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Abstract

We show that topological singularities of mapB¥(S2, S1) can be detected by its distributional Jacobian. As an application,
we construct an optimal lifting and we compute its total variation.
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Résumé
On montre que le jacobien d'une fonctiore BV(S2, S1) permet de localiser les singularités topologiques.den applique

ce résultat a la construction d’un relévement optimal et on calcule sa variation totale.
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1. Introduction

Let u € BV(S2, 81), i.e. u = (u1, u2) € L1(52,R?), |u(x)| = 1 for a.e.x € §2 and the derivative of; (in the
sense of the distributions) is a finitex22-matrix Radon measure

2 2
/|Du|=su /Zukdiv;deZ: ok € CH(S?, R?), Z|¢k(x)\2<1, Vx e §2} < oo,
2 2 k=1 k=1

where the norm iR is the Euclidean norm. Observe that the total variatioaefis independent of the choice
of the orthonormal framéx, y) on 52; a frame(x, y) is always taken such thét, y, e) is direct, wheree is the
outward normal to the sphes?.
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We begin with the notion of minimal connection between point singularities. dthe concept of a minimal
connection associated to a function frdi into $? was originally introduced by Brezis, Coron and Lieb [3].
Following the ideas in [3] and [6], Brezis, Mironescu and Ponce [4] studied the topological singularities of functions
g € Wh1(s2, s1). They show that the distributional Jacobiargadescribes the location and the topological charge
of the singular set 0. More precisely, lef' (g) € D'(5%, R) be defined as

T(g)=2delVg)=—(gAg)y+(gAg)x;

then there exist two sequences of poifis), (n) in $2 such that

D lpk—nil<oo and T(g)=2m) (8p — du)-
k k

Our aim is to extend these notions for functions BV(52, $1). In this case, the difficulty of the analysis of the
singular set arises from the existence of more than one type of singularity: besides the point singularities carrying
a degree, the jump singularitiesofthould be taken into account.

We start by introducing some notation. Write the finite RadonZmatrix measuré®u as

Du = D% + Du+ D’u,

whereD“u, Dcu‘andeu are the absolutely continuous part, the Cantor part and the jump part (fee e.g. [1]).
We recall thatD/u can be written as

Diu= @t —u)® UquLS(M),

whereS () denotes the set of jump points of S(«) is a countablyH1-rectifiable set ors? oriented by the Borel
mapv, : S(u) — St. The Borel functions™, u~: S(u) — ST are the traces af on the jump sef(«) with respect
to the orientation,. Throughout the paper we identify by its precise representative that is defirfétta.e. in
S2\ S(u).

We now introduce the distributiofi(z) € D'(S2, R) as

(T, ¢)= / Vi (u A (D + DCu)) + / ot u v, - VicdHY, Vi e CHSER). (1)
52 S(u)

Here, V¢ = (¢y, —2y),

<u1> A <a1 bl) =W Aa,uNb)=(uraz —uza1, uirby — uzby),
U ay bo

b

wherea = (al> andb = (;). The functionp (-, -): S1 x §* — [—x, 7] is the signed geodesic distance $h
az 2

defined as

Arg(ﬁ—;) if g—; #*
Arg(w1) — Arg(wp)  if & =

—1, .
1 Yw1,w2 € S,
2 9

p(w1, w2) = {
where Arg(w)e (-, 7] stands for the argument of the unit complex number S1. T' (1) represents the distrib-
utional determinant of the absolutely continuous part and the Cantor pBnt @fhich is adjusted oS (1) by the
tangential derivative op(u*, u~). The second term in the RHS of (1) is motivated by the studB\s¢st, s1)
functions (see [9]): we defined there a similar quantity that represents a pseudo-de@éesfors?) functions.

Remark 1. (i) The integrand in (1) is computed pointwise in any orthonormal fréme) and the corresponding
quantity is frame-invariant.
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(i) The 2-vector measure
m= (1, w2) =u A D%+ DU = (u A () + @r)), u A () 4 (uy)°))
is well-defined sinced?u + D°u vanishes on sets which asefinite with respect ta+?.
(iii) Notice that the functiorp is antisymmetric, i.e.
p(w1, w2) = —p(wz, w1), VYor,wze€ S

and thereforeT (1) does not depend of the choice of the orientatigpron the jump sefS(#). By Lemma 5 (see
below), we obtain

(T @), ¢)| < lulgyst, V& € CH(S?,R) with Ve < 1,

wherelu|gy g1 = / (ID%u|+|D ul) + / ds1(u™, u™) dH! andds stands for the geodesic distancesIn There-

52 S(u)
fore, T (u) is indeed a distribution (of order 1) cff.

For a compact Riemannian manifalwith the induced distancg, define

Z(X)= {A e[c*X)]": Apo). () C X, Zd(pk, ng) < ooandA =27 Z“m - 5,“,)}.
k k

Z(X) is the set of distributions that can be written as a countable sum of dipoles.

Remark 2. (i) In general,A € Z(X) is not a measure. In fact, it can be shown thas a measure if and only i
is a finite sum of dipoles (see Smets [11] and also Ponce [10]).
(i) A e Z(X) has always infinitely many representations as a sum of dipoles and these representations
need not be equivalent modulo a permutation of points. For example, a dipeles, may be represented as
8p —bny + Z(ank — 8ni,1) for any sequencény) rapidly converging ta.
k>1

For eachA € Z(X), the length of a minimal connection between the singularities is defined as
[All=sup (A,Z).

ceCl(x)
[Ve|<1

m
For example, whemt = 2 Z(S,,k — &y, is afinite sum of dipoles, Brezis, Coron and Lieb [3] showed that
k=1

m
All =27 min » d(px, ,
Al Skz_l (Pe o)

where §,, denotes the group of permutation {f, 2, ..., m}. In general, for an arbitraryt € Z(X), Bourgain,
Brezis and Mironescu [2] proved the following characterization of the length of a minimal connection:

Al = . i)n{ ){ZnZd(pk,nk): A=27 (8p, —8n) and > d(pi.ny) < oo}. 2)
k). {tk & & X

From (2), one can deduce th&{(X) is a complete metric space with respect to the distance inducgd |pysee
e.g. [10]).

Ouir first theorem states thatu) is a countable sum of dipoles. It is the extension toBNecase of the result
in [4] mentioned in the beginning.
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Theorem 1. For everyu € BV(S2; S1), we havel (u) € Z(52), i.e. there existpy), (nx) in $2 such that

D lpk—nil<oo and T(u)=21) (8, —bu,).
k k

The proof relies on the fact that the derivative (in the sense of distributions) of the characteristic function of a
bounded measurable setlincan be written as a sum of differences between Dirac masses:

Lemmal. Let/ C R be a compact interval and : I — 277 be an integrable function. Define

d
<d—];é> I=—/f(t)§/(t)dt, ve e ).
1

Then
df df| _
EGZ([) and HEH_/mdt.

1

The same property is valid for the distributional tangential derivative of an integrable function taking values in
277 and defined on &1 1-graph (see Remark 3). Since every countalyrectifiable sets ¢ $2 can be covered
H1-a.e. by a sequence 6 1-graphs, it makes sense to define for evarg Z(52) the set

J(A) = {(f, S,v): Sisa countablw-(l—rectifiable setins?, v is an orientation ors,

feLXS,2nZ)issuchthat| fv-vicdHl=(A,¢), V¢ e 01(52)}.
S
We have the following reformulation of (2):

Lemma 2. For everyA € Z(52), we have

A= min /IfldHl.
(f.S,v)eJ(A)
S

Itis known that the infimum in (2) is not achieved in general (see [10]); the advantage of the above formula is that
the minimum is always attained. It means that the length oépresents the minimal mass thath-integrable
function with values into 2% could carry between the dipoles df

In the sequel we are concerned with the lifting:0E BV(S?, S1). We call BV lifting of « every function
¢ € BV(52, R) such that

u=¢€? a.e.ins2

The existence of @V lifting for functions u € BV(52, S1) was initially shown by Giaquinta, Modica and
Soutek [8]. Later, Davila and Ignat [5] proved the existence of a lifing BV N L (52, R) such that

/|D¢|<2/|Du|; 3)
$2 2

moreover, the constant 2 in (3) is the best constant (see Example 1 and Proposition 3 below).
We give the following characterization for a lifting of
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Lemma 3. Letu € BV(S2, S1). For every litingy € BV(52, R) of u, there exists £, S, v) € J (T (1)) such that
Do =u A (D% + Du) + pu™, u " )vyH LS (u) — fFuHILS. (4)
Conversely, for every triplef, S, v) € J(T (u)) there exists a liftingy € BV(S2, R) of u such that(4) holds.

In this framework, it is natural to investigate the quantity

E(u) = inf { / |Dg|: ¢ € BV(S?,R), € =u a.e. inSZ}. (5)
S2

The infimum from above is achieved and it is equal to the relaxed energy

Erel(u) = inf{likminf / V| dHZ: up € C®(S?, Y, ux — u a.e. inSZ} (6)
—00
52

(see Remark 4). A liftings € BV(S2, R) of u is called optimal if

E(u)=/|D<p|-
S2

An optimal lifting need not be unique (see Proposition 3). Remark also thatddV(S?, S1), there could be no
optimal BV lifting of u that belongs td.* (see Example 3).

Our aim is to compute the total variatid«) of an optimal lifting and to construct an optimal lifting. Theorem 2
establishes the formula fdf (u) using the distributior ().

Theorem 2. For everyu € BV(52, $1), we have

E(u):/ D%u| + |Dul) + min / vxs — pt, u ) v xsen | dHE. 7
(| [+ |) (ST (T ) |f X P u X (u)| (7)
52 SUS(u)

We refer the reader to [8] for related results in terms of Cartesian currents.
As a consequence of Theorem 2, we recover the result of Brezis, Mironescu and Ponce [4] about the total
variation of an optimaBV lifting for functionsg € W11(s2, s1): the gap

E(o)~ [ 1Vglan
§2
is equal to the length of a minimal connection connecting the topological singularities of

Corollary 1. For everyg € Wl1(s2, s1), we have
E(g)=/|Vg|dH2+ I7@]-
S2
From (7), we deduce an estimate 6(x) (which is a weaker form of inequality (3)):

Corollary 2. For everyu € BV(S?, s1), we have
E(Lt) < 2|M|BVS1.

In the spirit of [4], we have the following interpretation pf (1) | as a distance:
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Theorem 3. For everyu € BV(S2, S1), we have

T = petin R)/ | A (D*u+ DCu) + pu™, u” v HESu) — Dy|. (8)
®

Moreover, there is at least one minimizgre BV(52, R) of (8) that is a lifting ofu.

Remark that in general,I' ()| is not the distance of the measure
u A (D% ~+ Du) + pu™t, u v HL S (u)
to the class of gradient maps. In Example 4, we construct a funet®BV(S2, 1) such that
IT@]| <  inf / | A (D"u + Du) + p(u™, u" v, H' S(u) — Dyr|.
Y eC®(52,R)
52
In Section 2, we present the proofs of Lemmas 1, 2 and 3, Theorems 1, 2 and 3 and Corollaries 1 and 2.
Some examples and interesting properties'¢f) are given in Section 3. Among other things, we show that
T:BV(S2, s1) — Z(5?) is discontinuous and we analyze some algebraic properti&s0f We also discuss the
meaning of the point singularities @f(«) and about their location of¥.
All the results included here can be easily adapted for functioB¥iis2, S1) wheres2 is a more general simply
connected Riemannian manifold of dimension 2.

2. Remarksand proofs of the main results

We start by proving Lemma 1:
Proof of Lemma 1. Firstly, let us suppose that = 27 x4 whereA C I is an open set. Writd = U(aj, b;) as

jeN
a countable reunion of disjoint intervals. It is clear that

dx
<d—t" ;> - jEZN(c(a,») —¢b)). VeeChD)

d
and_(b; —a;) = H!(4). Thus 27-2* € Z(/) and

jeN
df / 1
o =21 sup xal'dt=2mr sup [ xaydt=2aH"(A).
d cecXn) vec(n)
17/1<1 1 lyi<1 1

Moreover, letA C I be a Lebesgue measurable set gnd 27 x4. Using the regularity of the Lebesgue measure,
there exists a decreasing sequence of openetsA;,1 C Ax C I,k € N such thatk limH(Ap) = H(A).
— 00

Observe thatdij(% — ddﬁ in[

. . . d
cY(I)]*. SinceZ(I) is a complete metric space, we conclude tha%ﬁ e Z(I)

d ) ) .
and HZT(% H = 27H1(A). In the general case of an integrable functipn/ — 277, write

fZZNZkXEk in Ll, (9)
keZ
dk
whereEy = {x € I: f(x) = 2mk}. Notice that Zn% € Z(I) and the serie{ 2

d(kXEk)
keZ !

converges ab-
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solutely; indeed, we have

d(kxg,) 1
> 2 dtk =27y |kIH (Ek)=/|f|dt<oo.
keZ keZ T
df
By (9), we conclude that& e Z(I)and
df /
—|l= sup fo'de= sup fx/;dt:/|f|dt. O
dr cecl(n yeC(I) ,

i< ! i< !

Remark 3. The conclusion of Lemma 1 is also true ft-integrable functions with values in Zathat are defined
on C* 1-graphs. For simplicity, we restrict 16 1-graphs ins?, i.e. for an orthonormal frame, y) on $2, we
consider the set
r={xy: ¢(x) =y}
/
. . . o t
whereg is aC? function. Suppose:[0,1] — I' is a parameterization df and setr (c(r)) = IC’EI;I the tangent
C
unit vector to the curvé™ atc(¢), V¢ € (0,1). Let f: I — 277 be anH-integrable function or™. Define

1
9
<£,§>::—/foc(t)(§oc)/(t)dt, Ve e C(I).
0

By Lemma 1, we have

1

af of /

EeZ(r) and ”5” =/|f|(c(z))|c(t)|dt.
0

Before proving Lemma 3, we give the following result:
L emma 4. For everyu € BV(52, s1), we have

1
u AN (D% + Du) = i—zZ(D“u + D)
and |u A (D“u+ Du)| = |D%| + |DCul|.
Proof. Write u = (u1, u2) = u1 + iup. We can consider the 2 2 matrix of real measurePu as a 2-vector of

complex measures, i.@u = Duj + iDuy. Sinceu? + u3 = 1, it resultsD (u? + u3) = 0. By the chain rule (see
e.g. [1]), we obtain

u1(D%uq + Duq) + ua(D%uso + Dus) =0,

i.e. the real part of th€2-measurei(D%u + D u) vanishes. Therefore,
1
u A (D% + Du) = i—lZ(Dau + D¢u).

Hence, using the fact that the absolutely continuous part and the Cantor part afe mutually singular, we
conclude that

lu A (D% + Du)| = |u|(|D%u| + | D u|) = |D%u| + | D ul. |
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Proof of Lemma 3. Let ¢ € BV(S?, R) be a lifting ofu. Write
Do =D+ D+ (¢ — 9 v, H'LS(¢).
By the chain rule and Lemma 4, we obtain

. 1 . .
D% + Dp = i—u(D”u + DU) =u A (D%u + Du).

Sinceu = €¢ a.e. ins?, we have thas(u) C S(¢) and by changing the orientatiog, we may assume

Vp = Uy
et =ut  Ha.e. onS(u).
g9 =u~

Therefore,

ot —¢ =p@wt,u”) (mod 27)H -a.e.inS(u)

and ¢t —¢~ =0 (mod 2n)H -a.e.inS(p)\ S(u).
Hence, there existg, : S(¢) — 27Z a measurable function such that

Do =u A (D + Du) + pu™t, u™ v, H'LS(u) — f,u,HLS(¢). (10)
Observe thaff,, is an’H!-integrable function since

|,0(u+, u_)| :dsl(u+, u )< %|u+ —u .
SinceDg is a measure, we have

curlDp=0 inD,
i.e. for everyc e C1(S%,R),

/V% Dy =0.
2
By (10), it yields

(Tw),¢)= f foVrie v dHE,  voecl(s?)
S(p)

and therefore( f,,, S(¢), v,) € T (T (u)).
Conversely, takéf, S, v) € J(T (u)). Without loss of generality, we may considge= { f # 0}. Consider the
finite RadonR2-valued measure

w=uA D%+ DU + put, u ) v, HLS(w) — FvHILS.
We check that cugk = 0 in D’(52). Indeed, for every € C1(52, R),

—(curlp, ) =/vig du= (T (u), ;)—/fvlg vdHt=0.
52 S
By theBV version of Poincare’s lemma, there exigts BV(52, R) such thatDg = i in D’'(52, R?). Here,SU S (u)
is the jump set op. On the sefS U S(u), we choose an orientatiar, such that, = v, on S(x). We have
D% + D@ =u A (D% + Du) = Tlit(D“u + D¢u),
et —p =pwt,u”) (mod 27)H-a.e.inS®u),
¢t —¢~ =0 (mod 27)H!-a.e.inS\ S(u).
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We now show that

Due %) =0.
By the chain rule, we get

D(E %) = —ie7 (D% + Dp) + (6¢" — e ) @ v, HLS(u)

= —e%a(Du+ Du)+ (€% —e ) @ v, H LS ).

Remark that the spad&V/(52, C) N L™ is an algebra. Differentiating the produce™*, we obtain

Due %) =% (D% + Du) —ue (D + Du)y+ (ut e —u" e )@ v, HLSu) =0.
Thus, up to an additive constangtjs aBV lifting of u and (4) is fulfilled. O

Proof of Theorem 1. Lety € BV(S2, R) be a lifting ofu. By Lemma 3, there exists, S, v) € 7 (T (x)) such that
(4) holds. Denote by : S — S the tangent vector &t¢'-a.e. point ofS such thatv, z, ¢) is direct. By (4),

_ 1, 1_ [ .98 a1 / ¢ 1 1,¢2
(T(u),;)_/fv ¢ vdH _/far dH —kZN xsf5-dHt Ve e ks
N N N

where{I;}xen is a family of disjoint compact! 1-graphs that covergl-almost all of the countably rectifiable
sets, i.e.

Hl(S\ U Ik) —o0.

keN
According to Lemma 1 and Remark 3, we concldd@) € Z(52) and||T (u)| < fS |IfldHL. O
Before proving Theorem 2, let us make some remarks ab@uit and Eei(x) for u € BV(S2, S1) (see also [4]):

Remark 4. (i) E(u) < oo andEe(u) < o0; _
(i) The infimum in (5) is achieved; indeed, lgt € BV(S?, R), €% = u a.e. inS?, be such that
lim / |Doy| = E(u) < oo.
k— 00
Y2
By Poincaré’s inequality, there exists a universal consfast0 such that

flo-fo

52 52

dH2<Cf|D<pk|, Vk € N
SZ

(Where][ stands for the average). Therefore, by subtracting a suitable integer multipte wkZmay assume that

52
(or)ken is bounded irBV(S2, R). After passing to a subsequence if necessary, we may assume thap a.e.
and L for someyp € BV(S2, R). It follows thatg is a lifting of u on $2 and

E(u)= lim /|D¢k|>/ID¢I>E(u);
k— o0
52 52

(iii) The infimum in (6) is also achieved; také' € C>(52, S1) such that for each € N,

Wl > u ae.ins? and /|Vuz1|dH2\akeR asm — 0o

2
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andk lim a; = Erel(u). Subtracting a subsequence, we may assume that forkeath
—00

WV

1 1
/|uz1 —u|dH? < T and /|Vu2”|dH2—ak <7 Vm > 1.
52 52

Thereforeu’ — u in L1 and

lim /|w’,§|dH2=Ere|(u)-
k— o0
5'2

(V) E(u) = Erel(u). For “<”, takeuy € C®(S2, $1), Vk € N such thatiy — u a.e. inS? and

sup | |Vug| dH? < oo.
keN
S2

SinceS? is simply connected, there exisis € C*° (52, R) such that ¥k = y;.. Moreover,

/|V<pk|dH2=/|Vuk|dH2.
52 52

Using the same argument as in ii), we may assumeghat ¢ a.e. andL! for somey € BV(S2, R). Therefore,
€% =y a.e. ins? and
E@) < f |Do| < Iiminf/ |Vor| dH? = lim inf/ | Vg | dH2.
k— 00 k— 00
52 52 52

For “>", consider aBV lifting ¢ of u and take an approximating sequerges C*° (52, R) such thaig, — ¢ a.e.
and|Dg|(5%) = klim / |Vr| dH?. With uy = €9 € € (52, $1), we haveu; — u a.e. ins2 and

—00

S2
Erel(u) < lim /|Vuk|d7‘l2= lim /|V<pk|dH2=/|D<p|.
k—o00 k—00
52 52 52

Proof of Theorem 2. For “<”, take (£, S, v) € J(T(u)). By Lemma 3, there exists a lifting € BV(S2, R) of u
such that (4) holds. It follows that

E(u)<f|D¢I=/(ID“u|+IDCu|)+ f \fvx_s—p(u+,u‘)vMXS<u>|dH1.
52 52 SUS(u)

Let us prove now 2=". By Remark 4, there is an optimd@V lifting ¢ of u, i.e. E(u) = / |D¢|. By Lemma 3,
2
there existg f, S, v) € J(T (u)) such that (4) holds. It results that

E(u)=f|D¢|=/(|D“u|+|Dcu|)+ / | Foxs — o, u™)vuxsq| dHE

52 52 SUS(u)

From here, we also deduce that the minimum inside the RHS of (7) is achiewed.
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Remark 5 (Construction of an optimal lifting). Takef, S, v) € J(T (1)) that achieves the minimum

/ | Fuxs — o™, u™)vuxsq | dH. (11)
SUS ()

min
(f;Sv)eT (T W)
By Lemma 3, there exists a lifting € BV(S2, R) of u such that (4) holds. Then

/|D¢|=/(|D“u|+|DCu|)+ / | foxs — oGt s | dHE = Ew)
Y S2 SUS (u)

and thereforey is an optimal lifting ofu.
Proof of Lemma 2. For “<”, itis easy to see that iff, S, v) € 7 (A) then for every; € C1(5?) with |V¢| <1,

<A,¢>=/fv-vlcdul</|f|dH1.
S S

For “>", we use characterization (2) of the distributidne Z(52). We denote byl the geodesic distance oR.

Let A =27 Z((Spk — 8y,) Where(pi)ien, (ni)ren belong tos? such thatX:dSz(pk, ny) < oo. For everyk € N,
k k

considern;:pk a geodesic arc o8 oriented fromw; to pi. Takev, the normal vector t@fpk in the frame(x, y).

SetS = U nk,}n(. Sincestz(pk, ny) < oo, there exist an orientation: S — S on § and an!-integrable

function;: S — 277 sucr]; that

fvxs = Xk:vaankmpk in L1(S, R?). (12)
Then

/fv-VLC dH' =27 f v Vi dH =27 " (¢(po) — £() = (A, 5), V¢ e CH(S).

S [ k

Nk Pk

It follows that (£, S, v) € J(A) and by (12),

[ 15194 < 3 2ot o
Ky k

Minimizing after all suitable pairépy, nx)ien, it follows by (2),

Al = inf dHt. 13
| Al (f,s,u'>ej(A>/|f| (13)
S

We now show that the infimum in (13) is indeed achieved. By a dipole construction (see [2], Lemma 16), there
existsu € WL1(52, §1) such thatd = T (u). We choos€ fi, S, vk) € J(T (u)) such that

|70 = tim / | fil dHE
Sk

By Lemma 3, we construct a lifting, € BV(S2, R) of u such that

Dygr =u A (D% ~+ Du)+ put, u" ) HLSw) — frvrHEL Sk
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Remark that
/|D¢k|<[(|D“u|+|DCu|)+ f |p(u+,u—)|dH1+f|fk|dH1.
52 52 S(u) Sk

Subtracting a suitable number i Z, we may assume thaipy) is a bounded sequence BV(S2,R). Up to a
subsequence, we finde BV(52, R) such that

or— ¢ ae.ins? and Dy A D¢ inthe measure sense.
Thereforegp is aBV lifting of u and by Lemma 3, there existg, S, v) € J (T (1)) such that
Do =u A (D% + Du) + put, u ")y HY S ) — FVHALS.
We conclude
/ |fldH" = / lu A (Du+ Du) + pt, u" ) H'LSw) — Do
s 2
< Iimkinf / |u A D%+ Du)+ put, u v HL S () — D(pk|
S2
—tim [ 1AldHE = 1T, ©
Sk

Proof of Theorem 3. Lety € BV(S2, R) and¢ € C1(5?) be such thatv¢| < 1. Then

/ lu A (DU + Du) + pu™, u v, HY S (u) — Dy | > (Tw),¢)— / Dy -Vt =(Tw),¢).
52 52
By taking the supremum ovet, we obtain

/ |u A (Du+ DU + p(u™, u W HYS W) — DY | = [T W)
2

We now show that there is a lifting € BV(52, R) of « such that the minimum in (8) is achieved. By Lemma 2,
choose(f, S, v) € J(T (1)) such that

|7 )| =/|f|dHl.
N

Using Lemma 3, we construct a lifting e BV(52, R) such that (4) holds. Thus,

7@ :/|f|d7—(1:/|uA(D”u+D"u)+p(u+,u_)qu1\_S(u)—D(p|. O
S §2

Proof of Corollary 1. The result is a straightforward consequence of Theorem 2 and Lemna 2.
In order to prove Corollary 2, we need the following estimatiotj Bfu)|| in terms of the seminorru|g,, ¢1:

Lemma 5. We have| T (u) || < |ulgyst, Yu € BV(S?, S1).
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Proof. By Lemma 4, it results that for evetye C1(52) with |[V¢| < 1,

|(T(u),§')|</|u/\(D”u+DCu)|+ / oGt u™)| il
52 S(u)

:/(|D“u|—|—|DCu|)+ f dsl(u+,u_)d7‘{1;
52 S(u)
therefore

ITw]| <lulgyss. O
Proof of Corollary 2. By Theorem 2, Lemmas 2 and 5, we conclude that
E@w) < D%| + |Du —I—/ ut, u)|dHL + min / dH!
@< [(pui+ipu)+ [ lowtaolart+ min [

pes S(u) 5
=lulgysr + [T)] <2ulgysr. O

Let|u|BV=/|Du|=/(|D”u|+|Dcu|)+ / lut —u~|dH'; we deduce that

52 52 S(u)
T 2 ol
|M|Bv<|M|BVS1<§|M|BV, Yu € BV(S%, §7).

Therefore, Corollary 2 is a weaker estimaterif:) than inequality (3) obtained in [5].

3. Some other propertiesof thedistribution T

We start by observing that : BV(S2, 1) — D/(S§2, R) is not continuous, i.e. there exists a sequence of func-
tionsuy € BV(52, §1) such thaty, — u strongly inBV(S2, $1) and T (ux) - T (1) in D'(52, R). The reason for
that is the discontinuity of the functigmthat enters in the definition df .

Proposition 1. The mapl : BV(S2, $1) — D/(§2, R) is discontinuous.

Proof. Write
2 = {(cosd sine, sind sina, cose): a € [0, 71, 6 € (0,271}

In the spherical coordinatés, 0) < [0, ] x [0, 2x], consider théV functionsy andu defined as

—26 if0e0,%),ae(0,%),
_ if 0 e(Z,30), 0,2), .
o) =1 " . €(§ 2-2€O2 g u—éb. (14)
200 —2m) if0e(3F,2m),ae(0,%),
0 if0€(0,2n),ae (%,m)

We have that the jump set efandg is concentrated on the equatar= %} of the spheres?, i.e.

2

On the equator we choose the orientation given by the normal veaboiented from the north to the south; so
(a, 0, e) is direct. We show that

S(p) = Su) = {a: Z}'
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T (u) =27 (8, — 8n), (15)
wheren = (%, 37”) andp = (%, %) in the frame(a, 0). Indeed, we remark that
¢F 9T =p@t uT) + 2y in S);
by Lemma 3, we obtain
Do=un VuH? + ot u)aHY S(u) + 271627'{1\_@
and it yields
n
9

T | =
00
P

(T(u),;)=—2n/&.vL;dH1=—2 dH =2n(¢(p) — ¢()), V¢ e CHS?R).
p

Construct the approximation sequenrges BV(S2, R), ¢ € (0, 1) defined (in the spherical coordinates) as

-2 if0€(0,%52),0e(0,%),
—T+e if 0 e (T2, 34y we(0,%),

(@, 0) = L G2 2 2
2(0—2m) if0e(FE,2r),ae(0,%),
0 if 9 €(0,27),ae(%,m)

and setu, = €%:. An easy computation shows that — ¢ strongly inBV; thereforeu, — u strongly inBV as
¢ — 0. As before, we have

S(pe) = S(ug) = {a = %} and ¢f —¢. =p},u;) in {a - %}

It follows thatT (u.) = 0 and we conclude
T(ue) »T(u) inD'(S2,R). O
As Brezis, Mironescu and Ponce proved in [4], if we restrict ourselvesVio'(s2, s1), then the map
Tlwrisz.sty: WHE(S2, §1) — Z(5?) is continuous, i.e. ifg, g € Wh1(S2, 1) such thatgy — g in W1 then

IT(gx) — T(g)|l — 0 ask — oo. Itis natural to ask if one could change the antisymmetric fungtiamorder that
the corresponding map become continuous. The answer is negative:

Proposition 2. There is no antisymmetric functign: St x §* — R such that the maff, : BV(52, §1) — Z($?)
given for every: € BV(S52, 1) as
(T, ), ¢)= / Vi (u A (D + DCu)) + f vt u v, - VicdH, Ve e cH(S% R)
Y S(u)
is well-defined and continuous.

Proof. By contradiction, suppose that there exists such a fungtidfirst we show that
y (w1, w2) = Arg(w1) — Arg(wp)  (mod 27), Vw1, wp € St (16)

Indeed, fix w1, wp € S1. Take f:[0,27] — R the linear function satisfyingf(0) = Arg(w1) and
f(2m) = Arg(wy); defineu € BV(S?, §1) as

u(,0) =€e7®  vae(0,n), 0 (0,27).
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Consider the litingy € BV(52, R) of u given by
o(a,0)= f(0), VYae(@,nr), 8 (0,2r).

If 1 # w2, the jump set oft andg is concentrated on the meridigf = 0} orientated counterclockwise by the
unit vector. We have that

Dy =u A VuH? + (Arg(o1) — Arg(wp))6H {6 = 0}.
Since curlDg =0in D/, it yields

/u AVu-V+redH? = — / (Arg(w1) — Arg(w))6 - V¢ dH?
52 16=0}

[
= (Arg(w1) — Arg(w2)) / % dH*
P

= (Arg(@2) — Arg(@) (¢(p) — t(m)), V¢ € CH(S?)
wherep = (0,0) andn = (xr, 0) (in the spherical coordinates) are the north and the south pd#é.aiVe obtain
that
(Ty(u)g):fv% C(u A Vu)dHZ + y (w1, w2) / 6.vEtedHt
52 {6=0}
= (Arg(w2) — Arg(w1) + y (w1, w2)) (¢ (p) — ¢ (), ¥¢ € CH(S2R).

From the definition we know thaft, (1) € Z(5%) and therefore, (16) holds. #1 = wy, by the antisymmetry of,
we havey (w1, w2) = 0 and so, (16) is obvious.

Second we prove that the continuity Bf implies thaty is continuous ors® x S1. Indeed, letlw]) and(w5)
be two sequences ift such thatv] — w1 andwj — w2. We want that

Y (01, w5) = y (w1, w2). (17)

Takep € [0, 27) such that ¥ is different fromw; andw,. For eachw € S denote by arg(w) € (B — 2w, B] the
argument ofw, i.e.

%@ — ), (18)

As above, defing :[0,27] — R as the linear function satisfying. (0) = argg (w}) and fe(2m) = argg (w3) and
considen, € BV(S2, s1) such that

ue(a,0) =67+@ Vo e(0,7), 6€(0,2n).

It is easy to check thai, — u strongly in BV, whereu(a, #) = €/® and f is the linear function satisfying
£(0) =argg(w1) and f(2m) = argg(w2). As before, we obtain

T, (ue) = (argg (w5) — argg(wi) + v (@i, %)) (8, — 8n)
and T, (u) = (argﬁ (w2) — argg(w1) + ¥ (w1, w2)) (8, — 8»).

SinceT, and arg are continuous oBV(S2, S1), respectively ors* \ {€#}, we deduce that (17) holds.
Observe now that the function

(w1, w2) = ¥ (w1, w2) — Arg(w1) + Arg(wz)
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is continuous on the connected $&t\ {—1} x $1\ {—1} and takes values in Z& Therefore, there existse Z
such that
y (w1, w2) = Arg(w1) — Arg(wp) — 2k in ST\ (=1} x ST\ {~1}.

In fact, k = O if one takesw1 = w,. But Arg(:) is not a continuous map oftt which is a contradiction with the
continuity ofy on St x s1. o

The algebraic properties df restricted tow11(s2, s1) (see [4], Lemma 1) do not hold in general for
BV(S2, s1) functions.

Remark 6. (a) There exists € BV(52, $1) such that'(i1) # —T (). Indeed, take the functiom defined in (14).
A similar computation gives us thdt(iu) = 0# —T (u).

(b) The relationT’ (gh) = T (g) + T (h), Vg, h € WL1(52, §1) need not hold foBV(S?, $1) functions. As before,
consider the function in (14). ThenT (—u) = 0. SinceT (—1) = 0, we concludel (—u) £ T (u) + T (—1).

In the following we discuss the nature of the singularities of the distribufiar). As it was mentioned in the
beginning, we deal with two types of singularity:

(i) topological singularities carrying a degree which are created by the absolutely continuous part and the Cantor
part of the distributional determinant of
(i) point singularities coming from the jump part of the derivata.

We give some examples in order to point out these two different kind of singularity. In Example\is a
dipole made up by two vortices of degr¢d and—1; these two vortices are generated by the absolutely continuous
part of detVu) in (a), respectively by the Cantor part of the distributional Jacobianiof(b).

Example 1. (a) Let us analyze the functigne Wt1(s2, s1),
ga,0) =6, Vae(0,n), 6€l0,2n).

Denotep andn the north and respectively the south pole of the unit sphere. We consider thegigiiy/ (52, R)
of u given byg(«, 0) = 6 for everya € (0, ), 6 € (0,2r). Then the jump set af is concentrated on the meridian
{6 = 0} oriented counterclockwise by the unit vectonVe have

Dop=gA VgHz — ZnéHlLﬁ;}.

Therefore,T' (g) =2 (5, — 8,). The two poles are the vortices of the functign

(b) The same situation may occur for some purely Cantor functions. Let us consider the standard Cantor function
f:10,1] — [0,1]; f is a continuous, nondecreasing function wjt0) =0, (1) =1 and f'(x) = 0 for a.e.
x € (0,1). Takev € BV(S2, §1) defined as

v(e, 0) =020 vy (0, 7), 6€[0,2n).

The lifting ¢ € BV(S2,R) given by ¢(«, 8) = 27 f(0/27) for everya € (0, 7), 60 € (0,2r) has the jump set
concentrated on the meridigf = 0} and

Dyp=vAD— 271§Hl|_nAp.

As before, we obtain thaft (v) = 27 (6, — §,) wherep andn are the poles of2.

Remark also that for the two functions constructed in Example 1, the constant 2 in inequality (3) is optimal and
we have a specific structure for an optimal lifting:
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Proposition 3. Let u € BV(S?, 1) be one of the two functions defined in ExampleThen for every lifting
¢ € BV(82,R) of u we have

/ Dyl > 2/ \Dul.
S2 S2

Moreover, the set of all optimal liftings afis given by
{args () + 27k: B €[0,27), ke Z}
whereargg (w) € (B — 27, ] stands for the argument af € st (asin(18)).

Proof. First we notice that

/|Du|=2712 and |Tw)| =2ndg(n, p) =272
S2

wheren andp are the two poles of?.
Let ¢ € BV(52, R) be a lifting ofu. By Theorem 2 and Lemma 2, we obtain

/|D¢|>E(u)=/|z)u|+ |7 )| =4n2=2/|Du|.
52 §2 52

Take nowg € BV(S?, R) an optimal liting ofu. By Lemma 3, there existsf, S, v) € J(T (1)) that achieves
the minimum in (11) and satisfies

Do =u A Du— fvHLS.

That means

Dip=—fvH'S and /|f|=27'rd52(n,p). (19)
S

We may assume here théit= { f # 0}. For everya € (0, ) we denotel,, the latitude ons? corresponding ter
andg, : L, — R the restriction ofp to L. Using the Characterization TheoremB¥ functions by sections and
Theorem 3.108 in [1], it results that for aee (0, ), ¢, € BV(Ly, R) and the discontinuity set @f, is SN L.
Remark that de@; L) = 1 for everya € (0, 7). Thus, for a.ex € (0, ), ¢, Will have at least one jump oh,
and the length of a jump is not less tham.2t yields #1(S) > = and| f| > 2xH* — a.e. inS. By (19), we deduce
that

|fl=2r H'-a.e.inS and H(S)=r.
We know that

/ %v VicdH =¢(p) —¢(m), V¢ eCk(s?).
N

By [7] (Section 4.2.25), it results that covers!-almost all of a Lipschitz univalent paih between the two

poles. Sincg{1(S) = dg2(n, p) we deduce thas is a geodesic arc o8? betweem and p and %v is the normal

unit vector to the curve. Take 8 € [0,27) such thatS = {§# = B} in the spherical coordinates. We have that

@ —argg(u): $2\ § — 2xZ is continuous on the connected $ét\ S. Therefore, there existse Z such that
p=arg(u) +2rk

and the conclusion follows. O



300 R. Ignat/ Ann. |. H. Poincaré — AN 22 (2005) 283-302

The appearance of non-topological singularities in the writing” af) for u € BV(52, S1) was already seen
in the example (14); there the distributi@(x) is a dipole even if the function does not have any vortex. One
should notice that the dipole (15) is created on the jump setmf the discontinuity of the chosen argument Arg.
In Remark 7, we will see that a dipole could disappear if we change the choice of the argument.

Remark 7. Let g € [0, 2rr). Define the antisymmetric functiops (-, -): St x §* — [-7, 7] as
w1

Arg(—) if % # -1,

w2

argg(w1) — argg(wz)  if z—; =-1,

vp(w1, w2) = Ywr, wp € St

Consider now the distributiof, , (u) € D'(S2, R) given as in Proposition 2:

(T (), ¢) = / Ve (u A (D% + DCu)) + / vt u v, - VicdHE, Vi e CY(S3R).
52 S(u)
Observe thaf, inherits the properties df given in Theorems 1, 2 and 3. However, the structure of the singular-
ities of 7,,, (u) may be different fron¥'(«). Indeed, consider € BV(S2, s1) the function constructed in (14). We

saw thatl" (u) = 27 (8, — 8,) wheren = (5, 37”) andp = (5, %) (in the spherical coordinates). The same compu-
tation gives usl), ,(u) = 0. The difference betweeh(x) andT,,, ,(u) arises from the choice of the argument.

An interesting phenomenon is observed in Example 2 where the two types of singularity are mixed: some
topological vortices may be located on the jump set.of

Example 2. (a) An example that points out the mixture of the two type of singularity is given by functions with
pseudo-vortices: definee BV(S2, $1) as

u(a,0) =2, vae(0,n), 6€(0,27).
The jump set of: is the meridian{6 = 0}. We have

Tu)=2m(,—3,) and Ty, ,(u)=4w(Sp —8).

T

The two polesp andr arise on the jump set of and behave like some pseudo-vortices, i.e. after a complete turn,
the functionu rotates 3/2 times around the poles (with different sigisaroundp and ‘—’ aroundn). According
to the choice of the argument in the definitiomgf, the distribution),, (u) will count once or twice the dipole.

(b) A piecewise constant function € BV(S?, 1) may create a dipole fof'(x). Indeed, let us define
@ € BV(S%,R) as
0 if 0 € (0,27/3), a € (0, 7),
o(a,0)=13 2n/3 if6e@2n/3,4n/3), a € (0, n),
An/3 if0 e (4n/3,27), a € (0, 1)

and set: = €¢. The jump set of: andy is the union of three meridians
Su) = S(p)={0 =0} U{p =27/3} U {0 =4r/3}.

We have
9" —¢T =pt uT) =21y 9-0) inS(p).

We obtainT () = 2 (8, — 8,) wherep andn are the two poles of the unit sphere. For evgry [0, 27), Ty, has
the same behavior, i.€,, (1) = 27 (3, — 8).
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(c) Let u € BV(S?, S1) be the function defined above in (b) and takethe function constructed in Ex-
ample 1(a). Sew = gu € BV(52, S1). We haveS(w) = {6 = 0} U {§ = 27/3} U {6 = 4x/3}. We show that
T (w) = 4n (8, — 8,). Indeed, construct the lifting € BV(S2, R) of w as

0 if 0 €(0,27/3),x € (0, ),
Y(a,0)=130+2n/3 if6e(2n/3,47/3),a € (0, 1),
0 —2r7/3 ifoe@n/3,2n),ac(0,n).
Observe that
Y =y =pw, wT) — 27 x9—0) — 27 X{9=4x/3) I S(w)

and conclude thal’ (w) = 47 (8, — 8,). So, the north pole and the south pole which are the vortices of
remain singularities for the function; they appear now on the jump partwf The same behavior happensltg
foreveryp € [0,2x), i.e. Ty, (w) = 4w (5p — dn)-

As we mentioned before, for evenye BV(52, S1) there exists a bounded litinge BVN L™ (52, R) (see [5]).
The striking fact is that we can construct functions BV(52, S1) such that no optimal lifting belongs #©>°. We
give such an example in the following:

Example 3. On the interval0, 2) we consider

1 1
p1=1, nk=pk+47 and Pk+1=”k+§, Vk > 1.

Suppose that this configuration of points lies on the equdprx [0, 27] (in the spherical coordinates) 6f and

we consider that each dipoley, nx) appearsk times. Sincez kdg(pk, ny) < oo, set
k=1

A=27) k(Sp, — 8n,) € Z(52).
k>1
By [2] (Lemma 16),
T(Whi(s?, sh) = 2(s?).
Thus, takeg € W1($2, s1) such that'(g) = A. Using (2), it follows that

|7 @] =27 kds2(pr. ni).
k>1

Let ¢ € BV(S2, R) be an optimal lifting ofg. Then there is a tripléf, S, v) € J (T (g)) such that

Dy =g AVgH?— fuvH'LS and /|f|dH1=||T(g)||. (20)
S

We may assume that= { f # 0}.
We know that/ fv-VicdH = 2nZk(;(pk) — ¢(np)), V¢ € CL(S?). For eachk > 1, we denote in the
S k>1

spherical coordinate®, = (0, ) x (pk - 8_1’< ng + 8_1’<) Then
/fv VLA = 27k(S(pr) — (i), V¢ € CH(S?) with suppg C Vi

S
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By (20), it follows that

/|f|dH1:2ndez(pk,nk).
SNVy

Using the same argument as in the proof of Proposition 3, we deduce that for edth
S@NVi=SNVi=npr and |pF —¢7|=|f|=2kr H a.e.onnpx

whereny py is the geodesic arc connectingand py. It yields thaty ¢ L>. So, every optimaBV lifting of g does
not belong taL°.

In the next example, we show that Theorem 3 fails if we minimize the energy in (8) just over the class of gradient
maps:

Example 4. Letu € BV(S52, S1) be defined as
u(a,0) =€%3, Vo e(0,7), 6€(0,2n).

The jump set of: is the meridian{® = 0} oriented counterclockwise ant{u™, u~) = —27/3 on S(u). We have
that7 (1) = 0. On the other hand, for every € C* (52, R), we have

/‘u/\Vu'H2+,0(u+,u_)vu'H1LS(u)—Vlﬂ'H2|=/|u/\Vu—V1//|dH2+ / lot,u™)|dH?
S2

52 S(u)
27 1 272
> f N IO}
S(u)
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