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Abstract

Given a globally asymptotically controllable control system, we construct a control-Lyapunov function which is stratified
semiconcave; that is, roughly speaking whose singular set has a Whitney stratification. Then we deduce the existence of smoott
feedbacks which make the closed-loop sysémostglobally asymptotically stable.
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Introduction

This paper is concerned with the stabilization problem for control systems of the form
i=fle ) =) afix), 1)
i=1
wherefy, ..., f, are smooth vector fields d&" and where the contral = (a1, . . ., a,,) belongs taB,, the closed

unit ball in R™. We focus on control systems which are globally asymptotically controllable.

Definition 1. The system (1) is said to be globally asymptotically controllable (abreviated GAC) if the two follow-
ing conditions are satisfied:
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1. (Attractivity) For eache € RV there exists a contrai(-) ‘Ryo— B,, such that the corresponding trajectory
x(-; a, x) tends to 0.

2. (Lyapunov stability) For each > 0, there is & > 0 such that for each € RV with | x| < § there exists a
controla(:) :R>o — B, such that the corresponding trajectarty; «, x) converges to the origin and satisfies
lx(; a,x)|| <eforalls>0.

Given a GAC control system of the form (1), the purpose of the stabilization problem is to study the possible
existence of a feedbaek-) : RY — B,, which makes the closed-loop system

i=fxa@) =) i) fix), @

i=1

globally asymptotically stable. In the last twenty years this subject has been the focus of considerable ¥esearch.
It is well-known that continuous stabilizing feedbacks do not exist in general; there are globally asymptotically
controllable control systems which admit no continuous stabilizing feedbacks. The first example of such a system
was given in 1979 by Sussmann in [33]. Then, in 1983 Brockett [7] produced a topological necessary condition
which makes obstruction to the existence of such regular feedbacks; this condition provided a number of coun-
terexamples such as the famous nonholonomic integrator. Moreover in the case of affine control systems, Artstein
related the existence of continuous stabilizing feedbacks to the existence of a smooth control-Lyapunov function.
This latter result showed that a GAC affine control system which does not admit a continuous stabilizing feedback
cannot have a smooth control-Lyapunov function. Therefore all these results plead for the design of discontinuous
stabilizing feedbacks and also for a new concept of nonsmooth control-Lyapunov function. Many authors such
as, Sussmann [33], Clarke, Ledyaev, Sontag and Subbottin [10], Ancona and Bressan [3], or Rifford [21,22,24]
proved the existence of discontinuous stabilizing feedback laws under general assumptions. Among them, only
[10,21,22,24] made use of a nonsmooth control-Lyapunov function. In the present paper, our aim is to develop
further the work which was initiated in these papers and to establish a strong link between the presence of a non-
smooth control-Lyapunov function and the construction of discontinuous stabilizing feedbacks. Moreover we also
present a new kind of smooth stabilizing feedback which is of interest in the stabilization problem.

Definition 2.2 A control-Lyapunov function (abreviated CLF) for the system (1) is a continuous fungtid’ —
R which is positive definite, proper and such that it is a viscosity supersolution of the following Hamilton—Jacobi
equation:

max{—(f(x,a), DV(x))} = V(x) > 0. (3)

a€By,

In 1983, Sontag [30] introduced the framework of nonsmooth CLF and proved the equivalence between global
asymptotic controllability and the existence of a continuous control-Lyapunov function. Later, revealing the im-
portance of semiconcavity in the design of discontinuous stabilizing feedbacks (in the spirit of [10]), we extended
Sontag’s Theorem and proved that every GAC control system admits a continuous CLF which is semiconcave
outside the origin (see [23]). We utilized the semiconcavity property in order to construct feedbacks which make
the closed-loop system globally asymptotically stable in the sense of Carathéodory. Our construction provided a
simple way to design stabilizing feedback laws which were continuous on an open dense subset of the state space

1 We recommend to the reader the historical accounts of Coron [13] and Sontag [31].
2 This definition takes into account the exponential decrease condition that we introduced in the framework of nonsmooth control-Lyapunov
functions. Moreover we recall that the property (3) is equivalent to the following in terms of proximal subgradients
Vx €, ¥eedpV(x), min {(f(x,@),¢)} <=V ).

a€By
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but it does not fully reveal the dynamics of the closed-loop system around the singularities. In [25], we showed
that the exact comprehension of the singular set of a semiconcave CLF allows us to construct discontinuous stabi-
lizing feedbacks for which we can classify the singular points. Unfortunately, we were only able to produce such
a result in dimension two; our construction was related to the natural stratification of the singulaiVset R?

into a disjoint union of submanifolds of dimension 0 and 1. Such a stratificaticfi(df) is not imaginable in
dimension greater than two. As a matter of fact, the singular set of a semiconcave function coinciding locally with
the singular set of a concave function, we may let the reader imagine concave functions with very bad singular
sets. This thought induces us to introduce a better type of semiconcavity. Our idea is to further regularize a semi-
concave control-Lyapunov function into what we call a stratified semiconcave CLF which is, roughly speaking,
a semiconcave function whose the singular set is a Whitney stratification (as introduced in [16]). We prove the
following:

Theorem 3. If the systenfl) is GAC then there exists a control-Lyapunov function which is stratified semiconcave
onRN \ {0}.

As we shall see in Section 2.1, the knowledge of this new kind of control-Lyapunov functions facilitates the
construction of discontinuous stabilizing feedbacks. In dimension two, it allows us to detail the nature of the
singularities and then to better understand the behavior of the closed-loop system. As a consequence, it enables u
to construct a new kind of smooth stabilizing feedback.

Definition 4. The closed-loop system (2) is said to be almost globally asymptotically stable at the origin (abreviated
AGAS) if the two following properties are satisfied:

(i) (Attractivity) For almost every € RV, the solution of (2) starting at converges to the origin.
(i) (Lyapunov stability) For eack > 0, there exists$ > 0 such that for each € RY with ||x|| < § the solution of
(2) starting atv satisfieg|x(¢)|| < e forall ¢ > 0.

This kind of asymptotic stability was recently studied by Rantzer who produced a converse Lyapunov-like the-
orem. Indeed he related the almost asymptotic stability to the existence of a density function which plays the role
of a Lyapunov function for the closed-loop system. In addition, he proved in a first paper [19,20] some interest-
ing consequences of the existence of such a density function. In the present paper, our approach is to consider ¢
stratified semiconcave control-Lyapunov function in order to construct an almost globally asymptotically stabiliz-
ing feedback. Our CLF does not correspond in any case to Rantzer’s density function but it allows us to contruct
explicitly an AGAS feedback. Our second main result is the following:

Theorem 5. Assume thaiV = 2. If the systen(1) is GAC then there exists a feedbaek) :RY — R™ (with
«(0) = 0) which is continuous oY, of classC?! outside the origin and such that the closed-loop sys@nis
AGAS.

In fact, this results holds in any dimension. The construction of the feedback that we present in this paper is
clearly detailed in the case of dimension two. Of course, this construction can be adapted in greater dimension but
it would be much more intricate. Furthermore, at the end of the paper, we show that Theorem 5 can be extended
in the framework of manifolds, we discuss what happens in the case of control systems with drift, and finally, we
compare almost global asymptotic stability with other kinds of asymptotic stability.

Notations: Throughout this papefR denotes the set of real numbelts, || the Euclidean norm O]R_N By the
open ballix: ||x|| < 1}in RY, By the closure oy andBy (x,r) = x +rBy (resp.By(x,r) = x +rBy) the ball
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(resp. the closed ball) centeredvaaind with radius-. In additionSY —1 denotes théN — 1)-dimensional sphere in
RY andSy (x, r) denotes the sphere centered atith radiusr in RV . If A is a subset oR" then int(A)denotes
the interior ofA and caA its convex hull. For any positive integer £" denotes Lebesgue measure of dimension
n and if K is a finite set then/C| denotes the cardinality of the skt Furthermore, an admissible control for the
system (1) is a Lebesgue-integrable functign : [0, T] — B,, on some interval0, T1. If «(-): [0, T] — B,, is an
admissible control, a trajectory fas(-) is an absolutely continuous cury¢) : [0, T] — R" such that

m
i) = ai(x®) fi(x®))

i=1
for almost allr € [0, T']. If xo is some given state iRY and ifa(-) is an admissible control, we denote.by; xo, @)
the trajectory solution of the system above and suchud{@atxg, @) = xg. We denote byA the set of open-loop from
[0,00) controls into the control sek,,. Moreover since we will take a “subdifferential” (or “superdifferential”)
point of view in this paper, we refer the reader to the book of Clarke et al. [11] for the definitions of proximal sub-
and superdifferentialsdp V and d” V), of limiting subgradients); V and of generalized gradientd/ of some
functionV: RY — R.

1. Further regularization of a semiconcave CLF
Throughout this sectios? is an open subset @& .
1.1. Preliminary results on semiconcave functions

In this section we recall the definition and the basic properties of semiconcave functions which follow mainly
from the decomposition of such functions into the sum of a concave function and a Sriwwuttion. We refer the
reader to the forthcoming book of Cannarsa and Sinestrari [8] for a detailed study of semiconcavity.

Definition 6. A functionu : 2 — R is said to be semiconcave @n if it is continuous on2 and if for anyxg € 2
there are constants, C > 0 such that

1
S () + () —u(?) <Clx —yI2, @)

forall x, y € xo + pBn.

Note that if the constanf vanishes in (4), we recognize the usual definition of concave functions. As we shall
see in the sequel, the properties of semiconcave functions are intimately related to those of concave functions. In
Definition 6 since the constantsand C depend upon the poing € £2, some authors (e.g. Cannarsa, Sinestrari)
refer sometimes to local semiconcavity. We prefer to adopt Definition 6 and to speak aboutgkdraiconcavity
whenever the constant of (4) does not depend upaf. In any case, semiconcavity implies Lipschitz continuity
(see [8] for a proof of this result).

Proposition 7. Every semiconcave function 2 — R is locally Lipschitz or2.
The local Lipschitz property can also be seen as a consequence of the following fundamental property of semi-

concave functions. Any semiconcave function can be seen locally as the sum of a concave and a smooth function.
Refering to global semiconcavity, we can state the result as follows:

3 In this paper, “smooth” means “of clag¥®".
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Proposition 8. If u is globally C-semiconcave of and if in additions2 is convex, then the function
x> u(x) — 4C|x||* is concave

Hence the function can be written as the sum of a concave function and a sn{ga#dratic)function:

u(x) = [u(x) — 4C||x|I°] + 4C||x|)%.

Proof. The functionx — g(x) := u(x) — 4C||x||? is clearly continuous. Moreover for any y € £2, we have
1 x+y 1 x+y 2 2 2
E(g(x) +8(»)—¢ — )= E(u(x) +u(y)) —u — )~ 2C[IIx 1"+ 1y 1] + Cllx + vl

< Cllx = ylI2+ Cllx + yI? = 2C[IxI1” + 1yI1°] by (4)
< 09

by the parallelogram identity; the result followsO

As in the case of Lipschitz functions, a function which is semiconcave on a compact set is in fact globally
semiconcave on this set. This property is a (not so easy) consequence of the definition of semiconcavity. It permits
us to extend the Proposition 8 to the case of nonconvex open sets.

Proposition 9. If u is semiconcave o then for any compact convex sEtC 2, there exists a global constant
Ck > 0 such thatx is globally Ck-semiconcave o . Hence the functiom can be written ork as the sum of a
concave and a quadratic function:

VxeK, u(x)=[u(x)—4Ckx|*]+4CkIx|*. ®)

This result does hold only on compact subsets2ofvhich are convex. (Convex or concave properties of func-
tions do have no meaning on sets which are not convex.) However we will see later (see Theorem 12) that the
decomposition as a sum of a concave function and a smooth function remains valid on convex open sets. We shall
now present some results concerning the superdifferentials of semiconcave functions. By classical properties of the
superdifferentials of concave functions, the decomposition of semiconcave functions that we gave in Proposition 8
implies that the generalized gradient of a semiconcave function equals its proximal and viscosity superdifferentials

(we refer the reader to the now classical references [11,6] for the definition of both these superdifferentials). Let us
state the result (see [8] for its proof):

Proposition 10. If x: 2 — R is semiconcave then for anye 2, du(x) = 3" u(x), i.e. for any¢ € du(x),
u(y) —u(x) —4Cly — x> < (¢.y —x), Vyex+pBy, (6)

wherep and C are the constants given in Definiti@n

On the other hand, still from the decomposition of Proposition 8, since the generalized gradient of a convex
function is a monotone operator, so is the operater —du(x) + 8Cx. We can state the result as follows:

Proposition 11. If u: 2 — R is semiconcave then for any y € £2, for any¢, € du(x), for any¢, € du(y),

(—&y + &y — x) = —8Clly — x|, @)
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1.2. Semiconcave functions on convex sets

The purpose of this section is to present some initial results on the regularization of semiconcave functions. We
prove that every semiconcave function on an open convex set can be approximated by the sum of a piecewise affine
concave function and a smooth function. The technique of proof that we develop here will be very helpful when
we shall regularize semiconcave functions on nonconvex domains. Before giving our result of approximation, we
need the following fundamental theorem:

Theorem 12. If the open sef2 is convex then for any semiconcave functioon §2 there exists two functions
g, ¥ : 2 — R such that

u=g+v,
whereg is concave an@ is smooth.

Proof. Let us first assume tha? = R". For everyn > 2, the functionu is semiconcave on the baiE_N =

Bn (0, n), hence there exists a constafif_; such that the functiom(-) — C,_1]|x||% is concave omBy (by
Proposition 9). Without loss of generality the sequef@g), <n can be supposed to be strictly increasing. Set for
anyx e £2,

h1(x) := C1l|x||?,

and

n—1
ha (@) = Cullx|?+ ) i%(Ci = Cia] i n>2.
i=1
By construction, we note that for eael®> 1, the functiom, is convex and that for any > 1, the functioru — A,
is concave orin + 1)By. In addition we have that for any> 1,

hpy1(x) < hy(x) = x EI’ZEN. (8
We define the function : RY — R by

h(x):= max{hn (x)} forx e RV,
neN

By (8) the functior is well defined (onf2) and moreover it is convex as a maximum of convex functions. On the
other hand, we can note that for any 2,

u(x) —hx)=ulkx) — Te?\]x{hn (x)} =u(x)+ nmeig{—h” (x)} = nmeiIQ{u(x) —hy, (x)}.

By (8) we deduce that on every> 1, the functioru — i coincides with the function mim — 21, ..., u — h,} on
nBy. Letx € 2, denote byig the minimum over all the integers> 1 such thatr € nBy. By (8) we get that for
anyy € By(x, 1),

u(y) —h(y) =min{u(y) — hng—1(3), u(y) = hug(y), u(y) = hng1(»)}-

The three functions which appear in the minimum above are conca®g,an 1) henceu — & is concave on this
ball. Consequently — 4 is concave on all the ballBy (x, 1) for x € §2, hence it is concave of2. Unfortunately,
the constructed functioh is not smooth. But if we consider a functigit R»g — R, then we leave it to the reader
to verify that, whenever the functianis globally C-semiconcave o2, the functionu — (| - ||?) is concave if
and only if for anyx, y € £2,

x+y
(|5

2) — %(f(llxllz) + £(IvI1%) < =Clly — x|I%,
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that is if and only if the functionx — £ (||x[|%) — 4C||x || is convex. We conclude that jf is a smooth function

on 2 such that for any: > 1, the functionf (|| - |%) — 4C,| - || is convex om By then the functiont — £ (|| - |?)

is globally concave or2. The construction of the functioif is left to the reader. Now return to the general

case of an open sé2 in R". By classical results on convex sets we know that any open convex 3t s
diffeomorphic toR”, hence there exists a smooth diffeomorphigsnRY — 2. Moerover this diffeomorphism

can be taken to preserve convexityg ifRY — £2 is a convex function then the functigro ¢ —1: 2 — R is convex

too. So we look at the functiom o ¢ on RY which is semiconcave as the composition of a smooth function and

a semiconcave function. By the result above this function can be written as the sum of a concave and a smooth
function:u o ¢ = g + ¥. Thus the functiorg o ¢ 1 is concave, the functiot o ¢ —1 is smooth, and in addition

u=gop t+wogp ™,

which gives the result. O

Corollary 13. If the open sef?2 is convex and if«: 2 — R is semiconcave then for any continuous function
€:2 — (0,00) such that for everye € 2, By(x, €(x)) C £2, there exists a piecewise affine concave function
ge¢ - 2 — R and a smooth functio®, : 2 — R such that for every € £2,

(1) Ju(x) — ge(x) — We(x)] < €(x),
(i) 9pge(x) + VW, (x) Copu(x +€(x)By) +€(x)By.

Proof. Without loss of generality we can assume th@j < 1 and that for every € 2, By (x, €(x)) C £2. More-
over by continuity of the function there exists some new continuous functtan2 — (0, 1) such that

Vx €2, Vy € By(x,e(x)), &) <e(y). 9)

By the previous theorem, there exist two functigng” : 2 — R with g concave an@ smooth such that = g+ ¥
on £2. Define two functiongl,, g: 2 — R by ¥, (x) := ¥ (x) + ||x||2 and g (x) := g(x) — ||x||2. Of course¥, is
smooth,g is concave and we have,

U=3g+ .. (10)

By concavity, the functiorg is locally Lipschitz ons2, hence for every € £2, there existd.; , > 1 such thag is
L; (-Lipschitz onBy (x, €(x)) C £2. Moreover since the functio#. is smooth, there exists as well for each 2

some constant g, > 1 such thaV¥, (-) is Ly, ,-Lipschitz onBy (x, €(x)) C §2. Denote for each € 2 by L,
the maximum of both constants; ,, Ly, .. (Notice that the functionr — L, can be constructed to be locally
finite in £2.)

By a classical density theorem (see for instance [11, Theorem 3.1, p. 39]), the proximal subdifferegtaais of
nonempty on a dense subset®f Therefore if we denofeby D the set ofr € £2 such thabpg(x) # @, we have

E(x)?
2 C U BN ()C, 8?)
xeD X

(This inclusion holds because of the local finiteness of the funatien L, in £2.)
The local compactness @f implies that there exists a locally finite family, ),n in D such that

= 2
2c |8y (x,,, fo) ) (11)

3
neN SLX"

4 Notice that since the functiogiis concave, at each pointsuch thatp g(x) # ¢ it is differentiable (the converse being false).
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Fix n € N and define the functioh,, : 2 — R by
h(x) := g(xn) + (V& (xn), X — xp).

Lemma 14. We have the two following inequalities

() Vx € £2,h,(x) > g(x),
(i) Vx € By (xp, €(xa)2/(BL3 )), by (x) < g(x) + &(xs)?/(4L2).

Proof. Sincex, € D, we have thafVg(x,)} = d” g(x,). Thus Proposition 10 implies the first inequality. Let us
prove the second inequality. For any By (x;,, €(x,,)2/(8L§n)), we have

B (x) — 8(x) = g(xn) — 8(x) + (V& (xn), X — xp) = (£, % — x) +(VE(x), X — x),

with ¢ € co(dg([x, x,])) (by Lebourg’s Theorem, see for instance [9, Theorem 2.3.7, p. 41] or [11, Theorem 2.4,
p. 75]). We conclude easily by Cauchy—Schwarz inequality.

We set ons2 the following function:

Vx €2, gelx):= glilr\]]{hn(x)}.

By Lemma 14(i)—(ii), the functiorg. is well-defined and then concave. Let us first prove assertion (i) in the
statement of Corollary 13.
By (11) for everyx € 2, there exists € N such thatx € By (x,,, €(x,)?/(8L3 )). Hence Lemma 14(ii) implies
that
sy 4 0P
8e(x) < g(x) + 202 <g(x) +ex) (by(9). (12)

Xn

In consequence, Lemma 14(i) combined with (10) gives (i). It remains to prove (ii). We need the following lemma:
Lemma 15. For everyx € §2, there existsg € N such that]x — x| < (E(xno))/(Zano) andge (x) = hyq(x).

Proof. By concavity ofg on 2, for everyn € N we have
Vre 2, g00)<glum)+(Velu), x —xu).
We deduce that for every e N and for anyx € £2,

g0 — hy(x) = g(x) — [1x1% = §(xn) — (VE(x), x — x2)
= g(x) — Ix11% — g(xn) + l1xn 1 — (Vg (xn) — 22, X — x,)
< =112+ 1 1% 4 200, x — x) = —||lx — x,||%

Hence ifx € £2 satisfies|x — x, |2 = 82 > &(x,)?/(4L2 ) theng(x) < h,(x) — 82, which by (12) implies

€(xp)?
412

Xn
This proves that for each in £2 the minimum in the definition og.(x) is not attained for:; (x) with |x —
xjl > €(x;)/(2Ly;). Therefore since the familgx, )< is locally finite and since for any € £2 the compact set

By (x, €(x)) isincluded ins2, this means that for any € £2 the functiong. can be written as a minimum of a finite
number of affine functions,, in By (x, €(x)). This proves the lemma.O

ge(x) < hy(x) — 82+ < hu(x).
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Fix X € £2 and¢ € dpg.(¥). By elementary properties of proximal subdifferentials (recall that we refer to [11]
for a complete presentation of proximal analysis) if the minimum in the definitiog Of) is attained and if
dpge(x) # ¥ theng, is differentiable ai and

Ipge(X) = {Vge(®)} = {Vhng(®) } = {V&(xng) } = 8P & (xn), (13)

whereng is such thag. (x) = h,,(x). Hence sincgx,, — x|| < E()E)/(ZLX,,O) we can write

C+ VW(X) € 3pg(xng) + VW (X)
C an(xno) + Vwe(xno) +lx - xno”anOB_N
Copu(x+€(X)By) +e(@)By (by (9)).

The proof of Corollary 13 is complete.O

Note that in the proof of Corollary 13, we have been able to control the disfanea;,,|| in Lemma 15 because
we worked withg instead ofg. Our argument was based on the fact thas the sum of a concave functiog)(
and of a strictly concave functiof-|| - |2). Since we have still the proof of Corollary 13 in mind, we present and
prove a related result which will be very useful in the sequel. (In the statement of PropositiBg, d&notes the
open ball ofRY relative to the infinity norm| - [|sc.)

Proposition 16. Let £2 be an open set ilRY andu : 2 — R be a semiconcave function. LEtbe a compact cube
in £2 ande be a constant i{0, 1) such thatk + ¢ By, C £2. If C is some positive constant such that the function
g:=u—C| -|?is concave orK + € B, then there exist, : £2 — R such that

(i) foreveryx € K, gc(x) + (C + 1) ||x[|° < u(x),

(ii) foreveryx € K + €Boo, u(x) — € < Ze(x) + (C + D) |Ix|I? < u(x) +e€,
(i) for everyx € K + € Boo, dpge(x) +2(C + 1)x C dpu(x + € Boo) + € Boo,s
(iv) the functiong,. is a piecewise affine concave functionld,

(V) Vx € 2,x ¢ K + €Boo = Ze(x) + (C + D)|Ix|1% > u(x).

Proof. We leave it to the reader to show that there exists a smooth furictiBN — R which satisfies the follow-
ing properties:

(p1) for everyx € K, k(x) =0,

(p2) for everyx ¢ K + €Boo, k(x) > %,
(p3) for everyx e RV, k(x) € [0, 51,

(p4) for everyx € K + € Boo, [IVE(X) | < §,
(p5) for everyx e RN, Hess k < Iy,

where Hessk denotes the Hessian matrix of the functioat x and/y denotes the identity matrix ity (R).
Define the functiorg : 2 — R by

. 1 1
VieR, §() =gl — xl? +k(x) = (g(x) = Slx? +k<x>> = Slxl®, (14)
Since the Hessian matrix of the functi(%ﬂ - |I% equalsiy, the property (p5) implies that the function—

$11x11% — k(x) is convex orR" , and hence that the functian— g(x) — 3 |x||? +k(x) is concave oK + € Beo. I
consequence as shown by (14), the funcgaran be written as the sum of a concave function and of a strictly con-
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cave function (the function — —%||x||2). Thus by the remark that we made just after the proof of Corollary 13,
one can design a finite familit;);<; of points inK + € By, such that if we set for everye I the function
hi(x) := g(xi) + (Vg (xi), x — x;),

and if we define the functiop by g(x) := min;¢; 4; (x), then the following lemma holds:

Lemma 17. For everyx € K + € B, the following properties are satisfied

() §0) <) <FW) + 5,

(i) there existgg € I such thatl|x — x;,|| < m andg(x) = hjy(x).

Set for everyx € £2
o) = 30— &
8e(X) ‘= gx 1

and let us prove that the five assertions of Proposition 16 are satisfied.

The functiong. (x) being a minimum of a finite number of affine functions, it is a piecewise affine concave
function onRY. Which gives (iv). On ther other hand, assertions (i), (i) and (v) are straightforward consequences
of Lemma 17 and (p1)—(p3). It remains to prove assertion (iii).

Fix X € £2, and¢ € dpg.(x). As in the proof of Corollary 13, we know by construction @find by Lemma
17(ii) that there exist$ € I such that

I (15)

X — xjpll < ﬁ,
and
Ipge(X) ={Vg(xig)} = 0pg(xi). (16)

Hence we can write

C+2(C+1D)x € 9pg(xiy) +2(C+ 1k (by (16))
C 3pg(xig) +2(C + D)xig + 2(C + ) |I¥ — x;l By
C dpg(xig) + Vk(xig) + 2Cxiy + 2(C + 1)|I¥ — xi, || By
Cdpu(x +€By) +€By (by (15) and (p4))
C dpu(x + €Bx) + € Bo,

becauseBy C B. Therefore the proof of Proposition 16 is completes
1.3. Singular set of semiconcave functions

Let £2 be an open set @&" and letu : 2 — R be a semiconcave function. By Rademacher’s theorem we know
thatu is differentiable almost everywhere §R. Let us denote by () the singular set at, i.e. the set of points of
2 whereu is not differentiable. We can also sé&u) as the set of € £2 such that dim(du(x))}> 1; this point of
view leads to a natural partition of the singular set. As a matter of fact, following moreorless the seminal work of
Alberti, Ambrosio and Cannarsa [25; (1) can be written as the disjoint union dfsetsX* (u) (fork € {1, ..., N})
defined by

) == {x e 2: dim(du(x)) =k}.
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Alberti et al. proved that for an € {1, ..., N}, the set¥(«) is countablyH"*-rectifiable, i.e. it is contained
(up to aH"k-negligible set) in a countable union 6f hypersurfaces of dimensia — k. But each sefZ¥ (1)
is certainly not an exact hypersurface (or submanifold2ofAs we noticed in [25], these sets cannot be realized
to be smooth submanifolds ¢. We saw that even in dimension two, it is difficult to decompose the singular set
X (u) into a union of Lipschitz and’!-submanifolds. And of course, this decomposition does not hold in greater
dimension for general semiconcave functions. Our strategy is to approximate a given semiconcavefunction
semiconcave function with a singular set regular enough. In addition if the initial functisia supersolution of
some Hamilton—Jacobi equation then we would like that the constructed approximation remains almost a superso-
lution of the same Hamilton—Jacobi equation. After giving the definition of stratified semiconcave functions, we
present our approximation results.

Let Z be a closed subset &, and suppose that

z= |J Ush-

1€{0,-,N}ieS;

This decomposition is a Whitney stratification Bfprovided:

e The family{Sf}l,,' is a locally finite collection of disjoint locally closed subsets called pieces or strata.

e Each stratum;l? is a locally closed connected smooth submanifold &f of dimensiory.

o Sinsk£p=1<kands! c st

° WheneverSf and Sj? are two strata with < k then the pair satisfies Whitney’s conditions A and B:
Supposéx,), € Sf is a sequence of points converging to soyTeSf, SUpPPOSEy,), € Sf also converge tg,
and suppose that the secant lidgs= (x,y,) converge to some limiting ling and the tangent spacés, Sj?
converge to some limiting vector subspacdhen
(A) T,S! cr.
B) lcCr.

We can now present the concept of stratified semiconcave function.

Definition 18. Let u : 2 — R be a semiconcave function;will be said to be stratified semiconcave (@) if the
following conditions are satisfied:

(i) the setX (1) is a Whitney stratification such that the strata of dimen®¥on k are the connected components
of *(u);

(i) for every stratums of X (u), the setS is a smooth manifold with boundary;

(iii) for every stratums of X (u), the functioru is smooth orS;

(iv) for everyx e X*(u), the seBu(x) is a convex compact set of dimensibmith exactlyk + 1 extreme points
21(x), ..., Cr+1(x).% In addition, for any stratun§ of X*(x) the maps1(-), ..., Zx+1(-) are smooth or§ and
moreover they can be smoothly extended to a neighborhoddimtuch a way that dg1(x), .. ., fx+1(x)}
remains a convex compact set of dimenstanith exactlyk + 1 extreme points for any € S.

Let us make one remark of importance concerning the shape of the singular set of a stratified semiconcave
function. Begin by the two-dimensional case.

5 We recall that a subsét of RY is said to be locally closed if it is of the fortki = C N O whereC is closed and is open.
6 In particular, this means that the limiting subgradignt (x) equals the se€fz; (x), ..., Crr1(0)}
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Fig. 1. Propagation of singularities in dimension two.

Letu: 2 — R be a stratified semiconcave function whe?ds an open subset @?2. We have
D) =X ) U Z2u).

Sinceu is stratified semiconcave a@, the set>1(x) is a locally finite union of disjoint smooth submanifolds of
dimension 1 and the séf?(«) is a discrete set of points i?. Let us describe what happens in a small ball around
some pointc € X2(u). There are three vectots, 2, ¢3 € R? such that

du(x) =cof{a, ¢2, &3},

the full triangle with ¢1,¢> and ¢3 as extreme points. By properties of propagation of singularities (see

[1, Lemma 4.5, p. 728]), each of the edges of this triangle (i.e., the segiftents], [¢1, ¢3], [¢1, £2]) is limit

of the generalized gradients of points of a strata of dimension one. In other terms, this means that there exist three
smooth submanifolds of dimension ofig S andSs in (u) which satisfy the following properties:

For eachi = 1, 2, 3, the pointx belongs to the closure ;. Moreover if (x,), is some sequence of points in
Si which converges ta, then the sequence of segmef#ts(x,)), converges to the segments with endpoits ;
wherej € {1,2,3}\ {i}.

On Fig. 1, we show three pointg, x», x3 with generalized gradientu (x1), du(x2), du(x3) which are very
close to the edges of the triangle. On each straturfi = 1, 2, 3) the generalized gradient gfe S; tends to an
edge of the triangl@u(x) asy tends tox. This means that in a small ball centered-athe complement of ()
can be divided into three regiofi&;, R2 andR3 whereu is smooth with a gradient close @ in R1, to £2 in R2
and to¢z in R3.

Consider now the general-dimensional case. Let: 2 — R be a stratified semiconcave function whe?ds
an open subset @& . In this case, we have

Sw=3wuX?wu-.-uxNw).
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So, letS be a stratum o (1) of dimensionN — k with k > 2 and letx € S. The convex sebu(x) is indeed a
simplex of dimensiork > 2 in RV. Hence if for everyl € {0, ..., k} we denote byF; the number of facésof
dimensior/, we have:

= <k + 1>‘
I+1

This means for example that:(x) hask + 1 faces of dimensiokh — 1 andk + 1 faces of dimension zero, that is
k + 1 extreme points. Again by properties of propagation of singularities (see [1, Theorem 5.2, p. 732]), since the
functionu is stratified semiconcave it turns out that for eveey{1, ..., k— 1} there is a one-to-one correspondence
between the set of faces of dimensioand a certain subset of strata bf (). Let/ € {1, ...,k — 1}, denote by
C’l, e, C}[ the F; faces ofdu(x) of dimensior/; this means that there are exacHystrataSi, ..., Sg, in )
such that for every =1, ..., F; the following property is satisfied:

The pointx belongs to the closure of the stratusn Moreover if (x,), is a sequence of points iy which
converges ta then the sequence of convex séis(x,)), converges to the fao@f.

The first example of stratified semiconcave function is the one of piecewise affine semiconcave functions. In
this particular case, each sBf(«) is a disjoint union of open polyhedra of dimensidh— k. Let us state the
properties of such functions in the following proposition:

Proposition 19. Let be given(h;);<; a finite family of affine functions R” . If u :RY — R is defined by
u :=min{h;},
iel
then it is a stratified semiconcave function and moreover it satisfies
() Foreveryk € {1,..., N}, the setz*(u) is a finite disjoint union of open polyhedra of dimensién- k.

(i) Foreveryk € {1, ..., N}, the multivalued map — du(x) = 3 u(x) is constant on each connected component
of Zk(u).

The proof of this result being straightforward, it is left to the reader.

If we consider a function defined as the minimum of a finite family of smooth functions, then it is semiconcave.
However it is not necessarily stratified semiconcave. Indeed in the next section, we will see that this kind of
functions is generically stratified semiconcave. This result comes from a transversality argument.

1.4. Proof of Theorem 3
In fact we will prove a more precise version of Theorem 3. Let us state the result that we prove.

Theorem 20. Let V be a semiconcave control-Lyapunov function for the control sy&tgnthen for any continu-
ous functiore : RN \ {0} — (0, 00), there exists a continuous functida: RY — R which is stratified semiconcave
onR¥ \ {0}, which is a viscosity supersolution of

max{—(f(x,a), DV(x))} = V(x) +€e(x) >0, (17)

a€By,
and such that for any € RV \ {0},
[Ve(@x) = V(x)| <e(x). (18)

7 A face of a convex sef is a convex subsef’ such that every (closed) line segmentdrwith an interior point inC’ has both endpoints
in C’. We refer the reader to the textbook [29, Part IV, Section 18] for additional informations about faces of convex sets.
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Theorem 3 is a direct consequence of Theorem 20. As a matter of fact, if we apply Theorem 20 to a control-
Lyapunov function withe = % then we obtain some stratified semiconcave functionwhich satisfies the
conclusions of Theorem 20 and hence which is positive definite and proper from (18). Hence ifﬁye:setf
we get a veritable stratified semiconcave CLF as in Theorem 3. It remains to prove Theorem 20; this proof will
occupy the next eight pages.

In order to simplify the proof, we will work with balls of theo-norm. Let us denote byx| o the co-norm of
x € RV, and byB,, (resp.Bs,) the open unit ball (resp. the closed bal)R¥ relative to this norm.

Set 2 := RN \ {0}. We can decomposg into a “quasi” partition of compact cubes. There exists a family
(x;)ien Of points in$2 and a family(p;);cn Of positive real numbers such that the three following properties hold:

(P1) 2 =U;eny Boo(xi, pi) = U;en Ki (Wherek; := Boo (xi, i)

(P2) For each € N, the compact sek; + p; By is included ing2, and the covering? = J; .y Ki + pi B IS
locally finite.

(P3) If K; NK; # ¥ thenkK; andK; have a common facég. there is a face; of K; and a faceF; of K; such
that(K; \ F;) N (K; \ F;) =¥ and eitherF; C F; eitherF; C F;.

By (P2) for eachi € I, we denote by.!, > 1 a Lipschitz constant of on the compact cubg; + p; B, by M;
the maximum of| f (x, «)|| for x € K; + p; Boo anda € By, by Lif the Lipschitz constant of the multivalued map

x+— f(x,B,) onK; + p; B and bye; the minimum of the functiom(-) on K; + p; Bs. For each € I, we set

. €; Pj.
; == min — - ,min StKiNK; 40 ¢. 19
a {Z(L’VL’f.+L’V+M,-) {10 / 7 }} )

Notice that by construction, i € £2 belongs to some compact st + u; B, then
< €(x)

Moreover notice also that by (P2), we have that for everyl
Ki+2uiBs C Ki + piBso C S2. (21)

Thus by Proposition 8, for evelye I there exists a positive constatit such that
V) =[V) = Cillx ]+ Cillx]1? = g (x) + ¥ (x),

whereg; := V — C;| - ||? is concave orK; + 21 Boo and¥; := C;|| - |2 is smooth on the same set. By Propo-
sition 16, for each e I there exists a piecewise affine concave funcign Ry — R such that the following
properties hold:

(a) foreveryx € K;, G;(x) + (C; + D) |Ix||> < V (x),

(b) for everyx € Ki + ti Boo, V(x) — 1ti < G (x) + (C; + DIx [ <V (x) + wi,

(c) foreveryx € K; + i Boo, 3pGi(x) + 2(C; + 1)x CopV(x 4+ wiBoso) + i Bso,

(d) there exists a finite set and some vector&d! jesi in K; and some constant’; %) jesi such that

vxeRY,  G;(x)=min{h! )},
jeJi

Wherehij(x) = (Hl.j, x)+ le’

(e) for everyx ¢ K; + iti Boo, Gi(x) > gi(x) — [lx[|.
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Define for everyi € I the functionV; :RY — R by
Vi(x) = G (x) + ¥ (x) + |x]|1 = G; (x) + (C; + DIx || (22)

The functionV; is the sum of the concave functia; and of the smooth functio®; + | - ||, hence it is
semiconcave oY . Fix x in K; + it; Boo @and¢ in 8p V; (x).

By (c) there exists € B (x, ;) such thatt € 9V (x) + u; Boo; this means that there existe K; + 24; Boo,
. €9V (x) andi € By, such that

¢ =C+ piv. (23)
SinceV is a CLF for the system (1), it is a supersolution of the Hamilton—Jacobi equation (3) and hence

a€By,

Therefore by construction of the constaﬂ@s, Li,, M;, (23) and (21) give

max{—(f (x, ), ¢)} = max{—(f(x,a),7)} -

a€B,, aeBy,
> max{—(f (&, ), )} = Ly llx — 2 lI¢ ]| — i M;
aEBy, ’
> V(%) — [LY Ly 4+ Milpi > V(x) = [L'; Ly, + Ly, + Milui

>V -5 by 19).

Consequently we proved that for every K; + u; B and for every € apV; (x),

(x)

max{—{f(x, o). ¢)} = V@) + 5= >0. (24)

a€By,
On the other hand by (a) and (e) we have that) < V(x) for everyx € K; and thatV;(x) > V(x) whenever
x ¢ K; + i Bso. Set for everyr e RV,

V(x):=inf{V; .

(x) i'QN{ i(x)}

By (P1) and the remark above, for everyg §2 we have

Vix)= inf (Vi)

i St xeKi+uiBso

Hence since the familyK; + Wi Boclien is locally finite in £2, this means that for every € 2 there exists, € N
such thatr € K; + p;, Boc andV (x) = V;_(x). In particular (b) implies

V() — i, < V) S V@) 4 i, = V(x) — ? V@) < V) + % (by (20). (25)

The functionV is semiconcave o (as a locally finite |nf|mum of semiconcave functions), and in addition (24)
and (25) imply that for every € £2 and for every, € 9p Vix)8
max{—{/(x, 00, 8]}~ V(0 >~ 50 = max{~(£(x,00, )} - V0 > () (by (25).

a€By, aeB,

8 Recall that if some functiory : 2 — R is defined byf(x) := min;<7{g; (x)} where[ is a finite set angzy, ..., g some continuous
functions ons2. Then for everyr € 2 and for everyt € dp f(x), there exists € I such thatf (x) = g; (x) and¢ € 9pg; (x).
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To summarize, the functiol is a semiconcave control-Lyapunov function which satisfies the properties (18)
and (17). Unfortunately, it is not necessarily stratified semiconcave. Properties (a) and (e) imply that the function
V coincides withV; on each cub&.(x;, p; — §;), wheres; denotes the maximum of the;’s for K; N K; # ¢

(note thatp; — §; > % > 0 by (19)). In particular, we deduce that the functidris stratified semiconcave (by

Proposition 19) on each open cuBg, (x;, p; — §;). In the setK; \ Boo(x;, pi — §;), the functionV is a minimum
of quadratic functions, so it is not necessarily stratified semiconcave. We shall prove that if we pertubh each
by adding a small affine function, then the minimum of these functions is generically stratified semiconcave. The
proof will be based on a multi-transversality argument (Lemma 21).

In order to be clearer, we are going to first explain what happens in the case of the minimum of two fuvictions
andV». Consider two adjacent cub&g and K in £2 and let us prove how to mow, andV» in order to get that
the minimum ofVy and V» is stratified semiconcave d&" (recall thatV, andV» are quadratic functions defined
onRY). Recall that by construction, for everye RY,

Vi(x) = G1(x) + ¥1(x) + ||x||? = mijq{h,-lm} +(C1+ Dx|I%,
1€

Va(x) = Ga(x) + Wa(x) + ||x|? = min {30} + (C2+ Dx|1%
je

If C1 = C2thenthe function mifVy, V»} is the sum of a piecewise affine semiconcave function and the function
x — (C1+ 1)|Ix||3, so it is stratified semiconcave (by Proposition 19). Thus without loss of generality we can
assume thaf’1 # C», assume for instance thé@p = C1 + 1. Let8 = (81, ..., Bys2) be a|J?|-tuple of vectors in

RY, define the function’y : RY — R by

VxeRY, VIx):= n;ijr;{h?(x) + (B, )} + (C2+ DIx %,
J

and defineV? :R" — R by

vxeRY, VA(x):=min{vi(x), V5 (x)}.
Let us prove that the functiow? is generically stratified semiconcave BA .
Lemma 21. The set of(81, ..., B2 for which the functionv? is stratified semiconcave is an open dense set
in RM)I2,
Proof. First, note that if there exists a couggie j) € J1 x J2 such that

hi )+ (C1+ Dllx]|? = h5x) + (Bj. x) + (C1+ 2)Ix 1%,
then this implies:

b2 =k} () + h506) + (B, x) =04 Ix|1> = (H}, x) + (H?, x) + (B, x) = h} —

& x?+ (—H! + H? + B;. x) = h} — 2.

Thus we deduce that
2

1 N ~ 1
x— E(—Hil—l—sz—i—,Bj) =hf —h%+ al- H} + H? + B;|°. (26)

The functionV# can be written as follows:

Vi = min {hi )+ (Cot DI A0+ (8).x) + (C1+ 2 )?) =

ieJl je ie

i A0 5.
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Study the cases where the minimum is attained by sevgrahd E; in the expression above. Let us prove that
the set of pointsc such thatE1(x) = E; (x) foreveryj =1,..., p (wherep is some integer if1,..., N}) is

generically a sphere of dimensioh— p in RY. The other cases being similar, they are left to the reader.
Set

O:={xeRY: Ea(x) = E}(x), Vj=1,..., p}.
If x belongs ta®, then by (26) itis in the intersection gf spheres, that is:

xe () SR+ 1z12). (27)

wherez; := %(—Hll + H].2 +B;) andR; := I%% - fz?. The conclusion (27) is equivalent tosolving the system

||x||§ —2(x,z1) = Ry,
lx]|c — 2(x, z2) = R,
. (28)
X012 = 2(x,2p) = Rpy
which can also be written as follows:
Ix11% = 2(x, z1) = R,
2(x,z1—2z2) = R2— Ry,
. (29)
2(x,z1—2p) = Rp — Ru1.

This last system means thatbelongs to the intersection of the sphere centereqd atith radiusR1 and of the
affine subspacély of solution of the equation

2(x,71 —z2) = Ro — R1,
2(x,721 —z3) = Rz — Ry,

(30)
2(x,z1—zp) = Rp — R1.
The affine subspacgy is of dimensionN — p + 1 if and only if the vectorgy — z2,z1 — z3,...,21 — 2, are

squares of the determinants of the— 1) x (p — 1) matrices which are included in the rect’é'hgle madix with
columns(zy — z;) j=2,....p- The rank of the family of vector&; — z;) -2 ..., equalsp — 1 if and only if there
exists a square submatrix #fg (of order p — 1) which is invertible. Hence by construction bf

.....

The function!” is polynomial in the coordinates of thf’s and moreover since, — z; = %(le — sz +B1—B)),
we have that

I(—Hf,—Hf —2e1,—H — 2ep, ..., —H? — 2¢, 1) =19

We conclude that the polynomial is not the zero polynomial, hence that the set
Ty:={(B1..... Bp) € RN)P: I'(B1,....B,) #0}

is an open set with full measure {RY)?.

9 The family (eq, ..., ey) denotes the usual basisBf' .
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Let us now study the intersection of the sphéie:, R1) and of the affine subspadés. This intersection
(whenever it is not empty) is a sphere of dimenslr- p if and only if the affine subspach; is not tangent to
the sphere, that is if

d(z1, Hp)? # R1. (31)

Let us evaluate this distance.Afdenotes the orthogonal projectionzafon Hg then the distance equals; — P I12.
Sincez; — P is orthogonal taHy, it is a linear combination of the vectors — z2, ..., z1 — z),. Hence there exists
a=(az,...,a,) € RP~1such that

p
un—P= Zaj(a —zj).
j=2
On the other han® belongs toHg hence we have the following system:
2(z1 — §=20(j(Z1 —2j),21—22) = Ro— Ry,
2(z1 — Zfzgaj(ﬂ —2j),21—23) = R3 — Ry,

2(z1 — Z;’:za,‘(m —2Zj),21—2p) = Rp — R1.

We recognize the system

—2Ma=T, (32)
whereM is the Gram matrix
(z1—z2,20—22) ... {z21—2zp,21—22)
(z1—z2,20—2p) - (21— 2p,21— 2p)

andT is the column vector
(Ro— Ri—2(z1,21—22), ..., Ry — R1— 2(z1, 21 — 2p))".
The matrixM can be written ag/ = M Mjg. (Recall thatMy is the matrix whose the columns are the vectors
(z1 —2j)j=2,..,p-) Hence if the rank oMy equalsp — 1, then the determinant of the Gram mathikis different
from zero (see [15, Theorem 1, p. 247]). In consequence the wedsaa solution of the Cramer system (32), that
is
1
Eq. (31) can be written as:
» 2

Zaj(zl —-z;)| —R1#0.
j=2
By (33) ar_1d from the definition of the;’s, the vector det\) Z;-7=201j (z1 — z;j) depends affinly in thg;’s hence
the quantity

2

. Rl}

det(M)Z[
is polynomial in the coordinates of th#;'s (and is not constant and equal to zero). We deduce that the set of
p-tuples(B, ..., Bp) such thatl"(By, ..., B,) # 0 and such thalt Zfzzcxj (z1 — z;)|I? — R1 # 0 is an open set

p
ZO{j(Zl_Z]‘)

j=2
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of full measure in(RY)? (denote this set by>). This proves that the sé is generically a sphere of dimension
N — p.

We leave it to the reader to convince himself that our proof shows that if the tdple. ., ,,2)) belongs to a
generic seffs in (RV)V?l, then for any subsetd of J1 and I, of J2 such that 1| + |Iz] — 1< N , the setO0y, 1,
of x e RN such thatforany, j e I, x I,

Ei(x) = Ej(x),

is a submanifold oRY of dimensionN — |I1| — |I2| + 1.
Let us now prove that there exists a genericlagh (RN)“Z‘ such that if the tupl€pi, .. ., B;,2)) € T4 then for

everyx € Oy, 1, With |[I1| + |I2| — 1 < N, the convex sed VA (x) has dimensiom/1| + |I>| — 1. Still once, in order
to be clearer we assume thiat= {1} and thatl> = {1, ..., p} with p < N.
Fix x € O = Oy, 1,. Using the definitions ofi} andhf for j=1,..., p, we can writed V4 (x) as follows:

aVP(x) := co{H{ + 2C1x, Hf + B1+ 2Cox. ..., H3 + Bp + 2Cox). (34)

This set is a convex set of dimensipnf and only if the vectors'vll2 + 81— H11+ 2x, H22 + B2 — H11+ 2x, ..., H,f +

By — Hl1 + 2x are linearly independent (recall th@ — C1 = 1). By definition of thez;’s, this is equivalent to
proving that the vectors — z1, ..., x — z,, are linearly independent. We argue by contradiction. Assume that there
existse = (o, ..., ap) € RP such that

p
Zaj(x—Zj)Zo. (35)
j=1

Sincex belongs taQ, it satisfies Egs. (30). Hence for evéry= 2, ..., p, the equation

P P
2<Zaj>(x,z1—zk) —ZZOKj(Zj,m—Zk) =0,
j=1

j=1
gives

s

(Zf=1 ;) (R2 — Ry) — 22f=10lj (zj,z1—z22)

=0
(Xf_yj)(Rs— Ry =230 _jaj(zj,z1—23) =0

)

(36)

(XCf_19))(Rp = R) =237 1 @j{zj. 21— 2p) =0.

This means that thg-tuple (o, ..., o)) is solution of a system gb — 1 linear equations ifR”. We can write
(36) with matrices; using the definition of the’s, the system is equivalent to

(N+NPa =0, (37)

where the matrixV is in M,_1 ,(R) and does not depend upon tigs and whereNf € M,,_1 ,(R) is defined
by:

(B1,B1—B2) (B2.B1—B2) ... (Bp,B1—B2)

p (B1,B1—B3) (B2,B1—B3) ... (Bp,B1—B3)
NP = ) . ) }

(B BL—By) (BoBi—Bp) r By Pr—Bp)

This matrix can also be written as follows:

NP = (N{M}) My — (NsMY) My, (38)
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where the matrice&/;, N2 € M, ,_1(R) are defined by,

1 1 ...1
0O 0 ... 0
Ni=1. - .
0O ... ... 0
and
0 0 0
1 0 0
U E
27 o :
N 0
0O ... ... 0 1
The system (37) becomes
[N+ (N1 — Ng)’Mngﬂ]oc =0. (39)

Now if (81, ..., Bp) = (rey, ..., rep) Wherer is some real number, then we deduce thig solution of the system
[N +2%(N1— Np)' ] =0.

Note that thep — 1 last columns of the matrigV; — N2)' is a matrix inM,_1, ,—1(R) which equals-1,_1. Hence
we deduce that the matri@ (1) € M,,_1 ,_1(R) which corresponds to the — 1 last columns of the matriiv +
12(N1 — N»)'] has rankp — 1 for almost every. € R. This proves that the matri@ (81, . .., Bp) eMp_1, 1(R)
which equals thep — 1 last columns of N + (N1 — Nz)’MlgM,g] has rankp — 1 for (81, ..., B,) in an open
dense set of full measuf® c (RV)?. For suchp-tuples(By, ..., Bp), the set of solutions of (36) is a vector line
in R”. In fact we can give a nonzero vect@r, . .., o) which spans this vector line. For instance it is the solution
(a1, ..., dp) of the linear system (39) with first coefficient

@11, ... Bp) =def(Q(B1, ... Bp)) #O.

Hence by Cramer’s formulas the vectat, . . ., &) is a polynomial in thes’.s. Moreover wheneveiss, .. ., ) =
(req, ..., Aep), €acha; (j=1,..., p)is a polynomial in. of degree 2p — 1) with leading term 1.
On the other hand, (35) also implies that

2

P
Zaj(x—zj) =0.
j=1
Hence we get that
P
Y a?llx =22+ D 2aja(x —zj.x — z) =0. (40)
j=1 j#k

But for each coupléj, k) € {1, ..., p}?, (28) gives that
2(x = zjox —z1) = 2w — 21+ 2(x = zj. 2 — 2) = 2l — 217+ Re — Ry — 2(zj. 2 — 2.

By (27), we know that for every, ||x — z;||> = R; + I|z;1|2. Thus (40) becomes
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p
> aF (R + 11212 + Y ajor[2(R) + 12;1%) + Re — Rj — 2(zj. 25 — 2)]
j=1 J#k
=Y o5(Rj+lIzl1°) + D _ejor[Rj + R +2(zj, z)] = 0. (42)
j=1 J#k

Denote byP (w1, ..., «p) the polynomial in several variables, ..., «, which appears in (41). Let us prove that
wheneverp, ..., B,) € T, the vector(aa, . . ., o)) is generically not a solution of (41).

Actually, the function P o (a3,...,d,) is a polynomial in the coefficient of thg;’s. But whenever
(B1, ..., Bp) = (keq,..., kep) € T, the functionP o & (1) is a polynomial inx of degree Z2p — 1) with lead-
ing term p henceP o @()) # 0 for almost every. € R. Since the polynomiaP is homogeneous, this proves that
the intersection of the set of solutions of (41) and of the solution of (36) equals genefijallhis proves that for
everyx € O, the vectorsc — z1, ..., x — z,, are independent and hence that? (x) is a convex set of dimension
pinRN 10

We leave it to the reader to develop this proof for any subsand, of J1 andJ2. In conclusion, we proved
that there exists a generic $gtin RM)V? such that if(81, . .., B,2) € Ta then forany € Oy, 1,, the generalized
gradient ofV# has dimension min{M/1| + |I2| — 1} and has mifW, |I1| + |I>| — 1} + 1 extreme points.

In conclusion, we proved that{By, ..., B2 belongs to the generic S&§N T4 C (RN)“2|, then the se®y, y,
is a submanifold ofRY of dimension maf0, N — |I1| — |I2| + 1} and that the generalized gradientwf has
dimension min{N|I1| + |I2| — 1} and has mifw, |I1]| + |I2| — 1} + 1 extreme points. Furthermore it is clear from
the proof that the closure of each of tig, ;,'s is a smooth submanifold and that the functivf is smooth on
it. In addition, it is clear by (34) that the functions which give the extreme points/df are smooth and can be
smoothly extended to the closure of each connected componéht @f (and thatd V# is smoothly extended into
a convex set with the right number of extreme points by footnote 9). Thus this proves that assertions (i), (iii) and
(iv) in Definition 18 hold. Finally, by classical properties of semiconcave function (see Appendix), we have that
foranyx € Oy, 1,,

T, 0n.,=0VP(x)t.

Since the multivalued mapV# (-) is upper semicontinuous, we deduce from the facts abovesthef) is gener-
ically a Whitney stratification. This completes the proof of Lemma 2.

We proved that the minimum of both functiolg and V> can in fact be approximated generically by a stratified
semiconcave functio?. Since the covering given iaP1) is locally finite, starting fromVy, we will are able
to construct step by step some functidrﬁ, ey v,ﬂ such that the function m{ivy, ..., Zﬂ, ey Vlﬂ} is stratified

semiconcave ilRY . But when we have constructed tbr;? 's on all the adjacent cubes 16;, the next construction
will not change the global minimum function dty. In this way we perform the construction of a global stratified
semiconcave of2.1! Furthermore it is clear that since the initial functigrsatisfies (17) and (18), if the perturba-
tions g are taken small enough, then the resulting stratified semiconcawve @umction V satisfies (17) and (18)
for the function 2¢(). This concludes the proof of Theorem 20.

10 Notice that actually we also proved that for each O, the set defined by the right-hand side in (34) is a convex compact set of dimension
pin RN (because any € O satisfies (30)).
11 Notice that the function that we obtain is not stratified at the origin because the stratification is not locally finite in the neighborhood of 0.
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1.5. Additional comments

In fact, the procedure of regularization that we apply in the previous section can be used for any semiconcave
function. We leave as an exercise for the reader to supply the details of the proof of the following theorem:

Theorem 22. Let 2 be an open set & . If u: 2 — R is a semiconcave function then for any continuous function
€:2 — (0,00) such that for every € 2, By (x, €(x)) C £2, there exists a stratified semiconcave functigisuch
that for anyx € £2,

(1) lu(x) —uec(x)| <ex),
(i) dpuc(x) Copu(x+e€(x)By) +e(x)By.

This result applies to the approximation of viscosity solutions introduced by Crandall and Lions [17,14]. If
F:£2 x R x R — R denotes a Hamiltonian which is continuous in the three variables, Theorem 22 gives the
following:

Corollary 23. Let £2 be an open set a&”. If u: 2 — R is a semiconcave supersolution of the Hamilton—Jacobi
equation

F(x,u, Du) =0, (42)

then for any continuous functian 2 — (0, 00), there exists a function: 2 — R such that

(i) vis asupersolution of'(x, v, Dv) — €(x) =0,
(ii) the functionv is stratified semiconcave,
(iii) |u—v|<e.

Proof. Recall that since the Hamiltoniah is continuous in the third variable then the supersolutioof (42)
satisfies

Vxe$2, V¢edru(x), F(x,ux),¢)=>=0.

By semiconcavity ofi, for everyx e £, the limiting subgradiend, u(x) is a compact subset @&" . Hence the
continuity of the HamiltonianF' in the last variable implies that there exists a positive constasuch that if
¢ € dLu(x) + 25¢ By then

€(x)

F(x,u(x), ) > - (43)

But the limiting subgradient is an upper semicontinuous multivalued map, hence thereugxis® such that if
y € x + uy By then

dru(y) C dru(x) + 85 By. (44)

In addition the continuity of" in the second variable and the compactness of the limiting subgradients imply the
existence of3, > 0 such that ifu’ — u(x)| < By then

V¢ €dpu(x) + 8By, |F(x,u',{)— F(x,u(x),0)| < ? (45)

Set for everyr € £2,

€(x):= min{e(x), @ min{#x’ﬁx}}}~

inf
yIErI]RN{
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The three functions that appear in the minimum above are continuous, Heisceontinuous. Since for any €
2,6/ (x) <d(x,2°/2, we can apply Theorem 22. We get the existence of a stratified semiconcave function
v: 82 — R with

Ve, |u@x)—v@)|<e @) (46)
and
Vx €2, 0pv(x) Copu(x+€(x)By)+€'(x)By. (47)

Assertions (ii) and (iii) are already given, it remains to prove (i).
Considerx € £2 and¢ € dpv(x). The definition ofe’(x) combined with (47) and (44) gives that

¢ €0pu(x + py(x)By) 4+ 8: By C 0 u(x) + 28:By.

Hence by (43) we deduce thAt(x, u(x), ¢) > —S(Tx). But sincee’(x) < By, (46) with (45) imply that
F(x,v(x),¢) > —e(x).

We conclude easily. O

2. Consequencesfor stabilizing feedbacks
2.1. Carathéodory stabilizing feedbacks

In our previous paper [24], we proved that every GAC control system of the form (1) (we authorized in fact
control systems with drift as well) admits a feedbaak) : RN — B,, which makes the closed-loop system (2)
GAS in the sense of CarathéoddAin order to produce such a feedback, we considered a semiconcave control-
Lyapunov function and we constructed a continuous feedback outside a subset of its singular set. Although this
technique achieved the construction of a stabilizing feedback in the sense of Carathéodory, we were not able to
describe the behavior of the closed-loop system around the singular set and then to deduce the existence of a AGAS
feedback. Here, in our situation, the knowledge of a stratified semiconcave CLF will help us to construct explicitly
the stabilizing feedback in a neighborhood of “each” stratum of the singulaf €éj.

Set2 ;=R \ {0}. Let us considel to be a stratified semiconcave control-Lyapunov function for the control
system (1). Before proving Theorem 5, we need to construct some stabilizing feedbad" — B,, for which
we understand exactly the bifurcation points which are produced by the closed-loop system (2) (which stabilizes
in the sense of Carathéodory); this particular result will be precisely stated in Theorem 37. Let us describe the
construction of the feedbacek(-). In a first time, we do not assume thét= 2.

First of all in order to simplify our construction, we modify the control-Lyapunov funcibrie claim the
following:

Lemma 24. There exists some functid#i : 2 — R which is stratified semiconcave @b, proper, which satisfies
lim,_.o W (x) = —o0 and such that

VxeR,¥r e W), min{(f(x.),)}<-1 (48)

a€B,

12 Recall that the closed-loop system (2) is said to be GAS in the sense of Carathéodory if fox evB¥ the solutions (we call them
Carathéodory solutions) of

X0 = f(x@®),ax@))ae, x(0) =xp.

exist, converge to the origin as-> oo and satisfy the property of Lyapunov stability.
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Proof. Set for everyc € 2, W(x) :=InV (x). By smoothness of the logarithm, we have for eveky 2,

1
AW (x) = mavu).

Consequently, since the functian— Inx is smooth, concave and increasing [@noo) it is straightforward to
show thatW is stratified semiconcave aR, proper, satisfies ligL,o W (x) = —oo and such that

Vx €2, Ve € 0pW(x), miﬂ{(f(x, a), {)} < -1
aeB,
By continuity of the dynamicg the same property holds for limiting subgradients. Therefore we get (48).

Define the function? : 2 — (—oo, 0] as follows,

Ve, ¥(i):= arz;;_rrlngergl%){(f(x,a),g)}. (49)

Since for anyx € £2, f(x, 0) =0 we verify that the functionr has nonpositive values; moreover we have the
following result:

Lemma 25. The functiond is upper semicontinuous aR.
Proof. Since for anyx € £2, the setssW (x) and B,, are convex and since the functiogs— (f(x, ), ¢) and

a > (f(x,a),¢) are affine (do not forget that(x, @) = Y 1" ; @; f; (x)), the Minimax Theorem (see [5, Theorem
3.7.9, p. 115]) allows us to write the functi@n as follows:

Vxe 2, Y(x)= max miﬂ{(f(x,a),()}: max min{<2aif,-(x),§>}
i=1

t€dW(x) weB, ¢€dW(x) aeB,,
m
= max min o fi(x), ¢)t. (50)
;eaW(x)aem!; (i)

Now since for every € R" the map
X miﬂ[Zai(ﬁ(x), ;)}
x€B,, i=1

is continuous, the upper semicontinuity of the multivalued map oW (x) gives the result. O

Since the functiorW is stratified semiconcave, its singular set can be written as a countable disjoint union
of strata of dimension less thavi. Actually each singular subset*(W) (for k € {1,..., N}) is a locally finite
disjoint union of strata of dimensiaN — k, hence there exist¥ countable seté, ..., Iy such that

sw= {J Zwm= {J Us'™"
kefl,...,N} ke{l,N}iely

From Definition 18 we note that the functi@nis smooth on each stratum &f(W); as a consequence it will enjoy
the following property:

Lemma 26. For almost every. € (0, 1), the following property is satisfied
Foreachk € {1,..., N}, foranyi € I either, the sefx € SI.N"‘: ¥ (x) = —\} is empty or a Lipschitz submani-
fold of S of dimensionV — k — 1 (if k = N this means that the set is empty).
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Proof. By (50) the function& can be expressed as

m
Y(x)= max min ol fi (%), .
ceawumegm{; i gh)}
But by the Cauchy—Schwarz Theorem the minimum inside this formula can be computed, and therefore we have
that for everyx € £2,

W(x)= max {— Z(ﬁ(x),{)z}.

cedW(x) o

We are now ready to prove Lemma 26. In fact it is sufficient to prove that for every integet, for almost every
A €(0,1—1/p), the property given in the lemma is satisfied. pix N\ {1} and let us prove this fact.

Let SiN_k be a stratum of dimensioN — k (with k € {1, ..., N — 1} andi € I;) in the Whitney stratification of
X (W). By Definition 18 there exist + 1 functions¢s, ..., ¢x+1 Which are smooth oi§ and such that for every
xes,

AW (x) =cof{1(x), ..., Gpa(0)}.
If we denote byA+1 the simplex of dimensiok + 1 defined by

k1
Apgri= 1 (1, ... 1) € REFL v g >Oand2ti=1 ,
i=1

this means that for every e Sl.N"‘ we have,

k+1 m
W(x):trrlr:\xl - Zth(ﬁ(x)»ij(x))Z ) (51)
€Akt j=li=1

Note that for every € Sl.N‘k the limiting gradient ofW atx equals the s€it1(x), ..., {x+1(x)} . Thus by (48) this
implies that for everyj € {1, ..., k+ 1} we have

—J Z(fi(XL Cj(X)>2 <-L (52)

i=1

Denote byS the set ofc € S * such that-w (x) € (0,1 — 1/p); of courseS is open ins™ ~*.

From (52) we deduce that for each paint S, the maximum in (51) cannot be attained at saie- 1)-tuples
of the form (0, ...,0,1,0,...,0) i.e. at some vertex of the simplex;1. Actually since by Definition 18 the
maps¢i, . .., {k+1 can be smoothly extended Stﬁ’*", this means that for eache {1, ..., k+ 1} there exists some
neighborhood/; of the (k 4 1)-tuplet/ (with t; =1andy =0 forl # j), such that for any € S the maximum in
(51) is not attained irU’J‘.j V;. In consequence, there exists a smooth compact submanfojdwith boundary
in the simplexA+1 such that for any € S,

k+1 m

)= max 1 — | Y3 (A0, g w)

teM
k.p j=li=1

To summarize, we have shown that on the operSséhe function& can represented as the maximum of several
smooth functions over a compact smooth manifold with boundary. Therefore the Morse—Sard theorem developed
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in [26, Theorem 3] applie$3 then we get that for almost evekye (0,1 — 1/p) the setfx € S: ¥ (x) = —A}is a
Lipschitz submanifold oSiN‘k of codimension 1.

We proved the property of Lemma 26 for every stratum of dimension 1, . —,1¥On the other hand the result
is obvious for strata of dimension zero. Finally, the global number of stralx 8f) being countable, we conclude
easily. O

Let 1 € (0,1) be some constant satisfying the property of Lemma 26. For kactl, ..., N — 1}, we divide
the setz* (W) into three subsets as follows: L&tbe some stratum i * (W),

e we say thatS is stable if for every € S, ¥ (x) < —A;
o we say thatS is repulsive if for every € S, ¥ (x) > —A;
e we say thafS is a bifurcation stratum if there existse § andy € S such that’ (x) < —A and¥ (y) > —A.

We denote by k(W) (resp. byZ* (W) and resp. b)E,f(W)) the set of stable (resp. repulsive and resp. bifurcation)
strata of ¥ (W). Thus the singular seX (W) is partitioned into three subsets:

S(W)=Z (W)U X (W)U Zp(W).
Recall that for each stratuin X, (W), the set

{xes:wx) =-2}

is a (nonempty) Lipschitz submanifold fof codimension 1. Hence whenewgis a bifurcation stratum we can
define the Lipschitz manifold (with boundar§)by

= {x €s: lI’(x))—A}. (53)
We define the sef c X' (W) by:
S=xwmu |J S (54)
SeZL(W)

This set satisfies the following:
Lemma 27. The setS is closed ing2.

Proof. Both setsX, (W) and X, (W) are locally finite unions of strata of the singular &etW). From definition
of repulsive strata, this implies that the s&t(W) is closed ins2. On the other hand, by upper semicontinuity of
the function¥ each stratuns$ given by (53) is closed. Hence we deduce that theSSstclosed. O

Therefore the subset ¢? defined by
D:=2\S

13 Theorem 3iin [26] asserts the following:
Let U be an open subset &" and letN be a smooth compact manifold. LgtZ/ x N — R be a smooth function. Then the function
f:U — R defined by

) :=qnéllg{¢(x,q)}

satisfies the Morse—Sard theorem: That is, for almost everyf () the set{x € U: f(x) = A} is a Lipschitz submanifold dff of codimension
one. In particular the result applies also in the case of smooth compact manifolds with boundary.
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is an open dense set BfY. From now we follow more or less the method of proof that we used in [24] in order
to produce a stabilizing feedback which was continous on an open dense set. First we define a multivalued map
G1:D — B, as follows:

For everyx € D, we set

G1(x):={a € By: Ve € 0W(x), (f(x, ), L)< —A}.

It enjoys the following property:
Lemma 28. The multifunctionG1 has nonempty compact convex values and is lower semicontinuous onThe set

Proof. By construction, we have that for everye D, ¥ (x) < —A. Hence by (49), this means that the 6af(x)
is never empty orD. On the other hand, recall that for everyg D and for every; € W (x),

m
(for@),¢) =Y ai(fi(x), ¢).
i=1
Hence it is clear that for every € D, the setG1(x) is compact and convex. Let us prove the upper semicontinuity
of G1. We then have to prove that for any sequetgg, of points inD converging to some € D, and for any
a € G1(x), there exists a sequenge, ), of points inG1(x,) with limit «.
Let (x,), be a sequence i converging tox € D, and leta € G1(x). Define for everyx € D the function
gx:R™ - R by

VYa eR", gy(a):= max (f(x,a),¢).
cedW(x)

The functiong, is convex as a maximum of affine functions. We claim that for each integdrere existsy,,
G1(x,) such that

_ | g @?
& — | < 2 1—&7. (55)

We argue by contradiction; assume that for some integee have

5\2
Vo € Gi(x). & —eaf >2,/1- gx"/\(;x) =1 (56)

In particular this implies that ¢ G1(x,) and thatg,, (&) > — (in fact by upper semicontinuity of the multivalued
mapx — W (x), we can assume that, (&) € (—, 0)). In addition, sincey, (0) = 0 andG1(x,) # 9, (56) means
that there exista € G1(x,) with g, (@) = —A and such that

& —al > 1.

By Pythagorean Theorem, this implies that if we Set % € B,,, we have

||/3||<,/1—§- (57)

Note that by convexity of the functiop,,, we have thaig,, (8) < g, (@). Setf = - E12/4ﬂ which by (57)

belongs to the control sé,,. Therefore we conclude that

8x, (,3_) <

1 _
1_2/4 12/4gxn (@).
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By an easy calculus, the definition bfjives that

1 _
4mgxn (@)=-2x

which gives a contradiction.
In consequence, we proved that for each integethere existsy,, € G1(x,) such that (55) holds. By upper
semicontinuity of the multivalued map— 9 W (x), it is straightforward to show that

lim g, (a)=—Xx;
n—o0
which gives the result by (55).0
We can apply the well-known Michael's Selection Theorem (see [18] or [5, Theorem 6.5.7, p. 228]) to deduce

the existence of a continuous selectioi-) : D — B,, of G1 on the sefD. In particular, this means that for every
x € D we can define the Cauchy problem

(1) = f(x@), ea(x()), x(0)=ux. (58)
The Cauchy—Peano Theorem says that for eweeyD there exists some solutiorn(-) of (58) defined on some
interval [0, T] and such thak(¢) € D for everyr € [0, T]. (Note that O does not belong to the openBet The
construction ofx1(-) yields the following:
Lemma 29. Letx(-) be a solution of(58) defined on some intervfd, T]. Then for any < [0, T], we have
W(x(1)) < W(x(0)) — Ar. (59)

In particular the trajectory can be extended as longrds) does not converge to the sgt

Proof. By continuity ofa1(-), the functiord defined by,
Vte[0,T], 6(t):=W(x()

is locally Lipschitz on the interval0, T]. Thus by the classical Chain Rule for limiting subgradients (see [11,
Theorem 10.4, p. 62]), for everye (0, T) and for everyy € 3.6(¢), there existg € 9; W (x(¢)) such that

n={¢x0)=(¢, f(x@), a1(x®)))-

Hence by construction af1(-), we deduce that for evenye (0, T), 9.6(¢) < —X. This means that the function
1+ 0(r) + At is decreasing, which gives (58).
Actually, (59) says also that the trajectorg) remains in the set

Sw (W (x(0)) == {x e RN: W(x) < W(x(0))},
which is compact by properness ®f. In particular this means that as soorn¥') will belong to D, it will be
possible to extenda(-) on some new interval of the fori®, T + €] (for somee > 0). This proves Lemma 29.0

We conclude that i (-) is solution of (58) then there exists> 0 such that () belongs taD for anyz € [0, T)
and such that (T) € S;1° such a solution will be called a maximal solution of (58). We claim the following result:

14 Here we use the fact that a Lipschitz functipnR — R is decreasing iff for every € R and for every; € a7 g(¢),

¢ <0

15 Notice that since the dynamig¥x, a1(x)) is bounded on the compact level-$gt (W (x(0))), the limit lim, _, 7 x(¢) exists.
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Lemma 30. Letx(-) be a maximal solution of58) defined on the intervdD, T] such thatx (T') # 0. Then we have

¥ (x(T)) = —A. (60)
Proof. By semiconcavity of the functio (see Proposition 10) neaKT) # 0, there existe > 0 such that for
any; € 0P W(x(T)), we have

2

W) + WD) +o|y—x(D|" = (¢ y—x(D)
whenevety is in a neighborhood of (7). We deduce that for some< T and close td’, we have

W (x(T)) = W(x(s)) + o | x(s) = x(T)||* = (—¢, x(s) — x(T)). (61)
But Lemma 29 asserts that

W(x(t)) — W(x(s)) < —A(s—1)

whenever O< s <t < T. Hence by continuity oV we deduce that
2

(£, x(T) —x(8)) S W(x(T)) = W(x(s)) + o |x(s) — x(T) ||2 <=MT —s)+olx(s) —x(T)|". (62)
Now by convexity of the sef (x(T'), B,,) there exists a sequen¢s,),, anday in B, such that
lim X(TT)_—X(S) = f(x(T).ar). (63)
n—o0 — S

Consequently, passing to the limit for the sequefigg, in (62), we obtain
(¢, F(x(T),ar)) < —A.
We can repeat this argument for ale 3° W (x(T)), that is,
Ve e d"W(x(D)), (¢, f(x(T),ar)) < —A.
Sinced” W (x(T)) = dW (x(T)) (by semiconcavity o), this means that
¥ (x(T)) < —2.
On the other hand;(T) does not belong t®. By (54) this gives¥ (x(T)) > —A. Hence we conclude. O

In fact, we could now prove that the feedbaek(-) stabilizes the system (1) in the sense of Carathéodory (as
we did in [24]). However the feedbadk (-) does maybe not possess the properties that will be needed in the proof
of Theorem 5. For example, if is given inS, we do not know what is the set of poiniss D such thate(T) = x
for someT > 0; this set could have positive measurditi! That is the reason why we are going to detail how we
can modify the feedback; () in a neighborhood of in such a way that we understand exactly the set of points
in x € D such thatc(T') € S for someT > 0. For that, we denote h§, the set ofv € S such thaw (x) = —A, and
we denote byls :RY — the distance function to the s&t

Letx € S\ S,. Sincex belongs to the stratificatio® (W), there exisk € {1, ..., N} and a unique straturfi
of dimensionN — k such thatc € S. Let us first assume that the strat$his isolated inS, that is such that does
not meet the closure of another stratum3dfW) meetingS. In particular this means that on every fa€ef the
k-simplexa W (x), we have

¥ (X) =maxmin(f(x,a), )< —A.
C€F geB,
SetC := dW (x) and denote by, ..., Fiy1 its k + 1 faces of dimensiok — 1. Moreover seK := f (i, B,,); this
setK is compact, strictly convex in the subspace generated by it, and symmetric with respect to the origin. Denote
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by H¢ the unique subspace of dimensioruch that there existse C which satisfie<” C ¢ + H¢ and defineE¢
to be the vector subspace®f’ which is spanned by (note thatE- has dimensioi + 1 if 0 ¢ C and dimension
k otherwise). Recall that by semiconcavityW@f, the normal cone to the stratusnat the pointc equals

N;zS = Hc.
Define Pg,. ‘RN — E( to be the orthogonal projection dir in RY and set

K = P (K).

The setk has the same properties &s Moreover by construction, we note that for everg K and for every
¢ € C,we have

(v,¢) = (P () + (v— Pg.(v)), &) = (P (v), ¢)

sincev — Pg.(v) L C in RN . Before continuing we recall a notation which will used frequently in the sequel. If
A is a subset oR" thenA~ is defined by

At :=|peRM: g (g, p) is constant om }.
We have the following lemma:
Lemma 31. Assume tha¥ (x) < 0. There exists an affine hyperplafeof dimensiork in E¢ which intersects the
vector lineC* at a unique point and such that the convex&et H has dimensio and satisfies

Yw € 3(K N H), 3¢ € C such that(w, ¢) < —A. (64)
Proof. Note that the assumptiof(x) < 0 implies that Gz C, which gives thatc is a hyperplane i . Recall
that by construction of the sét, we know that

maxmin{w, ¢) = ¥ (x).
¢eC wek

Since the stratun is isolated inS, the concave function — min, g (w, ¢) attains its maximum o@’ at some
¢ which does not belong to a face 6f This means that belongs to the relative interior @ in Ec and satisfies
for everyw € K,

(w,¢) € [W@), —¥ ()] C(—A, M. (65)
For each face; of thek-simplexC, there exista; K such that
(w[,€> g —)\,,Vé’ € Fi~

SetW :=co{ws, ..., wir1} C Ec; we claim thatW is a simplex of dimensiok. We argue by contradiction.

If the dimension ofW is strictly less thark, then there exists an affine spatef dimensionk — 1 such that
W C L. SinceL" is a vector plane irEc, there exists: € Hc such that the map — (w, u) is constant oriv.
Sinceu € Hc andc¢ is in the interior ofC, there exists > 0 such that + ru belongs to some facg; of C. This
gives by construction ob;,

(wi, & +tu) <=2,
which implies by (65) thatw;, u) < 0. Finally sincex € L+ we deduce that

(w,u) <0, YweW. (66)
On the other hand, there exists atse- 0 such that the vectar — t'u is on a faceF; of C. By (65) we get that

(wj,u) >0
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which contradicts (66). Hence we proved thtis ak-simplex.
Prove now thatv N C* is a singleton. Again we argue by contradiction.
If W N Ct is empty, then this means that there exists Hc such that

(w,u) >0, YweW. (67)

As before since belongs to the interior of , there exists > 0 such that is on a face oW . This means that there
existsi € {1, ..., k+ 1} such thatw;, ¢ + ru) < —xi. By (65) we deduce thatw;, u) < 0 which contradicts (67).
This proves that¥ N C* is nonempty. Furthermore, W meetsC in two points, then a face d¥ meetsC+
which is impossible by construction. As a matter of fact for every facef the k-simplex W, there exists an
extreme pointr € C such that(w, ¢r) < —A for anyw € F. Hence if somew € C* then this would imply that
forany¢ € C, (w, ¢) = (w, ¢r) < —A which is impossible.

Denote byH the unique affine space of dimensibmivhich containsW and prove that it satisfies the required
properties. First sincé/ C Kisa simplex of dimension, it has dimensiork. Moreover it intersect€* at a
unique point. Finally the set ab € H such that there existse C which satisfiegw, ¢) < —A is the complement
(in H) of the convex open set

{weH: (w,¢)>—4, Ve eC}.
But this set contain® N C+ and does not meet the boundary¥sf This concludes the proof of Lemma 310

We can improve this lemma & () = 0. In this case, the hyperplarf¢ is not affine; it passes through the
origin.

Lemma 32. Assume that (x) = 0. There exists a vector hyperpla¢ of dimensiork in Ec which does not
contain the vector lin€+ and such that the convex sk&tN H has dimensio and satisfies

vw € 3(K N H), 3¢ € C such thatjw, £) < —A. (68)
Proof. We distinguish two cases:

First case: 0c C. N
SetK := Py.(K) where Py, denotes the projection afic. Note that for anyw € K, we have

(w,¢) =Py, (w), ).
As before since the stratufis isolated inS, for each faceF; there existsv; € K such that
(wi, &) <—A, V¢€eF.

SetW :=co{wz, ..., wkt1}; we claim thatW is a simplex of dimensiok. We argue by contradiction.

As before if it is not the case, this means that there exists an affine épacH¢ of dimensionk — 1 which
containsW. We deduce that there exists# 0 in L*. Since 0 belongs to the interior @f, there isr > 0 such that
tu is on a facer; of C. This implies that

(wi,u) < —7 <0
which gives that

(w,u) <0, YweW. (69)
But there exists alsd > 0 such that-+'u is on a faceF ;. This gives that

(wj,u)>0

which contradicts (69).
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By the same method we can prove that @ . Consequently we deduce thEtN He is a k-simplex which
contains the set ab € K such that

(w, ) <—A, V¢eC.

Hence we conclude that for eveuye 3(K N H, there existg e C such thatw, ¢) < —x. From definition ofK it
is clear that there exists an vector hyperpl&hef dimensionk with Py.(H) = Hc such thatk N H is a convex
set of dimensiort and such that (68) is satisfied.

Second case: @ C.

In this case there existse C such that

(w,z) =0, YweK.

This means thak is included in the vector hyperplarié := (¢)*. If we setC := Py (C) where Py denotes the
orthogonal projection o7, then we see that for evetye C,

(. &) =(w, Pu()), VYwek.

So we can apply the first case. This concludes the proof of Lemmar32.

Lemmas 31 and 32 permits us to show that our control system admits near each point of an isolated stratum of
S a control which make® anddgs increasing. Let us state the result precisely in the following lemma.

Lemma 33. Letx € S\ S, and letS be a stratum of dimension— k (k € {1, ..., N}) which is isolated inS and
such thati_eS. Then there exist$; > 0 such that for every € By (x, §z) \ S C 2 satisfyingprojs(x) € S, there
existsa € B, which satisfies

A
(fle,@),¢) <=3, VEeaw (), (70)
and

(f(x,@), ) =8z, V& €dds(x). (71)

Proof. SinceS is a smooth manifold with boundary 2, the distance function t6, denoted byls is of classC?t
on a neighborhood of minusS and satisfies for every point¢ S of this neighborhood

x —p(x)
lx —pC)ll
where p(x) is defined byp(x) := projs(x) (we refer the reader to [12] for the proof of this result). Sigce S,

there exists some constaht- 0 such thatiy andds coincide on the balBy (x, §). In particular, this implies that
for everyx € By (x,68) \ S,

Vdg(x) = € Npyw)S,

x—pkx) i
lx —pColl
On the other hand, recall that the functiBhis semiconcave in the baBty (x, §). By Proposition 11, this means

that there exists some constant= 0 such that for every pair of points y € By (x, §) and for anyz, € aW(x),
¢y € dW(y), we have

E(x):=Vds(x) = Npw)S. (72)

(=¢y + ¢y —x) = —olly — x|
By (72) we deduce that for artye dW (x) and for any;’ € W (p(x)) we have,

(¢.£@) < (¢ 6(x)) + ods(x). (73)
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Notice that by continuity off and by smoothness of the manifaid we just need to prove the existence of some
positive constand; such that (70) and (71) hold wheneweis close tox and such thap(x) = x. As before, we
define the elements, K, E¢, He andk for the pointx. We distinguish two cases:

First case:¥ (x) <O.

Let x € By (x, ) such thatr # x and p(x) = x. The vecto (x) # 0 belongs taH¢ hence by Lemma 31 there
existw e 8(1? N H) and¢ > 0 such thatPy,. (w) = t&(x), which means thatw, £(x)) = tIE(x) |2 = . On the
other hand, Lemma 31 says also that therg’is 9W (x) such that{w, ¢’) < —A which gives by (73) for every
¢ edW(x),

(wv C) = (ts(-x)v é‘) + <w - ti:(x)v {)
=1{(x), )+ (w—1E(x), ') (sincew —t&(x) L He)
HE), &) +1ods(x) +(w — t5(x), ') < (w, ¢') + tods(x)

<
< —A+4otds(x).

We conclude easily.

Second case? (x) =0.

Since the vecto€ (x) # 0 belongs toH¢, Lemma 32 says that there existe B(E N H) andr > 0 such that
Py (w) =t&(x), which means thatw, £(x)) = ¢. We conclude as before.o

The same results holds for strata which are not isolated.

Lemma 34. Assume th@ =2and letx € S\ S,. Then there exist& > 0 such that for every € By (x, 8z B) \
S C £2, there exists € B, which satisfies

A
(flx ), )< —5 Ve eaww), (74)
and

(fr,e),8) =8z, VEe€dds(x). (75)

Proof. Letus assume thate S\ S, C R?. Necessarily the point belongs either t&&(W) either toX2(W), but

since the strata of dimension one are isolatefl,iwe ever proved the result in that case; hence we can assume that
% belongs tox?(W). Moreover notice that by construction bandsS the pointx cannot be isolated i, thus we

are in the situation of Fig. 1. This means that in a little i#ltentered at, the singular set oW consists in one
stratum of dimension 0, the singletéi}, plus three strata of dimension one, that is three submanifald$, S3

of dimension one which join at (we refer the reader to comments concerning Fig. 1 for a complete description of
this situation). As before we denote by, ¢2, ¢3 the three extreme points of the convex compaciGset W (x)

and we denote bR 1, Rz, R3 the three regions where the functiéhis smooth in53. In addition since the distance
functionds is smooth on a neighborhood of each stratijinwe note that, changing the b#lif necessary, we can
assume that the generalized gradierd @fwrites for everyx € R4 (resp. for every € R, and for everyx € R3),

§2(x) if ds,(x) < dsy(x),
dds(x) = { &3(x) if dss(x) < ds,(x),
co[&2(x), E3(x)]  if dg,(x) =ds,(x),
where
Ep(x) 1= x — projg, (x) and Es(x) = X — projg,(x)

[lx — projg, (x| llx — projg, (x|
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(respectively with the corresponding formulas fom the two other regions). Let us now prove our result; since
the strataSy, S», S3 are not necessarily included & different cases appear:

First case: the three straq, S», S3 are inS. o

Let us prove that there exisés > 0 such that for every € R1 there existsx € B,, for which (74) and (75)
hold.

By semiconcavity of the functioW’, the upper limit of the set8ds(x) whenx € R4 tends tax is included in
the set

co{ fo—01 {3—-10 }

IC2 = 1l Iz — all
Therefore it is sufficient to prove that there exigts B,, such that
(f(x ), )< =2, (76)
and
(f(X,),6)>0, V&elt2—1¢1,¢3— 81l (77)

But since the strat&, andSs belong toS, every controkx € B,, such that f (x «), {1) < —A satisfies
(f(x, o), {i) >—), Vi=1,2,

which implies
(fr,),&)>0, V&elto—1t1,63— Gl

In conclusion we get that there existse B,, which satisfies (76) and (77). The same conclusion hold for the
regionsRy andR3; we conclude easily.

Second case: one of tlfe's is not inS.

Without loss of generality we can assume tiatdoes not mee§. If x € B is in the regionR; then the first
case gives the result. Otherwise settiRg= R U R3 U S1, we note that the upper limit of the set® (x) when
x € R tends tox is included in the segmeif$o, 3] and that the upper limit of the seigs(x) whenx € R tends
to x is included in the set

co{ i1—C  f1—1¢3 }

121 = ¢2ll” 1161 — gl
Therefore it is sufficient to prove that there exists B,, such that
(fE ), L) <=1, Vel gl (78)
and
(f(x.6)>0. VEe[t1—¢2.00— 13l (79)

But since the stratur§; is not inS, there exists: € B, such that
(f(F, ), ¢) <=1 Vel gl

In consequence since both strataandS3 are inS we deduce that for suah,
(f(x,@),8)>0, V&elt1—¢2, 61— g3l

This conclude the proof of the second case.

Third casetwo of the S;’s are not inS.

Without loss of generality we can assume thiaand S3 do not meetS. Notice that since, (resp.S3) does not
meet the sef, there exists some contrep € B,, (resp.as € B,,) such that

(G a2). )< —A, V¢ el gl
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(Respectively

(f(x,a3).¢) <=2, V¢ e[t gal)
On the other hand, since the strat§mmeetsS, we have

(f (&, @2), 3= ¢2) > 0.
(Respectively

(f &, 3), &2 —t3) > 0.)

This implies easily that Lemma 34 holds in the third case.

In order to conclude the construction of our feedback, we need to define the concept of bifurcation point of a
closed-loop system.

Definition 35. Assume that we are given a closed sulsSeff €2, an open sel¥ C £2 containing? and a feedback
a(-):U — B, which is continuous ot \ F and such that the corresponding closed-loop system

X = f(x,a(x)), (80)

has always local Carathéodory solutiondAr(that is for any initial state id/). Then a pointc in F is called a
bifurcation point of the feedback(-) if there existr > 0 and a Carathéodory trajectary-) of (80) defined on
[0, t] such that

x(t) =x.

Using a locally finite covering of the sét\ S, by the balls given by Lemma 34, we deduce that we can construct
in a neighborhood of in £2 a feedback which maked decreasing and with nice properties of bifurcation (see
lemma below and Figs. 2, 3). Furthermore, we note that the additional assumption we made on the smoothness of
the vector fieldsf1, ..., fi, isinfact not necessary. Actually, the smoothness offitehelped us, by Lemma 26, to
truncate easily and properly the bifurcation strata of the singula¥ ¢Bt) into Lipschitz manifolds with boundary,
and then to get a nice sét If the vector fields are only assumed to be locally Lipschitz, this truncation can still
be done but in a different way. In any case, based on Lemma 34 and constructing meticulously a feedback step by
step in a neighborhood df, we can prove the following:

Lemma 36. Assume thalV = 2. There exists some open neighborhdbdf the setS, a closed subsef of S and
a feedbackez(-) : V — R™ such that the following properties are satisfied

(i) the setS is closed ins2 and stratified by strata of dimension less thsin- 1;
(ii) the feedbacle(:) is smooth oV \ S;
(iif) for everyx € V\ S, we have

A
(f (v, @2(0),¢) < =5, V& €W (x);

(iv) for everyx € V, the Carathéodory solutions 6f= f(x, @2(x)), x(0) = x exist locally and satisfy

A

W(x(@®) < W(x(0)) — St
for anyz > O such thate(z) € V;

(v) for each stratuns of S of dimensiork (k € {1, ..., N — 1), the set of bifurcation points af(-) in S is a finite
union of smooth connected submanifolds of dimension strictly lesgtp@inenever it is nonempty);
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(vi) if we denote byS,, the set of bifurcation points afa(-) in S, then for every € S, there existss > 0 such
thatx + 8B C V and such that for every §b N (x + 8 B), the Cauchy problemd = — f(x, a2(x)), x(0) =y
admits locally a unique solution which can in addition be defined on the intgdva); moreover the flow of
this dynamical system is continuous&nn (x + 8 B) x [0, §).16

S S

Fig. 2. Bifurcation of the feedback near an isolated stratum.

Fig. 3. Bifurcation of the feedback in the general case.

16 we call flow of the dynamical system= — 1 (x, a2(x)) on §1, N (x+68B) x [0, §), the functiond :5;, N(x+68B) x [0,8) — V defined by
0(y, 1) := x(t) wherex(-) is the unique solution of = — f (x, a2(x)), x(0) = y.
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In order to obtain our stabilizing feedbaak-), we now pasterz(-) to our first stabilizing feedback (-). Let
W be some open ne|ghborhood$n’such thatV c V; we proceed as follows:
SetD := 2\ S and define the new multifunctio@ : D — B,, by

a1(x) if x¢V, _
G(x):=1 {eeBy: Ve edW ), (f(x,a),¢)<—A/2} ifxeV\W,
a2(x) if x e W.

Sincea; () andaz(-) are continuous and sineg is lower semicontinuous oW \ W (by Lemma 28 applied with
A =1/2),itis clear that the multifunctio is lower semicontinuous oR. Hence by Michael’s Selection Theorem
it admits a continuous selectiar(-) on D which satisfies by Lemma 36 (iii) and by construction®andas (+),

~ A
VxeD, Ve e dW(x), (f(x a2(x)).¢)< —5

Therefore up to regularization the feedbagk) by convolution on) \ W if necessary, we can assume th&) is
smooth orD and satisfies

~ A

VxeD, Ve edW(), (f(x.02().c)<—7.

Consequently by Lemma 36(iv) and by Lemma 29 (applied with A/4), the Carathéodory trajectorige$-) of
the closed-loop system= f(x, a(x)) satisfy for anyr > 0,

W (x(1)) — W(x(0)) < —%t.

From properties o, this proves easily that the feedback) is stabilizing in the sense of Carathéodory. Further-
more by construction, the bifurcation pointswf) correspond exactly to the bifurcation pointseef(-). In other
terms, we have proved the following result which will be fundamental for the proof of Theorem 5.

Theorem 37. Assume thal = 2. If the systenl) is GAC then there exists a feedback) : RY — B,, and a set
S c RM \ {0} which satisfy the following properties

(i) the setS is closed ins2 and stratified by strata of dimension less thsin- 1;

(i) the feedbacke(-) is smooth in2 \ S;

(i) the closed-loop systein= f(x, a(x)) is GAS in the sense of Carathéodpry

(iv) for every stratun® of S of dimensiork (withk € {1, ..., N — 1}), the set of bifurcations points ef(-) in S is
a finite union of smooth connected submanifolds of dimension strictly les& {@drenever it is nonempty);

(v) if we denote byS, the set of bifurcation points ai(-) in S, then for everyx € S, the Cauchy problem
X =—f(x,a2(x)), x(0) = x admits locally a unique solution which can in addition be defined on the interval
[0, 00); moreover the flow of this dynamical system is continuouS;ox [0, c0).

We are now ready to prove the main result of the paper.
2.2. Proof of Theorem 5

As we said, Theorem 5 is a direct consequence of Theorem 37.¥er@, denote by the flow of the system
x=—f(x,a(x)) onS, x [0,00). For each stratun§ of the setS, we considelS;, defined by

Spi=10(x,0: xeSNS,, 1>0}.

By (iv) and (v) of Theorem 37, this set is a submanifoldRdf of dimension less thai — 1. Thus if we consider
S to be the union of all thé, it has measure zero (since the number of stratd of at most countable). And
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moreover by (i) everyc € RY \§ is stabilized to the origin without meeting the g&tTo conclude the proof of
Theorem 5, we need the following lemma.

Lemma 38. There exists some functign RY — [0, co) which is of clasg? onR" \ {0}, continuous at the origin
and such that

() p(0)=0;

(i) p(x) =0 x€S;

(i) Vpo(x)=0, Vx € S.

Proof. The closure of each stratushof the setS is a smooth submanifold with boundary. Hence the function
x > ds(x)?

is of classC* on a neighborhood of and satisfies
VId(x)=0, VxeS.

This means that for each stratuhof the setS, there exists a functiohg : RY — [0, 1] of classC! which satisfies

hs(x)=0&=x€S,
Vhs(x)=0, VxeS.

Since the sef is a locally finite union of such strata i2 = RN\ {0}, this means that on each open suliet 2
which is relatively compact if2 (i.e. such thatD C £2), the setS is included in finite union of stratéy, ..., S,.
Define onO the functionky by

V4
VxeO, ko) :=xI]Jrs@ (< lxl.
i=1
It is straightforward to show that the functidip satisfies the assertions (ii) and (iii) @. Consequently, we
conclude by pasting together the different functidns by a smooth partition of unity subordinate to a locally
finite (and relatively compact) covering &. 0O

Now set for every € RV,

a(x) = px)a(x).

The feedbacl(-) is clearly continuous ofR"Y and of classC! wherew(-) is smooth, that is outsidg} U S.
Besides sinc& p = 0 onS, we get thati(-) is of classC! on the setS. Furthermore since the scalar function has
positive values outsidg} U S, it is straightforward to show that the closed-loop system

X = f(x, &(x))
is AGAS, which completes the proof of Theorem 5.

3. Additional comments on the two preceding sections
3.1. Control systems with drift

We could wonder if Theorem 5 holds in the general case of control system with drift, of the form

i=fx,0) = fox)+ ) e fi(x), (81)

i=1
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where fo, f1, ..., fin are locally Lipschitz vector fields dR" and where the contral is in B,,. The answer is no!

This gives us the opportunity to draw attention to the importance of the Lyapunov stability in the conclusions of
Theorem 5. The absence of drift permitted us to vanish the dynamics at the points of discontinuity of the repulsive
stabilizing feedback and hence to avoid the escape of the state far from the equilibrium. However in the case of a
control system with drift, we cannot vanish the dynamics and then we cannot insure the Lyapunov stability of the
smooth AGAS feedback. In fact, one sees easily that Theorem 37 remains in the case of GAC control systems with
drift. Hence it is natural to ask the following:

Open Question. If the system (81) is GAC, does there exist a smooth (outside the origin) feedbacR” — R™
such that for almost every € R, the solution of the closed-loop system

£(0) = fo(x() + D _ei(x(®) fi(x(®). x(©0)=x

i=1
converge to the origin astends to infinity?

3.2. Control systems on manifolds

All the results that we develop in the present paper remain valid on smooth manifolds. If we want to prove
Theorems 3 on a smooth manifold, we have to apply the same procedure of regularization as the one given in
Section 1.4. Let be given a semiconcave control-Lyapunov function for the system (1) on a smooth nidnifold
(of course this means that (1) is defined by vector fields defined on a smooth mawifosdarting from a open
cube included in some chart, we regularize step by step the CLF everywhere. From Theorem 3, we can prove the
existence of AGAS feedbacks by the construction given in Sections 2.1 and 2.2. Since we do not want to write
these results and hence to have to introduce the natural notions of viscosity solutions and semiconcavity on smooth
manifolds, we prefer stopping our remark here. We notice that if the reader just wants to develop our results on a
smooth submanifold of the Euclidean space (which is indeed sufficient by Whitney’s embedding theorem), he can
read the paper of Sontag [32] which explains how to extend a given system to the ambient space and then to use
the known results in the case of the Euclidean space.

3.3. Invariance, repulsivity and last comments

In Theorem 37, we constructed a stabilizing feedba¢k (in the sense of Carathéodory) which is smooth
outside a certain closed s&t(closed inR" \ {0}). As we saw, the séR" \ S is not necessarily invariant with
respect to the closed-loop system givergy); some bifurcation singularities can appear along the trajectories of
the system. We can wonder if it is possible to construct a closefl BeR” \ {0} and a stabilizing feedbaak(-)
such that the sé®” \ S is invariant under the dynamids= f(x, (x)). The answer is probably no; Theorem 37
allows us to construct such an invariant couffe ) but the setS has no reason to be closed. Let us state the
following definition (see [4]):

Definition 39. The closed-loop system (2) is said to be almost (smoothly) exponentially stable in the region
R c RY if the feedbacky(-) is smooth” on R and if the following holds:

(i) for all initial statexp € R the closed-loop system (2) admits a unique solution and this solution rem&is in
forallr > 0;

17 We have to make clear what we mean by smooth if thés& not open. We say that(-) : R — B,, is smooth if there exists an open set
‘D which containgR and a smooth functioa’(-) : D — B, such that/(-) = a(-) onR.
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(ii) there exists a continuous positive definite functign RY — R such that for allr > 0 one has, along the
trajectories of the closed-loop system,

W (x(t)) < ¥(xo) €.
As we said above, Theorem 37 leads naturally to the following:

Theorem 40. If the systen(1) is GAC then there exists a dense suli8et RV of full measure and a feedback
a(-): 2 — B, such that(the closed-loop systef) is almost exponentially stable.

Proof. According to the proof of Theorem 5, we set:=R" \ S and the result follows. O
As we said above, the regid that we construct may not be open. Hence one question arises:

Open Question. Under what condition on the GAC control system (1) does there exist an open de3@fket
RN \ {0} associated with a smooth feedbagk(-) : D — R™ such that the closed-loop systeim= f(x, ap) is
GAS at the origin and such that is invariant with respect to this system?

In [24], we saw that some control systems possess a stronger property of stabilizability. There are systems which
admit a stabilizing feedback in the sense of Carathéodory which is smooth on an open dense set of full measure
D c RN\ {0}, and such that every Carathéodory solution of the closed-loop system evolRdsirany positive
time (this property is stronger than the invariancé)f We say that such control systems possess a smooth repul-
sive stabilizing (SRS) feedback. In [24], we showed some control systems which cannot have SRS feedbacks and
we gave some sufficient conditions on the CLF of a control system which imply the existence of SRS feedbacks.
The problem of the existence of SRS feedbacks seems quite difficult; we refer the reader to [27,28] for first results
on this problem.
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Appendix A

Here we present an important corollary of a result concerning semiconcavity, which was proven by Alberti,
Ambrosio and Cannarsa in [2] (the reader is also referred to the recent book on semiconcavity written recently by
Cannarsa and Sinestrari, see [8]). Given a semiconcave function

u.2 — R,

they established a link between the Boulingand’s contingent cone to the singulaisett x € 2, and the
generalized gradierétu(x). Below, we prove this result in the very particular case of semiconcave function with
nice singular set.

Assume that there existse {1, ..., N} and a sefS C £2 which satisfy the following properties:

(a) S is a smooth submanifold (without boundary) of dimenslor-  in £2,
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(b) there exist& + 1 maps¢1(-), - - ., ¢+1(-) which are smooth o and such that for every € S,

du(x) =cof1(x), ..., Gry1(x)},
(c) for everyx € S, the convex sedu(x) has dimensior.

If Aisa given setiRY, we denote byd' the set defined by
At :=|peR": g (g, p) is constant om }.

The following result follows.

Proposition 41. For everyx € S,
TS = du(x)t.

Proof. Fix p € TS and prove thap € du(x)*. Let ¢y, ¢ € du(x); we have to prove thaty, p) = (&2, p).

First, note that without loss of generality we can assume|th#t= 1. By definition of the tangent space, there
exists a sequende,), in S such that

Xp — X
).
n—00 ||x, — x||

Moreover by (b), there exists some sequeqgg, which converges t@, in RY. In addition by Proposition 10,
there exister > 0 and some neighborhoddof x such that

—u(@) +u() +ollz—yI> = (=¢, 2 - ),

forall y,z € V and¢ € du(y). Applying this inequality withy = x, z = x,, and¢ = ¢1 gives for each,
—u () +u(x) + 015y — x> > (g1, 3, — x).

Now applying the same inequality with= x,, z = x and¢ = g,, gives for each,
—u(x) +uen) + 0 l1x = x5 1> > (—gn, x — xa).

Summing both inequalities and letting— oo implies

(¢2, p) < {41, p).

Inverting the roles played by and¢z, we conclude.
Prove now thabu(x)* c T, S. By (c), du(x)" is a vector subspace of dimensidh— k, hence it coincides
with 7, S. The proof of Proposition 41 is completer
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