

Available online at www.sciencedirect.com

Ann. I. H. Poincaré – AN 22 (2005) 283–302

www.elsevier.com/locate/anihpc

The space $BV(S^2, S^1)$: minimal connection and optimal lifting

Radu Ignat ^a*,*^b

^a *École normale supérieure, 45, rue D'Ulm, 75230 Paris cedex 05, France* ^b *Laboratoire J.-L. Lions, Université P. et M. Curie, BC 187, 4, pl. Jussieu, 75252 Paris cedex 05, France*

Received 27 May 2004; accepted 15 July 2004

Available online 24 February 2005

Abstract

We show that topological singularities of maps in $BV(S^2, S^1)$ can be detected by its distributional Jacobian. As an application, we construct an optimal lifting and we compute its total variation.

© 2005 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

On montre que le jacobien d'une fonction $u ∈ BV(S^2, S^1)$ permet de localiser les singularités topologiques de *u*. On applique ce résultat à la construction d'un relèvement optimal et on calcule sa variation totale. © 2005 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

MSC: primary 26B30; secondary 49Q20, 58D15, 58E12

Keywords: Functions of bounded variation; Minimal connection; Lifting

1. Introduction

Let $u \in BV(S^2, S^1)$, i.e. $u = (u_1, u_2) \in L^1(S^2, \mathbb{R}^2)$, $|u(x)| = 1$ for a.e. $x \in S^2$ and the derivative of u (in the sense of the distributions) is a finite 2×2 -matrix Radon measure

$$
\int_{S^2} |Du| = \sup \left\{ \int_{S^2} \sum_{k=1}^2 u_k \, \text{div} \, \zeta_k \, \text{d} \mathcal{H}^2 \colon \, \zeta_k \in C^1(S^2, \mathbb{R}^2), \, \sum_{k=1}^2 |\zeta_k(x)|^2 \leq 1, \, \forall x \in S^2 \right\} < \infty,
$$

where the norm in \mathbb{R}^2 is the Euclidean norm. Observe that the total variation of *Du* is independent of the choice of the orthonormal frame (x, y) on S^2 ; a frame (x, y) is always taken such that (x, y, e) is direct, where *e* is the outward normal to the sphere *S*2.

E-mail addresses: Radu.Ignat@ens.fr, ignat@ann.jussieu.fr (R. Ignat).

^{0294-1449/\$ –} see front matter © 2005 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserveddoi:10.1016/j.anihpc.2004.07.003

We begin with the notion of minimal connection between point singularities of *u*. The concept of a minimal connection associated to a function from \mathbb{R}^3 into S^2 was originally introduced by Brezis, Coron and Lieb [3]. Following the ideas in [3] and [6], Brezis, Mironescu and Ponce [4] studied the topological singularities of functions $g \in W^{1,1}(S^2, S^1)$. They show that the distributional Jacobian of *g* describes the location and the topological charge of the singular set of *g*. More precisely, let $T(g) \in \mathcal{D}'(S^2, \mathbb{R})$ be defined as

$$
T(g) = 2 \det(\nabla g) = -(g \wedge g_x)_y + (g \wedge g_y)_x;
$$

then there exist two sequences of points (p_k) , (n_k) in S^2 such that

$$
\sum_{k} |p_k - n_k| < \infty \quad \text{and} \quad T(g) = 2\pi \sum_{k} (\delta_{p_k} - \delta_{n_k}).
$$

Our aim is to extend these notions for functions $u \in BV(S^2, S^1)$. In this case, the difficulty of the analysis of the singular set arises from the existence of more than one type of singularity: besides the point singularities carrying a degree, the jump singularities of *u* should be taken into account.

We start by introducing some notation. Write the finite Radon 2×2 -matrix measure *Du* as

$$
Du = D^a u + D^c u + D^j u,
$$

where $D^a u$, $D^c u$ and $D^j u$ are the absolutely continuous part, the Cantor part and the jump part of Du (see e.g. [1]). We recall that $D^{j}u$ can be written as

$$
D^{j}u = (u^{+} - u^{-}) \otimes \nu_{u} \mathcal{H}^{1} \subset S(u),
$$

where $S(u)$ denotes the set of jump points of *u*; $S(u)$ is a countably \mathcal{H}^1 -rectifiable set on S^2 oriented by the Borel map $v_u : S(u) \to S^1$. The Borel functions u^+ , $u^- : S(u) \to S^1$ are the traces of *u* on the jump set $S(u)$ with respect to the orientation v_μ . Throughout the paper we identify *u* by its precise representative that is defined \mathcal{H}^1 -a.e. in $S^2 \setminus S(u)$.

We now introduce the distribution $T(u) \in \mathcal{D}'(S^2, \mathbb{R})$ as

$$
\left\langle T(u),\zeta\right\rangle = \int\limits_{S^2} \nabla^{\perp}\zeta \cdot \left(u \wedge (D^a u + D^c u)\right) + \int\limits_{S(u)} \rho(u^+, u^-) \nu_u \cdot \nabla^{\perp}\zeta \, d\mathcal{H}^1, \quad \forall \zeta \in C^1(S^2, \mathbb{R}).\tag{1}
$$

Here, $\nabla^{\perp} \zeta = (\zeta_v, -\zeta_v)$,

$$
\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \wedge \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} = (u \wedge a, u \wedge b) = (u_1a_2 - u_2a_1, u_1b_2 - u_2b_1),
$$

where $a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ *a*2) and $b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ *b*2). The function $\rho(\cdot, \cdot): S^1 \times S^1 \to [-\pi, \pi]$ is the signed geodesic distance on S^1 defined as

Arg*(ω*¹

$$
\rho(\omega_1, \omega_2) = \begin{cases} \text{Arg}(\frac{\omega_1}{\omega_2}) & \text{if } \frac{\omega_1}{\omega_2} \neq -1, \\ \text{Arg}(\omega_1) - \text{Arg}(\omega_2) & \text{if } \frac{\omega_1}{\omega_2} = -1, \end{cases} \forall \omega_1, \omega_2 \in S^1,
$$

where Arg $(\omega) \in (-\pi, \pi]$ stands for the argument of the unit complex number $\omega \in S^1$. $T(u)$ represents the distributional determinant of the absolutely continuous part and the Cantor part of *Du* which is adjusted on $S(u)$ by the tangential derivative of $\rho(u^+, u^-)$. The second term in the RHS of (1) is motivated by the study of $BV(S^1, S^1)$ functions (see [9]): we defined there a similar quantity that represents a pseudo-degree for $BV(S^1, S^1)$ functions.

Remark 1. (i) The integrand in (1) is computed pointwise in any orthonormal frame *(x, y)* and the corresponding quantity is frame-invariant.

(ii) The 2-vector measure

$$
\mu = (\mu_1, \mu_2) = u \wedge (D^a u + D^c u) = (u \wedge ((u_x)^a + (u_x)^c), u \wedge ((u_y)^a + (u_y)^c))
$$

is well-defined since $D^a u + D^c u$ vanishes on sets which are σ -finite with respect to \mathcal{H}^1 .

(iii) Notice that the function ρ is antisymmetric, i.e.

 $\rho(\omega_1, \omega_2) = -\rho(\omega_2, \omega_1), \quad \forall \omega_1, \omega_2 \in S^1$

and therefore, $T(u)$ does not depend of the choice of the orientation v_u on the jump set $S(u)$. By Lemma 5 (see below), we obtain

$$
|\langle T(u), \zeta \rangle| \leq |u|_{BVS^1}, \quad \forall \zeta \in C^1(S^2, \mathbb{R}) \text{ with } |\nabla \zeta| \leq 1,
$$

where $|u|_{BVS^1} =$ *S*2 $(|D^a u| + |D^c u|) +$ *S(u)* $d_{S^1}(u^+, u^-) d\mathcal{H}^1$ and d_{S^1} stands for the geodesic distance on S^1 . There-

fore, $T(u)$ is indeed a distribution (of order 1) on S^2 .

For a compact Riemannian manifold *X* with the induced distance *d*, define

$$
\mathcal{Z}(X) = \left\{ \Lambda \in \left[C^1(X)\right]^* : \exists (p_k), (n_k) \subset X, \sum_k d(p_k, n_k) < \infty \text{ and } \Lambda = 2\pi \sum_k (\delta_{p_k} - \delta_{n_k}) \right\}.
$$

 $Z(X)$ is the set of distributions that can be written as a countable sum of dipoles.

Remark 2. (i) In general, $\Lambda \in \mathcal{Z}(X)$ is not a measure. In fact, it can be shown that Λ is a measure if and only if Λ is a finite sum of dipoles (see Smets [11] and also Ponce [10]).

(ii) $\Lambda \in \mathcal{Z}(X)$ has always infinitely many representations as a sum of dipoles and these representations need not be equivalent modulo a permutation of points. For example, a dipole $\delta_p - \delta_n$ may be represented as $\delta_p - \delta_{n_1} + \sum$ $k \geqslant 1$ $(\delta_{n_k} - \delta_{n_{k+1}})$ for any sequence (n_k) rapidly converging to *n*.

For each $\Lambda \in \mathcal{Z}(X)$, the length of a minimal connection between the singularities is defined as

$$
||\Lambda|| = \sup_{\substack{\zeta \in C^1(X) \\ |\nabla \zeta| \leq 1}} \langle \Lambda, \zeta \rangle.
$$

For example, when $\Lambda = 2\pi \sum_{n=1}^{\infty}$ *k*=1 $(\delta_{p_k} - \delta_{n_k})$ is a finite sum of dipoles, Brezis, Coron and Lieb [3] showed that

$$
||A|| = 2\pi \min_{\sigma \in S_m} \sum_{k=1}^m d(p_k, n_{\sigma(k)}),
$$

where S_m denotes the group of permutation of $\{1, 2, ..., m\}$. In general, for an arbitrary $\Lambda \in \mathcal{Z}(X)$, Bourgain, Brezis and Mironescu [2] proved the following characterization of the length of a minimal connection:

$$
\|\Lambda\| = \inf_{(p_k),(n_k)} \left\{ 2\pi \sum_k d(p_k,n_k) \colon \Lambda = 2\pi \sum_k (\delta_{p_k} - \delta_{n_k}) \text{ and } \sum_k d(p_k,n_k) < \infty \right\}.\tag{2}
$$

From (2), one can deduce that $\mathcal{Z}(X)$ is a complete metric space with respect to the distance induced by $\|\cdot\|$ (see e.g. [10]).

Our first theorem states that $T(u)$ is a countable sum of dipoles. It is the extension to the *BV* case of the result in [4] mentioned in the beginning.

Theorem 1. *For every u* ∈ *BV*(S^2 ; S^1)*, we have* $T(u) \in \mathcal{Z}(S^2)$ *, i.e. there exist* (p_k) *,* (n_k) *in* S^2 *such that*

$$
\sum_{k} |p_k - n_k| < \infty \quad \text{and} \quad T(u) = 2\pi \sum_{k} (\delta_{p_k} - \delta_{n_k}).
$$

The proof relies on the fact that the derivative (in the sense of distributions) of the characteristic function of a bounded measurable set in $\mathbb R$ can be written as a sum of differences between Dirac masses:

Lemma 1. Let $I \subset \mathbb{R}$ be a compact interval and $f: I \to 2\pi\mathbb{Z}$ be an integrable function. Define

$$
\left\langle \frac{\mathrm{d}f}{\mathrm{d}t}, \zeta \right\rangle := -\int\limits_I f(t)\zeta'(t) \, \mathrm{d}t, \quad \forall \zeta \in C^1(I).
$$

Then

$$
\frac{\mathrm{d}f}{\mathrm{d}t} \in \mathcal{Z}(I) \quad \text{and} \quad \left\| \frac{\mathrm{d}f}{\mathrm{d}t} \right\| = \int\limits_{I} |f| \, \mathrm{d}t.
$$

The same property is valid for the distributional tangential derivative of an integrable function taking values in $2\pi\mathbb{Z}$ and defined on a C^1 1-graph (see Remark 3). Since every countably \mathcal{H}^1 -rectifiable set $S \subset S^2$ can be covered $H¹$ -a.e. by a sequence of *C*¹ 1-graphs, it makes sense to define for every *Λ* ∈ *Z*(*S*²) the set

$$
\mathcal{J}(\Lambda) = \left\{ (f, S, \nu): S \text{ is a countably } \mathcal{H}^1\text{-rectifiable set in } S^2, \text{ } \nu \text{ is an orientation on } S, f \in L^1(S, 2\pi \mathbb{Z}) \text{ is such that } \int_S f \nu \cdot \nabla^{\perp} \zeta \, d\mathcal{H}^1 = \langle \Lambda, \zeta \rangle, \ \forall \zeta \in C^1(S^2) \right\}.
$$

We have the following reformulation of (2):

Lemma 2. *For every* $\Lambda \in \mathcal{Z}(S^2)$ *, we have*

$$
||A|| = \min_{(f,S,v)\in \mathcal{J}(A)} \int_{S} |f| d\mathcal{H}^{1}.
$$

It is known that the infimum in (2) is not achieved in general (see [10]); the advantage of the above formula is that the minimum is always attained. It means that the length of Λ represents the minimal mass that an \mathcal{H}^1 -integrable function with values into $2\pi\mathbb{Z}$ could carry between the dipoles of Λ .

In the sequel we are concerned with the lifting of $u \in BV(S^2, S^1)$. We call *BV* lifting of *u* every function φ ∈ *BV*(S^2 , R) such that

$$
u = e^{i\varphi} \quad \text{a.e. in } S^2.
$$

The existence of a *BV* lifting for functions $u \in BV(S^2, S^1)$ was initially shown by Giaquinta, Modica and Soucek [8]. Later, Dávila and Ignat [5] proved the existence of a lifting $\varphi \in BV \cap L^{\infty}(S^2, \mathbb{R})$ such that

$$
\int_{S^2} |D\varphi| \leqslant 2 \int_{S^2} |Du|;
$$
\n(3)

moreover, the constant 2 in (3) is the best constant (see Example 1 and Proposition 3 below).

We give the following characterization for a lifting of *u*:

Lemma 3. Let $u \in BV(S^2, S^1)$. For every lifting $\varphi \in BV(S^2, \mathbb{R})$ of u, there exists $(f, S, v) \in \mathcal{J}(T(u))$ such that

$$
D\varphi = u \wedge (D^a u + D^c u) + \rho(u^+, u^-) v_u \mathcal{H}^1 \llcorner S(u) - f v \mathcal{H}^1 \llcorner S. \tag{4}
$$

Conversely, for every triple $(f, S, \nu) \in \mathcal{J}(T(\mu))$ *there exists a lifting* $\varphi \in BV(S^2, \mathbb{R})$ *of u such that* (4) *holds.*

In this framework, it is natural to investigate the quantity

$$
E(u) = \inf \left\{ \int_{S^2} |D\varphi| \colon \varphi \in BV(S^2, \mathbb{R}), \ e^{i\varphi} = u \text{ a.e. in } S^2 \right\}.
$$
 (5)

The infimum from above is achieved and it is equal to the relaxed energy

$$
E_{\text{rel}}(u) = \inf \left\{ \liminf_{k \to \infty} \int_{S^2} |\nabla u_k| \, d\mathcal{H}^2 \colon u_k \in C^\infty(S^2, S^1), u_k \to u \text{ a.e. in } S^2 \right\}
$$
(6)

(see Remark 4). A lifting $\varphi \in BV(S^2, \mathbb{R})$ of *u* is called optimal if

$$
E(u) = \int_{S^2} |D\varphi|.
$$

An optimal lifting need not be unique (see Proposition 3). Remark also that for $u \in BV(S^2, S^1)$, there could be no optimal *BV* lifting of *u* that belongs to L^{∞} (see Example 3).

Our aim is to compute the total variation $E(u)$ of an optimal lifting and to construct an optimal lifting. Theorem 2 establishes the formula for $E(u)$ using the distribution $T(u)$.

Theorem 2. *For every* $u \in BV(S^2, S^1)$ *, we have*

$$
E(u) = \int_{S^2} (|D^a u| + |D^c u|) + \min_{(f, S, v) \in \mathcal{J}(T(u))} \int_{S \cup S(u)} |f v \chi_S - \rho(u^+, u^-) v_u \chi_{S(u)}| d\mathcal{H}^1. \tag{7}
$$

We refer the reader to [8] for related results in terms of Cartesian currents.

As a consequence of Theorem 2, we recover the result of Brezis, Mironescu and Ponce [4] about the total variation of an optimal *BV* lifting for functions $g \in W^{1,1}(S^2, S^1)$: the gap

$$
E(g) - \int_{S^2} |\nabla g| \, d\mathcal{H}^2
$$

is equal to the length of a minimal connection connecting the topological singularities of *g*.

Corollary 1. *For every* $g \in W^{1,1}(S^2, S^1)$ *, we have*

$$
E(g) = \int_{S^2} |\nabla g| d\mathcal{H}^2 + ||T(g)||.
$$

From (7), we deduce an estimate for $E(u)$ (which is a weaker form of inequality (3)):

Corollary 2. *For every* $u \in BV(S^2, S^1)$ *, we have*

$$
E(u) \leq 2|u|_{BVS^1}.
$$

In the spirit of [4], we have the following interpretation of $||T(u)||$ as a distance:

Theorem 3. *For every* $u \in BV(S^2, S^1)$ *, we have*

$$
||T(u)|| = \min_{\psi \in BV(S^2, \mathbb{R})} \int_{S^2} |u \wedge (D^a u + D^c u) + \rho(u^+, u^-) \nu_u \mathcal{H}^1 _S(u) - D\psi|.
$$
 (8)

Moreover, there is at least one minimizer $\psi \in BV(S^2, \mathbb{R})$ *of* (8) *that is a lifting of u.*

Remark that in general, $||T(u)||$ is not the distance of the measure

 $u \wedge (D^a u + D^c u) + \rho(u^+, u^-) v_u H^1 \subset S(u)$

to the class of gradient maps. In Example 4, we construct a function $u \in BV(S^2, S^1)$ such that

$$
||T(u)|| < \inf_{\psi \in C^{\infty}(S^2,\mathbb{R})} \int_{S^2} |u \wedge (D^a u + D^c u) + \rho(u^+, u^-) \nu_u \mathcal{H}^1 _S(u) - D\psi|.
$$

In Section 2, we present the proofs of Lemmas 1, 2 and 3, Theorems 1, 2 and 3 and Corollaries 1 and 2. Some examples and interesting properties of $T(u)$ are given in Section 3. Among other things, we show that $T: BV(S^2, S^1) \to \mathcal{Z}(S^2)$ is discontinuous and we analyze some algebraic properties of $T(u)$. We also discuss the meaning of the point singularities of $T(u)$ and about their location on S^2 .

All the results included here can be easily adapted for functions in $BV(\Omega, S^1)$ where Ω is a more general simply connected Riemannian manifold of dimension 2.

2. Remarks and proofs of the main results

We start by proving Lemma 1:

Proof of Lemma 1. Firstly, let us suppose that $f = 2\pi \chi_A$ where $A \subset I$ is an open set. Write $A = \begin{bmatrix} \end{bmatrix}$ *j*∈N (a_j, b_j) as

a countable reunion of disjoint intervals. It is clear that

$$
\left\langle \frac{d\chi_A}{dt}, \zeta \right\rangle = \sum_{j \in \mathbb{N}} (\zeta(a_j) - \zeta(b_j)), \quad \forall \zeta \in C^1(I)
$$

and
$$
\sum_{j \in \mathbb{N}} (b_j - a_j) = \mathcal{H}^1(A). \text{ Thus } 2\pi \frac{d\chi_A}{dt} \in \mathcal{Z}(I) \text{ and}
$$

$$
\left\| \frac{\mathrm{d}f}{\mathrm{d}t} \right\| = 2\pi \sup_{\substack{\zeta \in C^1(I) \\ |\zeta'| \leqslant 1}} \int_{I} \chi_A \zeta' \mathrm{d}t = 2\pi \sup_{\substack{\psi \in C(I) \\ |\psi| \leqslant 1}} \int_{I} \chi_A \psi \mathrm{d}t = 2\pi \mathcal{H}^1(A).
$$

Moreover, let $A \subset I$ be a Lebesgue measurable set and $f = 2\pi \chi_A$. Using the regularity of the Lebesgue measure, there exists a decreasing sequence of open sets $A \subset A_{k+1} \subset A_k \subset I, k \in \mathbb{N}$ such that $\lim_{k \to \infty} \mathcal{H}^1(A_k) = \mathcal{H}^1(A)$.

Observe that
$$
\frac{d\chi_{A_k}}{dt} \to \frac{d\chi_A}{dt}
$$
 in $[C^1(I)]^*$. Since $\mathcal{Z}(I)$ is a complete metric space, we conclude that $2\pi \frac{d\chi_A}{dt} \in \mathcal{Z}(I)$
and $\left\| 2\pi \frac{d\chi_A}{dt} \right\| = 2\pi \mathcal{H}^1(A)$. In the general case of an integrable function $f: I \to 2\pi \mathbb{Z}$, write
 $f = 2\pi \sum_{k \in \mathbb{Z}} k \chi_{E_k}$ in L^1 , (9)

where $E_k = \{x \in I : f(x) = 2\pi k\}$. Notice that $2\pi \frac{d(k\chi_{E_k})}{dt}$ $\frac{dE_k}{dt} \in \mathcal{Z}(I)$ and the series $\sum_{l=1}^{n}$ *k*∈Z $2\pi \frac{d(k\chi_{E_k})}{dt}$ converges ab-

solutely; indeed, we have

$$
\sum_{k\in\mathbb{Z}}\left\|2\pi\frac{\mathrm{d}(k\chi_{E_k})}{\mathrm{d}t}\right\|=2\pi\sum_{k\in\mathbb{Z}}|k|\mathcal{H}^1(E_k)=\int\limits_I|f|\,\mathrm{d}t<\infty.
$$

By (9), we conclude that $\frac{df}{dt}$ $\frac{dJ}{dt} \in \mathcal{Z}(I)$ and

$$
\left\| \frac{\mathrm{d}f}{\mathrm{d}t} \right\| = \sup_{\substack{\zeta \in C^1(I) \\ |\zeta'| \le 1}} \int_{I} f \zeta' \, \mathrm{d}t = \sup_{\substack{\psi \in C(I) \\ |\psi| \le 1}} \int_{I} f \psi \, \mathrm{d}t = \int_{I} |f| \, \mathrm{d}t. \qquad \Box
$$

Remark 3. The conclusion of Lemma 1 is also true for \mathcal{H}^1 -integrable functions with values in $2\pi\mathbb{Z}$ that are defined on C^1 1-graphs. For simplicity, we restrict to C^1 1-graphs in S^2 , i.e. for an orthonormal frame (x, y) on S^2 , we consider the set

$$
\Gamma = \{(x, y) \colon \phi(x) = y\}
$$

where ϕ is a C^1 function. Suppose $c:[0,1] \to \Gamma$ is a parameterization of Γ and set $\tau(c(t)) = \frac{c'(t)}{\Gamma(c(t))}$ $\frac{c(t)}{|c'(t)|}$ the tangent unit vector to the curve *Γ* at $c(t)$, $\forall t \in (0, 1)$. Let $f : \Gamma \to 2\pi \mathbb{Z}$ be an \mathcal{H}^1 -integrable function on *Γ*. Define

$$
\left\langle \frac{\partial f}{\partial \tau}, \zeta \right\rangle := -\int\limits_0^1 f \circ c(t) (\zeta \circ c)'(t) \, \mathrm{d}t, \quad \forall \zeta \in C^1(\Gamma).
$$

By Lemma 1, we have

$$
\frac{\partial f}{\partial \tau} \in \mathcal{Z}(\Gamma) \quad \text{and} \quad \left\| \frac{\partial f}{\partial \tau} \right\| = \int_{0}^{1} |f| \big(c(t) \big) \big| c'(t) \big| \, \mathrm{d}t.
$$

Before proving Lemma 3, we give the following result:

Lemma 4. *For every* $u \in BV(S^2, S^1)$ *, we have*

$$
u \wedge (D^a u + D^c u) = \frac{1}{i} \bar{u} (D^a u + D^c u)
$$

and
$$
|u \wedge (D^a u + D^c u)| = |D^a u| + |D^c u|.
$$

Proof. Write $u = (u_1, u_2) = u_1 + i u_2$. We can consider the 2×2 matrix of real measures *Du* as a 2-vector of complex measures, i.e. $Du = Du_1 + iDu_2$. Since $u_1^2 + u_2^2 = 1$, it results $D(u_1^2 + u_2^2) = 0$. By the chain rule (see e.g. [1]), we obtain

$$
u_1(D^a u_1 + D^c u_1) + u_2(D^a u_2 + D^c u_2) = 0,
$$

i.e. the real part of the \mathbb{C}^2 -measure $\bar{u}(D^a u + D^c u)$ vanishes. Therefore,

$$
u \wedge (D^a u + D^c u) = \frac{1}{i} \bar{u} (D^a u + D^c u).
$$

Hence, using the fact that the absolutely continuous part and the Cantor part of *Du* are mutually singular, we conclude that

$$
|u \wedge (D^{a} u + D^{c} u)| = |u|(|D^{a} u| + |D^{c} u|) = |D^{a} u| + |D^{c} u|.
$$

Proof of Lemma 3. Let $\varphi \in BV(S^2, \mathbb{R})$ be a lifting of *u*. Write

$$
D\varphi = D^a \varphi + D^c \varphi + (\varphi^+ - \varphi^-) \nu_\varphi \mathcal{H}^1 \llcorner S(\varphi).
$$

By the chain rule and Lemma 4, we obtain

$$
D^{a}\varphi + D^{c}\varphi = \frac{1}{i}\bar{u}(D^{a}u + D^{c}u) = u \wedge (D^{a}u + D^{c}u).
$$

Since $u = e^{i\varphi}$ a.e. in S^2 , we have that $S(u) \subset S(\varphi)$ and by changing the orientation v_φ , we may assume

$$
\begin{cases} \nu_{\varphi} = \nu_u \\ e^{i\varphi +} = u^+ \\ e^{i\varphi -} = u^- \end{cases}
$$
 \mathcal{H}^1 -a.e. on $S(u)$.

Therefore,

$$
\varphi^+ - \varphi^- \equiv \rho(u^+, u^-) \pmod{2\pi} \mathcal{H}^1
$$
-a.e. in $S(u)$
and
$$
\varphi^+ - \varphi^- \equiv 0 \pmod{2\pi} \mathcal{H}^1
$$
-a.e. in $S(\varphi) \setminus S(u)$.

Hence, there exists $f_{\varphi}: S(\varphi) \to 2\pi \mathbb{Z}$ a measurable function such that

$$
D\varphi = u \wedge (D^a u + D^c u) + \rho (u^+, u^-) v_u \mathcal{H}^1 \llcorner S(u) - f_\varphi v_\varphi \mathcal{H}^1 \llcorner S(\varphi).
$$
 (10)

Observe that f_{φ} is an \mathcal{H}^1 -integrable function since

$$
|\rho(u^+, u^-)| = d_{S^1}(u^+, u^-) \leq \frac{\pi}{2}|u^+ - u^-|.
$$

Since *Dϕ* is a measure, we have

curl $D\varphi = 0$ in $\mathcal{D}',$

i.e. for every $\zeta \in C^1(S^2, \mathbb{R})$,

$$
\int\limits_{S^2} \nabla^\perp \zeta D\varphi = 0.
$$

By (10), it yields

$$
\left\langle T(u),\zeta\right\rangle = \int\limits_{S(\varphi)} f_{\varphi} \nabla^{\perp} \zeta \cdot \nu_{\varphi} \, d\mathcal{H}^{1}, \quad \forall \zeta \in C^{1}(S^{2})
$$

and therefore, $(f_{\varphi}, S(\varphi), v_{\varphi}) \in \mathcal{J}(T(u))$.

Conversely, take $(f, S, v) \in \mathcal{J}(T(u))$. Without loss of generality, we may consider $S = \{f \neq 0\}$. Consider the finite Radon \mathbb{R}^2 -valued measure

$$
\mu = u \wedge (D^a u + D^c u) + \rho (u^+, u^-) v_u \mathcal{H}^1 \llcorner S(u) - f v \mathcal{H}^1 \llcorner S.
$$

We check that curl $\mu = 0$ in $\mathcal{D}'(S^2)$. Indeed, for every $\zeta \in C^1(S^2, \mathbb{R})$,

$$
-\langle \operatorname{curl} \mu, \zeta \rangle = \int_{S^2} \nabla^{\perp} \zeta \, \mathrm{d}\mu = \langle T(u), \zeta \rangle - \int_{S} f \nabla^{\perp} \zeta \cdot \nu \, \mathrm{d}\mathcal{H}^1 = 0.
$$

By the *BV* version of Poincare's lemma, there exists $\varphi \in BV(S^2, \mathbb{R})$ such that $D\varphi = \mu$ in $\mathcal{D}'(S^2, \mathbb{R}^2)$. Here, $S \cup S(u)$ is the jump set of φ . On the set $S \cup S(u)$, we choose an orientation ν_{φ} such that $\nu_{\varphi} = \nu_u$ on $S(u)$. We have

$$
\begin{cases}\nD^a \varphi + D^c \varphi = u \wedge (D^a u + D^c u) = \frac{1}{i} \bar{u} (D^a u + D^c u), \\
\varphi^+ - \varphi^- \equiv \rho (u^+, u^-) \pmod{2\pi} \mathcal{H}^1 \text{--a.e. in } S(u), \\
\varphi^+ - \varphi^- \equiv 0 \pmod{2\pi} \mathcal{H}^1 \text{--a.e. in } S \setminus S(u).\n\end{cases}
$$

We now show that

$$
D(u e^{-i\varphi}) = 0.
$$

By the chain rule, we get

$$
D(e^{-i\varphi}) = -ie^{-i\varphi}(D^a\varphi + D^c\varphi) + (e^{-i\varphi^+} - e^{-i\varphi^-}) \otimes \nu_u \mathcal{H}^1 _S(u)
$$

= $-e^{-i\varphi}\bar{u}(D^a u + D^c u) + (e^{-i\varphi^+} - e^{-i\varphi^-}) \otimes \nu_u \mathcal{H}^1 _S(u).$

Remark that the space $BV(S^2, \mathbb{C}) \cap L^\infty$ is an algebra. Differentiating the product $u e^{-i\varphi}$, we obtain

$$
D(u e^{-i\varphi}) = e^{-i\varphi} (D^a u + D^c u) - u e^{-i\varphi} \bar{u} (D^a u + D^c u) + (u^+ e^{-i\varphi^+} - u^- e^{-i\varphi^-}) \otimes \nu_u \mathcal{H}^1 \mathcal{L} S(u) = 0.
$$

Thus, up to an additive constant, φ is a *BV* lifting of *u* and (4) is fulfilled. \Box

Proof of Theorem 1. Let $\varphi \in BV(S^2, \mathbb{R})$ be a lifting of *u*. By Lemma 3, there exists $(f, S, \nu) \in \mathcal{J}(T(u))$ such that (4) holds. Denote by $\tau : S \to S^1$ the tangent vector at \mathcal{H}^1 -a.e. point of *S* such that (v, τ, e) is direct. By (4),

$$
\langle T(u), \zeta \rangle = \int_{S} f \nabla^{\perp} \zeta \cdot v \, d\mathcal{H}^{1} = \int_{S} f \frac{\partial \zeta}{\partial \tau} d\mathcal{H}^{1} = \sum_{k \in \mathbb{N}} \int_{I_{k}} \chi_{S} f \frac{\partial \zeta}{\partial \tau} d\mathcal{H}^{1}, \quad \forall \zeta \in C^{1}(S^{2})
$$

where $\{I_k\}_{k\in\mathbb{N}}$ is a family of disjoint compact C^1 1-graphs that covers \mathcal{H}^1 -almost all of the countably rectifiable set *S*, i.e.

$$
\mathcal{H}^1\bigg(S\bigwedge\bigcup_{k\in\mathbb{N}}I_k\bigg)=0.
$$

According to Lemma 1 and Remark 3, we conclude $T(u) \in \mathcal{Z}(S^2)$ and $||T(u)|| \leq \int_S |f| d\mathcal{H}^1$. \Box

Before proving Theorem 2, let us make some remarks about $E(u)$ and $E_{rel}(u)$ for $u \in BV(S^2, S^1)$ (see also [4]):

Remark 4. (i) $E(u) < \infty$ and $E_{rel}(u) < \infty$;

(ii) The infimum in (5) is achieved; indeed, let $\varphi_k \in BV(S^2, \mathbb{R})$, $e^{i\varphi_k} = u$ a.e. in S^2 , be such that

$$
\lim_{k\to\infty}\int\limits_{S^2}|D\varphi_k|=E(u)<\infty.
$$

By Poincaré's inequality, there exists a universal constant *C >* 0 such that

$$
\int_{S^2} \left| \varphi_k - \oint_{S^2} \varphi_k \right| d\mathcal{H}^2 \leqslant C \int_{S^2} |D\varphi_k|, \quad \forall k \in \mathbb{N}
$$

(where \int stands for the average). Therefore, by subtracting a suitable integer multiple of 2π , we may assume that *S*2

 $(φ_k)_{k∈N}$ is bounded in *BV*($S²$, R). After passing to a subsequence if necessary, we may assume that $φ_k → φ$ a.e. and L^1 for some $\varphi \in BV(S^2, \mathbb{R})$. It follows that φ is a lifting of *u* on S^2 and

$$
E(u) = \lim_{k \to \infty} \int_{S^2} |D\varphi_k| \geqslant \int_{S^2} |D\varphi| \geqslant E(u);
$$

(iii) The infimum in (6) is also achieved; take $u_k^m \in C^\infty(S^2, S^1)$ such that for each $k \in \mathbb{N}$,

$$
u_k^m \to u
$$
 a.e. in S^2 and $\int_{S^2} |\nabla u_k^m| d\mathcal{H}^2 \searrow a_k \in \mathbb{R}$ as $m \to \infty$

and $\lim_{k \to \infty} a_k = E_{rel}(u)$. Subtracting a subsequence, we may assume that for each $k \in \mathbb{N}$,

$$
\int_{S^2} |u_k^m - u| d\mathcal{H}^2 < \frac{1}{k} \quad \text{and} \quad \int_{S^2} |\nabla u_k^m| d\mathcal{H}^2 - a_k < \frac{1}{k}, \quad \forall m \geq 1.
$$

Therefore, $u_k^k \to u$ in L^1 and

$$
\lim_{k \to \infty} \int\limits_{S^2} |\nabla u_k^k| \, d\mathcal{H}^2 = E_{\text{rel}}(u).
$$

(iv) $E(u) = E_{rel}(u)$. For " \leq ", take $u_k \in C^\infty(S^2, S^1)$, $\forall k \in \mathbb{N}$ such that $u_k \to u$ a.e. in S^2 and

$$
\sup_{k\in\mathbb{N}}\int\limits_{S^2}|\nabla u_k|\,\mathrm{d}\mathcal{H}^2<\infty.
$$

Since S^2 is simply connected, there exists $\varphi_k \in C^\infty(S^2, \mathbb{R})$ such that $e^{i\varphi_k} = u_k$. Moreover,

$$
\int_{S^2} |\nabla \varphi_k| \, d\mathcal{H}^2 = \int_{S^2} |\nabla u_k| \, d\mathcal{H}^2.
$$

Using the same argument as in ii), we may assume that $\varphi_k \to \varphi$ a.e. and L^1 for some $\varphi \in BV(S^2, \mathbb{R})$. Therefore, $e^{i\varphi} = u$ a.e. in S^2 and

$$
E(u) \leqslant \int\limits_{S^2} |D\varphi| \leqslant \liminf\limits_{k \to \infty} \int\limits_{S^2} |\nabla \varphi_k| \, \mathrm{d} \mathcal{H}^2 = \liminf\limits_{k \to \infty} \int\limits_{S^2} |\nabla u_k| \, \mathrm{d} \mathcal{H}^2.
$$

For " \geq ", consider a *BV* lifting φ of *u* and take an approximating sequence $\varphi_k \in C^\infty(S^2, \mathbb{R})$ such that $\varphi_k \to \varphi$ a.e. and $|D\varphi|(S^2) = \lim_{k \to \infty} \int$ *S*2 $|\nabla \varphi_k| d\mathcal{H}^2$. With $u_k = e^{i\varphi_k} \in C^\infty(S^2, S^1)$, we have $u_k \to u$ a.e. in S^2 and $\overline{}$

$$
E_{\text{rel}}(u) \leqslant \lim_{k \to \infty} \int_{S^2} |\nabla u_k| \, d\mathcal{H}^2 = \lim_{k \to \infty} \int_{S^2} |\nabla \varphi_k| \, d\mathcal{H}^2 = \int_{S^2} |D\varphi|.
$$

Proof of Theorem 2. For " \leq ", take $(f, S, v) \in \mathcal{J}(T(u))$. By Lemma 3, there exists a lifting $\varphi \in BV(S^2, \mathbb{R})$ of *u* such that (4) holds. It follows that

$$
E(u) \leqslant \int\limits_{S^2} |D\varphi| = \int\limits_{S^2} (|D^a u| + |D^c u|) + \int\limits_{S \cup S(u)} |f v \chi_S - \rho(u^+, u^-) v_u \chi_{S(u)}| d\mathcal{H}^1.
$$

Let us prove now " \geq ". By Remark 4, there is an optimal *BV* lifting φ of *u*, i.e. $E(u) = \int |D\varphi|$. By Lemma 3, *S*2

there exists $(f, S, v) \in \mathcal{J}(T(u))$ such that (4) holds. It results that

$$
E(u) = \int_{S^2} |D\varphi| = \int_{S^2} (|D^a u| + |D^c u|) + \int_{S \cup S(u)} |f v \chi_S - \rho(u^+, u^-) v_u \chi_{S(u)}| d\mathcal{H}^1.
$$

From here, we also deduce that the minimum inside the RHS of (7) is achieved. \Box

Remark 5 (Construction of an optimal lifting). Take $(f, S, \nu) \in \mathcal{J}(T(u))$ that achieves the minimum

$$
\min_{(f,S,\nu)\in\mathcal{J}(T(u))}\int_{S\cup S(u)}\left|f\nu\chi_{S}-\rho(u^{+},u^{-})\nu_{u}\chi_{S(u)}\right|\mathrm{d}\mathcal{H}^{1}.\tag{11}
$$

By Lemma 3, there exists a lifting $\varphi \in BV(S^2, \mathbb{R})$ of *u* such that (4) holds. Then

$$
\int_{S^2} |D\varphi| = \int_{S^2} (|D^a u| + |D^c u|) + \int_{S \cup S(u)} |f v \chi_S - \rho(u^+, u^-) v_u \chi_{S(u)}| d\mathcal{H}^1 = E(u)
$$

and therefore, φ is an optimal lifting of u .

Proof of Lemma 2. For " \leq ", it is easy to see that if *(f, S, v)* $\in \mathcal{J}(\Lambda)$ then for every $\zeta \in C^1(S^2)$ with $|\nabla \zeta| \leq 1$,

$$
\langle \Lambda, \zeta \rangle = \int\limits_{S} f \nu \cdot \nabla^{\perp} \zeta \, d\mathcal{H}^{1} \leqslant \int\limits_{S} |f| \, d\mathcal{H}^{1}.
$$

For " \geq ", we use characterization (2) of the distribution $\Lambda \in \mathcal{Z}(S^2)$. We denote by d_{S^2} the geodesic distance on S^2 . Let $\Lambda = 2\pi \sum$ *k* $(\delta_{p_k} - \delta_{n_k})$ where $(p_k)_{k \in \mathbb{N}}$ *,* $(n_k)_{k \in \mathbb{N}}$ *belong to* S^2 *such that* \sum *k* $d_{S^2}(p_k, n_k) < \infty$. For every $k \in \mathbb{N}$,

consider $n_k p_k$ a geodesic arc on S^2 oriented from n_k to p_k . Take v_k the normal vector to $n_k p_k$ in the frame (x, y) . Set $S = \bigcup_{k} n_k p_k$. Since $\sum_{k} d_{S^2}(p_k, n_k) < \infty$, there exist an orientation $v : S \to S^1$ on *S* and an \mathcal{H}^1 -integrable function $f : S \to 2\pi \mathbb{Z}$ such that

$$
f v \chi_S = \sum_k 2\pi v_k \chi_{n_k p_k} \quad \text{in } L^1(S, \mathbb{R}^2). \tag{12}
$$

Then

$$
\int_{S} f \nu \cdot \nabla^{\perp} \zeta \, d\mathcal{H}^{1} = 2\pi \sum_{k} \int_{n \widehat{k} p_k} \nu_k \cdot \nabla^{\perp} \zeta \, d\mathcal{H}^{1} = 2\pi \sum_{k} \big(\zeta(p_k) - \zeta(n_k) \big) = \langle \Lambda, \zeta \rangle, \quad \forall \zeta \in C^{1}(S^{2}).
$$

It follows that $(f, S, v) \in \mathcal{J}(\Lambda)$ and by (12),

$$
\int\limits_{S} |f| d\mathcal{H}^{1} \leqslant \sum_{k} 2\pi d_{S^{2}}(n_{k}, p_{k}).
$$

Minimizing after all suitable pairs $(p_k, n_k)_{k \in \mathbb{N}}$, it follows by (2),

$$
\|A\| = \inf_{(f,S,\nu)\in\mathcal{J}(A)} \int_{S} |f| d\mathcal{H}^{1}.
$$
 (13)

We now show that the infimum in (13) is indeed achieved. By a dipole construction (see [2], Lemma 16), there exists $u \in W^{1,1}(S^2, S^1)$ such that $\Lambda = T(u)$. We choose $(f_k, S_k, v_k) \in \mathcal{J}(T(u))$ such that

$$
||T(u)|| = \lim_{k} \int_{S_k} |f_k| d\mathcal{H}^1.
$$

By Lemma 3, we construct a lifting $\varphi_k \in BV(S^2, \mathbb{R})$ of *u* such that

$$
D\varphi_k = u \wedge (D^a u + D^c u) + \rho(u^+, u^-) v_u \mathcal{H}^1 \llcorner S(u) - f_k v_k \mathcal{H}^1 \llcorner S_k.
$$

Remark that

$$
\int_{S^2} |D\varphi_k| \leqslant \int_{S^2} (|D^a u| + |D^c u|) + \int_{S(u)} |\rho(u^+, u^-)| d\mathcal{H}^1 + \int_{S_k} |f_k| d\mathcal{H}^1.
$$

Subtracting a suitable number in $2\pi\mathbb{Z}$, we may assume that (φ_k) is a bounded sequence in $BV(S^2, \mathbb{R})$. Up to a subsequence, we find $\varphi \in BV(S^2, \mathbb{R})$ such that

 $\varphi_k \to \varphi$ a.e. in S^2 and $D\varphi_k \stackrel{*}{\rightharpoonup} D\varphi$ in the measure sense.

Therefore, φ is a *BV* lifting of *u* and by Lemma 3, there exists $(f, S, \nu) \in \mathcal{J}(T(u))$ such that

$$
D\varphi = u \wedge (D^a u + D^c u) + \rho(u^+, u^-) v_u \mathcal{H}^1 \llcorner S(u) - f v \mathcal{H}^1 \llcorner S.
$$

We conclude

$$
\int_{S} |f| d\mathcal{H}^{1} = \int_{S^{2}} |u \wedge (D^{a}u + D^{c}u) + \rho(u^{+}, u^{-})\nu_{u}\mathcal{H}^{1} \subset S(u) - D\varphi|
$$
\n
$$
\leq \liminf_{k} \int_{S^{2}} |u \wedge (D^{a}u + D^{c}u) + \rho(u^{+}, u^{-})\nu_{u}\mathcal{H}^{1} \subset S(u) - D\varphi_{k}|
$$
\n
$$
= \lim_{k} \int_{S_{k}} |f_{k}| d\mathcal{H}^{1} = ||T(u)||. \qquad \Box
$$

Proof of Theorem 3. Let $\psi \in BV(S^2, \mathbb{R})$ and $\zeta \in C^1(S^2)$ be such that $|\nabla \zeta| \leq 1$. Then

$$
\int_{S^2} |u \wedge (D^a u + D^c u) + \rho(u^+, u^-) \nu_u \mathcal{H}^1 _S(u) - D\psi| \geq \langle T(u), \zeta \rangle - \int_{S^2} D\psi \cdot \nabla^{\perp} \zeta = \langle T(u), \zeta \rangle.
$$

By taking the supremum over ζ , we obtain

$$
\int_{S^2} |u \wedge (D^a u + D^c u) + \rho(u^+, u^-) v_u \mathcal{H}^1 _S(u) - D\psi| \geq ||T(u)||.
$$

We now show that there is a lifting $\varphi \in BV(S^2, \mathbb{R})$ of *u* such that the minimum in (8) is achieved. By Lemma 2, choose $(f, S, v) \in \mathcal{J}(T(u))$ such that

$$
||T(u)|| = \int_{S} |f| d\mathcal{H}^{1}.
$$

Using Lemma 3, we construct a lifting $\varphi \in BV(S^2, \mathbb{R})$ such that (4) holds. Thus,

$$
||T(u)|| = \int_{S} |f| d\mathcal{H}^{1} = \int_{S^{2}} |u \wedge (D^{a}u + D^{c}u) + \rho(u^{+}, u^{-}) \nu_{u} \mathcal{H}^{1} \subset S(u) - D\varphi|.
$$

Proof of Corollary 1. The result is a straightforward consequence of Theorem 2 and Lemma 2. \Box

In order to prove Corollary 2, we need the following estimation of $||T(u)||$ in terms of the seminorm $|u|_{BVS^1}$:

Lemma 5. We have $||T(u)|| \leq |u|_{BVS^1}$, $\forall u \in BV(S^2, S^1)$.

Proof. By Lemma 4, it results that for every $\zeta \in C^1(S^2)$ with $|\nabla \zeta| \leq 1$,

$$
\left| \langle T(u), \zeta \rangle \right| \leq \int_{S^2} \left| u \wedge (D^a u + D^c u) \right| + \int_{S(u)} \left| \rho(u^+, u^-) \right| d\mathcal{H}^1
$$

=
$$
\int_{S^2} \left(|D^a u| + |D^c u| \right) + \int_{S(u)} d_{S^1}(u^+, u^-) d\mathcal{H}^1;
$$

therefore

 $\|T(u)\| \leq |u|_{BVS^1}$. \Box

Proof of Corollary 2. By Theorem 2, Lemmas 2 and 5, we conclude that

$$
E(u) \leq \int_{S^2} (|D^a u| + |D^c u|) + \int_{S(u)} |\rho(u^+, u^-)| d\mathcal{H}^1 + \min_{(f, S, v) \in \mathcal{J}(T(u))} \int_{S} |f| d\mathcal{H}^1
$$

= |u|_{BV S^1} + ||T(u)|| \leq 2|u|_{BV S^1}.
Let |u|_{BV} = \int_{S^2} |Du| = \int_{S^2} (|D^a u| + |D^c u|) + \int_{S(u)} |u^+ - u^-| d\mathcal{H}^1; we deduce that
|u|_{BV} \leq |u|_{BV S^1} \leq \frac{\pi}{2} |u|_{BV}, \quad \forall u \in BV(S^2, S^1).

Therefore, Corollary 2 is a weaker estimate of $E(u)$ than inequality (3) obtained in [5].

3. Some other properties of the distribution T

We start by observing that $T: BV(S^2, S^1) \to \mathcal{D}'(S^2, \mathbb{R})$ is not continuous, i.e. there exists a sequence of functions $u_k \in BV(S^2, S^1)$ such that $u_k \to u$ strongly in $BV(S^2, S^1)$ and $T(u_k) \to T(u)$ in $\mathcal{D}'(S^2, \mathbb{R})$. The reason for that is the discontinuity of the function ρ that enters in the definition of *T*.

Proposition 1. *The map* $T: BV(S^2, S^1) \to \mathcal{D}'(S^2, \mathbb{R})$ *is discontinuous.*

Proof. Write

$$
S^{2} = \{ (\cos \theta \sin \alpha, \sin \theta \sin \alpha, \cos \alpha) : \alpha \in [0, \pi], \ \theta \in (0, 2\pi] \}.
$$

In the spherical coordinates $(\alpha, \theta) \in [0, \pi] \times [0, 2\pi]$, consider the *BV* functions φ and μ defined as

$$
\varphi(\alpha,\theta) = \begin{cases}\n-2\theta & \text{if } \theta \in (0, \frac{\pi}{2}), \alpha \in (0, \frac{\pi}{2}), \\
-\pi & \text{if } \theta \in (\frac{\pi}{2}, \frac{3\pi}{2}), \alpha \in (0, \frac{\pi}{2}), \\
2(\theta - 2\pi) & \text{if } \theta \in (\frac{3\pi}{2}, 2\pi), \alpha \in (0, \frac{\pi}{2}), \\
0 & \text{if } \theta \in (0, 2\pi), \alpha \in (\frac{\pi}{2}, \pi)\n\end{cases} \text{ and } u = e^{i\varphi}.
$$
\n(14)

We have that the jump set of *u* and φ is concentrated on the equator $\{\alpha = \frac{\pi}{2}\}\$ of the sphere S^2 , i.e.

$$
S(\varphi) = S(u) = \left\{ \alpha = \frac{\pi}{2} \right\}.
$$

On the equator we choose the orientation given by the normal vector $\vec{\alpha}$ oriented from the north to the south; so $(\vec{\alpha}, \vec{\theta}, \vec{e})$ is direct. We show that

$$
T(u) = 2\pi(\delta_p - \delta_n),\tag{15}
$$

where $n = (\frac{\pi}{2}, \frac{3\pi}{2})$ and $p = (\frac{\pi}{2}, \frac{\pi}{2})$ in the frame (α, θ) . Indeed, we remark that

$$
\varphi^+ - \varphi^- = \rho(u^+, u^-) + 2\pi \chi_{\widehat{np}} \quad \text{in } S(u);
$$

by Lemma 3, we obtain

$$
D\varphi = u \wedge \nabla u \mathcal{H}^2 + \rho(u^+, u^-) \vec{\alpha} \mathcal{H}^1 \llcorner S(u) + 2\pi \vec{\alpha} \mathcal{H}^1 \llcorner \widehat{np}
$$

and it yields

$$
\langle T(u), \zeta \rangle = -2\pi \int_{\widehat{np}} \vec{\alpha} \cdot \nabla^{\perp} \zeta d\mathcal{H}^{1} = -2\pi \int_{p}^{n} \frac{\partial \zeta}{\partial \theta} d\mathcal{H}^{1} = 2\pi \big(\zeta(p) - \zeta(n) \big), \quad \forall \zeta \in C^{1}(S^{2}, \mathbb{R}).
$$

Construct the approximation sequence $\varphi_{\varepsilon} \in BV(S^2, \mathbb{R})$, $\varepsilon \in (0, 1)$ defined (in the spherical coordinates) as

$$
\varphi_{\varepsilon}(\alpha,\theta) = \begin{cases}\n-2\theta & \text{if } \theta \in (0, \frac{\pi-\varepsilon}{2}), \alpha \in (0, \frac{\pi}{2}), \\
-\pi + \varepsilon & \text{if } \theta \in (\frac{\pi-\varepsilon}{2}, \frac{3\pi+\varepsilon}{2}), \alpha \in (0, \frac{\pi}{2}), \\
2(\theta - 2\pi) & \text{if } \theta \in (\frac{3\pi+\varepsilon}{2}, 2\pi), \alpha \in (0, \frac{\pi}{2}), \\
0 & \text{if } \theta \in (0, 2\pi), \alpha \in (\frac{\pi}{2}, \pi)\n\end{cases}
$$

and set $u_{\varepsilon} = e^{i\varphi_{\varepsilon}}$. An easy computation shows that $\varphi_{\varepsilon} \to \varphi$ strongly in *BV*; therefore, $u_{\varepsilon} \to u$ strongly in *BV* as $\varepsilon \to 0$. As before, we have

$$
S(\varphi_{\varepsilon}) = S(u_{\varepsilon}) = \left\{ \alpha = \frac{\pi}{2} \right\} \quad \text{and} \quad \varphi_{\varepsilon}^+ - \varphi_{\varepsilon}^- = \rho(u_{\varepsilon}^+, u_{\varepsilon}^-) \quad \text{in } \left\{ \alpha = \frac{\pi}{2} \right\}.
$$

It follows that $T(u_{\varepsilon}) = 0$ and we conclude

 $T(u_{\varepsilon}) \to T(u)$ in $\mathcal{D}'(S^2, \mathbb{R})$. \square

As Brezis, Mironescu and Ponce proved in [4], if we restrict ourselves to $W^{1,1}(S^2, S^1)$, then the map $T|_{W^{1,1}(S^2, S^1)}: W^{1,1}(S^2, S^1) \to \mathcal{Z}(S^2)$ is continuous, i.e. if $g, g_k \in W^{1,1}(S^2, S^1)$ such that $g_k \to g$ in $W^{1,1}$ then $T(g_k) - T(g)$ $\to 0$ as $k \to \infty$. It is natural to ask if one could change the antisymmetric function ρ in order that the corresponding map *T* become continuous. The answer is negative:

Proposition 2. *There is no antisymmetric function* $\gamma : S^1 \times S^1 \to \mathbb{R}$ *such that the map* $T_{\gamma} : BV(S^2, S^1) \to \mathcal{Z}(S^2)$ *given for every* $u \in BV(S^2, S^1)$ *as*

$$
\left\langle T_{\gamma}(u),\zeta\right\rangle = \int\limits_{S^2} \nabla^{\perp}\zeta \cdot \left(u \wedge (D^a u + D^c u)\right) + \int\limits_{S(u)} \gamma(u^+, u^-) \nu_u \cdot \nabla^{\perp}\zeta \, d\mathcal{H}^1, \quad \forall \zeta \in C^1(S^2, \mathbb{R})
$$

is well-defined and continuous.

Proof. By contradiction, suppose that there exists such a function γ . First we show that

$$
\gamma(\omega_1, \omega_2) \equiv \text{Arg}(\omega_1) - \text{Arg}(\omega_2) \pmod{2\pi}, \quad \forall \omega_1, \omega_2 \in S^1.
$$
\n(16)

Indeed, fix $\omega_1, \omega_2 \in S^1$. Take $f:[0,2\pi] \to \mathbb{R}$ the linear function satisfying $f(0) = \text{Arg}(\omega_1)$ and $f(2\pi) = \text{Arg}(\omega_2)$; define $u \in BV(S^2, S^1)$ as

$$
u(\alpha, \theta) = e^{if(\theta)}, \quad \forall \alpha \in (0, \pi), \ \theta \in (0, 2\pi).
$$

Consider the lifting $\varphi \in BV(S^2, \mathbb{R})$ of *u* given by

$$
\varphi(\alpha,\theta) = f(\theta), \quad \forall \alpha \in (0,\pi), \ \theta \in (0,2\pi).
$$

If $\omega_1 \neq \omega_2$, the jump set of *u* and φ is concentrated on the meridian $\{\theta = 0\}$ orientated counterclockwise by the unit vector $\vec{\theta}$. We have that

$$
D\varphi = u \wedge \nabla u \mathcal{H}^2 + (\text{Arg}(\omega_1) - \text{Arg}(\omega_2)) \vec{\theta} \mathcal{H}^1 \Box \{\theta = 0\}.
$$

Since curl $D\varphi = 0$ in \mathcal{D}' , it yields

$$
\int_{S^2} u \wedge \nabla u \cdot \nabla^{\perp} \zeta d\mathcal{H}^2 = - \int_{\{\theta=0\}} (\text{Arg}(\omega_1) - \text{Arg}(\omega_2)) \vec{\theta} \cdot \nabla^{\perp} \zeta d\mathcal{H}^1
$$

$$
= (\text{Arg}(\omega_1) - \text{Arg}(\omega_2)) \int_{p}^{n} \frac{\partial \zeta}{\partial \alpha} d\mathcal{H}^1
$$

$$
= (\text{Arg}(\omega_2) - \text{Arg}(\omega_1)) (\zeta(p) - \zeta(n)), \quad \forall \zeta \in C^1(S^2)
$$

where $p = (0, 0)$ and $n = (\pi, 0)$ (in the spherical coordinates) are the north and the south pole of S^2 . We obtain that

$$
\langle T_{\gamma}(u), \zeta \rangle = \int_{S^2} \nabla^{\perp} \zeta \cdot (u \wedge \nabla u) d\mathcal{H}^2 + \gamma(\omega_1, \omega_2) \int_{\{\theta=0\}} \vec{\theta} \cdot \nabla^{\perp} \zeta d\mathcal{H}^1
$$

=
$$
(\text{Arg}(\omega_2) - \text{Arg}(\omega_1) + \gamma(\omega_1, \omega_2))(\zeta(p) - \zeta(n)), \quad \forall \zeta \in C^1(S^2, \mathbb{R}).
$$

From the definition we know that $T_\gamma(u) \in \mathcal{Z}(S^2)$ and therefore, (16) holds. If $\omega_1 = \omega_2$, by the antisymmetry of γ , we have $\gamma(\omega_1, \omega_2) = 0$ and so, (16) is obvious.

Second we prove that the continuity of T_γ implies that γ is continuous on $S^1 \times S^1$. Indeed, let (ω_1^{ε}) and (ω_2^{ε}) be two sequences in S^1 such that $\omega_1^{\varepsilon} \to \omega_1$ and $\omega_2^{\varepsilon} \to \omega_2$. We want that

$$
\gamma(\omega_1^{\varepsilon}, \omega_2^{\varepsilon}) \to \gamma(\omega_1, \omega_2). \tag{17}
$$

Take $\beta \in [0, 2\pi)$ such that $e^{i\beta}$ is different from ω_1 and ω_2 . For each $\omega \in S^1$ denote by $\arg_\beta(\omega) \in (\beta - 2\pi, \beta]$ the argument of *ω*, i.e.

$$
e^{i\arg_{\beta}(\omega)} = \omega.
$$
 (18)

As above, define $f_{\varepsilon}:[0,2\pi] \to \mathbb{R}$ as the linear function satisfying $f_{\varepsilon}(0) = \arg_{\beta}(\omega_1^{\varepsilon})$ and $f_{\varepsilon}(2\pi) = \arg_{\beta}(\omega_2^{\varepsilon})$ and consider $u_{\varepsilon} \in BV(S^2, S^1)$ such that

$$
u_{\varepsilon}(\alpha,\theta) = e^{if_{\varepsilon}(\theta)}, \quad \forall \alpha \in (0,\pi), \ \theta \in (0,2\pi).
$$

It is easy to check that $u_{\varepsilon} \to u$ strongly in *BV*, where $u(\alpha, \theta) = e^{if(\theta)}$ and *f* is the linear function satisfying $f(0) = \arg_\beta(\omega_1)$ and $f(2\pi) = \arg_\beta(\omega_2)$. As before, we obtain

$$
T_{\gamma}(u_{\varepsilon}) = \left(\arg_{\beta}(\omega_2^{\varepsilon}) - \arg_{\beta}(\omega_1^{\varepsilon}) + \gamma(\omega_1^{\varepsilon}, \omega_2^{\varepsilon})\right)(\delta_p - \delta_n)
$$

and
$$
T_{\gamma}(u) = \left(\arg_{\beta}(\omega_2) - \arg_{\beta}(\omega_1) + \gamma(\omega_1, \omega_2)\right)(\delta_p - \delta_n).
$$

Since T_γ and \arg_β are continuous on $BV(S^2, S^1)$, respectively on $S^1 \setminus \{e^{i\beta}\}\)$, we deduce that (17) holds.

Observe now that the function

$$
(\omega_1, \omega_2) \mapsto \gamma(\omega_1, \omega_2) - \text{Arg}(\omega_1) + \text{Arg}(\omega_2)
$$

is continuous on the connected set $S^1 \setminus \{-1\} \times S^1 \setminus \{-1\}$ and takes values in $2\pi \mathbb{Z}$. Therefore, there exists $k \in \mathbb{Z}$ such that

$$
\gamma(\omega_1, \omega_2) = \text{Arg}(\omega_1) - \text{Arg}(\omega_2) - 2\pi k \quad \text{in } S^1 \setminus \{-1\} \times S^1 \setminus \{-1\}.
$$

In fact, $k = 0$ if one takes $\omega_1 = \omega_2$. But Arg(·) is not a continuous map on S^1 which is a contradiction with the continuity of γ on $S^1 \times S^1$. \Box

The algebraic properties of *T* restricted to $W^{1,1}(S^2, S^1)$ (see [4], Lemma 1) do not hold in general for $BV(S^2, S^1)$ functions.

Remark 6. (a) There exists $u \in BV(S^2, S^1)$ such that $T(\bar{u}) \neq -T(u)$. Indeed, take the function *u* defined in (14). A similar computation gives us that $T(\bar{u}) = 0 \neq -T(u)$.

(b) The relation $T(gh) = T(g) + T(h)$, $\forall g, h \in W^{1,1}(S^2, S^1)$ need not hold for $BV(S^2, S^1)$ functions. As before, consider the function *u* in (14). Then $T(-u) = 0$. Since $T(-1) = 0$, we conclude $T(-u) \neq T(u) + T(-1)$.

In the following we discuss the nature of the singularities of the distribution $T(u)$. As it was mentioned in the beginning, we deal with two types of singularity:

- (i) topological singularities carrying a degree which are created by the absolutely continuous part and the Cantor part of the distributional determinant of *u*;
- (ii) point singularities coming from the jump part of the derivative *Du*.

We give some examples in order to point out these two different kind of singularity. In Example 1, $T(u)$ is a dipole made up by two vortices of degree $+1$ and -1 ; these two vortices are generated by the absolutely continuous part of det (∇u) in (a), respectively by the Cantor part of the distributional Jacobian of *u* in (b).

Example 1. (a) Let us analyze the function $g \in W^{1,1}(S^2, S^1)$,

$$
g(\alpha, \theta) = e^{i\theta}, \quad \forall \alpha \in (0, \pi), \ \theta \in [0, 2\pi).
$$

Denote *p* and *n* the north and respectively the south pole of the unit sphere. We consider the lifting $\varphi \in BV(S^2, \mathbb{R})$ of *u* given by $\varphi(\alpha, \theta) = \theta$ for every $\alpha \in (0, \pi), \theta \in (0, 2\pi)$. Then the jump set of φ is concentrated on the meridian ${\theta = 0}$ oriented counterclockwise by the unit vector $\vec{\theta}$. We have

$$
D\varphi = g \wedge \nabla g \mathcal{H}^2 - 2\pi \vec{\theta} \mathcal{H}^1 \llcorner \widehat{np}.
$$

Therefore, $T(g) = 2\pi (\delta_p - \delta_n)$. The two poles are the vortices of the function *g*.

(b) The same situation may occur for some purely Cantor functions. Let us consider the standard Cantor function $f:[0,1] \rightarrow [0,1]$; *f* is a continuous, nondecreasing function with $f(0) = 0$, $f(1) = 1$ and $f'(x) = 0$ for a.e. *x* ∈ (0, 1). Take v ∈ *BV*(S^2 , S^1) defined as

$$
v(\alpha, \theta) = e^{2\pi i f(\theta/2\pi)}, \quad \forall \alpha \in (0, \pi), \ \theta \in [0, 2\pi).
$$

The lifting $\varphi \in BV(S^2, \mathbb{R})$ given by $\varphi(\alpha, \theta) = 2\pi f(\theta/2\pi)$ for every $\alpha \in (0, \pi), \theta \in (0, 2\pi)$ has the jump set concentrated on the meridian $\{\theta = 0\}$ and

$$
D\varphi = v \wedge D^c v - 2\pi \vec{\theta} \mathcal{H}^1 \llcorner \widehat{np}.
$$

As before, we obtain that $T(v) = 2\pi(\delta_p - \delta_n)$ where p and n are the poles of S^2 .

Remark also that for the two functions constructed in Example 1, the constant 2 in inequality (3) is optimal and we have a specific structure for an optimal lifting:

Proposition 3. Let $u \in BV(S^2, S^1)$ be one of the two functions defined in Example 1. Then for every lifting $\varphi \in BV(S^2, \mathbb{R})$ *of u we have*

$$
\int_{S^2} |D\varphi| \geqslant 2 \int_{S^2} |Du|.
$$

Moreover, the set of all optimal liftings of u is given by

$$
\left\{\arg_{\beta}(u) + 2\pi k : \beta \in [0, 2\pi), \ k \in \mathbb{Z}\right\}
$$

where $\arg_{\beta}(\omega) \in (\beta - 2\pi, \beta]$ *stands for the argument of* $\omega \in S^1$ (*as in* (18)*)*.

Proof. First we notice that

$$
\int_{S^2} |Du| = 2\pi^2 \quad \text{and} \quad ||T(u)|| = 2\pi d_{S^2}(n, p) = 2\pi^2
$$

where *n* and *p* are the two poles of S^2 .

Let $\varphi \in BV(S^2, \mathbb{R})$ be a lifting of *u*. By Theorem 2 and Lemma 2, we obtain

$$
\int_{S^2} |D\varphi| \ge E(u) = \int_{S^2} |Du| + ||T(u)|| = 4\pi^2 = 2 \int_{S^2} |Du|.
$$

Take now $\varphi \in BV(S^2, \mathbb{R})$ an optimal lifting of *u*. By Lemma 3, there exists $(f, S, \nu) \in \mathcal{J}(T(u))$ that achieves the minimum in (11) and satisfies

$$
D\varphi = u \wedge Du - f\nu\mathcal{H}^1 \llcorner S.
$$

That means

$$
D^{j}\varphi = -f\nu\mathcal{H}^{1} \rvert S \quad \text{and} \quad \int_{S} |f| = 2\pi d_{S^{2}}(n, p). \tag{19}
$$

We may assume here that $S = \{f \neq 0\}$. For every $\alpha \in (0, \pi)$ we denote L_α the latitude on S^2 corresponding to α and $\varphi_{\alpha}: L_{\alpha} \to \mathbb{R}$ the restriction of φ to L_{α} . Using the Characterization Theorem of *BV* functions by sections and Theorem 3.108 in [1], it results that for a.e. $\alpha \in (0, \pi)$, $\varphi_{\alpha} \in BV(L_{\alpha}, \mathbb{R})$ and the discontinuity set of φ_{α} is $S \cap L_{\alpha}$. Remark that deg $(u; L_{\alpha}) = 1$ for every $\alpha \in (0, \pi)$. Thus, for a.e. $\alpha \in (0, \pi)$, φ_{α} will have at least one jump on L_{α} and the length of a jump is not less than 2π . It yields $\mathcal{H}^1(S) \geq \pi$ and $|f| \geq 2\pi \mathcal{H}^1$ – a.e. in *S*. By (19), we deduce that

$$
|f| = 2\pi
$$
 \mathcal{H}^1 -a.e. in S and $\mathcal{H}^1(S) = \pi$.

We know that

$$
\int_{S} \frac{f}{2\pi} \nu \cdot \nabla^{\perp} \zeta \, d\mathcal{H}^{1} = \zeta(p) - \zeta(n), \quad \forall \zeta \in C^{1}(S^{2}).
$$

By [7] (Section 4.2.25), it results that *S* covers \mathcal{H}^1 -almost all of a Lipschitz univalent path *c* between the two poles. Since $\mathcal{H}^1(S) = d_{S^2}(n, p)$ we deduce that *S* is a geodesic arc on \overline{S}^2 between *n* and \overline{p} and $\frac{f}{2\pi}v$ is the normal unit vector to the curve *c*. Take $\beta \in [0, 2\pi)$ such that $S = {\theta = \beta}$ in the spherical coordinates. We have that φ − arg_{*B*}(*u*): $S^2 \setminus S \to 2\pi \mathbb{Z}$ is continuous on the connected set $S^2 \setminus S$. Therefore, there exists $k \in \mathbb{Z}$ such that

$$
\varphi = \arg_{\beta}(u) + 2\pi k
$$

and the conclusion follows. \Box

The appearance of non-topological singularities in the writing of $T(u)$ for $u \in BV(S^2, S^1)$ was already seen in the example (14); there the distribution $T(u)$ is a dipole even if the function *u* does not have any vortex. One should notice that the dipole (15) is created on the jump set of *u* by the discontinuity of the chosen argument Arg. In Remark 7, we will see that a dipole could disappear if we change the choice of the argument.

Remark 7. Let $\beta \in [0, 2\pi)$. Define the antisymmetric function $\gamma_{\beta}(\cdot, \cdot): S^1 \times S^1 \to [-\pi, \pi]$ as

$$
\gamma_{\beta}(\omega_1, \omega_2) = \begin{cases} \text{Arg}\left(\frac{\omega_1}{\omega_2}\right) & \text{if } \frac{\omega_1}{\omega_2} \neq -1, \\ \text{arg}_{\beta}(\omega_1) - \text{arg}_{\beta}(\omega_2) & \text{if } \frac{\omega_1}{\omega_2} = -1, \end{cases} \forall \omega_1, \omega_2 \in S^1.
$$

Consider now the distribution $T_{\gamma\beta}(u) \in \mathcal{D}'(S^2, \mathbb{R})$ given as in Proposition 2:

$$
\left\langle T_{\gamma_{\beta}}(u),\zeta\right\rangle = \int\limits_{S^2} \nabla^{\perp}\zeta \cdot \left(u \wedge (D^a u + D^c u)\right) + \int\limits_{S(u)} \gamma_{\beta}(u^+, u^-) \nu_u \cdot \nabla^{\perp}\zeta \,d\mathcal{H}^1, \quad \forall \zeta \in C^1(S^2, \mathbb{R}).
$$

Observe that $T_{\gamma\beta}$ inherits the properties of *T* given in Theorems 1, 2 and 3. However, the structure of the singularities of $T_{\gamma\beta}(u)$ may be different from $T(u)$. Indeed, consider $u \in BV(S^2, S^1)$ the function constructed in (14). We saw that $T(u) = 2\pi(\delta_p - \delta_n)$ where $n = (\frac{\pi}{2}, \frac{3\pi}{2})$ and $p = (\frac{\pi}{2}, \frac{\pi}{2})$ (in the spherical coordinates). The same computation gives us $T_{\gamma_{\pi/2}}(u) = 0$. The difference between $T(u)$ and $T_{\gamma_{\pi/2}}(u)$ arises from the choice of the argument.

An interesting phenomenon is observed in Example 2 where the two types of singularity are mixed: some topological vortices may be located on the jump set of *u*.

Example 2. (a) An example that points out the mixture of the two type of singularity is given by functions with pseudo-vortices: define $u \in BV(S^2, S^1)$ as

$$
u(\alpha, \theta) = e^{3i\theta/2}
$$
, $\forall \alpha \in (0, \pi)$, $\theta \in (0, 2\pi)$.

The jump set of *u* is the meridian $\{\theta = 0\}$. We have

$$
T(u) = 2\pi(\delta_p - \delta_n)
$$
 and $T_{\gamma_{\pi/2}}(u) = 4\pi(\delta_p - \delta_n)$.

The two poles p and *n* arise on the jump set of *u* and behave like some pseudo-vortices, i.e. after a complete turn, the function *u* rotates 3*/*2 times around the poles (with different signs: '+' around *p* and '−' around *n*). According to the choice of the argument in the definition of γ_{β} , the distribution $T_{\gamma_{\beta}}(u)$ will count once or twice the dipole.

(b) A piecewise constant function $u \in BV(S^2, S^1)$ may create a dipole for $T(u)$. Indeed, let us define $\varphi \in BV(S^2, \mathbb{R})$ as

$$
\varphi(\alpha,\theta) = \begin{cases}\n0 & \text{if } \theta \in (0, 2\pi/3), \ \alpha \in (0, \pi), \\
2\pi/3 & \text{if } \theta \in (2\pi/3, 4\pi/3), \ \alpha \in (0, \pi), \\
4\pi/3 & \text{if } \theta \in (4\pi/3, 2\pi), \ \alpha \in (0, \pi)\n\end{cases}
$$

and set $u = e^{i\varphi}$. The jump set of *u* and φ is the union of three meridians

$$
S(u) = S(\varphi) = {\theta = 0} \cup {\theta = 2\pi/3} \cup {\theta = 4\pi/3}.
$$

We have

$$
\varphi^+ - \varphi^- = \rho(u^+, u^-) - 2\pi \chi_{\{\theta = 0\}} \quad \text{in } S(\varphi).
$$

We obtain $T(u) = 2\pi(\delta_p - \delta_n)$ where p and n are the two poles of the unit sphere. For every $\beta \in [0, 2\pi)$, T_{γ_β} has the same behavior, i.e. $T_{\gamma\beta}(u) = 2\pi (\delta_p - \delta_n)$.

(c) Let $u \in BV(S^2, S^1)$ be the function defined above in (b) and take *g* the function constructed in Example 1(a). Set $w = gu \in BV(S^2, S^1)$. We have $S(w) = {\theta = 0} \cup {\theta = 2\pi/3} \cup {\theta = 4\pi/3}$. We show that $T(w) = 4\pi(\delta_p - \delta_n)$. Indeed, construct the lifting $\psi \in BV(S^2, \mathbb{R})$ of *w* as

$$
\psi(\alpha, \theta) = \begin{cases}\n\theta & \text{if } \theta \in (0, 2\pi/3), \alpha \in (0, \pi), \\
\theta + 2\pi/3 & \text{if } \theta \in (2\pi/3, 4\pi/3), \alpha \in (0, \pi), \\
\theta - 2\pi/3 & \text{if } \theta \in (4\pi/3, 2\pi), \alpha \in (0, \pi).\n\end{cases}
$$

Observe that

$$
\psi^+ - \psi^- = \rho(w^+, w^-) - 2\pi \chi_{\{\theta = 0\}} - 2\pi \chi_{\{\theta = 4\pi/3\}} \quad \text{in } S(w)
$$

and conclude that $T(w) = 4\pi(\delta_p - \delta_n)$. So, the north pole *p* and the south pole *n* which are the vortices of *g* remain singularities for the function *w*; they appear now on the jump part of *w*. The same behavior happens to $T_{\gamma\beta}$ for every $\beta \in [0, 2\pi)$, i.e. $T_{\gamma}(\alpha w) = 4\pi (\delta_p - \delta_n)$.

As we mentioned before, for every $u \in BV(S^2, S^1)$ there exists a bounded lifting $\varphi \in BV \cap L^{\infty}(S^2, \mathbb{R})$ (see [5]). The striking fact is that we can construct functions $u \in BV(S^2, S^1)$ such that no optimal lifting belongs to L^∞ . We give such an example in the following:

Example 3. On the interval $(0, 2\pi)$ we consider

$$
p_1 = 1
$$
, $n_k = p_k + \frac{1}{4^k}$ and $p_{k+1} = n_k + \frac{1}{2^k}$, $\forall k \ge 1$.

Suppose that this configuration of points lies on the equator $\{\frac{\pi}{2}\}\times[0, 2\pi]$ (in the spherical coordinates) of S^2 and we consider that each dipole (p_k, n_k) appears *k* times. Since \sum $k \geqslant 1$ $kd_{S^2}(p_k, n_k) < \infty$, set

$$
\Lambda = 2\pi \sum_{k \geqslant 1} k(\delta_{p_k} - \delta_{n_k}) \in \mathcal{Z}(S^2).
$$

By [2] (Lemma 16),

$$
T(W^{1,1}(S^2, S^1)) = \mathcal{Z}(S^2).
$$

Thus, take $g \in W^{1,1}(S^2, S^1)$ such that $T(g) = \Lambda$. Using (2), it follows that

$$
||T(g)|| = 2\pi \sum_{k \geqslant 1} k d_{S^2}(p_k, n_k).
$$

Let $\varphi \in BV(S^2, \mathbb{R})$ be an optimal lifting of *g*. Then there is a triple $(f, S, \nu) \in \mathcal{J}(T(g))$ such that

$$
D\varphi = g \wedge \nabla g \mathcal{H}^2 - f \nu \mathcal{H}^1 \llcorner S \quad \text{and} \quad \int_S |f| d\mathcal{H}^1 = ||T(g)||. \tag{20}
$$

We may assume that $S = \{f \neq 0\}$. $\neq 0$.

We know that *S* $f \nu \cdot \nabla^{\perp} \zeta \, d\mathcal{H}^1 = 2\pi \sum$ $k \geqslant 1$ $k(\zeta(p_k) - \zeta(n_k))$, $\forall \zeta \in C^1(S^2)$. For each $k \geq 1$, we denote in the spherical coordinates $V_k = (0, \pi) \times \left(p_k - \frac{1}{8^k}, n_k + \frac{1}{8^k}\right)$ 8*k*). Then

$$
\int_{S} f \nu \cdot \nabla^{\perp} \zeta \, d\mathcal{H}^{1} = 2\pi k (\zeta(p_{k}) - \zeta(n_{k})), \quad \forall \zeta \in C^{1}(S^{2}) \text{ with } \operatorname{supp} \zeta \subset V_{k}.
$$

By (20), it follows that

$$
\int_{S \cap V_k} |f| d\mathcal{H}^1 = 2\pi k d_{S^2}(p_k, n_k).
$$

Using the same argument as in the proof of Proposition 3, we deduce that for each $k \in \mathbb{N}$,

S(*ϕ*) ∩ *V_k* = *S* ∩ *V_k* = $n_k \hat{p}_k$ and $|\varphi^+ - \varphi^-| = |f| = 2k\pi$ *H*¹-a.e. on $n_k \hat{p}_k$

where $n_k p_k$ is the geodesic arc connecting n_k and p_k . It yields that $\varphi \notin L^\infty$. So, every optimal *BV* lifting of *g* does not belong to L^{∞} .

In the next example, we show that Theorem 3 fails if we minimize the energy in (8) just over the class of gradient maps:

Example 4. Let $u \in BV(S^2, S^1)$ be defined as

 $u(\alpha, \theta) = e^{i\theta/3}, \quad \forall \alpha \in (0, \pi), \ \theta \in (0, 2\pi).$

The jump set of *u* is the meridian $\{\theta = 0\}$ oriented counterclockwise and $\rho(u^+, u^-) = -2\pi/3$ on $S(u)$. We have that $T(u) = 0$. On the other hand, for every $\psi \in C^{\infty}(S^2, \mathbb{R})$, we have

$$
\int_{S^2} |u \wedge \nabla u \mathcal{H}^2 + \rho(u^+, u^-) \nu_u \mathcal{H}^1 \llcorner S(u) - \nabla \psi \mathcal{H}^2| = \int_{S^2} |u \wedge \nabla u - \nabla \psi| d\mathcal{H}^2 + \int_{S(u)} |\rho(u^+, u^-)| d\mathcal{H}^1
$$

$$
\geqslant \int_{S(u)} \frac{2\pi}{3} d\mathcal{H}^1 = \frac{2\pi^2}{3} > ||T(u)||.
$$

Acknowledgement

The author is deeply grateful to H. Brezis for his support and for very interesting discussions. He also thanks to A.C. Ponce for interesting comments on the paper.

References

- [1] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford, 2000.
- [2] J. Bourgain, H. Brezis, P. Mironescu, $H^{1/2}$ maps with values into the circle: minimal connections, lifting and Ginzburg–Landau equation, Publ. Math. Inst. Hautes Etudes Sci., in press.
- [3] H. Brezis, J.-M. Coron, E.H. Lieb, Harmonic maps with defects, Comm. Math. Phys. 107 (1986) 649–705.
- [4] H. Brezis, P. Mironescu, A.C. Ponce, *W*1*,*¹ maps with values into *S*1, in: S. Chanillo, P. Cordaro, N. Hanges, J. Hounie, A. Meziani (Eds.), Geometric Analysis of PDE and Several Complex Variables, Contemp. Math. Ser., Amer. Math. Soc., in press.
- [5] J. Dávila, R. Ignat, Lifting of *BV* functions with values in *S*1, C. R. Acad. Sci. Paris, Ser. I 337 (2003) 159–164.
- [6] F. Demengel, R. Hadiji, Relaxed energies for functionals on *W*1*,*1*(B*2*, S*1*)*, Nonlinear Anal. 19 (1992) 625–641.
- [7] H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.
- [8] M. Giaquinta, G. Modica, J. Soucek, Cartesian Currents in the Calculus of Variations, vol. II, Springer, 1998.
- [9] R. Ignat, Optimal lifting for $BV(S^1, S^1)$, Calc. Var. Partial Differential Equations, in press.
- [10] A.C. Ponce, On the distributions of the form $\sum_i (\delta_{p_i} \delta_{n_i})$, J. Funct. Anal., in press.
- [11] D. Smets, On some infinite sums of integer valued Dirac's masses, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 371–374.