫
Ω

W(x, I + ε∇uε) dx − L (uε) = mε + o(1). (2.7)

Then, {uε} converges strongly in W 1,p to the unique solution of the problem

m := min
u∈W

1,2
h

{
1

2

∫
Ω

D2W(x, I)
[
e(u)

]2 − L (u)

}
, (2.8)

where e(u) := sym(∇u). Moreover, mε → m.

In the case 1 < p < 2, Theorem 2.2 asserts that a sequence of “almost minimizers” in W
1,p
h for the ε-problems

converges to a minimizer for the limit problem in a different Sobolev space: indeed, the limit problem is formulated
in W

1,2
h .

In the case p = 2, weak convergence of the “almost minimizers” has already been proved in [5]. Theorem 2.2
extends this result to the case 1 < p � 2 and provides also strong convergence. The proof is based on the following
three results which are proved in Sections 3, 4, and 5, respectively. These involve the functionals Fε , F : W 1,p →
[0,∞] defined by

Fε(u) :=
{

1
ε2

∫
Ω

W(x, I + ε∇u)dx, if u ∈ W
1,p
h ,

∞, otherwise,
(2.9)

and

F (u) :=
{

1
2

∫
Ω

D2W(x, I)[e(u)]2 dx, if u ∈ W
1,2
h ,

∞, otherwise,
(2.10)

and the functionals Gε,G : W 1,p → (−∞,∞] defined by

Gε := Fε − L , G := F − L . (2.11)

Observe that, due to the growth property (iv) of W , the functionals Gε and G are bounded from below.

Theorem 2.3. Assume that W : Ω × R
n×n → [0,∞] satisfies conditions (i)–(iv) for some 1 � p � 2. There exists a

constant C > 0 depending on Ω , ∂DΩ , and p such that for every h ∈ W 1,p and every sequence {uε} ⊆ W
1,p
h we have∫

Ω

|∇uε|p dx � C

[
1 + Fε(uε) +

( ∫
∂DΩ

|h|dH n−1
)2]

, (2.12)

for every ε > 0 sufficiently small.

The previous theorem ensures that, if {uε} is a sequence in W
1,p
h such that {Fε(uε)} is bounded, then {uε} is

bounded in W 1,p , hence a subsequence converges weakly in W 1,p .

Theorem 2.4. Under the hypotheses of Theorem 2.2, for every εj → 0 we have that

Fεj

Γ−→ F , as j → ∞,

in the weak topology of W 1,p .
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Theorem 2.4, together with the compactness result provided by Theorem 2.3, implies the convergence of minima
and the weak convergence of minimizers, using standard results on Γ -convergence. The next theorem and the previous
remarks allow us to obtain the strong convergence of minimizers.

Theorem 2.5. Under the hypotheses of Theorem 2.2, let εj → 0 and let {uj } be a recovery sequence for u ∈ W
1,2
h ,

that is uj ⇀ u weakly in W 1,p and Fεj
(uj ) → F (u). Then {uj } converges strongly in W 1,p .

Remark 2.6 (On the condition ∂DΩ 	= ∅). Observe that in Theorem 2.3 the assumption ∂DΩ 	= ∅ is crucial.
When ∂DΩ = ∅, inequality (2.12) is false, as the following example shows. Consider the simple case W(F) :=
gp(d(F,SO(n))) for every F ∈ Lin+(n). For every ε > 0 and some R ∈ SO(n) \ {I }, set

uε(x) := R − I

ε
x, x ∈ Ω.

In this case, we have that∫
Ω

|∇uε|p dx = |Ω||R − I |p
εp

→ ∞, as ε → 0+,

whereas

Fε(uε) = 1

ε2

∫
Ω

gp

(
d
(
I + ε∇uε,SO(n)

))
dx = 0, for every ε > 0.

Remark 2.7 (On the condition h ∈ W 1,∞). In Theorems 2.2, 2.4 and 2.5 the hypothesis h ∈ W 1,∞ cannot be replaced
by h ∈ W 1,2, unless W satisfies suitable bounds from above, which are not natural in the context of finite elasticity.
Consider the simple case ∂DΩ = ∂Ω , L = 0, and assume that for some r > 2 we have

W(F) � |F |r for |F | large enough.

By well-known properties of the images of Sobolev spaces under the trace operator, there exists h ∈ W 1,2 such
that {

u ∈ W 1,r : u = h H n−1-a.e. on ∂Ω
} = ∅. (2.13)

Let us prove that Fε(u) = ∞ for every u ∈ W 1,p . Assume by contradiction that there exists u ∈ W 1,p with
Fε(u) < ∞. By (2.9) we have that ∇u ∈ Lr , hence u ∈ W 1,r , because Ω has Lipschitz boundary. This contra-
dicts (2.13). Therefore {Fε} cannot Γ -converge to F , because F (h) < ∞.

Remark 2.8 (Model energy densities). A large class of models where the energy density grows quadratically near the
wells and less than quadratically elsewhere is provided by rubber elasticity, when one wishes to take into account the
compressibility of the material. We recall that we have formalized this growth behaviour by introducing, as bound
from below of our energies, the function

gp

(
d
(·,SO(3)

))
, for some 1 < p < 2,

where gp is the function defined in (2.2). For simplicity, we focus on the homogeneous case.
A common practice to pass from an incompressible model, with associated energy density W̃ defined on

{F ∈ R
3×3: detF = 1}, to a corresponding compressible model W (see, e.g., [2,7,9]) is to define

W(F) := W̃
(
(detF)−1/3F

) + Wvol(detF), for every F ∈ Lin+(3),

where Wvol is such that

Wvol � 0 and Wvol(t) = 0 if and only if t = 1.

For example, we can take Wvol of the form

Wvol(t) = c
[
t2 − 1 − 2 log t

]
, for every t > 0,
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for c > 0. Consider first the Neo-Hookean incompressible model for hyperelastic materials, where the energy density
is of the form

W̃N (F ) := a
(|F |2 − 3

)
, for every F ∈R

3×3 with detF = 1,

for a certain a > 0. Following the procedure described above, we consider the corresponding compressible energy
density defined for every F ∈ Lin+(3) by

WN (F ) := W̃N

(
F

(detF)1/3

)
+ Wvol(detF)

= a

( |F |2
(detF)2/3

− 3

)
+ Wvol(detF).

Let us check that WN has “gp-growth”. By using the well-known inequality between arithmetic and geometric mean,
it is easy to see that

WN � 0 and WN (F ) = 0 if and only if F ∈ SO(3). (2.14)

Moreover, recalling the Green–St. Venant strain tensor E = 1
2 (F T F − I ) and using simple rules of tensor calculus,

it turns out that in the small strain regime (that is, the regime of the deformation gradients which vary near SO(3)),
W has the expression

WN (F ) = μ|E|2 + λ

2
tr2 E + o

(|E|2), (2.15)

where

μ = 2a, λ = 4

(
−a

3
+ c

)
.

The parameters μ and λ + 2
3μ have the physical meaning of a shear modulus and a bulk modulus, respectively. Since

|E|2 � 1
3 tr2 E for every E ∈ Sym(3), from (2.15) we obtain that

WN (F ) � min{μ,6c}|E|2 + o
(|E|2),

and in turn,

WN (F ) � 1

2
min{μ,6c}|E|2, (2.16)

if |E| is small enough, that is, if d(F,SO(3)) is small enough. Since |√C − I | � |C − I | for every C ∈ Psym(3),
from (2.16) we obtain that

WN (F ) � 1

8
min{μ,6c}∣∣√FT F − I

∣∣2 = 1

8
min{μ,6c}d2(F,SO(3)

)
, (2.17)

if d(F,SO(3)) is sufficiently small. Now, we want to study the growth of W in the regime |F | → ∞. In this case, if
detF is bounded, then

WN (F ) � C|F |2 − 3a � C̃d2(F,SO(3)
)

(detF bounded), (2.18)

for some C, C̃ > 0. In the case detF → ∞, we have that

WN (F ) � K

( |F |2
det2/3F

+ det2F

)
,

for some K > 0. By using Young’s inequality

xy � xp

p
+ yq

q

(
1

p
+ 1

q
= 1

)

with x = (
|F |3
detF )1/2 and y = (detF)1/2, it is easy to show that

WN (F ) � K|F |3/2 � K̃d3/2(F,SO(3)
)

(detF → ∞), (2.19)
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for some K̃ > 0. (2.14), (2.17), (2.18) and (2.19) show that WN has gp-growth from below with p = 3
2 . It is important

to notice that WN has not quadratic growth everywhere. In particular, WN has not quadratic growth in the regime
detF → ∞. This can be checked by taking into account deformation gradients of the type

F =
⎡
⎣λ2 0 0

0 1
λ

0
0 0 1

⎤
⎦ , with λ � 0. (2.20)

As a second example, we consider the Mooney–Rivlin compressible model given, for some a, b > 0, by

WM (F ) := a

( |F |2
(detF)2/3

− 3

)
+ b

(
(detF)2/3

∣∣F−1
∣∣2 − 3

) + Wvol(detF)

= WN (F ) + b
(
(detF)2/3

∣∣F−1
∣∣2 − 3

)
, (2.21)

for every F ∈ Lin+(3), and derived from the corresponding incompressible version as explained before. The inequality
between arithmetic and geometric mean implies that the second summand in (2.21) is nonnegative, so that, from (2.14),
we have that

WM � 0 and WM (F ) = 0 if and only if F ∈ SO(3).

The formula for the small strain regime is given by (2.15), with

μ = 2(a + b), λ = 4

(
−a + b

3
+ c

)
.

From the fact that WN has gp-growth and from the positiveness of the second summand of (2.21) the gp-growth
of WM trivially follows. Also in this case, deformation gradients of the type (2.20) show that WM does not grow
quadratically everywhere.

Finally, we mention some Ogden-type compressible energy densities:

WO (F ) :=
m∑

i=1

ai

(
tr((F T F )γi/2)

(detF)γi/3
− 3

)
+ Wvol(detF),

defined for every F ∈ Lin+(3), for some m � 1 and ai, γi > 0, i = 1, . . . ,m. The formula for WO in the small strain
regime is again given by (2.15), with

μ = 2
m∑

i=1

ai, λ = 4

(
−1

3

m∑
i=1

ai + c

)
.

Arguing similarly to the Neo-Hookean and the Mooney–Rivlin models, we obtain that WO attains its minimum 0
at SO(3). By using Young’s inequality and proper counterexamples, it is possible to show that WO has gp-growth for
some 1 < p < 2 (p depending on the exponents γi ), but not a quadratic growth in general, if 0 < γi < 3 for every
i = 1, . . . ,m and γi > 6

5 for at least one index i ∈ {1, . . . ,m}.

3. Compactness

In this and in the next sections we give the proofs of the results stated in Section 2. To simplify the exposition,
the proofs are given only when W does not depend explicitly on x. The proofs in the general case require only minor
modifications.

The compactness result requires the following extension of the well-known geometric rigidity result of [8], where
a power of d(∇v,SO(n)) is replaced by gp(d(∇v,SO(n))).

Lemma 3.1 (Geometric rigidity). Let gp be the function defined in (2.2). There exists a constant C = C(Ω,p) > 0
with the following property: for every v ∈ W 1,p there exists a constant rotation R ∈ SO(n) satisfying∫

Ω

gp

(|∇v − R|)dx � C

∫
Ω

gp

(
d
(∇v,SO(n)

))
dx. (3.1)
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Similar versions of Lemma 3.1 can be found in [3,10,11]. For sake of completeness, we give the proof in
Appendix A.

We need two more lemmas in order to prove Theorem 2.3.

Lemma 3.2. Let S ⊆R
n be a bounded H m-measurable set with 0 < H m(S) < ∞ for some m > 0. Then

|F |S := min
ζ∈Rn

∫
S

|Fx − ζ |dH m

is a seminorm on R
n×n. Define

S0 := {
x ∈ S: H m

(
S ∩ Bρ(x)

)
> 0 for every ρ > 0

}
,

and let aff(S0) be the smallest affine space containing S0. Let K ⊆R
n×n be a closed cone such that

dim
(
Ker(F )

)
< dim

(
aff(S0)

)
, for every F ∈ K \ {0}. (3.2)

Then, there exists a constant C = C(S) > 0 such that

C|F | � |F |S, for every F ∈ K.

Proof. It is enough to repeat the proof of [5, Lemma 3.3], replacing the L2 norm with the L1 norm. �
We will use the next lemma also in the proof of the Γ -convergence result. In what follows and in the rest of the

paper we denote by C a positive constant which may change from line to line.

Lemma 3.3. Let ε > 0 and uε ∈ W
1,p
h . Under the hypotheses of Theorem 2.3, let Rε ∈ SO(n) be a constant rotation

satisfying (3.1) with v = x + εuε . Then,

|I − Rε|2 � Cε2
[
Fε(uε) +

( ∫
∂DΩ

|h|dH n−1
)2]

,

where C depends only on Ω , ∂DΩ , and p.

Proof. Consider the deformation vε := x + εuε . Lemma 3.1 tells us that there exists a constant rotation Rε ∈ SO(n)

such that∫
Ω

gp

(|∇vε − Rε|
)
dx � C

∫
Ω

gp

(
d
(∇vε,SO(n)

))
dx,

where C depends only on Ω and p. Then, by assumption (iv) on W , we have that∫
Ω

gp

(|∇vε − Rε|
)
dx � C

∫
Ω

W(∇vε) dx = Cε2Fε(uε).

Jensen inequality thus implies

gp

(
1

|Ω|
∫
Ω

|∇vε − Rε|dx

)
� Cε2Fε(uε). (3.3)

Poincaré–Wirtinger inequality and the continuity of the trace operator give∫
∂DΩ

|vε − Rεx − ζε|dH n−1 � C

∫
Ω

|∇vε − Rε|dx,

where ζε := 1
|Ω|

∫
Ω

(vε − Rεx)dx and C depends on Ω , so that, since vε = x + εh H n−1-a.e. on ∂DΩ , we obtain∫ ∣∣(I − Rε)x − ζε

∣∣dH n−1 � C

(∫
|∇vε − Rε|dx + ε

∫
|h|dH n−1

)
. (3.4)
∂DΩ Ω ∂DΩ
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Now, let us use Lemma 3.2 with S = ∂DΩ and with K equal to the closed cone generated by I −SO(n). Showing first
that every F ∈ K belongs to the cone generated by I − SO(n) or to Skw(n), it is easy to prove that every F ∈ K \ {0}
is such that

dim
(
Ker(F )

)
< n − 1.

On the other hand, ∂Ω Lipschitz implies that the right-hand side of (3.2) is equal to n − 1. Thus, we can apply
Lemma 3.2 to (I − Rε) ∈ K and write that

C|I − Rε| � min
ζ∈Rn

∫
∂DΩ

∣∣(I − Rε)x − ζ
∣∣dH n−1, (3.5)

where C depends on ∂DΩ and not on ε. From (3.4) and (3.5) we obtain that

|I − Rε|2 � C

[(
1

|Ω|
∫
Ω

|∇vε − Rε|dx

)2

+ ε2
( ∫

∂DΩ

|h|dH n−1
)2]

. (3.6)

We conclude the proof by distinguishing two cases. If
∫
Ω

|∇vε −Rε|dx � |Ω|, then (3.3) and the definition of gp tell
us that

1

2

(
1

|Ω|
∫
Ω

|∇vε − Rε|dx

)2

� Cε2Fε(uε).

Using this last inequality in (3.6), it turns out (2.12). If
∫
Ω

|∇vε − Rε|dx > |Ω|, again (3.3) and the definition of gp

tell us that

Cε2Fε(uε) >
1

2
.

This bound from below of ε2Fε(uε) gives trivially (2.12), in view of the fact that |I − Rε|� 2
√

n. �
For the proof of Theorem 2.3 we will need the following estimate

gp(s + t) � C
[
gp(s) + t2], for every s, t � 0, (3.7)

for a certain C depending on p. This estimate can be easily deduced from the convexity of gp and from the growth
properties of gp which give

gp(t) � 1

p
min

{
tp, t2} and gp(2t) � Cgp(t), for every t � 0,

for some C depending on p.

Proof of Theorem 2.3. Let Rε be given by Lemma 3.1 for vε := x + εuε , for every ε > 0. By using (3.7), we have
that ∫

Ω

gp

(|ε∇uε|
)
dx � C

∫
Ω

[
gp

(|∇vε − Rε|
) + |I − Rε|2

]
dx

� C

[∫
Ω

gp

(
d
(∇vε,SO(n)

))
dx + |I − Rε|2

]
,

where in the last inequality we have used Lemma 3.1. Assumption (iv) on W and Lemma 3.3 then imply that for
some C, depending on Ω , ∂DΩ , and p,∫

gp

(|ε∇uε|
)
dx � Cε2

[
Fε(uε) +

( ∫
|h|dH n−1

)2]
. (3.8)
Ω ∂DΩ
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In particular, from (3.8) and from the definition of gp we obtain∫
{x∈Ω: |ε∇uε(x)|�1}

|ε∇uε|2 dx � 2
∫
Ω

gp

(|ε∇uε|
)
dx

� Cε2
[
Fε(uε) +

( ∫
∂DΩ

|h|dH n−1
)2]

,

so that, by Hölder inequality, it turns out∫
{x∈Ω: |ε∇uε(x)|�1}

|ε∇uε|p dx �
( ∫

{x∈Ω: |ε∇uε(x)|�1}
|ε∇uε|2 dx

)p/2

|Ω|1−(p/2)

� Cεp

[
Fε(uε) +

( ∫
∂DΩ

|h|dH n−1
)2]p/2

� Cεp

[
1 + Fε(uε) +

( ∫
∂DΩ

|h|dH n−1
)2]

. (3.9)

Note that in (3.9) we have used the fact that

tp/2 � 1 + t, for every t � 0.

On the other hand, from (A.2) and again from (3.8) we obtain that∫
{x∈Ω: |ε∇uε(x)|>1}

|ε∇uε|p dx � C

∫
{x∈Ω: |ε∇uε(x)|>1}

gp

(|ε∇uε|
)
dx

� Cε2
[
Fε(uε) +

( ∫
∂DΩ

|h|dH n−1
)2]

. (3.10)

Inequalities (3.9) and (3.10) imply that (2.12) holds. �
In the next remark we construct a counterexample which shows that Theorem 2.3 is not true in general for

p ∈ (0,1).

Remark 3.4. Let p ∈ (0,1) and consider the simple case in which Ω is the open unitary ball B(0,1) in R
2, W(F) :=

gp(d(F,SO(2))) for every F ∈ Lin+(2), h = 0, and L = 0. For any ε > 0 and some α > 0 to be chosen, we introduce
the set

Sε :=
{
x ∈R

2:
1

2
< |x| < 1

2
+ εα

}
.

For every ε > 0 sufficiently small, Sε is an open annulus strictly included in Ω . We want to define a sequence
{uε} ⊆ W

1,p

0 such that the values Fε(uε) are equibounded and
∫
Ω

|∇uε|p dx → ∞ as ε → 0+. In order to do this, we

consider for every ε > 0 arbitrarily small a function ϕε ∈ C∞
c (Ω,R) such that supp(ϕε) ⊆ B(0, 1

2 ) ∪ Sε , 0 � ϕε � 1,
ϕε ≡ 1 on B(0, 1

2 ) and

|∇ϕε| � C

εα
for some C independent of ε. (3.11)

Then, we choose R ∈ SO(2) \ {I } and define the function

uε(x) := ϕε(x)
R − I

x, x ∈ Ω,

ε
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which belongs to C∞ for every ε > 0 sufficiently small. Observe that∫
Ω

|∇uε|p dx �
∫

B
(
0, 1

2
)
|∇uε|p dx = π |R − I |p

4εp
,

so that
∫
Ω

|∇uε|p dx → ∞ as ε → 0+ (for every choice of α > 0). Now, let us compute

∇uε(x) = 1

ε

{
ϕε(x)(R − I ) + [

(R − I )x
] ⊗ ∇ϕε(x)

}
and observe that ∇uε ≡ 0 on Ω \ [

B
(
0, 1

2

)∪Sε

]
, so that d(I + ε∇uε,SO(2)) ≡ 0 on the same set. Thus, recalling that

gp is increasing, it turns out that

ε2Fε(uε) �
∫

B
(
0, 1

2
)∪Sε

gp

(|I + ε∇uε − R|)dx

�
∫
Sε

gp

(|R − I |(1 + |x||∇ϕε|
))

dx, (3.12)

where in the last inequality we have also used the fact that ϕε ≡ 1 on B(0, 1
2 ). Therefore, from (2.2) and (3.12) we

obtain that

Fε(uε) �
C

ε2

∫
Sε

(
1 + |∇ϕε|p

)
dx, (3.13)

for some C independent of ε. Using (3.11) and noticing that |Sε| = πεα + o(εα), (3.13) implies that

Fε(uε) �
C

ε2

[
πεα + o

(
εα

)](
1 + 1

εαp

)
,

so that {Fε(uε)} turns out to be bounded whenever α > 2
1−p

.

We end this section with the following corollary.

Corollary 3.5. Under the hypotheses of Theorem 2.3, the functionals Gε are equicoercive in the weak topology
of W 1,p .

Proof. Let t ∈ R and {uε} be a sequence with Gε(uε) � t , so that {uε} ⊆ W
1,p
h . Thus, by the definition of Gε (2.11),

we have

Fε(uε) � t + L (uε).

Theorem 2.3 implies that for every ε sufficiently small∫
Ω

|∇uε|p dx � C

[
1 + L (uε) +

( ∫
∂DΩ

|h|dH n−1
)2]

,

for some C independent of ε. By Poincaré inequality, this gives

‖uε‖p

W 1,p � C
(‖uε‖W 1,p + 1

)
, (3.14)

where C now depends also on h and L . Therefore, since p > 1, from (3.14) we obtain that ‖uε‖W 1,p is bounded. �
Observe that the proofs of Theorem 2.3, Lemma 3.3 and Corollary 3.5 do not use the fact that ∂DΩ has Lipschitz

boundary in ∂Ω (see Definition 2.1): actually, these results hold under the weaker hypothesis H n−1(∂DΩ) > 0.
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4. Γ -convergence

Consider a sequence εj → 0+ as j → ∞. By Theorem 2.3, we can characterize the Γ -limit in the weak topology
of W 1,p in terms of weakly converging sequences (see [6, Proposition 8.10]). In particular, we have that

F ′(u) := Γ -lim inf
j→∞ Fεj

(u) = inf
{

lim inf
j→∞ Fεj

(uj ): uj ⇀ u weakly in W 1,p
}
;

F ′′(u) := Γ -lim sup
j→∞

Fεj
(u) = inf

{
lim sup
j→∞

Fεj
(uj ): uj ⇀ u weakly in W 1,p

}
. (4.1)

Thus, in order to prove Theorem 2.4, we will show that F (u) � F ′′(u) and F (u) � lim infj→∞ Fεj
(uj ), for every

u ∈ W 1,p and every uj ⇀ u weakly in W 1,p .

Proof of Theorem 2.4. (I) We want to show that F (u) � F ′′(u). Consider the nontrivial case F (u) < ∞, so that
u ∈ W

1,2
h and

F (u) = 1

2

∫
Ω

D2W(I)
[
e(u)

]2
dx.

Suppose first u ∈ W 1,∞. The boundedness of ∇u and assumption (ii) on W , together with the fact that W(I) = 0 and
DW(I) = 0, imply that

lim
j→∞

1

ε2
j

W
(
I + εj∇u(x)

) = 1

2
D2W(I)

[∇u(x)
]2

, for a.e. x ∈ Ω,

and that there exists C > 0 such that for every εj > 0 sufficiently small

W(I + εj∇u) � ε2
jC|∇u|2, a.e. in Ω.

Then, by dominated convergence and by (2.3), we obtain

lim
j→∞

1

ε2
j

∫
Ω

W(I + εj∇u)dx = 1

2

∫
Ω

D2W(I)
[
e(u)

]2
dx.

Therefore, by (4.1),

F (u) = lim
j→∞Fεj

(u) � F ′′(u). (4.2)

Consider now the general case u ∈ W
1,2
h . Since ∂DΩ has Lipschitz boundary in ∂Ω , from Proposition A.2 we have

that there exists a sequence {uk} ⊆ W
1,∞
h such that uk → u strongly in W 1,2, as k → ∞. Observe that by (4.2) we

have F ′′(uk)� F (uk) for every k. Thus, by the weak lower semicontinuity of F ′′ in W 1,p and the strong continuity
of F in W

1,2
h , it turns out that

F (u) = lim
k→∞F (uk) � lim inf

k→∞ F ′′(uk) �F ′′(u).

(II) We want to prove that, if uj ⇀ u weakly in W 1,p , then F (u) � lim infj Fεj
(uj ). Consider the nontrivial

case lim infj→∞ Fεj
(uj ) < ∞ so that, up to a subsequence, we can suppose {Fεj

(uj )} bounded and, in particular,

{uj } ⊆ W
1,p
h . Let 1Bj

be the characteristic function of Bj , where

Bj :=
{
x ∈ Ω:

∣∣∇uj (x)
∣∣ � 1√

εj

}
. (4.3)

Claim 1. We have that {1Bj
∇uj } is bounded in L2.
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Proof. By Lemma 3.1 and by the growth hypothesis on W we have that for every j there exists Rj ∈ SO(n) such
that ∫

Ω

gp

(∣∣I + εj∇uj (x) − Rj

∣∣)dx � ε2
jCFεj

(uj ) � Cε2
j , (4.4)

where the last inequality follows from the boundedness of {Fεj
(uj )}. Considering the set

Aj := {
x ∈ Ω:

∣∣I + εj∇uj (x) − Rj

∣∣� 3
√

n
}
,

it is easy to check that Bj ⊆ Aj for every j large enough, so that∫
Bj

|∇uj |2 dx � 2

ε2
j

∫
Aj

(|εj∇uj + I − Rj |2 + |I − Rj |2
)
dx. (4.5)

Therefore, by using (A.1) and the definition of Aj , from (4.5) we obtain that∫
Bj

|∇uj |2 dx � C

ε2
j

∫
Aj

[
gp

(|εj∇uj + I − Rj |
) + |I − Rj |2

]
dx

� C

(
1 + |I − Rj |2

ε2
j

)
, (4.6)

where in the last inequality we have used (4.4) and C depends on Ω and p. Since {F (uj )} is bounded, Lemma 3.3
tells us that |I − Rj |2/ε2

j is bounded. This fact, together with (4.6), gives the claim. �
Claim 2. ∇u ∈ L2 and, up to a subsequence, we have that

1Bj
∇uj ⇀ ∇u weakly in L2.

Proof. By Claim 1, we have that, up to a subsequence,

1Bj
∇uj ⇀ v weakly in L2, (4.7)

for some v ∈ L2. Let us prove that

1Bc
j
∇uj → 0 strongly in Lα, (4.8)

for every α ∈ [1,p). We first observe that |Bc
j | → 0, by Chebyshev inequality. Taking into account the boundedness

of {uj } in W 1,p , by Hölder inequality we obtain∫
Ω

|1Bc
j
∇uj |α dx �

(∫
Ω

|∇uj |p dx

)α/p∣∣Bc
j

∣∣(p−α)/p � C
∣∣Bc

j

∣∣(p−α)/p → 0,

which proves (4.8).
The weak convergence of uj to u in W 1,p implies also that ∇uj ⇀ ∇u weakly in Lα , for every α ∈ [1,p). This

fact, together with (4.8), gives that

1Bj
∇uj = (∇uj − 1Bc

j
∇uj ) ⇀ ∇u weakly in Lα, (4.9)

for every α ∈ [1,p). By (4.7) and (4.9) we conclude that ∇u = v ∈ L2 and Claim 2 follows. �
From assumptions (ii) and (iii) on W it is easy to show that

W(I + F) � 1

2
D2W(I)[F ]2 − η

(|F |)|F |2, for every F ∈ R
n×n,

where η is an increasing function on [0,∞) such that η(t) → 0 as t → 0+. Therefore, we can write
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Fεj
(uj )�

∫
Bj

{
1

2
D2W(I)

[
e(uj )

]2 − η
(
εj |∇uj |

)|∇uj |2
}

dx

�
∫
Ω

{
1

2
D2W(I)

[
1Bj

e(uj )
]2 − η(

√
εj )1Bj

|∇uj |2
}

dx, (4.10)

where in the last inequality we have used the definition of Bj and the monotonicity of η. Thus, from (4.10) we obtain
that

lim inf
j→∞ Fεj

(uj ) �
1

2
lim inf
j→∞

∫
Ω

D2W(I)
[
1Bj

e(uj )
]2

dx − lim
j→∞η(

√
εj )

∫
Ω

1Bj
|∇uj |2 dx

= 1

2
lim inf
j→∞

∫
Ω

D2W(I)
[
1Bj

e(uj )
]2

dx (4.11)

� 1

2

∫
Ω

D2W(I)
[
e(u)

]2
dx, (4.12)

where (4.11) follows from Claim 1 and from the convergence of η(
√

εj ) to 0, while (4.12) is deduced from Claim 2
and from the lower semicontinuity of

w �→ 1

2

∫
Ω

D2W(I)[w]2

in the weak topology of L2, which is a consequence of (2.3) and (2.4). In order to conclude the proof, it remains to
show that u ∈ W

1,2
h , so that from (4.12) we have lim infj→∞ Fεj

(uj ) � F (u). We already know, from Claim 2, that
∇u ∈ L2. Since u is at least in L1, it is easy to show, by using Sobolev embeddings, that u ∈ L2. Therefore, u ∈ W 1,2.
Since uj ⇀ u weakly in W 1,p and {uj } ⊆ W

1,p
h , we have u ∈ W

1,p
h . Thus, u ∈ W

1,p
h ∩ W

1,2
h = W

1,2
h . �

Remark 4.1. In the case p = 2, one can prove a slightly different version of Theorems 2.2 and 2.4, assuming only that
∂DΩ is a subset of ∂Ω with H n−1(∂DΩ) > 0, as in [5]. In this case, in the definitions of the functionals (2.9)–(2.11)
the space W

1,2
h has to be replaced by the closure of W

1,∞
h in W 1,2.

5. Convergence of minimizers

Recall that a family F := {f } ⊆ L1(Ω) is equiintegrable if for every η > 0 there exists Mη > 0 such that∫
{x∈Ω: |f (x)|>Mη}

|f |dx < η, for every f ∈ F . (5.1)

Equivalently, F is equiintegrable if for every η > 0 there exists δη > 0 such that, if A ⊆ Ω and |A| < δη , then∫
A

|f |dx < η, for every f ∈ F . (5.2)

The following criterion of equiintegrability will be useful.

Lemma 5.1. The family F := {f } ⊆ L1 is equiintegrable if and only if for every η > 0 there exists Mη > 0 and
p ∈ (1,∞] such that any f ∈ F can be written as

f = g + h, with ‖g‖L1 < η and ‖h‖Lp < Mη. (5.3)

Proof. Suppose F equiintegrable, so that, for every η > 0, there exists Mη > 0 such that (5.1) holds. By setting

g := f 1{|f |>Mη} and h := f 1{|f |�Mη},
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we have that f = g + h and

‖g‖L1 =
∫

{|f |>Mη}
|f |dx < η, ‖h‖p

Lp � |Ω|Mp
η .

Conversely, assume (5.3). We want to prove that, for every η > 0, there exists δη > 0 such that (5.2) holds, whenever
|A| < δη. By hypothesis, for every f ∈ F there exist g, h, and p ∈ (1,∞] such that (5.3) holds with η

2 in place of η.
Thus, by using Hölder inequality, we have that∫

A

|f |dx �
∫
A

|g|dx +
∫
A

|h|dx <
η

2
+ Mη/2|A|(p−1)/p,

so that, by imposing δη := (
η

2Mη/2
)p/(p−1), we can conclude. �

In the next proof, we will make use of Vitali’s Convergence Theorem: if {fj } is a sequence of equiintegrable
functions on Ω which converges pointwise to a function f , then

f ∈ L1 and fj → f in L1.

Moreover, we will use the following result of geometric rigidity, for which we refer to [4].

Theorem 5.2. Let 1 < p1 < p2 < ∞. There exists C = C(Ω,p1,p2) > 0 with the following property: for every
v ∈ W 1,1 with

d
(∇v,SO(n)

) = f1 + f2 a.e. in Ω, and fi ∈ Lpi , i = 1,2,

there exist gi ∈ Lpi , i = 1,2, and a constant rotation R ∈ SO(n) such that

∇v = R + g1 + g2, a.e. in Ω, with ‖gi‖Lpi � C‖fi‖Lpi , i = 1,2.

Proof of Theorem 2.5. Let {uj } be a recovery sequence for u ∈ W
1,2
h . In order to prove that {uj } converges to u

strongly in W 1,p , we show that

(i) e(uj )1Bj
→ e(u) strongly in L2,

(ii)

{
dp(I + εj∇uj ,SO(n))

ε
p
j

}
is equiintegrable,

(iii)
{|∇uj |p

}
is equiintegrable,

where Bj is the set defined in (4.3). Once (i) and (iii) are proved ((ii) is an intermediate step to prove (iii)), we can
conclude as follows. From (i) we have that, up to a subsequence,

e(uj )1Bj
→ e(u) a.e. in Ω. (5.4)

Moreover, e(uj )1Bc
j
→ 0 strongly in L1 by Hölder inequality:∫

Bc
j

∣∣e(uj )
∣∣dx �

∥∥e(uj )
∥∥

Lp

∣∣Bc
j

∣∣(p−1)/p → 0, (5.5)

where we have used the boundedness of {uj }, which implies |Bc
j | → 0 by Chebyshev inequality. Thus, by (5.4)

and (5.5), we have that, up to a further subsequence,

e(uj ) = e(uj )1Bj
+ e(uj )1Bc

j
→ e(u) a.e. in Ω. (5.6)

Let us apply Vitali’s Convergence Theorem to the functions fj := |e(uj )− e(u)|p and f = 0. Since fj → f a.e. in Ω

by (5.6) and {fj } is equiintegrable by (iii), we obtain that

e(uj ) → e(u) in Lp.
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Observe that, by the hypothesis Fεj
(uj ) → F (u) < ∞, uj = h on ∂DΩ for every j , thus it is sufficient to apply

Korn’s inequality to deduce that uj → u strongly in W 1,p .
We now prove (i)–(iii). Let us set, for every j ,

vj := x + εjuj , for a.e. x ∈ Ω.

Proof of (i). As shown in the proof of Theorem 2.4, the boundedness of {F (uj )} for every j sufficiently large implies
that, up to a subsequence, the sequence {1Bj

∇uj } converges to ∇u weakly in L2, and

lim
j→∞Fεj

(uj ) � lim sup
j→∞

1

ε2
j

∫
Bj

W(∇vj ) dx � lim sup
j→∞

∫
Ω

1

2
D2W(I)

[
e(uj )1Bj

]2
dx,

lim inf
j→∞

1

ε2
j

∫
Bj

W(∇vj ) dx � lim inf
j→∞

∫
Ω

1

2
D2W(I)

[
e(uj )1Bj

]2
dx � F (u).

Since Fεj
(uj ) → F (u), it turns out that

1

ε2
j

∫
Bj

W(∇vj ) dx → 1

2

∫
Ω

D2W(I)
[
e(u)

]2
dx, (5.7)

∫
Ω

D2W(I)
[
e(uj )1Bj

]2
dx →

∫
Ω

D2W(I)
[
e(u)

]2
dx.

The latter, together with the positive definiteness of D2W(I) on symmetric matrices and the weak convergence of
{1Bj

e(uj )} to e(u) in L2, proves (i).

Proof of (ii). Let us write

1

ε
p
j

dp
(∇vj ,SO(n)

) = 1

ε
p
j

dp
(∇vj ,SO(n)

)
(1Bj

+ 1Bc
j
), (5.8)

and prove that both terms of the sum in (5.8) are equiintegrable. Observe that

d
(∇vj ,SO(n)

)
� d

(∇vj , I + εj skw(∇uj )
) + d

(
I + εj skw(∇uj ),SO(n)

)
= εj

∣∣e(uj )
∣∣ + d

(
I + εj skw(∇uj ),SO(n)

)
. (5.9)

Since εj skw(∇uj ) is an element of the tangent space to the C∞ manifold SO(n) at I , we have that

d
(
I + εj skw(∇uj ),SO(n)

)
� Cε2

j

∣∣skw(∇uj )
∣∣2 � Cε2

j |∇uj |2, (5.10)

for every εj small enough. Inequalities (5.9) and (5.10) imply that

1

ε
p
j

dp
(∇vj ,SO(n)

)
� 2p

{∣∣e(uj )
∣∣p + Cε

p
j |∇uj |2p

}
. (5.11)

Now, by using the definition of Bj and writing

|∇uj |2p1Bj
= |∇uj |p|∇uj |p1Bj

� 1

ε
p/2
j

|∇uj |p1Bj
,

from (5.11) we obtain that

1

ε
p
j

dp
(∇vj ,SO(n)

)
1Bj

� 2p
{∣∣e(uj )1Bj

∣∣p + Cε
p/2
j |∇uj 1Bj

|p}
.

This last inequality gives that

1

ε
p dp

(∇vj ,SO(n)
)
1Bj

is equiintegrable,

j
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in view of (i) and of the fact that {∇uj 1Bj
} converges weakly in L2. It remains to prove that { 1

ε
p
j

dp(∇vj ,SO(n))1Bc
j
}

is equiintegrable. Indeed, it turns out that

1

ε
p
j

∫
Bc

j

dp
(∇vj ,SO(n)

)
dx → 0. (5.12)

In order to see this, we use the fact that

1

ε2
j

∫
Bc

j

W(∇vj ) dx → 0, (5.13)

which descends from (5.7) and from the convergence of {Fεj
(uj )} to F (u). By the growth hypothesis on W and by

the inequality tp � t2 + 1, for t � 0, it is easy to show that

1

εp
dp

(
I + εF,SO(n)

)
� 2

ε2
W(I + εF ) + 1, for every F ∈R

n×n and ε ∈ (0,1),

so that

1

ε
p
j

∫
Bc

j

dp
(∇vj ,SO(n)

)
dx � 2

ε2
j

∫
Bc

j

W(∇vj ) dx + ∣∣Bc
j

∣∣.
This last inequality, together with (5.13) and the fact that |Bc

j | → 0, implies (5.12).

Proof of (iii). For every M > 0 and every j , we set

E
j
M := {

x ∈ Ω: dp
(∇vj (x),SO(n)

)
� ε

p
j M

}
.

Let us fix q > p. By using (ii), it is easy to show that for every η > 0 there exists Mη > 0 with the following property.
If

f
j

1 := d
(∇vj ,SO(n)

)
1
E

j
Mη

and f
j

2 := d
(∇vj ,SO(n)

)
1
(E

j
Mη

)c
,

then f
j

1 ∈ Lp , f
j

2 ∈ Lq , d(∇vj ,SO(n)) = f
j

1 + f
j

2 , and∥∥f
j

1

∥∥p

Lp < ηε
p
j ,

∥∥f
j

2

∥∥q

Lq � |Ω|Mq/p
η ε

q
j . (5.14)

Applying Theorem 5.2, it turns out that for every j there exists Rj ∈ SO(n) such that ∇vj = Rj + g
j

1 + g
j

2 a.e. in Ω ,
with ∥∥g

j

1

∥∥
Lp � C

∥∥f
j

1

∥∥
Lp ,

∥∥g
j

2

∥∥
Lq � C

∥∥f
j

2

∥∥
Lq . (5.15)

In particular,

1

ε
p
j

|∇vj − Rj |p �
(

2

εj

)p(∣∣gj

1

∣∣p + ∣∣gj

2

∣∣p)
(5.16)

and, due to (5.14) and (5.15),

1

ε
p
j

∫
Ω

∣∣gj

1

∣∣p dx < Cη,
1

ε
p
j

(∫
Ω

∣∣gj

2

∣∣pα
dx

)1/α

< CMη, (5.17)

for α = q
p

> 1. Therefore, by considering (5.16) and (5.17), and using Lemma 5.1, we have that{ |∇vj − Rj |p
ε
p

}
is equiintegrable. (5.18)
j
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Recalling that vj = x + εjh H n−1-a.e. on ∂DΩ , it turns out that

|I − Rj | � C

(∫
Ω

|∇vj − Rj |dx + εj

∫
∂DΩ

|h|dH n−1
)

, (5.19)

where C depends on Ω and ∂DΩ . This can be shown as done in the proof of Lemma 3.3 by using Poincaré–Wirtinger

inequality and Lemma 3.2. From (5.18) follows in particular that
{ |∇vj −Rj |p

ε
p
j

}
is bounded in L1 so that, by (5.19), we

obtain that{ |I − Rj |
εj

}
is bounded. (5.20)

Finally, observe that for every measurable subset A of Ω∫
A

|∇uj |p dx � 2p

ε
p
j

{∫
A

|∇vj − Rj |p dx + |A||I − Rj |p
}
,

for every j . This inequality, together with (5.18) and (5.20), gives (iii). �
Proof of Theorem 2.2. Consider a sequence εj → 0. By using the notation introduced in (2.9)–(2.11), the infima mεj

and m (see (2.6) and (2.8)) can be rewritten as

mεj
= inf

W 1,p
Gεj

, m = min
W 1,p

G .

It is easy to show that G has a unique minimizer u ∈ W
1,2
h on W 1,p . By standard properties of Γ -convergence

(see [6, Theorem 7.8]), Theorem 2.4 and Corollary 3.5 imply that

mεj
→ m = G (u)

and in turn, by (2.7), that

Gεj
(uεj

) → G (u) < ∞, (5.21)

when {uεj
} is a sequence of “almost minimizers”. Again by standard arguments, (5.21) and Corollary 3.5 imply that

uεj
⇀ u weakly in W 1,p and Fεj

(uεj
) → F (u).

This last result and Theorem 2.5 give that {uεj
} converges to u strongly in W 1,p . Since this is true for every εj → 0,

the whole sequence {uε} converges to u strongly in W 1,p (and mε → m). �
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Appendix A

We collect here some estimates involving the function gp , which describes the growth from below of our energy
density. We use them mainly in the proof of Lemma 3.1.

For every K > 0, there exists C depending on p and K such that

t2 � Cgp(t), for every 0 � t �K, (A.1)

tp � Cgp(t), for every t � K. (A.2)

Moreover, since gp(t) � 1
2 min{tp, t2} for every t � 0 and gp is convex, there exists C depending on p such that

gp(s + t)� C
(
sp + t2), for every s, t � 0. (A.3)
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In order to prove Lemma 3.1 we need the following truncation result proved in [8].

Proposition A.1 (Truncation). There exists a constant C depending on Ω and p with the following property: for every
v ∈ W 1,p and every λ > 0 there exists V ∈ W 1,∞ such that

(i) ‖∇V ‖L∞ � Cλ,

(ii) ‖∇v − ∇V ‖p

Lp(Ω) � C

∫
{x∈Ω: |∇v(x)|>λ}

|∇v|p dx.

Proof of Lemma 3.1. For v ∈ W 1,p , let V ∈ W 1,∞ be given by Proposition A.1 (with λ > 0 to be chosen), and
R ∈ SO(n) arbitrary. Since gp is nondecreasing, by using (A.3) we have∫

Ω

gp

(|∇v − R|)dx � C

∫
Ω

(|∇v − ∇V |p + |∇V − R|2)dx, (A.4)

where C depends on p. Let S(x) ∈ SO(n) be such that |∇v − S| = d(∇v,SO(n)) a.e. in Ω . Observe that, in the set
where

|∇v − S|� √
n, (A.5)

we have

|∇v|p � 2p
(|∇v − S|p + np/2)� 2p+1dp

(∇v,SO(n)
)
. (A.6)

It is clear that (A.5) is satisfied if |∇v| � 2
√

n. Thus, by using (A.6) and Proposition A.1 (ii) with λ = 2
√

n, we have
that ∫

Ω

|∇v − ∇V |p dx � C

∫
{x∈Ω: |∇v(x)|>2

√
n }

|∇v|p dx

� C

∫
{x∈Ω: |∇v(x)|>2

√
n }

dp
(∇v(x),SO(n)

)
dx

and in turn, by using (A.2), that∫
Ω

|∇v − ∇V |p dx � C

∫
Ω

gp

(
d
(∇v(x),SO(n)

))
dx. (A.7)

In the case p = 2, the lemma we are proving is already well known (see [8]) and we apply it to V : there exist C

independent of V and a constant rotation R ∈ SO(n) such that∫
Ω

|∇V − R|2 dx � C

∫
Ω

d2(∇V,SO(n)
)
dx. (A.8)

By rewriting (A.4) for such an R ∈ SO(n), from (A.7) and (A.8) we obtain∫
Ω

gp

(|∇v − R|)dx � C

∫
Ω

{
gp

(
d
(∇v,SO(n)

)) + d2(∇V,SO(n)
)}

dx, (A.9)

where C depends on Ω and p. Next, we prove that

d2(∇V,SO(n)
)
� C

{|∇V − ∇v|p + gp

(
d
(∇v,SO(n)

))}
a.e. in Ω, (A.10)

for some C depending on Ω and p. We use again the matrix S(x) ∈ SO(n) such that |∇v − S| = d(∇v,SO(n)) a.e.
in Ω .
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(i) In the set where |∇v − S|� 1, the function |∇V − ∇v| is bounded by a constant independent of V :

|∇V − ∇v|� |∇V | + |S| + 1 � C,

where in the last inequality we have used Proposition A.1 (i). Thus, since

t2 � K2−ptp, for every t ∈ [0,K] and K � 1, (A.11)

we have

|∇V − ∇v|2 � C|∇V − ∇v|p
and in turn, using the definition of gp ,

d2(∇V,SO(n)
)
� |∇V − S|2 � 2|∇V − ∇v|2 + 2|∇v − S|2
� C

{|∇V − ∇v|p + gp

(
d
(∇v,SO(n)

))}
,

which gives (A.10).
(ii) In the set where |∇v − S| > 1, Proposition A.1 (i) and (A.11) give that

d2(∇V,SO(n)
)
� |∇V − S|2 � C|∇V − S|p
� C

{|∇V − ∇v|p + dp
(∇v,SO(n)

)}
.

From this inequality and from (A.2) we obtain (A.10).

Inequalities (A.9) and (A.10) imply that∫
Ω

gp

(|∇v − R|)dx � C

∫
Ω

{
gp

(
d
(∇v,SO(n)

)) + |∇V − ∇v|p}
dx,

and in turn, by considering (A.7), give the thesis. �
We finish by proving an approximation result for functions in W

1,p
h , which has been useful in the proof of the

Γ -convergence results. We write x ∈ R
n in the form x = (x′′, xn−1, xn) and refer the reader to Definition 2.1 and

to (2.1) for the notation.

Proposition A.2. Suppose that ∂DΩ has Lipschitz boundary in ∂Ω , according to Definition 2.1, and let W
1,p
h be

defined in (2.1).
If h ∈ W 1,∞ and 1 � p < ∞, then W

1,p
h is the closure of W

1,∞
h in W 1,p .

In order to prove Proposition A.2, we need the following lemma.

Lemma A.3. For p ∈ [1,∞), let u ∈ W 1,p(Q+) be such that supp(u) � Q and u = 0 L n−1-a.e. on Q+
0 . Then, for

every ε > 0 there exists uε ∈ C∞(Q) such that uε = 0 on Q+
0 and

‖uε − u‖W 1,p(Q+) < ε. (A.12)

Proof. Let u ∈ W 1,p(Q+) satisfy the hypotheses of the lemma. Consider the subset M := (−1,1)n−2 × (0,1) ×
(−1,0] of Q and define

v :=
{

u, on Q+,

0, on M.

It turns out that v ∈ W 1,p(Q+ ∪ M). Up to extend v to a function in W 1,p(Q) and to multiply it by a function
ζ ∈ C∞

c (Q) such that ζ ≡ 1 on supp(u), we can suppose that v ∈ W 1,p(Q) and that supp(v) � Q. Starting from v,
we want to construct a sequence {vk} which approximates u in W 1,p(Q+) and is such that supp(vk) � Q \ M . To this
end, we define for every k

vk(x) := v

(
x′′, xn−1 + 1

, xn − 1
)

, for every x ∈ Qk,

k k
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where

Qk := (−1,1)n−2 ×
(

−1 − 1

k
,1 − 1

k

)
×

(
−1 + 1

k
,1 + 1

k

)
.

Observe that

supp(vk) � Q \ M, for every k sufficiently large. (A.13)

Moreover, v and vk are functions in W 1,p(Rn), up to extend them at 0 out of Q and Qk , respectively. In this case, it
is well known that vk → v in W 1,p(Rn). In particular, we have obtained that

vk → u in W 1,p
(
Q+)

.

The last step of the proof consists in choosing kε such that

‖vkε − u‖W 1,p(Q+) <
ε

2
(A.14)

and considering a standard family {ρm}m of mollifiers. By (A.13), there exists mε such that uε := vkε ∗ ρmε ∈
C∞

c (Q \ M) (thus, uε ≡ 0 on Q+
0 ) and

‖uε − vkε‖W 1,p(Q) <
ε

2
. (A.15)

Inequalities (A.14) and (A.15) give (A.12). �
Proof of Proposition A.2. By a standard argument based on a partition of unity subordinate to a finite covering
of Ω and on local bi-Lipschitz charts, we can use Lemma A.3 to prove that {u ∈ W 1,p: u = 0 H n−1-a.e. on ∂DΩ}
is contained in the closure of {u ∈ C∞(Ω): u = 0 on ∂DΩ} in W 1,p . The opposite inclusion is trivial. The result for
a general boundary value h ∈ W 1,∞ is obtained by adding h to both sets. �
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