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Abstract

We prove existence of nonnegative solutionstau + u = 0 on a smooth bounded domaia subject to the singular
boundary derivative conditioé% =—u"P +1f(x,u) on32 N {u > 0} with 0 < B < 1. There is a constant* such that for
0 < A < A™ every nonnegative solution vanishes on a subset of the boundary with positive surface measguselFore show
the existence of a maximal positive solution. We analyze its linearized stability and its regularity. Minimizers of the energy
functional related to the problem are shown to be regular and satisfy the equation together with the boundary condition.
© 2005 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
Résumé

Nous démontrons I'existence de solutiang: 0 de I'équation—Au + u = 0 sur un domaine borné réguli€? avec la
condition de Neumann singuliére suivant%%: =—u"P 4+ 2f(x,u) sura2 N{u >0} ol 0< B < 1. Il existe une constante
A* telle que pour O< A < A*, toute solution: > 0 s’annule sur une partie du bord, de mesure (surfacique) strictement positive.
Pouri > A*, nous démontrons I'existence d'une solution maximale positive. Nous analysons ses propriétés de stabilité linéaire
et de régularité. On démontre que les minimiseurs de la fonctionnelle d’énergie associée sont réguliers et vérifient I'équation

ainsi que la condition de bord.
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1. Introduction

We study the existence and regularity of solutions of the following nonlinear boundary value problem

—Au+u=0 in 2,

>0 in £,

A ! @)
5, = U Bt fx,u) onden{u>0}

v

where2 c R", n > 2, is a bounded domain with smooth boundary, 8 < 1 andv is the exterior unit normal
vector tod 2. We assume that

f02 xR—>R isClandf>0. 2)
By a solution of (1) we mean a functione H(£2) N C(£2) satisfying

/Vu~V(p+ug0= f (—u_ﬂ—i—f(x,u))go, VgoeC%(.QU(aQﬂ{u >0})). 3)

Q2 32N{u=>0}

An equivalent way to write problem (1) is

—Au+u=0 in 2,

d

a—”=—u—ﬂ+f(x,u) on Iy (u), )
v

where
Iy(u) ={x €982 u(x) >0}, Io(u) = {x € 0821 u(x) =0}.

The last boundary condition in (4) is trivial by the definitioniaf(«) itself. This notation emphasizes the fact that
u satisfies a boundary condition of mixed type: a nonlinear Neumann conditiéh @r) and Dirichlet onlp(u).
Observe that'™, (u) and I'o(x) form a partition of the boundary that depends on the solutiom this sense:
solves a free boundary problem on the boundary.

In principle one may try to find solutions of (1) which are positivedsan, but it turns out that there are situations
where no such a solution exists, and nonetheless there are nontrivial solutions of (1), see Theorem 1.8.

There are at least two approaches to tackle the question of existence of a solution: one is to work with a regu-
larization of problem (1) and the second one is a variational formulation for (1), see (7) below.

In our first approach we consider the following regularization of (1)

—Au+u=0 in £,

ou 5
e S 0N, ©)

wheree > 0 is a parameter tending to zero.
The solutions of (5) have the following convergence property.

Theorem 1.1. Supposef satisfieg2) and
S x,u)

u

— 0 foru — oo uniformlyinx. (6)

Then Eq(5) possesses a maximal soluti@hwhich is positive in2 andu = lim,_,o i exists. The convergence is
uniform in £2 andu is a solution to the free boundary problgf).
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Another approach to find solutions to (1) is to consider the functipn@ 1(£2) — R given by
(w18
1-8

) = :—ZL/(WuIZ—i-uZ) +

2 982

whereF (x,u) = [o f(x,s)dsandu® = maxu, 0}.

— F(x,u™), )

Theorem 1.2. Suppose thaf satisfieq2) and (6). Theng attains its minimum irH1(£2) and any minimizer of
¢ solves the free boundary probldd).

Next we deal with the regularity of the maximal soluti@hto (5) or a minimizew of ¢.
Theorem 1.3. Supposef satisfies(2) and (6). Then there exists a constafitindependent of such that the
maximal solution:? to (5) satisfies
\Vif| < C@®)™? ing.
As a consequence we have

||’28||C1/(1+/S)(§) <C.

Remark 1.4. A consequence of the previous theorem is that the convergéneeu of the maximal solution to
— 1 —
(5) in Theorem 1.1 is in the norm @f*(2) forall 0 < u < ﬁ And hence: € CT+8 ().

Theorem 1.5. Supposef satisfieq2) and (6). Letu denote a minimizer ap (cf. (7)). Then there exists a constant
C such that
Vu|<Cu? in@

and hencer € CVA+A) ().

Remark 1.6. A prototype function describing the behavior of the solutions of (1) near a free boundary point is
given by
u(r,0) =cr*sin(ad),
expressed in polar coordinateg & r cosd, x2 = r sind), where
1

o = .
1+8
The functionu is harmonic in the upper half-plan@i = {(x1,x2) € R? | x > 0} and satisfiest = 0 on
{(x1,0): x1 > 0} and
ou B ]
™ =—u B On{(xl,O). X1 < O},

for a suitable choice of the constant 0.
This example indicates that the regularity stated in Theorems 1.3 and 1.5 is optimal with respect to the Holder
exponent. A modification of this harmonic functierwill be useful later in the proof of the regularity theorems.

For the proof of Theorem 1.5 we will use a Hardy type inequality.
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Proposition 1.7. Let G ¢ R” be a smooth domaifnot necessarily boundg¢and letI" ¢ 3G be a bounded,
relatively open subset with smooth boundaiy (the boundary is taken relative tG).
Let us define

dre(x) =dist(x, '), T'°=3G\T.

There exists a constagdt, such that
Wz 2 00
d—gch IVy|e, Yy eCy(GUT), (8)
re
r G

whereCj, depends o™ andG.

Finally we address the question of whether there are in fact situations where the solutions that we construct in
Theorems 1.1 and 1.2 are positivesthor whether there are nontrivial solutions which are zero at some subset of
9£2. For this purpose we consider (1) withreplaced by, f wherei > 0 is a parameter

—Au+u=0 in £,
Léu} 0 in £, 9)
= —u P+ af(x,u) ond2nN{u>0}.
V
Theorem 1.8. Assumef satisfieq2), (6) and
f(x,u) is increasing inu and there is & > 0 such thatf (x, £) #0. (20)

Then for anys > 0 Eq. (9) has a maximal solution, and the map. € (0, c0) — i, is nondecreasing. Moreover,

(a) There exists.* > 0 such that forx > A*, ii; > 0in £2.
(b) For 0 < & < A* all solutions must vanish in a nontrivial subset @2, that is, the surface measure of
{x €982 u(x) =0} is positive.
(c) The extremal solution,+ is positive a.e. 00 2.
(d) For A > A*, u; is stable in the sense that
Ao inf JalVePTe? fag (BT, A i)e?
peCl(@) Jag ¥?

0. (11)

Remark 1.9. If in addition to (2) and (6) we assume thatis concave, then actually the stability condition (11)
characterizes the maximal solution in a similar way as in [4].

Depending on the dimension, the maximal solutigr could be positive ord£2, not only a.e. The relation

betweerg andn is (38 + 1+ 2/82 + B)/(B + 1) > n— 1, which can only hold for some @ 8 < 1 in dimensions
n = 2,3,4. The proof of this assertion is related to the stability: pf

Proposition 1.10. The extremal solution satisfigss > c¢>00ndR if 38+14+2/B2+8)/B+1) >n—1,
wherec is a constant.

There are a few works dealing with a singular derivative boundary condition. For example in [5,6] the authors
study an evolution equation in one space dimension with a Neumann condition involving the singulautefm
In higher dimensions a similar evolution problem was addressed in [8] with a positive unbounded nonlinearity such
as 1/ — u) and with a time intervalO, T) where 0< u(¢) < 1. One of the main contributions of this paper is
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that we deal with the possibility that the solution of the stationary problem in dimensioB vanishes on a large
subset 00 2. In this situation the solution develops a free boundary, a phenomenon that can occur onl§2g when
is at least a two-dimensional domain.

Elliptic equations involving a nonlinear Neumann boundary condition have been studied elsewhere in the liter-
ature, see for instance [3,11,13] and [14].

The plan of the paper is the following. In Section 2 we present additional results and examples concerning the
behavior of the maximal solution of (9) asvaries. The proof of these assertions is postponed until Section 9.
The Hardy-type inequality of Proposition 1.7 is proved in Section 3. Section 4 is devoted to introduce notations
for later purposes. In Section 5 we construtdeal subsolutior{4,12] which is then used in Sections 6 and 7 for
the proof of the regularity Theorems 1.3 and 1.5 respectively. In the proof of these theorems we employ frequently
auxiliary results for linear equations that for convenience we have collected in the Appendix. Theorem 1.1 is proved
in Section 6 and the proof of Theorem 1.2 is given in Section 7. Finally in Section 8 we prove Theorem 1.8 and
Proposition 1.10.

2. Examples

In this section we give some examples illustrating the exact vanishing properties of the maximal solution of (9)
whena varies.

Proposition 2.1. Let 2 be a ball inR” and assume thaf satisfieg2) and (6) (the requirements of TheorehB)
and depends only am. Theni, =0for 0 < A < A*.

Proposition 2.2. For any smooth domaige and any functionf satisfying the hypotheses of Theorgi®@we have
thatu, = 0 for A sufficiently small.

Example 2.3. Let 2 be a ball inR". We construct a functiorf = f(x) (depending only o) such thati, =0
for0 <A < A andigy, #£ 0 fora <A < A* where O< A < A%,

The construction of this example is presented in Section 9.

3. Hardy inequalities
In order to achieve our regularity results we need to establish the Hardy type inequality (8). For this aim we
begin proving a Hardy inequality in a half space. Consider the upper half plane
Rf_ = {(xl,xz) cR2 | x2 > 0}
and
I = {(xl,xg) eR? |x1 <0, x2 =O}.

We use the standard notatieyy for polar coordinates.

Proposition 3.1.
Je2 VU121
inf ot -

i (12)
yecg®2ur) [pV?/r w
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Proof. Lety e C°(R3). Then

g T 2
1//(1',71):/%(r,@)d9<n1/2</<%> (r,e)de)
0 0

Hence

2 e 2
/‘/”_gnffl(%) drd0<n/|W|2-
r r 200
r 00

2
R+

1/2

For the opposite inequality we consider functions of the special form

Y(r,0) =)0,
wheregp € C3°(0, 00). Observe that

[e¢]

2 2
[HOR g2 [20F
r r

r

0
al

nd
1 0 o0 2
/|V1/f|2=§n3/¢’(r)2rdr+n/¢(r) dr.
r
R2 0 0

Hence
J2 VVE - a [ mdr 1
[r@@d/rdr 3 [C(er)?)/rdr - 7
But

Jo~ @' (r)?rdr B
peCs0.00) [3° (@(r)2/rydr
which can be seen by taking

lo .
—ﬁr ifO<r<e,
_ )
e (r) = —logr ife<r<1,
0 if »>1.
In fact
T 1
/(p;(r)zr dr = > |0928 —loge,
0
and
To?2 . 1 1
Qe (¥ _ 4+ 2 1 3
/ . dr_zlogs SIOQ e.
0
Thus
fé’owé(r)zrdr

fo (pe(r)/r)dr

(13)
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Remark 3.2. The fact that the functiong in (12) are required to vanish on a half @Ri is important for the
infimum to be positive, since

_ Jr2 IV 2
inf *;2 =
vecg @2 \op Jp(W?/r)
This can be seen by taking = ¢, as defined in (13).

We prove now the Hardy inequality in a domain.

Proof of Proposition 1.7. First we claim that it suffices to prove (8) for functionsdig°(G U I') which have
support neadI". Indeed, let > 0 and consider
() ={x e G: dist(x,dI") <o }.

Let n € C1(G) be such thah =0in G \ (3I')° andy =1 in (317)°/2. Suppose that (8) is true for functions in
Co°(G U I') with support in(a1")?. Then for any € C3°(G U T")

2 2
G

dre ) dre
@ryer r

and therefore
2 2, 2
<C VY|« + .
dre
@rye/? GNsuppn)
Sinceyr vanishes oG \ I, by Poincaré’s inequality

f v2<c f vy 2
GNsupp(n) G
and thus

1,[/2
dre
(31")0/2

<C | |Vy 2 (14)
/

On the other hand by the trace theorem we have

F/wkcG/wF.

Since 1/4- is bounded away fromaI” andy =0 0onadG \ I" we obtain

/ dw—:ch/WW. (15)

dG\(dI)o/?
Combining (14) and (15) we see that (8) holds.
Using a partition of unity and the same argument as before we see that it is sufficient to consider the case of
¥ € C3°(G U I') with support in a small balB,; (xo) centered ato € 97°. In this situation choose an open set
W D B,(x0) and a change of variables: W — B, (0) which flattens the boundary @, that is,o(W N G) =
B, (0)N H where

H= {(x',xn): ¥ eR"™L x, > 0},
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andep(W NdG) = B, (0)N3H, (W \ G) = B,(0)\ H. We can also assume th& N I" is mapped into
{(x1,xz, X)) x1> 0, x, :0} N B, (0).

Then, applying Proposition 3.1 ip o ¢ in the half plan€(x1, x2, ..., x,): x1>0,x2 € R, x3=---=x, =0} and
integrating in the variabless, ..., x, we see that (8) is valid. O

4. Notations

Let us choose and fixg > 0 small enough so that for any € 352 there exists an open st containing the
ball B, (xo) and a smooth diffeomorphisgt W C R" — B,(0) which flattens the boundary &2, that is

e(WN)=B,(0)NH,
e(WNa)=B,(0)NJH,
(W \ 2) =B (0)\ A,
where
H = {(x’,xn): ¥ eR"L x, > 0}.

We can also assume thatxg) =0, Ve (xg) = I andg preserves the normal direction on the surfd#ce 4s2.
For O< 7 < 19 andxp € 952 let us adopt the notation

B} = B;(x0) N £2, (16)
and let us decompose its boundanpds™ = I'* U I'* (the external and internal boundariesBif)

' =3B (xg) N £2, I'¢ = B;(x0) N 982. (17)
We also decomposE¢ = 't U "2 with

I =¢"Y(B:2(0) Nds2, r’=re\rt (18)

In Fig. 1. we show the above defined sets. For convenience we have flaftératt "2, but in fact they are
portions of the boundar§s2.
Let us introduce the rescaled variableandy which allow us to work in the unit ball:

- - . 1 . 1
x = TX + xo, Y= (x)= ;tp(fx +x0) = ;w(X)- (19)
Henceforth we use the notation:

~ 1 1 ~ 1
B+=;(B§L—xo)=191(0)m 7 (82 = x0), §2= (82 —x0),

~ 1 . ~ 1 ~ 1
'==(T"-=xp), T*==(T°—xy), T*==T*-x9, k=12 (20)
T T T
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5. Construction of alocal subsolution

Givenxg € 92 and O< 7 < 19 we construct a special functianin B™. This construction is inspired by the
explicit solution of Remark 1.6.
Leta € L>(B™), a > 0. For a parameter> 0 consider the linear equation

—Ab+a(X)v=0 in BT,

v _ o~ o

— [ —B/(1+B) 1

™ (x) = —dist(x, I'9) X e 1: , 21)
(%) =0 B xerl?

3(%) = s dist, 982) Fell.

Remark 5.1. The above problem (21) has a solution. By Hardy’s inequality of Lemma 1.7 the solution belongs to
H1(§+) and by potential theory methods it can be shown that the squtiorﬂ§G§+).

The main goal of this section is to prove:
Lemmabs.2. Leta € L®(B*), a > 0. There existg > 0 (even smaller than that one {@6)) andso > 0 such that
if 0 < 7 < 79 ands > sg the solution of(21) is positive inB+and satisfies
3(%) > esdist@, FHYAP | vy e L (22)

wherec > Ois independent afp, T ands (c depends only o2, n, g and|la|l ;o 5+))-

Remark 5.3. Note that in particular, for largethe solutionv to (21) satisfies

v ~
P <5 onfL (23)
av

For this reason we cail a local subsolution. We will take, larger if necessary so that (23) holds fog so.

For the construction of the subsolution consider the function
1

7) = p%(sin(y0) + b6?), a=-——, 24
u(y) = p*(sin(y6) ) “=15 (24)
wherey, b > 0 are constants to be chosen later and, » are toroidal coordinates:
1 .

(p,0,w) € (0,00) x (0,27) x §" 21> § = (E + pCOS@)w + psinde,,.

Herew = (w1, ..., wy_1, 0) € $"~2 which is the unit sphere of — 2 dimensions, ané, = (0, ..., 0,1).
Abusing notation and using (19) we write
u(x) = u(p: (%)) (25)

Lemma5.4. Leta € L®(B™). For o > 0 define
V, ={ieB": disti, ol <o)

There exis% <y < a (recall that% <a <1l)andb > 0,0 > 0, 19 > 0 small so that for alD < 7 < 19 the function
u(x) defined by(24) and (25) satisfies

—Azu+aXu<0 inV,.
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Moreover

. ~ d 1. ~ ~
—Cdist(s, )~/ < 22 (@) < — o dist@, I~ v e I (26)
V¥

whereC > 0. The constantg, b, o, 79, C depend only o2, n, 8 and lall Lo+

Proof. A calculation shows that the Laplacian®fvith respect toy is given by
pa72

Apu=—""
=124 peogd)

[(% +p cos(@)) ((@® = y?)sin(y8) + bo? + 2b)

+ p(a cog) (be2 + sin(y6)) — sin(0) (266 + y cos(ye)))}

= p*72((@® = y?)sin(y6) + bo% + 2b+ 0(p)), (27)

whereO (p) stands for a function bounded by a constant times
We fix y such that} < y < «. Observe that
ou 1ou w1
— =—— =p y coSym) + 2bmw).
dvy  p 30 |o_ ( )
We choose now > 0 small enough so that
y cogym) + 2bw <O0.

This ensures the validity of (26).
A computation shows that

Azu = A;;j055,u+ B;dyu, (28)
where we have adopted the convention of summation over repeated indices. The fuagtiandB; are given by
dy; 9y, 3%5;
A4 , — _" B e .
YT 9%, 0%y ' Z ax2

Sincej = 2 (¥ + x0), ¢(x0) = 0 andVe(xo) = I we have

%go(ti +x0) =% + r%DZ(p(O)iz + 0(7?).
Consequently,
Ajj =06;; + O(1), B; = O(7).
Thus from (28)
Azu= Asu+ O(v)D3u + O(7) Dyu.
On the other hand observe that
Diu=0(*"%.  Dju=0(""".
Hence (27) implies
Azu—a®u > p* ?[2b+ 0(p) + O(x) + O(xp) — 0(p?)],
and thus, sincé > 0 we can choose, o small enough so that

Azu —aX)u>0 inV,. O
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Proof of Lemma 5.2. Let us writev = v + v2 wherev is the solution of the following problem

— A +a(®)i1=0 in BT,
v o~ L~
%(i) — —dist(Z, ['2)~#/A+H) 5 ¢ F1,

vV ~ ~.
71(X)=0 fer?uri,

andu, satisfies

—Aby+a(®)i2=0 in BT,
av -
%25 =0 el
av -
U2(%) =0 . xer?
U2(X) = sdist®, 02) xel.

Observe thati; < 0 while 3, > 0in B™.
Leto > 0 be small as in Lemma 5.4 and recall:

V, ={ieB": disti, o' <o)

Forie Bt let P(¥) € 8{? denote the closest point i2 closest tat. If 7 is small enough this projection is well
defined and smooth oB™. Hence we fixzp even smaller than that one in (16), so that this property holds for

O<t< 0. _
Forx € BT define
- |dist®, a2) if PF) el?
§) = { 1 if P(¥)el™ )

By the strong maximum principle and Hopf’s lemma appliedigs we have
B2(¥) > csg(¥), Vi€ BT\ V.,
wherec > 0 depends only o2 ando. It follows that fors large
3(%) > csg(X), Vie BT\ V,, (30)

for a new constant > 0 (here we use only the fact that is bounded from above iB* \ V).
Let u(x) be the function of Lemma 5.4. We are going to show that for lartieere holds

su<Cv inVg,

whereC is a constant. Indeed, first recall that: — a(x)u > 0 in V,. Also one hagt < Cg ondV, N 2 for some
constantC. By (30) with s sufficiently large one obtains

su<Ci onaV, N§2. (31)
Estimate (26) implies

a o o . ~
s 25 < —% dist@, IF2)B/@H vz cov, n .

ov
Hence choosing > 0 large enough we have
ad 07 ~
s <c? onav, N (32)
av av

On the other hand
u=9=0 ondV,NI?2 (33)
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Hence, by the maximum principle ferlarge
su<Cv inV,. (34)

We fix sg sufficiently large such that (30)—(34) are valid foe> so. This shows thab is positive in BT and
satisfies (22). O

6. Existence, regularity and convergence of u¢

In this section we prove Theorems 1.1 and 1.3. First we remark that there exists a maximal s6lutid¢b)
because 0 is a subsolution and a large constant is a supersolution by (10).
It is convenient to introduce some notation. 3ét> 0 be such that

M > sup f(x,ia(x)),
X€of

forall0<e < 1.
We need a Harnack inequality which, for completeness, we prove in the Appendix.

Lemma 6.1. Suppose that € H(B3 N fj), u > 0 satisfies

—Au+aFu=0 in B3N,

ou ~

— <N on I'¢,

ov
whereN is a constant. Then there is a constapt- 0 such that

u(®) > e dist@, ') (cxu(¥1) — N), ¥ie B andViie BN BT,

The constant; can be chosen independentwfe 952 and of0 < t < 1 (top > 0 was introduced in Sectiof).

Let 7p andsgp be the constants in the statement of Lemma 5.2 and Remark 5.3. Let us fix a large aonstant
independent of G ¢ < 1, such that

1.~
50 < Ec,%C, (35)
—_enl ~
||u€||L";ﬁ(Q) <l (30)
) o CLHP
”ug”/zm(g) < W (37)
Next we fix Cg large enough such that
Co\ 1HB
(T‘)) >6. (38)
C
For the sake of notation, from this point on we write= i:°.
Given a pointyg € 32 and O< t < 7o we define
~ 1
(@) =t YIPyri+x0), Fe==(2—xo), (39)
T
which satisfies
—Aii+7%i=0 in £,
o .. ~ 40
a—lf=g§(x,u) on 952, (40)
1%
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where¥ is the exterior unit normal vector @2 andg? is given by
g8 (%, it) = TP/ IP gf (x % + xo, /TP,
and

g (x,u) = + f(x,u).

(o)t

Lemma6.2. Letx; € £2 and assume that
u(x1) > Cod(xp) Y/,
Fix

(u(m)”ﬂ
T= =~ s
C
and letxg € 952 be such that
dist(x, 082) = |xo — x1].
Thent < g andu (defined in(39)) verifies

(%) > sodist(¥, 02), Viel".

Proof. By (36) we haver < 1g. Let x1 denote the poin% (x1 — xg) which satisfies

|~I<1
x| < =
H>%s

by (38), (41)—(43). Observe that by the choicerafie have
i(¥1)=C.

Using Harnack’s Lemma 6.1 and (45) we obtain

- PR ~ ol L=
u(x) = cpdist(x, 082)( cxC —sup— ), VxeB™.
e av
From the boundary condition in (40) and the definitiombf
sup’t < BIArE)
fre ov

Notice that from (37) it follows that

and therefore

B
B/A+B) pp — M(M fl)> < }cka
C 2

Inserting this in (46) and recalling (35) we find

U S PR Do L~
u(x)}EcdeISt(x,a.Q)>sodISt(x,3.Q), Vel O

Proof of Theorem 1.3. Let x; be a point inf2. We distinguish two cases.

315

(41)

(42)

(43)

(44)

(45)

(46)
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Case 1. Assume
u(x1) > Cod(x))Y/ 3P (47)

Let t be given by (42) andg € 952 be such that distgx 0£2) = |xg — x1|. Let ¥ be the solution of problem (21)
with s = sg anda(¥) = 2. We know by Lemma 5.2 that satisfies

3(%) = esodist@, YA viert, (48)
By Lemma 6.2
i>v onl' (49)
We claim thatii > & on BT. To see this, define
@) = {ﬁ(x) o for %egz’:\Bl(O), B
max(ii(x), 9(x)) for x € 2N B1(0)=B".

Then the function
~(1
Ux) = rl/“”)U(—(x - xo>)
T

is a subsolution of Eq. (5) (cf. (23)) and sineés the maximal solution we havé < « in £2 and as consequence
i <ii inBT.
This fact in combination with (48) yields the estimate
(%) = esodist@, I'H)YWHP  vxerrl (50)
From the boundary condition in (40) we deduce that

ou D~ ~
‘a—” < Cdist@®, I'2)~P/AHA) L /APy on 1, (51)
%
and therefore, on a smaller set we obtain an estimate
ol ~
% <C onBy3Nnos2, (52)
%
with a constantC independent of. We will deduce from this an estimate of the form
|Via(in)|<C, (53)

with C independent of. From the definition ofi it will follow that

[Vu(x)| < Cutxp) ™.
Let us prove (53). For this purpose chogse n and taken < r < %. By Lemma 9.3
i
v

||L~l||wl,r(31/4m§) < C(‘ + ||12||L1(31/3m§)>,

LP(B1/3N82)
and by the embedding’" c C* we have for some & . < 1
ol
av

||12||cu(31/4m§) < C(‘ + ||ﬁ||L1(Bl/3ﬂ§)>‘

LP(B1/3n382)
By the assumption (2) and the lower bound (50) we see that the right-hand side of the boundary condition in (40)
satisfies

ol
v

e X i ” ~
gz & ”)”cu(Bl/maﬁ) S C(‘ + ||”||L1(Bl/3ﬂ9)>'

LP(B1/3N052)
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Using Schauder estimates (see e.g. [9]) we deduce
ou

PH + ||“||L1<Bl/3m§)>-

||11”C1~M(Bl/5ﬁ§) < C( -
LP(B1/3N052)

Recalling that#1| < § by (44) we obtain
ou
ov

Vi | < C( + IlftllLl(Bl,gnﬁ))-

LP(By/3n8$2)
By (52) we can assert that
o

— <C
av

LP(B1/3N352)
with C independent of. It suffices then to find an estimate || 11, ;). Using (51) we see that

ou

v
and therefore, using Lemma 9.5 we find

~

<C onBsi12Nnas2

/ i <C(A(X)+1), YieBiyns.
31/305
Puttingx = x; in the latter estimate and recalling (44) and (45) we obtain the desired conclusion.

Case 2. Assumeu(x1) < Cod (x) Y/ A+A),

Definei(¥) = =Y @+Ay(rx + x1), wheretr = 15(x1). Then—Aii + 724 = 0 in B1(0), & > 0 in B1(0) and
1(0) < 2YI+P) ¢y, Sincei > 0, by elliptic estimates we havy&ii(0)| < C, whereC depends only om, 8, Co,
10. This implies|Vu(x1)| < Ct=#/MHB) < cu(xp)~f. O

Proof of Theorem 1.1. Note thati® decreases asdecreases to 0 and by the uniform estimate of Theorem 1.3
there existsr € CVA+A)(2) such thaii® — u in C*(2) for0 < u < ﬁ Lety € C3(L2U (32 N {u > O}). Itis
easy to pass to the limit in

e e u® ¢
/Vu Vo +u w—/<—m+f(X,“)>¢ (54)
2 392

for all terms, except possibly fof, Vii® - V. Butu® is bounded inH1(£2) since, by taking = ii¢ in (54) we get

/|Vﬁ8|2+(ﬁ5)2< / fx, i) <C.

2 302
Thus for a sequencg, — 0, we conclude thai®* converges weakly itH1(£2) to a function which necessarily
coincides with:. Then by weak convergendg, Vii® - Vo — [, Vu- V. This shows that is a solution of (1). O
7. Regularity for minimizersof ¢

Let us recall the functional corresponding to problem (1):
@hHt?

¢(u)=%/(|Vu|2+u2)+/ -5 — F(x,u™).

2 982
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Proof of Theorem 1.5. Suppose thaii € H1(£2) is a minimizer of¢. First observe thak > 0. Indeedu™ is
also a minimizer ane (u™) < ¢ (u). But if u™ = u, theng (u™) < ¢ (u), which is an absurd. Next remark that
satisfies—Au +u = 0 in £2. This follows by observing that for any € C;°(£2) the functions — ¢ (u + s¢) is
differentiable and attains its minimum valuesat 0. Thusu is smooth in2 and the objective now is to show that

[Vu@rp)| < Cutr)™’, Vx1e R, (55)

for some constant'.
The argument follows the same scheme as in the proof of Theorem 1.3agiwef? we distinguish two cases:

Casel. I/l(X]_) > C08(xl)1/(l+/5)’ and

Case 2. u(x1) < Cod(x1)YI+A),

In Case 2, the argument is exactly the same as in the proof of Theorem 1.3.

Suppose that Case 1 occurs. kdie given by (42) andg € 952 be such that distgy 9£2) = |xo — x1]. Letv be
the solution of problem (21) with = 5. By Lemma 6.2 we deduce (49), that is

i>v onl".
We claim that

i>% inBT. (56)
To prove this let(x) = ¥ +A5(L (x — x0)) and define

_Ju) for x € 2\ B;(xp),
Ulx) = max(u(x), v(x)) for x € B;(xg) N £2.

ThenU satisfies

—AU+UKLO0 in £,
{%—Ug—u—ﬂJrf(x,U) ond N{U > 0}. (57)
V
We shall prove that it is small enough thes (U) < ¢ (1) unlessu = U. First note that
1
dWU) —Pu) 2—5/(|V(U —u)|2+(U —M)z) +/VU VWU —uw)+UU —u)
2 2
+ / ﬁ(yl—ﬂ —ur By —F(x,U) + F(x,u). (58)
a0
Next we multiply (57) byU — u > 0 and integrate by parts to obtain
/VU VU —u)+UWU —u) < / %—U(U —u) < / (~UP + f(x, ))(U —w). (59)
1%

Q2 aQ 32n{U>0}
Combining (58) and (59)

—U AU -

1
P(U) — pu) < ‘E/W(U —w)|*+ /

2 32n{U>0}

— f Fx,U)—F(x,u)— f(x,U)(U —u).
32N{U >0}
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We claim that

1-8 1-8

f_ﬂ - ;—,3 —UPWU —u) <CU P — u)? (60)
and

|F(x,U) — F(x,u) — f(x,U)(U —w)| < CUP (U —w)?. (61)

To verify (60) we consider first the cage< 2u. By the mean value theorem there i§ & 0 such that: <& < U
and

ut-f 1t 1 B
- —UPWU-—wy=28PWU —w?<Zu P -w?<cuPWw —w?
15 1°5 (U —u) 2;65 U —u) u (U —u) (U —u)
In the second casé] > 2u, we haveU < 2(U — u) and therefore
vl-p - 1 1 4
- —UPU-w<—UYP=—— U Pu2<— U P -w?
15 1-p 0 YTUS1Ig 1-p g W

To prove (61) observe that
1
Fx,U) = F(x,u)— f(x,U)(U —u) = Efu(x, E)(U —u)?,

for someu < & < U and (61) follows becausg, (x, &) is bounded o2 x [0, maxg U].
Hence

1 2 _1-
¢(U)—¢(u)<—§/|V(U—u)| +C / U —w? (62)
2 32N{U >0}
DefineU (x) = Y A+A U (15 + x0). Using thaty = iz in £2 \ BT we can rewrite (62) as
1 ~ ~ ~
d(U) — p(u) < t"2/AFP) (—5 / V(U - ﬁ)|2 +C f U1A0 - zz)2>.
B+ Fen{U>0}

Using the explicit lower bound (22) we obtain

B(U) — pu) < 7" /0D (—% f N / dist(i, 7240 — a>2>,
B+ S0 fa

Whgre we have also used the fact thafi(f) =0 thenﬁ(;?) — u(x) = 0, which allows us to restrict the integral
to I'L. By Hardy’s inequality (cf. (8))

$W) —pw) <" Zﬂ/“*ﬂ)( leg)ny(U—u)|

We can choosegy larger if necessary in order to makel/2+ CCh/s(lJ”g)) < 0. Thus, we see that(U) < ¢ («)
unlessU = i, which implies our claim (56).
The rest of the argument continues in exactly the same manner as in the proof of Theorem 1.3.

Proof of Theorem 1.2. Sincef is sublinear and & g < 1 the functionalp attains its minimum inf1(2). Letu
be a minimizer ofp. We have shown at the beginning of the proof of Theorem 1.5t&@smooth in2 and solves

—Au+u=0 1ing2.
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By Theorem 1.5 we know also thate CY1+8) (22) and hencé 2 N {u > 0} is an open subset 6f2. To verify
the boundary condition in (1) observe that

%ﬁ(u +5¢)s=0=0, VgpeC§(2U (882N {u>0}))

which is equivalent to (3). O

8. Proof of Theorem 1.8 and Proposition 1.10

Proof of Theorem 1.8. By Theorem 1.1 for every > O there is a solution of (1). The solutia# of (21) is unique,
since f is sublinear. Furthermorg, = lim._,qu; is the maximal solution of (1). Indeed, ifis a solution of (1),
then itis a subsolution to (21), so< u5 . Ase — 0 one obtaing < i, . This solutioni;, is also nondecreasing with
respect ton because the same is true for (21), thatuis< A2 implies thatﬁil < ﬁiz, since f (x, u) is increasing
inu.

For A > 0 small enough there is no nontrivial solution, see the proof of Proposition 2.2 in Section 9.

For A > 0 large enough we will see that there exists a positive solution. To prove this we will follow the method
of sub-super solutions. By a subsolution of (9) we mean a funatienH1(£2) N C(£2) such that the surface
measure ofx € 082: u(x) =0} is zero and that verifies

Au+u<0 in 2,

a

8—£ <—uP+rf(x,u) onage, (63)
Vv

A supersolution is a functioia € H1(£2) N C(£2) the surface measure bf € 9£2: u(x) = 0} is zero satisfying the
above (63) with the inequality signs reversed. Our aim is to find a subsolution > 0 for some constantand a
supersolutior such thats < iz, implying the existence of a solutionsuch tha < u < i, see [1].

Construction of the subsolution for sufficiently laige LetY be the solution of

—AY+Y =0 in £,
8_Y =1 on d052. (64)
v

Let &y be as in the assumption (10), that is, such th@at, &) # 0 and solve
—Av+v=0 in £,

W _ rx.g0) on 9. (65)
av

By the maximum principle and Hopf’s lemmais positive in£2. Let us fixe > 0 such that
b:=inf(v —eY) > 0.
2

Define
u=k(v—_eY),

where we choosg large enough in such a way that
kb>& and b~P <ekh.

Subsequently we chooge> k. This results in
kf(x,80) < Af(x,kb) and kP —eY)P ke,

implying the normal derivative inequality in (63).
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Construction of the ordered supersolutiont.et Y be the solution to (64) and defime= AY, whereA > 0 is a
large constant such that> Af (x, A) for everyx € 952. This makes: a supersolution of (9). We may taldeeven
largerin orderto have <u. O

We now proceed with the proof of the remaining items of Theorem 1.8.

Proof of Theorem 1.8(a) and (b). Define
A*=inf{1>0:a;, >0in2}.

Observe that & 1* < co. Let 0< A’ < A* and suppose that,; > 0 a.e. oo 2. Fix A such that’ < A < 1*. Let
¢ be the solution of

—AC+¢=0 in £,

ad

%€ = f(x,i) on 9s2. (66)

av
Clearly¢ > 0 in £2 since f(x,u;/) > 0 and f(x,u;)) #0 on 02. Let O<e <A — A’. Then the functionw =
ity + €¢ is positive in§2 and satisfies

ow _ _ _
—=—uk,ﬂ+)»’f(x,u,v)+8f(x,u,v)<—w Biof(x,w).

av
Hencew is a subsolution of (9) correspondingtothusii; > w in £2. SinceA < A* this contradicts the definition
of A*. O

Proof of Theorem 1.8(c). We have]m ﬁ;ﬂ < C asA decreases tv*. In fact, integrating Eq. (9) i2 we find

/ﬁ;ﬁ @/ fxin).
082

952

B ~—p

But it;, decreases t@,+ and hence:, ” increases ta,.” asi decreases ta*, and by monotone convergence we
deduce tha}fm ﬁ;f < C. Inparticularii)» > 0a.e.on 92 O

Proof of Theorem 1.8(d). Fix A > A*. From now on we drop the dependenceamd writex = i, we also write
ug = u5 . Our aim is to prove that (u) > 0, see the definition in (11). First we prove that fos A* the maximal
solutionu is weakly stable [2,4] in the sense that

A(u) > 0. (67)
In fact, we know that the maximal solution of (5) is weakly stable, that is
Pu: —¢ 2 2, 2 1.5
/(m‘i‘kfu(x,ua))(ﬂ </|V¢| +¢°, VoeC(£2). (68)
; 2

Sinceu, > ¢ for somec > 0 independent of one can let — 0 in (68) and obtain (67).
Let us show thati (z) > 0. We introduce a new parametek 0 and consider the family of problems

—Au+u=0 in £2,
1,550 in £, (69)

o =—uP+rf(x,u)+6 on 32N {u>0).
v

The main observations to conclude are:

there exist®y < 0 such that fop > 6 (69) has a positive maximal solutiag, and (70)
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for 6 > 6p we haveA (iig) > 0 andA(ig) is strictly increasing withd. (71)
Indeed, assuming (70) and (71) we have a maximal solutjao (69) for some < 0. But then

0< A(ug) < A(uo)
and finally note thai is just the maximal solution of (9). O

Proof of (70). Fix A’ such that.* <1’ < A and let O< ¢ < A — A/. Let ¢ be the solution of (66) and be the
solution of (64). Tak&y < 0 with |0g| small enough so that

|6olY < =
< =¢gc.
(] 2§

For6 > 0p set
w=uy +&;+0Y,
and observe that > it;,. We compute

ow _—B , _ _ -B
oy = Tl T Fow) +ef(x i) +6 < —w™F +Af(x, w) +6.

Thus w is a positive subsolution, and by the method of sub and supersolutions we can find a maximal solu-
tioniy. O

Proof of (71). Let6p < 61 < 62 and letug,, iip, denote the maximal solution of (69) with parametérsindo,.
Note that

ﬁgl < 1292. (72)
Let yr1 andyr2 denote the first eigenfunctions, i.e.,
—AYi+v¢; =0 in 2,
8 .
{ WL BN e w0 + A o0 92, (73)
i = 1,2, normalized so thaty; || 2(5) = 1. Then

Ailg,) = f V| + 7 — / (BGio) P + Afu(x, itg) ) f
2

82

</|V1/f2|2+1ﬁ22—/(ﬁ(ﬁel)fﬂ*“r)»fu(x,ﬁel))lbzz
2

82

</|V1ﬁ2|2+1ﬁ22—/(ﬁ(ﬁez)fﬂflﬁ-)\fu(x,ﬁez))¢22
2 Y
= Alug,),

where the last inequality is strict becaugge> 0 and (72). O

Proof of Proposition 1.10. We shall prove that there exists a constant0 independent of such that
y>=>c 0noas2, Vr> Ar*. (74)

The conclusion follows by letting N\ A*.
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Multiply the equation byy € C1(£2) and integrate in2:
a
/ﬂ¢+/vm-w+/m<p=o. (75)
2

Takegp = ﬁ;’” wherey > 1 will be specified later. Notice that is well defined because, > 0 in £2 for A > A*.
We haveVyp = —yﬁ;‘“qu and using (75)

/ﬁ;ﬁ_y—kff(x,ﬁk)ﬁ;y—y/ v, +/ i 7 =0.

392 EYe 2 2
Using the hypothesig (x, u) > 0 we find

-(1-y)/22 ——p—vy T
Vi, 1< / + / 76
(1- J/)Z/ (78)
082 2
We use the stability condition (67) with= ﬁ(lf”)/z and the fact thaf, is bounded to obtain

ﬁ/ukﬁy</|v‘”)/2| +/”+c/ -7, (77)
2 2

082
Lete > 0 be a small constant to be fixed later. Then from (76) and (77) we obtain

4y(l—e) —p—y 1y 1y Aye _(1-7)/2,2 ——p—y 1y
(1—y)? ’3/”* _/”* _C/”* +(1—y>2/'v”A ! </”* +/”*
082 2 2

082 2 082

which is equivalent to

dypl—e) __p—y / val=n/22 / 1y / —y
(7(1_}/)2 1>/uA +(1_ 2 % ?<cC +C . (78)
082 2

082

We need the following versions of Sobolev’s inequality and trace inequality.

Lemma8.1. For anyu > 0 andd; > 0, d> > O there existC = C($2, u, d1, d2) such that

2/dy
/¢2<uf|V¢|2+C</ |go|d1)/ , VoeCl(f2), and (79)
052 2 982

2/d
/¢2</L/IV¢|2+C</I¢I"2> , Voechf). (80)
2 2 2

Proof of Proposition 1.10 continued. We use (79) and (80) with = zzfxl_”)/z anddy > 0, d» > 0 to be fixed
shortly, and combine with (78)

4yp(l—e) )/— B-y 2ye </ -1-y /—1—1’)
2P +—— a7+ |a
( 1—y)? “ pd—y2\J ’

EYo) 2 a2
2yeC _di(1-y)/2 —dy(1-y)/2
<C[ y+C/1y+7</ul 14 +fu2 14 .

n(l—y)? * ’

o PYe) 02 2
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We fix .« small enough such thay2/((1 — y)?) = C and deduce that

4yB(L— g - -
( J(/f( )28) _ )/ﬁkﬁ y gcfﬁila V)/2+C/ﬁj’2(1 V2
Y 082 082 2

Observe that by taking =1 in (11) we deduce

/ﬁ;’“ <C

Y,
with a constantC independent of., for A in a bounded interval, saj;* < A < Ao. For this reason we také > 0
o) thatdll’T” = —pB — 1 and conclude

(41’1’3%1;);) - 1) /a;ﬁ‘y <C+ c/afz(l‘”/z, (81)
082 2
whereC independent of. for A* < A < Ap.
To proceed further we have to bound the integ‘?@ﬁf{“l_”)/z by a constant independent bf A* < A < Ag.

By Lemma 9.1,

iy (x) = cdist(x, 89)/ iy,
30
wherec depends only oi2. Sinceu; > i, > 0 a.e. we see that there is a constdnhdependent of > A* such
that

/ N2 ¢ / dist(x, 8212 /2dy < 0o, (82)
2 2

if we fix d» > 0 small so thaﬂgl’T” > —1.
Finally, from (81) and (82) we deduce

(74’/’8(1_8) . 1) /ﬁ_ﬁ_y <C
(1—y)2 oo
052

The latter estimate is useful if 4yB¢ ¢)/(1— y)? — 1> 0 for some ¢ >0, that is, if 4y8/L — y)? > 1. This is
the case for k y <1428+ 2/8 + B2.
In summary, if O< p < 14 38+ 2,/ + B2 then there is a constagtindependent of* < A < Ag such that

/zz;” <C.

Y]
Letv, = 1/u,. Thenv, satisfies
{—AU)L—"-U)LgO in 2,

0
o < vfﬂg on 0s2.

av
The proof of (74) will be completed with the aid of the following lemma.

Lemma 8.2. Suppose e C2(£2) satisfies

—Av+v<0 in £,
d
—vqu on 052,
av
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whereg > 1. If

/v”<K

IR
for somep > (n — 1)(¢ — 1) then
lvllLe o) < C,

whereC depends only o2, p, g andK.

Proof of Lemma 8.1. We only prove (79) the other inequality being analogous. By Hélder's inequality we can
assume thad < 2(,1”__21), the Sobolev exponent for the trace inequality. For the sake of contradiction suppose that
there exists a sequengg € C1(£2) such that

2/d
1=/¢3>u/|wn|2+n(/|¢n|d) :
¢ 2

82 082

Theng, is bounded inH(£2) and up to a subsequengg — ¢ weakly in H(£2). By the compact embedding
H(2) C L?(382) we have;, ¢? = 1. But the embedding/1(2) c L (352) is also compact and therefore we
also havefm l¢|? =0, a contradiction. O

Proof of Lemma8.2. We havev? € L/9(3£2). By L? theoryv € W17 (2) forall 1< r < pn/(q(n — 1)). By the

trace inequality € W1~/ (352) and by Sobolev’s embeddinge L' (32) for £ = 12 — L |tfollows that
veL'(352)fort <r* with 2 = 1 - —L. Butr* > p. Repeating this process a finite number of times (bootstrap)

we obtain the conclusion.

9. Proofsfor Section 2

Proof of Proposition 2.1. If the domain is a ball ang® = f(x), the maximal solutiong® to (5) are radial and
hencei,, is radial. This means that, is a constant 0d$2 and this constant is either positive or zera

Proof of Proposition 2.2. Assumeir; # 0 for a sufficiently smallh. > 0. SinceAu; = u; > 0, theni, attains
it maximum at a pointy € 352. Thus 2% (y) > 0, implies £ < it; (y)? £ (v, t;. (»)). But i, (»)? £ (y, ii,(») < K
whereK > 0 is a constant independent bffor A small, because the map— i, is nondecreasing. This is an
absurd. O

Construction of Example 2.3. Let 2 = B (0) and pick a pointcg € d Bg. We take f smooth such that &

f <1, f=1inB,(xg) and f =0inR" \ By, (xo) for a fixedrg > 0 and consider the problem

—Au+u=0 in Bg,

ad

3—“ — —u P 4 Af(x) onaBrN{u> o0l

V

We will proceed in two steps. First we will prove that for larBeand the maximal solution of (83) is nontrivial.
Then we fix such a large = A and takeR even larger in order to prove that the maximal solution vanishes on a
subset ob B (0) with positive surface measure.

(83)

Claim 1. If A is large enough then for ang large the maximal solution of83)is nontrivial.
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In fact, we will construct a nontrivial subsolution of (83) forarge. LetD = Bz, (xo) N B(0) and write its
boundary a9 D = I" U T wherel” = B,,(x0) NdBr(0) andY =dD\ I".
Let w = wy + w2 wherew, solves

—Awi+w1=0 in D,

dwa i —B/(1+p)

a—(x):—dlst(x,T) B/A+E) on I,
vV

w1=0 on7Y,

andw; satisfies
—Awz+w2=0 in D,

w2
—x)=Ax on I,
ov
wy=0 onT.

Foro > 0 defineW,, = {x € D: dist(x, dI") < o}. A similar calculation as in Lemma 5.4 implies that #®rdarge
enough there is a functiandefined inW, that satisfies

—Au+u<0 in W,,

9 .

a—ﬂ(x) < —Ldist(x, V)PP on ' naw,,
V

u=0 on T NoW,.

(Taking R large here corresponds to work with smaih Lemma 5.4.) Moreover, as in (22)
u > cdistx, YA onrnow,,
wherec > 0. HereC andc are positive constants that are independert ahd .

Following the argument of Lemma 5.4 the following assertions hold:

(1) w > ciu in 9W, N D for A large enough,
) w=ciu=00ndW, N7,
3) ck%(x) < —adist(x, 7)A/A+A) L %—f(x) for everyx € 9W, N I" andx large, see (26).
By the maximum principle
cau<w inW,.
Therefore
w(x) = crdistex, T)YHA) onr.

Hence onl”
w
- — —di —B/(1+p) _ByB,,—B
= , < .
2 (x) dist(x, 7) + A< =P APwP + A
vV

Thus, if A is sufficiently largew is a subsolution irD.
Next, we extendv by zero toB (0) \ D and this is a nontrivial subsolution of (83).

Claim 2. We fix a sufficiently largé = A and prove that forR large enough the maximal solution vanishes on a
subset ob Bg with positive surface measure.
Definev(y) =u(Ry) andy = % for y € By thenv satisfies

—R2Av+v=0 in By,
9
Y — _v PR+ ARf(Ry) on aBiN{v>0}.

av
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Integration overB; gives
d
R™2 / i = / v
on
0B1 By
and using the boundary condition

/sz—1< / (—v P+ Af(RY)) + / g—z>

B1 dB1N{v>0} dB1N{v=0}

But 82 < 0 in the se® By N {v =0} and therefore

/v+R—l / P gAR‘l/f(Ry)éCAR_”. (84)
By dB1N{v>0} dB1

1

To proceed further we need to estimaten d B1. DefineY (r) = 55

{—AY+Y>O in Bg,

r2+ 2 which satisfies

oY
Y(R)y=—=1 on 0Bg.
ov
The functionU = MY is a supersolution of (83) if one takdg large enough (independently &j. Therefore
u < CY ondBg. Notice thatY (R) = % + % and hence < CR ond B;. Using this estimate in (84) we deduce
CR™P|3B1N{v >0} < / v A <ACRTL
dB1N{v>0}
We conclude that foR large enough
|0B1N {v> 0} <ACR™ P < |9By).

This implies that: vanishes on subset 688y of positive surface measuren
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Appendix. Auxiliary results
In this section we collect a number of auxiliary results for linear equations that we use in the paper.

Lemma 9.1. Let D ¢ R” be a bounded, smooth domaing L>(D) anda > 0. Suppose: € HY(D), u > 0
satisfies
—Au+a(x)u>0 inD.

Then there is a constaidt > 0 independent of such that

u(x) > C(/ u) dist(x,dD), VxeD. (85)

oD
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Proof. Let D’ cc D be a nonempty open set, with smooth boundary. By a weak version of Harnack’s inequality
(see [7, Theorem 8.18])

u(x)>c/u Vxe D,
D/
whereC > 0. We proceed to verify that

/ungu.
oD D’

Let w be the solution of
[ —Aw+alx)w=xp Iin D,
w=0 on 0D.
Thenw >0 and

ow
/”=/(—Aw+a(x)w)u=—/a—vu+/(Vw-Vu+a(x)wu)
D

D’ D D
ow ou Jw
=— —u+/wa—+/(—Au+a(x)u)w>— —
v
D

u
av
9D

ov
D D

But 22 < —C, thenfp, u > C [, u.
From here we deduce that (85) holds foe D’. If x € D\ D’ we argue as follows. Let solve

—Az+a(x)z=0 in D\ D/,

z=0 on dD,

z=1 on dD’.
By Hopf's lemmaz(x) > cdist(x, D) forall x € D\ D’, wherec > 0. Thenv(x) = u(x)/(C faD u) satisfie > z
ond(D\ D'). By the maximum principle(x) > z(x) Vx e D\ D’. So

u(x)}C('/ u)z(x)}C(/ u) dist(x,dD) VxeD\D'. O
oD oD

The next estimate follows from [10].

Lemma9.2. Let D ¢ R” be a bounded, smooth domaing L°°(D) anda > 0. Suppose € H(D) satisfies

—Au+a(x)u=0 in D,
u=g on aD,
whereg € LP(3£2) and p > 1. Let1 <r < =& Then there exist€ independent of andu such that
lullerpy < CligllLr@p)-
We state the next results in this section in a form suitable for the proof of the regularity results. Therefore we
recall the notation introduced in Section 4:

~ 1
2 =—(2 —x9) Wherexpedf2,0< 1 < 10,
T

Bt =2nB1(0), I'“=0382n B1(0). (86)

The constants that appear in the next lemmas can be chosen independegtlyos? and O< 1 < 10.
The following estimate follows from [10].
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Lemma9.3. Leta € L(B ™). Suppose € H1(B™) satisfies
—Au+a(x)u=0 in BY,
— =y on I,
whereg e LP(92) andp > 1. Letl<r < % Then there exist€ independent o andu such that

||M||W1,r(33/4mfj) < C(”g”Lp(Fe) + ||M||L1(§+))-

Lemma 9.4. Leta € L®(B*) and suppose that € H1(B™) satisfies
—Au+a(x)u<0 in B,
e <N on Fe,
av
whereN is a constant. Ifp > 1 then there is a constarif > 0 independent of, N such that

u(x) < C(||M+||Lp(33/4m§+) + N), Vx € By2 N B*.
Proof. Use Moser’s iteration scheme, see e.g. [7, p. 195].
Proof of Lemma6.1. By (86) we may assume that there is a smooth donian Bt suchthai(BoN2)c D C
(B3N £2). Denotex = x andx1 = x1. By Lemma 9.4

u(x1) < C||u||Lr(B3/4m§+) +CN, (87)

where we fix 1< r < 5. On the other hand, by Lemma 9.1

u(x) > c(/ u) dist(x,dD) Vx e D. (88)
aD
By L? estimates (Lemma 9.2)

10l gy iy < / “,
aD

and by (88) and the fact that dist(x, 9 Bdist(x, I"¢) Vx € BT, we find
w(x) = cllull gy g distlr, I) - Vx € BY.

Using (87) we obtain
u(x) 2cdiSt(x,Fe)(u(x1)—CN). O

Lemma 9.5. Leta € L®(B*) and suppose that ¢ H1(B™), u > 0 satisfies
—Au+a(x)u>=0 in BT,
e >—N on Fe,
av

whereN is a constant. Then there is a consta@ht- O independent o, N such that
/ u<C(u(x)+N) VxeBi2nB*.

Bg/4ﬂ§+

Proof. Use Moser's iterations, see e.g. [7, p. 1951
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