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Abstract

Let f € WL (2, R") be a continuous mapping so that the components of the preimage of eaBff are compact. We
show thaty is open and discrete |Df (x)|" < K(x)Jr(x) a.e. wherek (x) > 1 andK”*1/¢(Iog(e +K)) e L) fora
function @ that satisfiesflOo 1/®(¢t)dr = oo and some technical conditions. This divergence conditio®ads shown to be
sharp.
© 2005 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
Résumé

Soit f € WL (2, R") une application continue telle que les composantes connexes de la préimage de taEffnest
compacte. On démontre gyfeest ouverte et discrete B f (x)|* < K (x)Jy(x) p.p. 0iK (x) > 1 etk"1/@(loge + K)) €

L1(£2) pour une fonctior telle queflOo 1/®(¢)dr = oo et vérifiant des conditions techniques. La condition de divergence de
I'intégrale est optimale.
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1. Introduction

Let 2 be a connected, open subset®f with n > 2. In this paper we consider continuous mappings
fe Wkl)’C”(Q, R™), p > 1. We suppose that there is a measurable funckia?2 — [1, co) so that the distortion
inequality

IDf )" < K@) J5(x)

holds almost everywhere if2, whereDf (x) is the differential matrix off atx, |Df (x)| is the operator norm of
this matrix, andJ ¢ (x) is the determinant oDf (x). We say thatf is of finite distortionX if furthermore J; is
locally integrable.

If above K is bounded, then necessarifye W,é’g’(Q, R™), and we recover the class of mappings of bounded
distortion, also called quasiregular mappings (cf. [22,23,9,26]). One of the fundamental properties of mappings
of bounded distortion is the remarkable result by Reshetnyak [21] that such a mapping is either constant or both
discrete and open. This means that the preimage of each point is a discrete set of points Amdghabpen sets
to open sets.

A principal goal in the theory of mappings of finite distortion has been to try and obtain analogs of Reshetnyak’s
result. In [10] Iwaniec and Sverak proved in dimension two, using the Beltrami equation, that each non-constant
mapping f € W12(£2, R?) of finite distortion K € L1(£2) is both open and discrete. Subsequently, Heinonen
and Koskela [6] proved in higher dimensions that a quasi-light mappﬁiregWéﬁ(Q,R”) of finite distortion
K € LP(£2), p >n — 1, is open and discrete. Here the quasi-lightness means that the components of the preimage
of eachy € R" are compact. Manfredi and Villamor [20] then showed that the quasi-lightness assumption can be
disposed of. The most recent result in this direction is due to Hencl and Maly [7]. They showed that, for a quasi-
light mapping f € W,é’é’(.Q, R™) of finite distortion, the integrability assumpticki € L"~1(£2) is sufficient for
discreteness and openness. The general case remains open.

It is then natural to inquire if the integrability af could be further relaxed. To this end, let us first recall
a construction by Ball [1]. He gives an example of a non-constant, Lipschitz continuous quasi-light mapping of
finite distortionK, defined in a domai2, so thatf maps a line segment to a point and wkhe L (£2) for all
p < n — 1. Moreover, the preimage of every other point consists of at most a single point. Regarding the distortion
function K, one can in fact check that

Kn—l

1

% < oo. lwaniec and Martin [9] have conjectured that each non-constant mappirg
Wlé’C"(SZ,R") of finite distortion that satisfies (1.1) for some (sufficiently reguigrwith [° % =00 is in
fact both open and discrete; in fact their conjecture is slightly stronger because it involves a different distortion
function. However, this far there have been no results under assumptions weakdf thafi—1(£2), even for
guasi-light mappings. We give the first step towards to this conjecture by establishing the following sharp result.

Suppose that we are given a functién [1, co) — (0, co) such that

whenever [

(i) @ is continuous and non-decreasing
(i) ]O & _»
o) (1.2)

1
(iiiy  the functionr — t"~1/®(log(e + 1)) is increasing
(iv) foreveryci > 0 there isca > 0 such thatd (c17) < 2@ (2).

Notice that these conditions are satisfied for examplefar) = 1, @2(t) = ¢, @3(t) =tlog(e + ¢) and so on.
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Theorem 1.1. Let 2 c R” be a connected open set. Suppose that W,%;é’([z, R™) is a quasi-light mapping of
finite distortionK that satisfie¢1.1)with a function® that satisfie1.2). Thenf is open and discrete.

Before discussing the proof of Theorem 1.1, let us briefly comment on the regularity assumptighs on
First of all, there exists a quasi-light mappirfgof finite distortion K that fails to be discrete and open, satis-
fies f € WLP(2,R") for all p < n and satisfiesk € L?(£2) for all p < co. Thus the regularity assumption
fe Wlé’c”(Q,R”) cannot be substantially relaxed. Such mappings have been constructed in [12,14]. We prove
a stronger version of Theorem 1.1 in Section 5 that comes with an optimal regularity assumption. Secondly, we
have taken continuity as a standing assumption for mappings of finite distortion. Under the regularity assumptions
referred to above, continuity follows from the other assumptions, as was shown in [4,8,14].

All the proofs of discreteness and opennessifor 3 that we are aware of rely on the following idea. One first
proves that the mapping in question is sense-preserving. After that one verifies that the preimage ef Radt
totally disconnected. The claim then follows by invoking the Titus—Young theorem [24]. We follow this procedure.
The fact thatf be sense-preserving in the setting of Theorem 1.1 is already due to Reshetnyak and the more general
case can be essentially found in [12,14]. Thus we are reduced to showing that the preimage &f B4k totally
disconnected. This will be guaranteed by our following theorem.

Theorem 1.2. Let 2 c R" be a connected open set and suppose that Wlé’g(Q,R"), n—1l<s<n,isa
mapping of finite distortiork . Furthermore, assume that satisfieq1.1)with a function® that satisfieg1.2)and
that the multiplicity off is essentially bounded in a neighborhoodof hen eitherf = 0 or H1(f~1(0)) = 0.

The essential boundedness of the multiplicity means that there is an iktegehat the cardinality of ~1(y)
is at mostk for almost ally in the given neighborhood of 0. The fact that we can bound the multiplicity under our
assumptions is based on certain results in [12,13,7].

We prove Theorem 1.2 by first establishing a sharp generalization of an oscillation estimate given in [7]. We
believe that this oscillation estimate, given in Section 3, is of its own interest. Indeed, the original version has
already found applications [18]. Our estimate is, in a sense, a substitute for the usual bounds on capacity in terms
of Hausdorff measures. The usual bounds are not subtle enough for our purposes. Theorem 1.2 is then obtained b
combining the oscillation estimate with a delicate integrability resultfin?.

Theorem 1.2 is very sharp. The integrability assumptiorkonannot be relaxed because of the example due
to Ball, mentioned above. Moreover, we cannot taken — 1 at least whem = 2, as is seen by considering the
mapping defined by (x) = x/log(e/(Jx| — 1)) for x € B(0,2)\ B(0,1) and by f (x) = 0 for x € B(0, 1). Indeed,

f is of finite distortionk with K /@ (log(e + K)) € L1(B(0,2)) for, say,® () = ¢, and the multiplicity of f is
essentially bounded by one in any neighborhood of 0.

The paper is organized as follows. In Section 2 we recall some definitions and preliminary results. Section 3 is
devoted to the proofs of oscillation estimates. In Section 4, we prove Theorem 1.2. Finally, in Section 5, we discuss
discreteness and openness and give the proof of Theorem 1.1.

2. Preliminaries
2.1. Quasicontinuous representatives

In anticipation of future applications of our oscillation estimates, we will formulate them without the continuity
assumption. This will be done in terms of quasicontinuous representatives. Let us point out that each continuous
Sobolev mapping is quasicontinuous. In this paper, the precise definition of such a representative of a Sobolev
mapping is not needed, because we will only employ the following fact [7, Proposition 1]. See [19] for more on
quasicontinuity.
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Proposition 2.1. Let1 < p < p <n. Letu e W-7(£2) be 1, p-quasicontinuous. Then fdi"~7-a.e. pointz € 2
we have

lim supr‘ﬂ ][ |u — u(z)| dx < oo,
r—0

B(z,r)
where =1— p/p.

2.2. Topological properties

A mapping f: 2 — R”" is said to bediscreteif the preimage of each point ®&” is locally finite in £2, and
light if the preimage of each point " is totally disconnected. We say thgt 2 — R” is quasi-lightif for
eachy € R" the components of the sgt1(y) are compact. We call a continuous mappifigs2 — R” sense-
preservingf deg(f, £2’, yo) > 0 for all domains2’ € £2 and allyp € f(£2")\ f(38£2"), where degf, £2’, yo) is the
topological degree of at yg with respect ta2’. For the definition of the topological degree see e.g. [3].

2.3. Areaformula

We denote by E| the Lebesgue measure of a #etc R". We will use the well-known area formula. Let
fe WIOC (£2; R™). The multiplicity functionN (f, £2, y) of f is defined as the number of preimagesafnder f
in £2. Letn be a nonnegative Borel measurable functiori¥nWithout any additional assumption we have

/ n(f ()] dx < / n(IN(f. 2, y)dy. (2.1)

2 R"
This follows from the area formula for Lipschitz mappings, from the a.e. approximate differentiabilify of
[2, Theorem 3.1.4], and a general property of a.e. approximately differentiable functions [2, Theorem 3.1.8],
namely that2 can be exhausted up to a set of measure zero by sets the restriction to wifids bfpschitz
continuous.

2.4. Fine properties of Hausdorff measure
In the proof of the oscillation estimate we need the following set functions:
AE inf{Zaa(diamEa)d: aq >0, diamE, < 8, xr < ZaaXEa}, §>0.
o o

By [2, 2.10.24],
alimo)\gl(E) = HY(E) (2.2)

for any setE c R", whereH¢ is the usual Hausdorff measure.

3. Divergencecriterion

If we assume, fop < n, that a non-negative functiane W7 (£2) vanishes sufficiently fast on a set of positive
(n — p)-dimensional Hausdorff measure (it suffices to assume a certain power-like decay of integral means of
over B(x, r) asr — 0), then we can find pairwise disjoint sefs such that{E;| > 0 and

supu” / |Vul|P dx (3.1)



S. Hencl, P. Koskela / Ann. |. H. Poincaré — AN 22 (2005) 331-342 335

(see [7, Theorems 3 and 4] for the exact statement, and also [17]). By a small modification of the proofs of those
results one can obtain igfu > C supg, u, and, therefore

|Vul?
ubP

dx = o0.
2
We generalize this fact in the next lemma by obtaining a sharp divergence statement (3.4).

Lemma3.l. Letl< p<n,u>0, Be(0,1)andy > 0. Let2 c R" be a connected open set amé W17 (£2).
Suppose that > 0 a.e. and let

Z:{ze.Q: limsupr—# ][ udx<y}. 3.2
r—0 Bler)
Suppose thati"~?(Z) > . Suppose further that a functiah: [1, co) — (0, co) satisfies
(i) for everycy > Othere isc; > 0 such that for every e N @ (c1(! + 1)) = co® (c1l),
o0
. d
(i / . = 00. (3.3)
D(1)
1
Then, foreacld < § < e7¢,

/ [Vul? dx = 0o (3.4)
wPlogl/u d(oglogl/u) o '

O<u<$§

Proof. Our argument is an improvement on [7, Theorem 3]. We will omit the parts of the reasoning there that need
not be altered. Set

r:=2P/4, (3.5)

For j, m € Z we denote

Zmz{z€Z: B(z,Z_'")C.Q,Zm/ﬂ ][ udxényorallm’zm,m+1,...},

L

B(z,27")

. . 1
W, = {z e R: |{u >t 7/} N B(z, 27m)| > §|B(Z,27m)

Zh = Z, W,
As in [7] we can findk € N and a compact sét* C Z; such that

log(4
94Y) _x and H'P(z%) = L. (3.6)
logt

In view of (2.2) we can also suppose that

_ log(1/98)

Ao ha(ZF) > p and loge <k 3.7)

(this can only increase the value/ofind therefore (3.6) remains valid). From now on thisN is fixed. SinceZ*
is compactand* c {J; W/, whereW! c W2 C --- are open sets, we infer that there is 2k such that

Z*C Wi (3.8)
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We denote

U Z] 1\Zm+1

m>=k
With eachz e Pk' we associate a baB, = B(z, 2") wherem is such that € A{,;, m > k. By the Besicovitch
covering theorem we find a countable systE(nc (B, zezl '\ 7/ 741 m >k} such that
ka/< Z.XB<N- (3.9
BeBj]
Using the definition of the se@j we can deduce with some work that
2 k+1(Z* Z Z (diamB)"~?

a</<3a BGB]

foranya € N, a > i. In fact this was proved in [7] (two lines down from formula (18) there) onlydet i but it
is easy to see that everything works well alsodgr i. From (3.7) we obtain

ug% > > diams)yr. (3.10)

a<j<3a BeB,{

Fix je{a+1,...,3a} and set

0:=7 1L,
Ej:= U BNn{u<ein{u> r_lé}.
Bij

Note that the set&; are clearly pairwise dISjOInt LeB = B(z,r) € B’ andv = max{t ~1¢, min{u, ¢}}. Since

€ Pk’, there existsn > k such that; € Zf ! \ Z’ . .. Therefore we can use the Poincaré inequality in a standard
way (see [7] for details) to deduce that

m—+1"

Z”éCr”_"/WvI”dx:Cr”_" / |Vul|P dx
B BNE;

whereC = C(n, p, B). Since, for everyt € E;, we haveu(x) ~ £ ~ t~/ anda < j < 3a this implies

C _ [Vu|?P
— P /7 dx. 3.11
a > / uPlogl/u * ( )

BNE,

We multiply both sides of (3.11) by* =7 /u ~ (diamB)"~” /u and sum oveB € B,{ and then sum ovef €
{a+1,...,3a}. Then, with the aid of (3.10), we arrive at

c<c;f1 Z > (diamBy 7 < C'p Z / [Vul® (3.12)

?log1l
_”JrlBij j=a+lp u”109 /u

with C' = C’(n, p, B, ) (the constanC’ involves also the constant from the Besicovitch covering theorem). It
follows from the estimata < t—/*1 on E;,i >k and (3.7) that

o
0<u<8}> J En
m=i+1
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Therefore, the estimate/ < [u] < t=/*1on E}, (3.3)(i), (3.12) and (3.3)(ii) imply

/ [Vul” dr> ) / [Vul” dx
uPlogl/u @(loglogl/u) X/m:i+1 uPlog1/u @ (loglogl/u)

O<u<$§

00 31+1

|Vul? dx
Z Z /ul’logl/u @ (loglog1/u)

1=0 j=3i+

o]

[Vul?
Z:czb(log(3“rlzlog(r))) Z fuPIogl/u

as C
*2Gcary =

Theorem 3.2. Assume thatl < p < p < n. Let 2 Cc R" be a connected open set and let Wliﬁ(.Q) be
p-quasicontinuous. Suppose that- 0 a.e. andH"~? ({u = 0}) > 0. Suppose further that a functich satisfies
(1.2) (i) and(ii). Then, for eacld < § < e¢,

[ g @13
uPd(log1/u)

O<u<$

Proof. By Proposition 2.1 there exisjse (0, co) such thatd”~?(Z,)) > 0, where

Z, = {z € Q: limsupr—* ][ |f]dx < y}.
r—0
B(z,r)

Recallthats =1— p/p.
Define

& (expt)
expt

From (1.2)(i) for® we obtain (3.3)(i), and clearly

(1) =

7 dr _7exptdt _7 ds
J ‘P(t)_l dexpr) J ds)

Now Lemma 3.1 yields

/ [Vu|P / [Vu|P
o0 = dx = —— 0x
u?logl/u®(oglogl/u) o) s uP®(log1/u)

O<u<§

The following elementary example shows that our assumption (1.2)(ii) is essential in Theorem 3.2.

Example33.Letn, peN, 2 = (=2 o ep)” and suppose thatd p < n. Setu(x) = ,/xf + - +x12,. Clearly

H”fp({u = 0}) =H""P ({0}p X (_—l, i)”P> > 0.

ep ep
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Suppose that
o0
f ds
= <
D (s)
1
Then
1/e 00
|Vul? -~ dx dr ds
[waiein=2" | wraietin <] wiosn=C1 50 <>
s u (log1/u) Cepepyr lx|[P@(log 1/Ix]) J (log1/1) d (s)

4. Hausdorff measure of f=1(0)
We need the following elementary inequalities that can be viewed as variants of Young’s inequality.

Lemmad4.l. Let¥ :[1,00) — [1, 00) be a differentiable concave function and get) := ¥/(r). Suppose that the
function

t — "Ly (log(e + 1))
is increasing. Then

"Ly loge + 1/a)) 3 c"y(log(e + 1/a))
a"~1w(log(e + 1/a)) ~ ba"¥"/ =D (log(e + 1/a))
for everya > 0, b > 0andc > 0.

+b" 1y (log(e + b/c)). (4.1)

Proof. If the first term on the right-hand side of (4.1) is greater or equal to the left-hand side then the inequality is
obvious. Otherwise

c
b> .
a¥ =D log(e+ 1/a))

Since the function” 1y (log(e + 1)) is increasingy/ is non-increasing ang > 1, this implies

n—1
n—1 C 1
P (logle +b/0) > iy ogte 1 1/a>)1/’('°g(e T T D (log(e + 1/a>)))

Cn—l

>
a1 (log(e + 1/a))

¥ (log(e + 1/a)). O

Lemma 4.2. Suppose tha® : [1, o0) — (0, o0) satisfieq1.2)for n = 2. Then

a?®(log(e+a/c)) b
S b +c @ (log(e+ b/c)) (4.2)

for everya > 0,b > 0andc > 0.

Proof. If the first term on the right-hand side of (4.2) is greater or equal to the left-hand side then the inequality is
obvious. Otherwise

b 2a@(|og(e+a/c)). (4.3)
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From (1.2) (i) and (iv) it is easy to see thatincreases at most like a power function. Thereférdog(e + 1)) <
C + Ct for everyr > 0. With the help of (1.2)(iv) this implies

@ (log(e + 1@ (log(e +1)))) < CP(log(e+1)). (4.4)
From (1.2)(iii), (4.3) and (4.4) we have

b < a®(log(e +a/c))
@ (logle +b/c)) ~ @(log(e +a/c®(logle +a/c)))) ~

Ca. O

Proof of Theorem 1.2. Suppose thaif is not identically 0 and thatZ1(f~1(0)) > 0. We know that there is
0 < § < € ¢ such that the multiplicity off is bounded almost everywhere @10, §) by constantV/ > 0.
Set
t
ds , 1
lI/(t)=1+/— and v(@)=v¥'(t)=—— forr>1. (4.5)

D(s) D(1)
1

From (1.2)(ii) we know that lin., o, ¥ () = co and therefore also

t e¢]
d d
oo = lim logw () = tim [ ¥ s:f L
t—00 t—00 v (s) D(s)W(s)
1

Hence the functiord (r) = & (1)¥ (¢) satisfies assumptions (1.2) (i) and (ii). We wish to apply Theorem 3.2 to
| f] for p=n — 1. In order to do this we still need to check thgt 1(0)| = 0. Whenn = 2 this follows from
Lemma 4.3 below and for > 3 from formula (2.3) in [15]; notice that this result can be applied because (1.1) and

(1.2) imply thatk /=D ¢ L1 (£2). We thus obtain from Theorem 3.2, fpr=n — 1 andu = | f|, that

/ |DfI" Yy logle +1/1£1))

— 4.6
/1w (log(e + 1/1£D) (4.6)

O<|f|<$é

Denote2o = 2 N{|Df (x)| #0}N{0 < | f| < 8}. Itis not difficult to verify from (4.5) and (1.2) thak satisfies
all the assumptions of Lemma 4.1. We use inequality (4.1&®) = | f (x)|, b(x) = K(x) andc(x) = |Df (x)| to
obtain the estimate

|Df "1y (loge + 1/1 £1))
2 | fI"=1w (log(e + 1/1 f1))
0

IDf|"y (log(e + 1/ f1)) 1
</ Klfl"‘lf"/(”*l)(log(e+1/If|))+f K" (log(e + K/IDA)). @.7)

20 20

Sinceyr is non-increasing, part (iv) of (1.2) and our integrability assumptions give us

/ K"Ly (log(e + K /IDS) < / +

20 Kg‘Df‘;/(nfl) K>|Df|'v/(”71)
S I/f(l)/ IDfV? +/K”*ll/f(log(eJrK(sfn+1)/s))
Q 2

< C/ IDfI° + C/ K"ty (logee + K)) < C. (4.8)
2 2
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Using the distortion inequality, (2.1) and lim 4 ¥ (s) = oo we conclude that

/ IDfI"ydogle +1/1/) Jr(x)y(logle+1/111)
K| fimen/=D(log(e+1/1 1)) \Q | fIren/ =D (log(e + 1/1fD)
0

20

8
<CM / ¥ (log(e +1/1yD) d :C/ ¥ (log(e +1/1))

lyl"wn/@=Dog(e+1/|y]) 1w/ =D (log(e+ 1/1))
B(0,5) 0

< (YD (log(e +1/8)) - im =%/~ (log(e + 1/n)) <c. (4.9)
t—
Combining (4.7), (4.8) and (4.9) we arrive at
/ |DfI" Yy (logle +1/1 /) / |DfI"yrloge+1/1/1) _ c

|f1"=1w(log(e+1/IfD) |fI"=tw (og(e + 1/1 1)
0<|f|<$ 20

This clearly contradicts (4.6). O
We close this section by verifying the following result that was employed in the proof above.
Lemma 4.3. Suppose that = 2 and thatf is as in Theoren.2. Then f~1(0)| =0.
Proof. By Lemma 5.1 in [11] we may find a (radial) functiane Wol’"(B(O, 1)) so that lim,_,ou(y) = oo and
|Vu|?® (log(e + |Vul])) < oo.
B(0,1)

Therefore we can find a decreasing sequence of nuniexg 0 and sequence of functiong € Wol’”(B(O, Ry))
so thatuy =1 on B(0, Ry+1) and
Jim f |Vur|?® (log(e + [Vug)) = 0. (4.10)
—00
B(O,Ry)

Since f is quasi-light, we may assume th@tis bounded,f ~1(0) is compact and there exists> 0 such that
(B0, 8)) € £2 (cf. [25, Theorem 3.1]).
Fork € N we write

Bi=B(0,Ry), Ax=f*(Bi\Bis1) and Ag=AN{|Df|#0}.

Fix k € N large and denote = uy o f. If Ry < §, then the function has zero boundary values and thus we may
use the Sobolev inequality far. Sinceu;(0) = 1 on B,1 we obtain from the Sobolev inequality and (4.2) for
a=|Vv|,b=K andc = |Df| that

| 710 </|ukof|<c/|w|=/|w|
Q Q A
(Iog(e+|Vv|/|Df|))+C/

J ~

Ak Ak

K
@ (log(e + K/IDf1))

\v/ 2
Vol (4.11)
K
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Analogously to (4.8) we obtain

@(log(e+ K/IDf) ~  J @ (log(e + K)) '
Ak

Ax Ak

The right-hand side of (4.12) tends to zero when> oo because the set$; are clearly pairwise disjoint. For
k large enough, the multiplicity of® is essentially bounded by on B;. Therefore we can use the distortion
inequality, (2.1) and (4.10) to obtain

\V/ 2
'K”' cb(log(e+|Vv|/|Df|))</|<Vuk)of|sz¢(log(e+|<Vuk)of|))
Ak Ak
<M/|wk|2¢(|og(e+|vuk|))k—> 0. (4.13)
Bx

From (4.11), (4.12) and (4.13) we obtdifir%(0)| =0. O

5. Openness and discreteness

In this section we prove discreteness and openness of a mapping under a weaker integrability condifion on
thanDf € L". We use an Orlicz-type condition that was introduced to this setting in [16,8], and [14].

Theorem 5.1. Let 2 Cc R” be a connected open set and supposethatl < p <n.Let f € Wli'cp(ﬂ; R™) be a

continuous, sense-preserving mapping that has essentially bounded multiplicity. Suppgsésthanapping of
finite distortionK so thatK satisfieq1.1) with a function® that satisfieg1.2). Thenf is either constant or both
discrete and open.

Proof. Any sense-preserving, light and continuous mapping is both discrete and open, see [24] or [23, Lemma 5.6].
Hence it remains to show thitis light. However, by Theorem 1.H(f~1(y)) = 0 for eachy € R”, which easily
implies lightness. O

Now let us state the main result of our paper. Theorem 1.1 follows from Theorem 5.2 by chéasjng t".

Theorem 5.2. Let 2 ¢ R” be a connected open set. lietbe a non-negative, strictly increasing and continuously
differentiable function ofi0, co) satisfying the conditions

e ¢]

/wdtzoo, limint X0 _
tlt+n 1—o0  W(t)

1

with s > n — 1. Suppose thaft is a quasi-light mapping of finite distortioki that satisfieg1.1)with a function®
that satisfieg1.2), and suppose further thé#(Df) € L|1oc(9)- Thenf is discrete and open.

Proof. Using results from [9] (or [5,16]) and [12] we may obtain analogously to [7, Theorem 5 and 7} that
is sense-preserving, and that each paint £2 is contained in a subdomai2” C §2 such thatN(f, 22”,-) is
essentially bounded. Thus we may use Theorem 5.1 to showfthstopen and discrete of2”. Since these
properties are local, the proof is completea
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Let us close the paper by commenting on the sharpness of our assumptions. As discussed in the introduction,
our assumption oK is optimal. Moreover, an example constructed in [14] gives us, giverith

e ¢]

v (1)
/ mdt <00,

1

a non-discrete, non-open, quasi-light mapping of finite distorkoso thatK € L7 (£2) for all p, in particular for
p=n—1,and so tha® (Df) isin Lﬁ)C(Q). Thus the integrability assumption ¢Pf| is also optimal.

References

[1] J. Ball, Global invertibility of Sobolev functions and the interpenetration of matter, Proc. Roy. Soc. Edinburgh Sect. A 88 (3—4) (1981)
315-328.
[2] H. Federer, Geometric Measure Theory, Grundlehren Math. Wiss., vol. 153, Springer-Verlag, New York, 1969 (second edition, 1996).
[3] I. Fonseca, W. Gangbo, Degree Theory in Analysis and Applications, Clarendon Press, Oxford, 1995.
[4] V. Gol'dstein, S. Vodop’yanov, Quasiconformal mappings and spaces of functions with generalized first derivatives, Sibirsk. Mat. Zh. 17
(1976) 515-531.
[5] L. Greco, Sharp integrability of nonnegative Jacobians, Rend. Mat. 18 (1998) 585—-600.
[6] J. Heinonen, P. Koskela, Sobolev mappings with integrable dilatations, Arch. Rational Mech. Anal. 125 (1) (1993) 81-97.
[7] S. Hencl, J. Maly, Mappings of finite distortion: Hausdorff measure of zero sets, Math. Ann. 324 (2002) 451-464.
[8] T. lwaniec, P. Koskela, J. Onninen, Mappings of finite distortion: monotonicity and continuity, Invent. Math. 144 (2001) 507-531.
[9] T. lwaniec, G. Martin, Geometric Function Theory and Nonlinear Analysis, Oxford Mathematical Monographs, Clarendon Press, Oxford,
2001.
[10] T. Iwaniec, V. Sverak, On mappings with integrable dilatation, Proc. Amer. Math. Soc. 118 (1993) 181-188.
[11] J. Kauhanen, P. Koskela, J. Maly, On functions with derivatives in a Lorentz space, Manuscripta Math. 100 (1999) 87-101.
[12] J. Kauhanen, P. Koskela, J. Maly, Mappings of finite distortion: discreteness and openness, Arch. Ration. Mech. Anal. 160 (2001) 135-151.
[13] J. Kauhanen, P. Koskela, J. Maly, Mappings of finite distortion: condition N, Michigan Math. J. 49 (2001) 169-181.
[14] J. Kauhanen, P. Koskela, J. Maly, J. Onninen, X. Zhong, Mappings of finite distortion: sharp Orlicz-conditions, Rev. Mat. Iberoameri-
cana 19 (2003) 857-872.
[15] P. Koskela, J. Maly, Mappings of finite distortion: the zero set of the Jacobian, J. Eur. Math. Soc. (JEMS) 5 (2003) 95-105.
[16] P. Koskela, X. Zhong, Minimal assumptions for the integrability of the Jacobian, Ricerche Mat. L | (2002) 297-311.
[17] J. Maly, O. Matrtio, Lusin’s condition (N) and mappings of the class™, J. Reine Angew. Math. 458 (1995) 19-36.
[18] J. Maly, D. Swanson, W.P. Ziemer, Coarea formula for Sobolev mappings, Trans. Amer. Math. Soc. 355 (2) (2003) 477-492.
[19] J. Maly, W.P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1997.
[20] J. Manfredi, E. Villamor, An extension of Reshetnyak’s theorem, Indiana Univ. Math. J. 47 (3) (1998) 1131-1145.
[21] Yu.G. Reshetnyak, Space mappings with bounded distortion, Sibirsk. Mat. Zh. 8 (1967) 629-658.
[22] Yu.G. Reshetnyak, Space Mappings with Bounded Distortion, Transl. Math. Monographs, vol. 73, Amer. Math. Soc., 1989.
[23] S. Rickman, Quasiregular Mappings, Ergeb. Math. Grenzgeb. (3) (Results in Mathematics and Related Areas (3)), vol. 26, Springer-Verlag,
Berlin, 1993.
[24] C. Titus, G. Young, The extension of interiority, with some applications, Trans. Amer. Math. Soc. 103 (1962) 329-340.
[25] J. vaisala, Minimal mappings in Euclidean spaces, Ann. Acad. Sci. Fenn. Ser. A |1 366 (1965) 1-22.
[26] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture Notes in Math., vol. 1319, Springer-Verlag, Berlin, 1988.



