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Abstract

Given a globally asymptotically controllable control system, we construct a control-Lyapunov function which is st
semiconcave; that is, roughly speaking whose singular set has a Whitney stratification. Then we deduce the existence
feedbacks which make the closed-loop systemalmostglobally asymptotically stable.
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Introduction

This paper is concerned with the stabilization problem for control systems of the form

ẋ = f (x,α) :=
m∑

i=1

αifi(x), (1)

wheref1, . . . , fm are smooth vector fields onRN and where the controlα = (α1, . . . , αm) belongs toBm the closed
unit ball in R

m. We focus on control systems which are globally asymptotically controllable.

Definition 1. The system (1) is said to be globally asymptotically controllable (abreviated GAC) if the two fo
ing conditions are satisfied:
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1. (Attractivity) For eachx ∈ R
N there exists a controlα(·) :R�0 → Bm such that the corresponding trajecto

x(·;α,x) tends to 0.
2. (Lyapunov stability) For eachε > 0, there is aδ > 0 such that for eachx ∈ R

N with ‖x‖ � δ there exists a
controlα(·) :R�0 → Bm such that the corresponding trajectoryx(·;α,x) converges to the origin and satisfi
‖x(t;α,x)‖ � ε for all t � 0.

Given a GAC control system of the form (1), the purpose of the stabilization problem is to study the p
existence of a feedbackα(·) :RN �→ Bm which makes the closed-loop system

ẋ = f (x,α(x)) =
m∑

i=1

αi(x)fi(x), (2)

globally asymptotically stable. In the last twenty years this subject has been the focus of considerable re1

It is well-known that continuous stabilizing feedbacks do not exist in general; there are globally asympto
controllable control systems which admit no continuous stabilizing feedbacks. The first example of such a
was given in 1979 by Sussmann in [33]. Then, in 1983 Brockett [7] produced a topological necessary co
which makes obstruction to the existence of such regular feedbacks; this condition provided a number
terexamples such as the famous nonholonomic integrator. Moreover in the case of affine control systems
related the existence of continuous stabilizing feedbacks to the existence of a smooth control-Lyapunov f
This latter result showed that a GAC affine control system which does not admit a continuous stabilizing fe
cannot have a smooth control-Lyapunov function. Therefore all these results plead for the design of disco
stabilizing feedbacks and also for a new concept of nonsmooth control-Lyapunov function. Many autho
as, Sussmann [33], Clarke, Ledyaev, Sontag and Subbottin [10], Ancona and Bressan [3], or Rifford [21
proved the existence of discontinuous stabilizing feedback laws under general assumptions. Among th
[10,21,22,24] made use of a nonsmooth control-Lyapunov function. In the present paper, our aim is to
further the work which was initiated in these papers and to establish a strong link between the presence
smooth control-Lyapunov function and the construction of discontinuous stabilizing feedbacks. Moreover
present a new kind of smooth stabilizing feedback which is of interest in the stabilization problem.

Definition 2. 2 A control-Lyapunov function (abreviated CLF) for the system (1) is a continuous functionV :RN →
R which is positive definite, proper and such that it is a viscosity supersolution of the following Hamilton–
equation:

max
α∈Bm

{−〈f (x,α),DV (x)
〉}− V (x) � 0. (3)

In 1983, Sontag [30] introduced the framework of nonsmooth CLF and proved the equivalence betwee
asymptotic controllability and the existence of a continuous control-Lyapunov function. Later, revealing t
portance of semiconcavity in the design of discontinuous stabilizing feedbacks (in the spirit of [10]), we ex
Sontag’s Theorem and proved that every GAC control system admits a continuous CLF which is semi
outside the origin (see [23]). We utilized the semiconcavity property in order to construct feedbacks whic
the closed-loop system globally asymptotically stable in the sense of Carathéodory. Our construction pro
simple way to design stabilizing feedback laws which were continuous on an open dense subset of the sta

1 We recommend to the reader the historical accounts of Coron [13] and Sontag [31].
2 This definition takes into account the exponential decrease condition that we introduced in the framework of nonsmooth control-L

functions. Moreover we recall that the property (3) is equivalent to the following in terms of proximal subgradients

∀x ∈ Ω, ∀ζ ∈ ∂P V (x), min
α∈Bm

{〈
f (x,α), ζ

〉}
� −V (x).
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but it does not fully reveal the dynamics of the closed-loop system around the singularities. In [25], we s
that the exact comprehension of the singular set of a semiconcave CLF allows us to construct discontinuo
lizing feedbacks for which we can classify the singular points. Unfortunately, we were only able to produc
a result in dimension two; our construction was related to the natural stratification of the singular setΣ(V ) ⊂ R

2

into a disjoint union of submanifolds of dimension 0 and 1. Such a stratification ofΣ(V ) is not imaginable in
dimension greater than two. As a matter of fact, the singular set of a semiconcave function coinciding loca
the singular set of a concave function, we may let the reader imagine concave functions with very bad
sets. This thought induces us to introduce a better type of semiconcavity. Our idea is to further regularize
concave control-Lyapunov function into what we call a stratified semiconcave CLF which is, roughly spe
a semiconcave function whose the singular set is a Whitney stratification (as introduced in [16]). We pr
following:

Theorem 3. If the system(1) is GAC then there exists a control-Lyapunov function which is stratified semicon
on R

N \ {0}.

As we shall see in Section 2.1, the knowledge of this new kind of control-Lyapunov functions facilitat
construction of discontinuous stabilizing feedbacks. In dimension two, it allows us to detail the nature
singularities and then to better understand the behavior of the closed-loop system. As a consequence, it e
to construct a new kind of smooth stabilizing feedback.

Definition 4. The closed-loop system (2) is said to be almost globally asymptotically stable at the origin (abre
AGAS) if the two following properties are satisfied:

(i) (Attractivity) For almost everyx ∈ R
N , the solution of (2) starting atx converges to the origin.

(ii) (Lyapunov stability) For eachε > 0, there existsδ > 0 such that for eachx ∈ R
N with ‖x‖ � δ the solution of

(2) starting atx satisfies‖x(t)‖ � ε for all t � 0.

This kind of asymptotic stability was recently studied by Rantzer who produced a converse Lyapunov-l
orem. Indeed he related the almost asymptotic stability to the existence of a density function which plays
of a Lyapunov function for the closed-loop system. In addition, he proved in a first paper [19,20] some in
ing consequences of the existence of such a density function. In the present paper, our approach is to c
stratified semiconcave control-Lyapunov function in order to construct an almost globally asymptotically s
ing feedback. Our CLF does not correspond in any case to Rantzer’s density function but it allows us to
explicitly an AGAS feedback. Our second main result is the following:

Theorem 5. Assume thatN = 2. If the system(1) is GAC then there exists a feedbackα(·) :RN → R
m (with

α(0) = 0) which is continuous onRN , of classC1 outside the origin and such that the closed-loop system(2) is
AGAS.

In fact, this results holds in any dimension. The construction of the feedback that we present in this p
clearly detailed in the case of dimension two. Of course, this construction can be adapted in greater dimen
it would be much more intricate. Furthermore, at the end of the paper, we show that Theorem 5 can be e
in the framework of manifolds, we discuss what happens in the case of control systems with drift, and fin
compare almost global asymptotic stability with other kinds of asymptotic stability.

Notations: Throughout this paper,R denotes the set of real numbers,‖ · ‖ the Euclidean norm ofRN , BN the
open ball{x: ‖x‖ < 1} in R

N , B the closure ofB andB (x, r) = x + rB (resp.B (x, r) = x + rB ) the ball
N N N N N N
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(resp. the closed ball) centered atx and with radiusr . In additionS
N−1 denotes the(N − 1)-dimensional sphere i

R
N andSN(x, r) denotes the sphere centered atx with radiusr in R

N . If A is a subset ofRN then int(A)denotes
the interior ofA and coA its convex hull. For any positive integern, Ln denotes Lebesgue measure of dimens
n and ifK is a finite set then|K| denotes the cardinality of the setK. Furthermore, an admissible control for t
system (1) is a Lebesgue-integrable functionα(·) : [0, T ] → Bm on some interval[0, T ]. If α(·) : [0, T ] → Bm is an
admissible control, a trajectory forα(·) is an absolutely continuous curvex(·) : [0, T ] → R

N such that

ẋ(t) =
m∑

i=1

αi

(
x(t)

)
fi

(
x(t)

)
for almost allt ∈ [0, T ]. If x0 is some given state inRN and ifα(·) is an admissible control, we denote byx(·;x0, α)

the trajectory solution of the system above and such thatx(0;x0, α) = x0. We denote byA the set of open-loop from
[0,∞) controls into the control setBm. Moreover since we will take a “subdifferential” (or “superdifferentia
point of view in this paper, we refer the reader to the book of Clarke et al. [11] for the definitions of proxima
and superdifferentials (∂P V and∂P V ), of limiting subgradients∂LV and of generalized gradients∂V of some
functionV : R

N → R.

1. Further regularization of a semiconcave CLF

Throughout this sectionΩ is an open subset ofRN .

1.1. Preliminary results on semiconcave functions

In this section we recall the definition and the basic properties of semiconcave functions which follow
from the decomposition of such functions into the sum of a concave function and a smooth3 function. We refer the
reader to the forthcoming book of Cannarsa and Sinestrari [8] for a detailed study of semiconcavity.

Definition 6. A functionu :Ω → R is said to be semiconcave onΩ if it is continuous onΩ and if for anyx0 ∈ Ω

there are constantsρ,C > 0 such that

1

2

(
u(x) + u(y)

)− u

(
x + y

2

)
� C‖x − y‖2, (4)

for all x, y ∈ x0 + ρBN .

Note that if the constantC vanishes in (4), we recognize the usual definition of concave functions. As we
see in the sequel, the properties of semiconcave functions are intimately related to those of concave fun
Definition 6 since the constantsρ andC depend upon the pointx0 ∈ Ω , some authors (e.g. Cannarsa, Sinestr
refer sometimes to local semiconcavity. We prefer to adopt Definition 6 and to speak about globalC-semiconcavity
whenever the constantC of (4) does not depend uponx0. In any case, semiconcavity implies Lipschitz continu
(see [8] for a proof of this result).

Proposition 7. Every semiconcave functionu :Ω → R is locally Lipschitz onΩ .

The local Lipschitz property can also be seen as a consequence of the following fundamental property
concave functions. Any semiconcave function can be seen locally as the sum of a concave and a smooth
Refering to global semiconcavity, we can state the result as follows:

3 In this paper, “smooth” means “of classC∞”.
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Proposition 8. If u is globallyC-semiconcave onΩ and if in additionΩ is convex, then the function

x �→ u(x) − 4C‖x‖2 is concave.

Hence the functionu can be written as the sum of a concave function and a smooth(quadratic)function:

u(x) = [
u(x) − 4C‖x‖2]+ 4C‖x‖2.

Proof. The functionx �→ g(x) := u(x) − 4C‖x‖2 is clearly continuous. Moreover for anyx, y ∈ Ω , we have

1

2

(
g(x) + g(y)

)− g

(
x + y

2

)
= 1

2

(
u(x) + u(y)

)− u

(
x + y

2

)
− 2C

[‖x‖2 + ‖y‖2]+ C‖x + y‖2

� C‖x − y‖2 + C‖x + y‖2 − 2C
[‖x‖2 + ‖y‖2] by (4)

� 0,

by the parallelogram identity; the result follows.�
As in the case of Lipschitz functions, a function which is semiconcave on a compact set is in fact g

semiconcave on this set. This property is a (not so easy) consequence of the definition of semiconcavity. I
us to extend the Proposition 8 to the case of nonconvex open sets.

Proposition 9. If u is semiconcave onΩ then for any compact convex setK ⊂ Ω , there exists a global constan
CK � 0 such thatu is globallyCK -semiconcave onK . Hence the functionu can be written onK as the sum of a
concave and a quadratic function:

∀x ∈ K, u(x) = [
u(x) − 4CK‖x‖2]+ 4CK‖x‖2. (5)

This result does hold only on compact subsets ofΩ which are convex. (Convex or concave properties of fu
tions do have no meaning on sets which are not convex.) However we will see later (see Theorem 12)
decomposition as a sum of a concave function and a smooth function remains valid on convex open sets.
now present some results concerning the superdifferentials of semiconcave functions. By classical propert
superdifferentials of concave functions, the decomposition of semiconcave functions that we gave in Prop
implies that the generalized gradient of a semiconcave function equals its proximal and viscosity superdiffe
(we refer the reader to the now classical references [11,6] for the definition of both these superdifferentials
state the result (see [8] for its proof):

Proposition 10. If u :Ω → R is semiconcave then for anyx ∈ Ω,∂u(x) = ∂P u(x), i.e. for anyζ ∈ ∂u(x),

u(y) − u(x) − 4C‖y − x‖2 � 〈ζ, y − x〉, ∀y ∈ x + ρBN, (6)

whereρ andC are the constants given in Definition6.

On the other hand, still from the decomposition of Proposition 8, since the generalized gradient of a
function is a monotone operator, so is the operatorx �→ −∂u(x) + 8Cx. We can state the result as follows:

Proposition 11. If u :Ω → R is semiconcave then for anyx, y ∈ Ω , for anyζx ∈ ∂u(x), for anyζy ∈ ∂u(y),

〈−ζy + ζx, y − x〉 � −8C‖y − x‖2. (7)
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1.2. Semiconcave functions on convex sets

The purpose of this section is to present some initial results on the regularization of semiconcave functi
prove that every semiconcave function on an open convex set can be approximated by the sum of a piecew
concave function and a smooth function. The technique of proof that we develop here will be very helpfu
we shall regularize semiconcave functions on nonconvex domains. Before giving our result of approxima
need the following fundamental theorem:

Theorem 12. If the open setΩ is convex then for any semiconcave functionu on Ω there exists two function
g,Ψ :Ω → R such that

u = g + Ψ,

whereg is concave andΨ is smooth.

Proof. Let us first assume thatΩ = R
N . For everyn � 2, the functionu is semiconcave on the ballnBN :=

BN(0, n), hence there exists a constantCn−1 such that the functionu(·) − Cn−1‖x‖2 is concave onnBN (by
Proposition 9). Without loss of generality the sequence(Cn)n∈N can be supposed to be strictly increasing. Set
anyx ∈ Ω ,

h1(x) := C1‖x‖2,

and

hn(x) := Cn‖x‖2 +
n−1∑
i=1

i2[Ci − Ci+1] if n � 2.

By construction, we note that for eachn � 1, the functionhn is convex and that for anyn � 1, the functionu − hn

is concave on(n + 1)BN . In addition we have that for anyn � 1,

hn+1(x) � hn(x) ⇐⇒ x ∈ nBN. (8)

We define the functionh :RN → R by

h(x) := max
n∈N

{
hn(x)

}
for x ∈ R

N.

By (8) the functionh is well defined (onΩ) and moreover it is convex as a maximum of convex functions. On
other hand, we can note that for anyx ∈ Ω ,

u(x) − h(x) = u(x) − max
n∈N

{
hn(x)

}= u(x) + min
n∈N

{−hn(x)
}= min

n∈N

{
u(x) − hn(x)

}
.

By (8) we deduce that on everyn � 1, the functionu − h coincides with the function min{u − h1, . . . , u − hn} on
nBN . Let x ∈ Ω , denote byn0 the minimum over all the integersn � 1 such thatx ∈ nBN . By (8) we get that for
anyy ∈ BN(x,1),

u(y) − h(y) = min
{
u(y) − hn0−1(y), u(y) − hn0(y), u(y) − hn0+1(y)

}
.

The three functions which appear in the minimum above are concave onBN(x,1) henceu − h is concave on this
ball. Consequentlyu − h is concave on all the ballsBN(x,1) for x ∈ Ω , hence it is concave onΩ . Unfortunately,
the constructed functionh is not smooth. But if we consider a functionf :R�0 → R, then we leave it to the reade
to verify that, whenever the functionu is globallyC-semiconcave onΩ , the functionu − f (‖ · ‖2) is concave if
and only if for anyx, y ∈ Ω ,

f

(∥∥∥∥x + y
∥∥∥∥2)

− 1(
f
(‖x‖2)+ f

(‖y‖2))� −C‖y − x‖2,

2 2
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that is if and only if the functionx �→ f (‖x‖2) − 4C‖x‖2 is convex. We conclude that iff is a smooth function
onΩ such that for anyn � 1, the functionf (‖ · ‖2) − 4Cn‖ · ‖2 is convex onnBN then the functionu − f (‖ · ‖2)

is globally concave onΩ . The construction of the functionf is left to the reader. Now return to the gene
case of an open setΩ in R

N . By classical results on convex sets we know that any open convex set ofR
N is

diffeomorphic toR
N , hence there exists a smooth diffeomorphismφ :RN → Ω . Moerover this diffeomorphism

can be taken to preserve convexity; ifg :RN → Ω is a convex function then the functiong ◦φ−1 :Ω → R is convex
too. So we look at the functionu ◦ φ on R

N which is semiconcave as the composition of a smooth function
a semiconcave function. By the result above this function can be written as the sum of a concave and a
function:u ◦ φ = g + Ψ . Thus the functiong ◦ φ−1 is concave, the functionΨ ◦ φ−1 is smooth, and in addition

u = g ◦ φ−1 + Ψ ◦ φ−1,

which gives the result. �
Corollary 13. If the open setΩ is convex and ifu :Ω → R is semiconcave then for any continuous funct
ε :Ω → (0,∞) such that for everyx ∈ Ω,BN(x, ε(x)) ⊂ Ω , there exists a piecewise affine concave func
gε :Ω → R and a smooth functionΨε : Ω → R such that for everyx ∈ Ω ,

(i) |u(x) − gε(x) − Ψε(x)| � ε(x),
(ii) ∂P gε(x) + ∇Ψε(x) ⊂ ∂P u(x + ε(x)BN) + ε(x)BN .

Proof. Without loss of generality we can assume thatε(·) < 1 and that for everyx ∈ Ω,BN(x, ε(x)) ⊂ Ω . More-
over by continuity of the functionε there exists some new continuous functionε̃ :Ω → (0,1) such that

∀x ∈ Ω, ∀y ∈ BN

(
x, ε(x)

)
, ε̃(x) � ε(y). (9)

By the previous theorem, there exist two functionsg,Ψ :Ω → R with g concave andΨ smooth such thatu = g+Ψ

on Ω . Define two functionsΨε, g̃ :Ω → R by Ψε(x) := Ψ (x) + ‖x‖2 andg̃(x) := g(x) − ‖x‖2. Of courseΨε is
smooth,g̃ is concave and we have,

u = g̃ + Ψε. (10)

By concavity, the functioñg is locally Lipschitz onΩ , hence for everyx ∈ Ω , there existsLg̃,x � 1 such that̃g is
Lg̃,x -Lipschitz onBN(x, ε(x)) ⊂ Ω . Moreover since the functionΨε is smooth, there exists as well for eachx ∈ Ω

some constantLΨε,x � 1 such that∇Ψε(·) is LΨε,x -Lipschitz onBN(x, ε(x)) ⊂ Ω . Denote for eachx ∈ Ω by Lx

the maximum of both constantsLg̃,x,LΨε,x . (Notice that the functionx �→ Lx can be constructed to be local
finite in Ω .)

By a classical density theorem (see for instance [11, Theorem 3.1, p. 39]), the proximal subdifferentialsg̃ are
nonempty on a dense subset ofΩ . Therefore if we denote4 by D the set ofx ∈ Ω such that∂P g̃(x) �= ∅, we have

Ω ⊂
⋃
x∈D

BN

(
x,

ε̃(x)2

8L3
x

)
.

(This inclusion holds because of the local finiteness of the functionx �→ Lx in Ω .)
The local compactness ofΩ implies that there exists a locally finite family(xn)n∈N in D such that

Ω ⊂
⋃
n∈N

BN

(
xn,

ε̃(xn)
2

8L3
xn

)
. (11)

4 Notice that since the functioñg is concave, at each pointx such that∂ g̃(x) �= ∅ it is differentiable (the converse being false).
P
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Fix n ∈ N and define the functionhn :Ω → R by

hn(x) := g̃(xn) + 〈∇g̃(xn), x − xn

〉
.

Lemma 14. We have the two following inequalities:

(i) ∀x ∈ Ω,hn(x) � g̃(x),
(ii) ∀x ∈ BN(xn, ε̃(xn)

2/(8L3
xn

)), hn(x) � g̃(x) + ε̃(xn)
2/(4L2

xn
).

Proof. Sincexn ∈ D, we have that{∇g̃(xn)} = ∂P g̃(xn). Thus Proposition 10 implies the first inequality. Let
prove the second inequality. For anyx ∈ BN(xn, ε̃(xn)

2/(8L3
xn

)), we have

hn(x) − g̃(x) = g̃(xn) − g̃(x) + 〈∇g̃(xn), x − xn

〉= 〈ζ, xn − x〉 + 〈∇g̃(xn), x − xn

〉
,

with ζ ∈ co(∂g̃([x, xn])) (by Lebourg’s Theorem, see for instance [9, Theorem 2.3.7, p. 41] or [11, Theorem
p. 75]). We conclude easily by Cauchy–Schwarz inequality.�

We set onΩ the following function:

∀x ∈ Ω, gε(x) := min
n∈N

{
hn(x)

}
.

By Lemma 14(i)–(ii), the functiongε is well-defined and then concave. Let us first prove assertion (i) in
statement of Corollary 13.

By (11) for everyx ∈ Ω , there existsn ∈ N such thatx ∈ BN(xn, ε̃(xn)
2/(8L3

xn
)). Hence Lemma 14(ii) implies

that

gε(x) � g̃(x) + ε̃(xn)
2

4L2
xn

� g̃(x) + ε(x) (by (9)). (12)

In consequence, Lemma 14(i) combined with (10) gives (i). It remains to prove (ii). We need the following le

Lemma 15. For everyx ∈ Ω , there existsn0 ∈ N such that‖x − xn0‖ � (ε̃(xn0))/(2Lxn0
) andgε(x) = hn0(x).

Proof. By concavity ofg onΩ , for everyn ∈ N we have

∀x ∈ Ω, g(x) � g(xn) + 〈∇g(xn), x − xn

〉
.

We deduce that for everyn ∈ N and for anyx ∈ Ω ,

g̃(x) − hn(x) = g(x) − ‖x‖2 − g̃(xn) − 〈∇g̃(xn), x − xn

〉
= g(x) − ‖x‖2 − g(xn) + ‖xn‖2 − 〈∇g(xn) − 2xn, x − xn

〉
� −‖x‖2 + ‖xn‖2 + 2〈xn, x − xn〉 = −‖x − xn‖2.

Hence ifx ∈ Ω satisfies‖x − xn‖2 = δ2 > ε̃(xn)
2/(4L2

xn
) theng̃(x) � hn(x) − δ2, which by (12) implies

gε(x) � hn(x) − δ2 + ε̃(xn)
2

4L2
xn

< hn(x).

This proves that for eachx in Ω the minimum in the definition ofgε(x) is not attained forhj (x) with ‖x −
xj‖ > ε̃(xj )/(2Lxj

). Therefore since the family(xn)n∈N is locally finite and since for anyx ∈ Ω the compact se

BN(x, ε(x)) is included inΩ , this means that for anyx ∈ Ω the functiongε can be written as a minimum of a fini
number of affine functionsh in B (x, ε(x)). This proves the lemma.�
n N
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Fix x̄ ∈ Ω andζ̄ ∈ ∂P gε(x̄). By elementary properties of proximal subdifferentials (recall that we refer to
for a complete presentation of proximal analysis) if the minimum in the definition ofgε(x̄) is attained and if
∂P gε(x̄) �= ∅ thengε is differentiable at̄x and

∂P gε(x̄) = {∇gε(x̄)
}= {∇hn0(x̄)

}= {∇g̃(xn0)
}= ∂P g̃(xn0), (13)

wheren0 is such thatgε(x̄) = hn0(x̄). Hence since‖xn0 − x̄‖ < ε̃(x̄)/(2Lxn0
) we can write

ζ̄ + ∇Ψε(x̄) ∈ ∂P g̃(xn0) + ∇Ψε(x̄)

⊂ ∂P g̃(xn0) + ∇Ψε(xn0) + ‖x̄ − xn0‖Lxn0
BN

⊂ ∂P u
(
x̄ + ε(x̄)BN

)+ ε(x̄)BN (by (9)).

The proof of Corollary 13 is complete.�
Note that in the proof of Corollary 13, we have been able to control the distance‖x −xn0‖ in Lemma 15 becaus

we worked withg̃ instead ofg. Our argument was based on the fact thatg̃ is the sum of a concave function (g)
and of a strictly concave function(−‖ · ‖2). Since we have still the proof of Corollary 13 in mind, we present
prove a related result which will be very useful in the sequel. (In the statement of Proposition 16,B∞ denotes the
open ball ofRN relative to the infinity norm‖ · ‖∞.)

Proposition 16. LetΩ be an open set inRN andu :Ω → R be a semiconcave function. LetK be a compact cub
in Ω andε be a constant in(0,1) such thatK + εB∞ ⊂ Ω . If C is some positive constant such that the funct
g := u − C‖ · ‖2 is concave onK + εB∞, then there exists̃gε : Ω → R such that

(i) for everyx ∈ K, g̃ε(x) + (C + 1)‖x‖2 � u(x),
(ii) for everyx ∈ K + εB∞, u(x) − ε � g̃ε(x) + (C + 1)‖x‖2 � u(x) + ε,
(iii) for everyx ∈ K + εB∞, ∂P g̃ε(x) + 2(C + 1)x ⊂ ∂P u(x + εB∞) + εB∞,
(iv) the functiong̃ε is a piecewise affine concave function onR

N ,
(v) ∀x ∈ Ω,x /∈ K + εB∞ �⇒ g̃ε(x) + (C + 1)‖x‖2 > u(x).

Proof. We leave it to the reader to show that there exists a smooth functionk :RN → R which satisfies the follow
ing properties:

(p1) for everyx ∈ K , k(x) = 0,

(p2) for everyx /∈ K + εB∞, k(x) > ε2

4 ,
(p3) for everyx ∈ R

N , k(x) ∈ [0, ε
2],

(p4) for everyx ∈ K + εB∞, ‖∇k(x)‖ � ε
2,

(p5) for everyx ∈ RN , Hessx k < IN ,

where Hessx k denotes the Hessian matrix of the functionk atx andIN denotes the identity matrix inMN(R).
Define the functioñg :Ω → R by

∀x ∈ Ω, g̃(x) := g(x) − ‖x‖2 + k(x) =
(

g(x) − 1

2
‖x‖2 + k(x)

)
− 1

2
‖x‖2. (14)

Since the Hessian matrix of the function12‖ · ‖2 equalsIN , the property (p5) implies that the functionx �→
1
2‖x‖2 − k(x) is convex onRN , and hence that the functionx �→ g(x)− 1

2‖x‖2 + k(x) is concave onK + εB∞. In
consequence as shown by (14), the functiong̃ can be written as the sum of a concave function and of a strictly
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2‖x‖2). Thus by the remark that we made just after the proof of Corollary

one can design a finite family(xi)i∈I of points inK + εB∞ such that if we set for everyi ∈ I the function

hi(x) := g̃(xi) + 〈∇g̃(xi), x − xi

〉
,

and if we define the function̂g by ĝ(x) := mini∈I hi(x), then the following lemma holds:

Lemma 17. For everyx ∈ K + εB∞, the following properties are satisfied:

(i) g̃(x) � ĝ(x) � g̃(x) + ε2

4 ,
(ii) there existsi0 ∈ I such that‖x − xi0‖ � ε

4(C+1)
and ĝ(x) = hi0(x).

Set for everyx ∈ Ω

g̃ε(x) := ĝ(x) − ε2

4
,

and let us prove that the five assertions of Proposition 16 are satisfied.
The functiong̃ε(x) being a minimum of a finite number of affine functions, it is a piecewise affine con

function onR
N . Which gives (iv). On ther other hand, assertions (i), (ii) and (v) are straightforward consequ

of Lemma 17 and (p1)–(p3). It remains to prove assertion (iii).
Fix x̄ ∈ Ω , and ζ̄ ∈ ∂P g̃ε(x̄). As in the proof of Corollary 13, we know by construction ofĝ and by Lemma

17(ii) that there existsi0 ∈ I such that

‖x̄ − xi0‖ � ε

4(C + 1)
, (15)

and

∂P g̃ε(x̄) = {∇g̃(xi0)
}= ∂P g̃(xi0). (16)

Hence we can write

ζ̄ + 2(C + 1)x̄ ∈ ∂P g̃(xi0) + 2(C + 1)x̄ (by (16))

⊂ ∂P g̃(xi0) + 2(C + 1)xi0 + 2(C + 1)‖x̄ − xi0‖BN

⊂ ∂P g(xi0) + ∇k(xi0) + 2Cxi0 + 2(C + 1)‖x̄ − xi0‖BN

⊂ ∂P u(x̄ + εBN) + εBN (by (15) and (p4))

⊂ ∂P u(x̄ + εB∞) + εB∞,

becauseBN ⊂ B∞. Therefore the proof of Proposition 16 is complete.�
1.3. Singular set of semiconcave functions

Let Ω be an open set ofRN and letu :Ω → R be a semiconcave function. By Rademacher’s theorem we k
thatu is differentiable almost everywhere inΩ . Let us denote byΣ(u) the singular set ofu, i.e. the set of points o
Ω whereu is not differentiable. We can also seeΣ(u) as the set ofx ∈ Ω such that dim(∂u(x))� 1; this point of
view leads to a natural partition of the singular set. As a matter of fact, following moreorless the seminal w
Alberti, Ambrosio and Cannarsa [2],Σ(u) can be written as the disjoint union ofN setsΣk(u) (for k ∈ {1, . . . ,N})
defined by

Σk(u) := {
x ∈ Ω: dim

(
∂u(x)

)= k
}
.
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Alberti et al. proved that for anyk ∈ {1, . . . ,N}, the setΣk(u) is countablyHn−k-rectifiable, i.e. it is contained
(up to aHn−k-negligible set) in a countable union ofC1 hypersurfaces of dimensionN − k. But each setΣk(u)

is certainly not an exact hypersurface (or submanifold) ofΩ . As we noticed in [25], these sets cannot be reali
to be smooth submanifolds ofΩ . We saw that even in dimension two, it is difficult to decompose the singula
Σ(u) into a union of Lipschitz andC1-submanifolds. And of course, this decomposition does not hold in gr
dimension for general semiconcave functions. Our strategy is to approximate a given semiconcave functiou by a
semiconcave function with a singular set regular enough. In addition if the initial functionu is a supersolution o
some Hamilton–Jacobi equation then we would like that the constructed approximation remains almost a
lution of the same Hamilton–Jacobi equation. After giving the definition of stratified semiconcave functio
present our approximation results.

Let Z be a closed subset ofΩ , and suppose that

Z =
⋃

l∈{0,·,N}

⋃
i∈Sl

Sl
i .

This decomposition is a Whitney stratification ofZ provided:

• The family{Sl
i }l,i is a locally finite collection of disjoint locally closed subsets called pieces or strata.

• Each stratumSl
i is a locally closed5 connected smooth submanifold ofΩ of dimensionl.

• Sl
i ∩ Sk

j �= ∅ ⇒ l < k andSl
i ⊂ Sk

j .

• WheneverSl
i andSk

j are two strata withl < k then the pair satisfies Whitney’s conditions A and B:

Suppose(xn)n ∈ Sk
j is a sequence of points converging to somey ∈ Sl

i , suppose(yn)n ∈ Sl
i also converge toy,

and suppose that the secant linesLn = (xnyn) converge to some limiting linel, and the tangent spacesTxnS
k
j

converge to some limiting vector subspaceτ . Then
(A) TyS

l
i ⊂ τ .

(B) l ⊂ τ .

We can now present the concept of stratified semiconcave function.

Definition 18. Let u :Ω → R be a semiconcave function;u will be said to be stratified semiconcave (onΩ) if the
following conditions are satisfied:

(i) the setΣ(u) is a Whitney stratification such that the strata of dimensionN − k are the connected componen
of Σk(u);

(ii) for every stratumS of Σ(u), the setS is a smooth manifold with boundary;
(iii) for every stratumS of Σ(u), the functionu is smooth on�S;
(iv) for everyx ∈ Σk(u), the set∂u(x) is a convex compact set of dimensionk with exactlyk + 1 extreme points

ζ1(x), . . . , ζk+1(x).6 In addition, for any stratumS of Σk(u) the mapsζ1(·), . . . , ζk+1(·) are smooth onS and
moreover they can be smoothly extended to a neighborhood of�S in such a way that co{ζ1(x), . . . , ζk+1(x)}
remains a convex compact set of dimensionk with exactlyk + 1 extreme points for anyx ∈ �S.

Let us make one remark of importance concerning the shape of the singular set of a stratified sem
function. Begin by the two-dimensional case.

5 We recall that a subsetX of R
N is said to be locally closed if it is of the formX = C ∩ O whereC is closed andO is open.

6 In particular, this means that the limiting subgradient∂ u(x) equals the set{ζ (x), . . . , ζ (x)}.
L 1 k+1



354 L. Rifford / Ann. I. H. Poincaré – AN 22 (2005) 343–384

of
und

(see

xist three

in
Fig. 1. Propagation of singularities in dimension two.

Let u :Ω → R be a stratified semiconcave function whereΩ is an open subset ofR2. We have

Σ(u) = Σ1(u) ∪ Σ2(u).

Sinceu is stratified semiconcave onΩ , the setΣ1(u) is a locally finite union of disjoint smooth submanifolds
dimension 1 and the setΣ2(u) is a discrete set of points inΩ . Let us describe what happens in a small ball aro
some pointx ∈ Σ2(u). There are three vectorsζ1, ζ2, ζ3 ∈ R

2 such that

∂u(x) = co{ζ1, ζ2, ζ3},

the full triangle with ζ1, ζ2 and ζ3 as extreme points. By properties of propagation of singularities
[1, Lemma 4.5, p. 728]), each of the edges of this triangle (i.e., the segments[ζ2, ζ3], [ζ1, ζ3], [ζ1, ζ2]) is limit
of the generalized gradients of points of a strata of dimension one. In other terms, this means that there e
smooth submanifolds of dimension oneS1, S2 andS3 in Σ1(u) which satisfy the following properties:

For eachi = 1,2,3, the pointx belongs to the closure ofSi . Moreover if(xn)n is some sequence of points
Si which converges tox, then the sequence of segments(∂u(xn))n converges to the segments with endpoints(ζj )j
wherej ∈ {1,2,3} \ {i}.

On Fig. 1, we show three pointsx1, x2, x3 with generalized gradients∂u(x1), ∂u(x2), ∂u(x3) which are very
close to the edges of the triangle. On each stratumSi (i = 1,2,3) the generalized gradient ofy ∈ Si tends to an
edge of the triangle∂u(x) asy tends tox. This means that in a small ball centered atx, the complement ofΣ(u)

can be divided into three regionsR1,R2 andR3 whereu is smooth with a gradient close toζ1 in R1, to ζ2 in R2

and toζ3 in R3.
Consider now the generalN -dimensional case. Letu :Ω → R be a stratified semiconcave function whereΩ is

an open subset ofRN . In this case, we have

Σ(u) = Σ1(u) ∪ Σ2(u) ∪ · · · ∪ ΣN(u).
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So, letS be a stratum ofΣ(u) of dimensionN − k with k � 2 and letx ∈ S. The convex set∂u(x) is indeed a
simplex of dimensionk � 2 in R

N . Hence if for everyl ∈ {0, . . . , k} we denote byFl the number of faces7 of
dimensionl, we have:

Fl =
(

k + 1

l + 1

)
.

This means for example that∂u(x) hask + 1 faces of dimensionk − 1 andk + 1 faces of dimension zero, that
k + 1 extreme points. Again by properties of propagation of singularities (see [1, Theorem 5.2, p. 732]), si
functionu is stratified semiconcave it turns out that for everyl ∈ {1, . . . , k−1} there is a one-to-one corresponden
between the set of faces of dimensionl and a certain subset of strata ofΣl(u). Let l ∈ {1, . . . , k − 1}, denote by
Cl

1, . . . ,C
l
Fl

theFl faces of∂u(x) of dimensionl; this means that there are exactlyFl strataS1, . . . , SFl
in Σl(u)

such that for everyi = 1, . . . ,Fl the following property is satisfied:
The pointx belongs to the closure of the stratumSi . Moreover if (xn)n is a sequence of points inSi which

converges tox then the sequence of convex sets(∂u(xn))n converges to the faceCl
i .

The first example of stratified semiconcave function is the one of piecewise affine semiconcave funct
this particular case, each setΣk(u) is a disjoint union of open polyhedra of dimensionN − k. Let us state the
properties of such functions in the following proposition:

Proposition 19. Let be given(hi)i∈I a finite family of affine functions inRN . If u :RN → R is defined by

u := min
i∈I

{hi},
then it is a stratified semiconcave function and moreover it satisfies:

(i) For everyk ∈ {1, . . . ,N}, the setΣk(u) is a finite disjoint union of open polyhedra of dimensionN − k.
(ii) For everyk ∈ {1, . . . ,N}, the multivalued mapx �→ ∂u(x) = ∂P u(x) is constant on each connected compon

of Σk(u).

The proof of this result being straightforward, it is left to the reader.
If we consider a function defined as the minimum of a finite family of smooth functions, then it is semico

However it is not necessarily stratified semiconcave. Indeed in the next section, we will see that this
functions is generically stratified semiconcave. This result comes from a transversality argument.

1.4. Proof of Theorem 3

In fact we will prove a more precise version of Theorem 3. Let us state the result that we prove.

Theorem 20. LetV be a semiconcave control-Lyapunov function for the control system(1). Then for any continu
ous functionε :RN \ {0} → (0,∞), there exists a continuous functionVε :RN → R which is stratified semiconcav
on R

N \ {0}, which is a viscosity supersolution of

max
α∈Bm

{−〈f (x,α),DV (x)
〉}− V (x) + ε(x) � 0, (17)

and such that for anyx ∈ R
N \ {0},∣∣Vε(x) − V (x)

∣∣� ε(x). (18)

7 A face of a convex setC is a convex subsetC′ such that every (closed) line segment inC with an interior point inC′ has both endpoints
in C′. We refer the reader to the textbook [29, Part IV, Section 18] for additional informations about faces of convex sets.
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Theorem 3 is a direct consequence of Theorem 20. As a matter of fact, if we apply Theorem 20 to a
Lyapunov function withε = V

2 , then we obtain some stratified semiconcave functionVε which satisfies the
conclusions of Theorem 20 and hence which is positive definite and proper from (18). Hence if we setṼε := V 2

ε

we get a veritable stratified semiconcave CLF as in Theorem 3. It remains to prove Theorem 20; this pr
occupy the next eight pages.

In order to simplify the proof, we will work with balls of the∞-norm. Let us denote by‖x‖∞ the∞-norm of
x ∈ R

N , and byB∞ (resp.B∞) the open unit ball (resp. the closed ball) ofR
N relative to this norm.

SetΩ := R
N \ {0}. We can decomposeΩ into a “quasi” partition of compact cubes. There exists a fam

(xi)i∈N of points inΩ and a family(ρi)i∈N of positive real numbers such that the three following properties h

(P1) Ω =⋃
i∈N

B∞(xi, ρi) =⋃
i∈N

Ki (whereKi := B∞(xi, ρi)).
(P2) For eachi ∈ N, the compact setKi + ρiB∞ is included inΩ , and the coveringΩ = ⋃

i∈N
Ki + ρiB∞ is

locally finite.
(P3) If Ki ∩ Kj �= ∅ thenKi andKj have a common face,i.e. there is a faceFi of Ki and a faceFj of Kj such

that(Ki \ Fi) ∩ (Kj \ Fj ) = ∅ and eitherFi ⊂ Fj eitherFj ⊂ Fi .

By (P2) for eachi ∈ I , we denote byLi
V � 1 a Lipschitz constant ofV on the compact cubeKi + ρiB∞, by Mi

the maximum of‖f (x,α)‖ for x ∈ Ki + ρiB∞ andα ∈ BN , by Li
f the Lipschitz constant of the multivalued m

x �→ f (x,Bm) onKi + ρiB∞ and byεi the minimum of the functionε(·) onKi + ρiB∞. For eachi ∈ I , we set

µi := min

{
εi

2(Li
V Li

f + Li
V + Mi)

,min

{
ρj

10
: j s.t.Ki ∩ Kj �= ∅

}}
. (19)

Notice that by construction, ifx ∈ Ω belongs to some compact setKi + µiB∞, then

µi � ε(x)

2
. (20)

Moreover notice also that by (P2), we have that for everyi ∈ I

Ki + 2µiB∞ ⊂ Ki + ρiB∞ ⊂ Ω. (21)

Thus by Proposition 8, for everyi ∈ I there exists a positive constantCi such that

V (x) = [
V (x) − Ci‖x‖2]+ Ci‖x‖2 = gi(x) + Ψi(x),

wheregi := V − Ci‖ · ‖2 is concave onKi + 2µiB∞ andΨi := Ci‖ · ‖2 is smooth on the same set. By Prop
sition 16, for eachi ∈ I there exists a piecewise affine concave functionGi :RN → R such that the following
properties hold:

(a) for everyx ∈ Ki,Gi(x) + (Ci + 1)‖x‖2 � V (x),
(b) for everyx ∈ Ki + µiB∞,V (x) − µi � Gi(x) + (Ci + 1)‖x‖2 � V (x) + µi ,
(c) for everyx ∈ Ki + µiB∞, ∂P Gi(x) + 2(Ci + 1)x ⊂ ∂P V (x + µiB∞) + µiB∞,
(d) there exists a finite setJ i and some vectors(H i

j )j∈J i in Ki and some constants(ĥi
j )j∈J i such that

∀x ∈ R
N, Gi(x) = min

j∈J i

{
h

j
i (x)

}
,

whereh
j
i (x) = 〈Hj

i , x〉 + ĥ
j
i .

(e) for everyx /∈ K + µ B ,G (x) > g (x) − ‖x‖2.
i i ∞ i i
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Define for everyi ∈ I the functionVi :RN → R by

Vi(x) := Gi(x) + Ψi(x) + ‖x‖2 = Gi(x) + (Ci + 1)‖x‖2. (22)

The functionVi is the sum of the concave functionGi and of the smooth functionΨi + ‖ · ‖2, hence it is
semiconcave onRN . Fix x in Ki + µiB∞ andζ in ∂P Vi(x).

By (c) there exists̄x ∈ B∞(x,µi) such thatζ ∈ ∂V (x̄) + µiB∞; this means that there existx̄ ∈ Ki + 2µiB∞,
ζ̄ ∈ ∂V (x̄) andv̄ ∈ B∞ such that

ζ = ζ̄ + µiv̄. (23)

SinceV is a CLF for the system (1), it is a supersolution of the Hamilton–Jacobi equation (3) and hence

max
α∈Bm

{−〈f (x̄, α), ζ̄
〉}− V (x̄) � 0.

Therefore by construction of the constantsLi
f ,Li

V ,Mi , (23) and (21) give

max
α∈Bm

{−〈f (x,α), ζ
〉}

� max
α∈Bm

{−〈f (x,α), ζ̄
〉}− µiMi

� max
α∈Bm

{−〈f (x̄, α), ζ̄
〉}− Li

f ‖x − x̄‖‖ζ‖ − µiMi

� V (x̄) − [Li
f Li

V + Mi]µi � V (x) − [Li
f Li

V + Li
V + Mi]µi

� V (x) − ε(x)

2
(by (19)).

Consequently we proved that for everyx ∈ Ki + µiB∞ and for everyζ ∈ ∂P Vi(x),

max
α∈Bm

{−〈f (x,α), ζ
〉}− V (x) + ε(x)

2
� 0. (24)

On the other hand by (a) and (e) we have thatVi(x) � V (x) for everyx ∈ Ki and thatVi(x) > V (x) whenever
x /∈ Ki + µiB∞. Set for everyx ∈ R

N ,

Ṽ (x) := inf
i∈N

{
Vi(x)

}
.

By (P1) and the remark above, for everyx ∈ Ω we have

Ṽ (x) = inf
i s.t. x∈Ki+µiB∞

{
Vi(x)

}
.

Hence since the family{Ki + µiB∞}i∈N is locally finite inΩ , this means that for everyx ∈ Ω there existsix ∈ N

such thatx ∈ Kix + µix B∞ andṼ (x) = Vix (x). In particular (b) implies

V (x) − µix � Ṽ (x) � V (x) + µix �⇒ V (x) − ε(x)

2
� Ṽ (x) � V (x) + ε(x)

2
(by (20)). (25)

The functionṼ is semiconcave onΩ (as a locally finite infimum of semiconcave functions), and in addition
and (25) imply that for everyx ∈ Ω and for everyζ ∈ ∂P Ṽ (x),8

max
α∈Bm

{−〈f (x,α), ζ
〉}− V (x) � −ε(x)

2
�⇒ max

α∈Bm

{−〈f (x,α), ζ
〉}− Ṽ (x) � −ε(x) (by (25)).

8 Recall that if some functionf : Ω → R is defined byf (x) := mini∈I {gi(x)} whereI is a finite set andg1, . . . , gI some continuous
functions onΩ . Then for everyx ∈ Ω and for everyζ ∈ ∂ f (x), there existsi ∈ I such thatf (x) = g (x) andζ ∈ ∂ g (x).
P i P i
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To summarize, the functioñV is a semiconcave control-Lyapunov function which satisfies the properties
and (17). Unfortunately, it is not necessarily stratified semiconcave. Properties (a) and (e) imply that the
Ṽ coincides withVi on each cubeB∞(xi, ρi − δi), whereδi denotes the maximum of theµj ’s for Ki ∩ Kj �= ∅
(note thatρi − δi � 9ρi

10 > 0 by (19)). In particular, we deduce that the functionṼ is stratified semiconcave (b
Proposition 19) on each open cubeB∞(xi, ρi − δi). In the setsKi \ B∞(xi, ρi − δi), the functionṼ is a minimum
of quadratic functions, so it is not necessarily stratified semiconcave. We shall prove that if we perturbVi

by adding a small affine function, then the minimum of these functions is generically stratified semiconca
proof will be based on a multi-transversality argument (Lemma 21).

In order to be clearer, we are going to first explain what happens in the case of the minimum of two functV1
andV2. Consider two adjacent cubesK1 andK2 in Ω and let us prove how to moveV1 andV2 in order to get tha
the minimum ofV1 andV2 is stratified semiconcave onRN (recall thatV1 andV2 are quadratic functions define
on R

N ). Recall that by construction, for everyx ∈ R
N ,

V1(x) = G1(x) + Ψ1(x) + ‖x‖2 = min
i∈J 1

{
h1

i (x)
}+ (C1 + 1)‖x‖2,

V2(x) = G2(x) + Ψ2(x) + ‖x‖2 = min
j∈J 2

{
h2

j (x)
}+ (C2 + 1)‖x‖2.

If C1 = C2 then the function min{V1,V2} is the sum of a piecewise affine semiconcave function and the fun
x �→ (C1 + 1)‖x‖2, so it is stratified semiconcave (by Proposition 19). Thus without loss of generality w
assume thatC1 �= C2, assume for instance thatC2 = C1 + 1. Letβ = (β1, . . . , β|J 2|) be a|J 2|-tuple of vectors in

R
N , define the functionV β

2 : R
N → R by

∀x ∈ R
N, V

β

2 (x) := min
j∈J 2

{
h2

j (x) + 〈βj , x〉}+ (C2 + 1)‖x‖2,

and defineV β :Rn → R by

∀x ∈ R
N, V β(x) := min

{
V1(x),V

β

2 (x)
}
.

Let us prove that the functionV β is generically stratified semiconcave onR
N .

Lemma 21. The set of(β1, . . . , β|J 2|) for which the functionV β is stratified semiconcave is an open dense

in (RN)|J 2|.

Proof. First, note that if there exists a couple(i, j) ∈ J 1 × J 2 such that

h1
i (x) + (C1 + 1)‖x‖2 = h2

j (x) + 〈βj , x〉 + (C1 + 2)‖x‖2,

then this implies:

‖x‖2 − h1
i (x) + h2

j (x) + 〈βj , x〉 = 0⇔ ‖x‖2 − 〈H 1
i , x〉 + 〈H 2

j , x〉 + 〈βj , x〉 = ĥ1
i − ĥ2

j

⇔ ‖x‖2 + 〈−H 1
i + H 2

j + βj , x〉 = ĥ1
i − ĥ2

j .

Thus we deduce that∥∥∥∥x − 1

2
(−H 1

i + H 2
j + βj )

∥∥∥∥2

= ĥ1
i − ĥ2

j + 1

4
‖ − H 1

i + H 2
j + βj‖2. (26)

The functionV β can be written as follows:

V β(x) = min
{
h1

i (x) + (C1 + 1)‖x‖2, h2
j (x) + 〈βj , x〉 + (C1 + 2)‖x‖2}= min

{
Ei(x),E′

j (x)
}
.

i∈J 1,j∈J 2 i∈J 1,j∈J 2
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Study the cases where the minimum is attained by severalEi andE′
j in the expression above. Let us prove th

the set of pointsx such thatE1(x) = E′
j (x) for every j = 1, . . . , p (wherep is some integer in{1, . . . ,N}) is

generically a sphere of dimensionN − p in R
N . The other cases being similar, they are left to the reader.

Set

O := {
x ∈ R

N : E1(x) = E′
j (x), ∀j = 1, . . . , p

}
.

If x belongs toO, then by (26) it is in the intersection ofp spheres, that is:

x ∈
⋂

j=1,...,p

S
(
zj ,

√
Rj + ‖zj‖2

)
, (27)

wherezj := 1
2(−H 1

1 + H 2
j + βj ) andRj := ĥ1

1 − ĥ2
j . The conclusion (27) is equivalent tox solving the system

‖x‖2 − 2〈x, z1〉 = R1,

‖x‖2 − 2〈x, z2〉 = R2,
...

‖x‖2 − 2〈x, zp〉 = Rpy

(28)

which can also be written as follows:
‖x‖2 − 2〈x, z1〉 = R1,

2〈x, z1 − z2〉 = R2 − R1,
...

2〈x, z1 − zp〉 = Rp − R1.

(29)

This last system means thatx belongs to the intersection of the sphere centered atz1 with radiusR1 and of the
affine subspaceHβ of solution of the equation

2〈x, z1 − z2〉 = R2 − R1,

2〈x, z1 − z3〉 = R3 − R1,
...

2〈x, z1 − zp〉 = Rp − R1.

(30)

The affine subspaceHβ is of dimensionN − p + 1 if and only if the vectorsz1 − z2, z1 − z3, . . . , z1 − zp are
linearly independent. LetΓ : (RN)p → R be the map which associates to eachp-tuple(βj )j=1,...,p the sum of the
squares of the determinants of the(p − 1)× (p − 1) matrices which are included in the rectangle matrixMβ with
columns(z1 − zj )j=2,...,p. The rank of the family of vectors(z1 − zj )j=2,...,p equalsp − 1 if and only if there
exists a square submatrix ofMβ (of orderp − 1) which is invertible. Hence by construction ofΓ :

rank
{
(z1 − zj )j=2,...,p

}= p − 1⇔ Γ (β1, . . . , βp) �= 0.

The functionΓ is polynomial in the coordinates of theβj ’s and moreover sincez1 − zj = 1
2(H 2

1 −H 2
j +β1 −βj ),

we have that

Γ (−H 2
1 ,−H 2

2 − 2e1,−H 2
3 − 2e2, . . . ,−H 2

p − 2ep−1) = 1.9

We conclude that the polynomialΓ is not the zero polynomial, hence that the set

T1 := {
(β1, . . . , βp) ∈ (RN)p: Γ (β1, . . . , βp) �= 0

}
is an open set with full measure in(RN)p.

9 The family(e , . . . , e ) denotes the usual basis ofR
N .
1 N
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Let us now study the intersection of the sphereS(z1,R1) and of the affine subspaceHβ . This intersection
(whenever it is not empty) is a sphere of dimensionN − p if and only if the affine subspaceHβ is not tangent to
the sphere, that is if

d(z1,Hβ)2 �= R1. (31)

Let us evaluate this distance. IfP denotes the orthogonal projection ofz1 onHβ then the distance equals‖z1−P‖2.
Sincez1 − P is orthogonal toHβ , it is a linear combination of the vectorsz1 − z2, . . . , z1 − zp. Hence there exist
α = (α2, . . . , αp) ∈ R

p−1 such that

z1 − P =
p∑

j=2

αj (z1 − zj ).

On the other handP belongs toHβ hence we have the following system:
2〈z1 −∑p

j=2 αj (z1 − zj ), z1 − z2〉 = R2 − R1,

2〈z1 −∑p

j=2 αj (z1 − zj ), z1 − z3〉 = R3 − R1,

...

2〈z1 −∑p

j=2 αj (z1 − zj ), z1 − zp〉 = Rp − R1.

We recognize the system

−2Mα = T , (32)

whereM is the Gram matrix

M =
 〈z1 − z2, z1 − z2〉 . . . 〈z1 − zp, z1 − z2〉

...
. . .

...

〈z1 − z2, z1 − zp〉 · · · 〈z1 − zp, z1 − zp〉


andT is the column vector(

R2 − R1 − 2〈z1, z1 − z2〉, . . . ,Rp − R1 − 2〈z1, z1 − zp〉)t .
The matrixM can be written asM = Mt

βMβ . (Recall thatMβ is the matrix whose the columns are the vect
(z1 − zj )j=2,...,p .) Hence if the rank ofMβ equalsp − 1, then the determinant of the Gram matrixM is different
from zero (see [15, Theorem 1, p. 247]). In consequence the vectorα is a solution of the Cramer system (32), th
is

α = −1

2
M−1T . (33)

Eq. (31) can be written as:∥∥∥∥∥
p∑

j=2

αj (z1 − zj )

∥∥∥∥∥
2

− R1 �= 0.

By (33) and from the definition of thezj ’s, the vector det(M)
∑p

j=2 αj (z1 − zj ) depends affinly in theβj ’s hence
the quantity

det(M)2

[∥∥∥∥∥
p∑

j=2

αj (z1 − zj )

∥∥∥∥∥
2

− R1

]
is polynomial in the coordinates of theβj ’s (and is not constant and equal to zero). We deduce that the s
p-tuples(β , . . . , β ) such thatΓ (β , . . . , β ) �= 0 and such that‖∑p

α (z − z )‖2 − R �= 0 is an open se
1 p 1 p j=2 j 1 j 1
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of full measure in(RN)p (denote this set byT2). This proves that the setO is generically a sphere of dimensio
N − p.

We leave it to the reader to convince himself that our proof shows that if the tuple(β1, . . . , β|J 2|) belongs to a

generic setT3 in (RN)|J 2|, then for any subsetsI1 of J 1 andI2 of J 2 such that|I1| + |I2| − 1 � N , the setOI1,I2

of x ∈ R
N such that for anyi, j ∈ I1 × I2

Ei(x) = E′
j (x),

is a submanifold ofRN of dimensionN − |I1| − |I2| + 1.
Let us now prove that there exists a generic setT4 in (RN)|J 2| such that if the tuple(β1, . . . , β|J 2|) ∈ T4 then for

everyx ∈ OI1,I2 with |I1| + |I2| − 1� N , the convex set∂V β(x) has dimension|I1| + |I2| − 1. Still once, in order
to be clearer we assume thatI1 = {1} and thatI2 = {1, . . . , p} with p � N .

Fix x ∈O =OI1,I2. Using the definitions ofH 1
1 andh2

j for j = 1, . . . , p, we can write∂V β(x) as follows:

∂V β(x) := co{H 1
1 + 2C1x,H 2

1 + β1 + 2C2x, . . . ,H 2
p + βp + 2C2x}. (34)

This set is a convex set of dimensionp if and only if the vectorsH 2
1 +β1−H 1

1 +2x,H2
2 +β2−H 1

1 +2x, . . . ,H2
p +

βp − H 1
1 + 2x are linearly independent (recall thatC2 − C1 = 1). By definition of thezj ’s, this is equivalent to

proving that the vectorsx − z1, . . . , x − zp are linearly independent. We argue by contradiction. Assume that
existsα = (α1, . . . , αp) ∈ R

p such that

p∑
j=1

αj (x − zj ) = 0. (35)

Sincex belongs toO, it satisfies Eqs. (30). Hence for everyk = 2, . . . , p, the equation

2

(
p∑

j=1

αj

)
〈x, z1 − zk〉 − 2

p∑
j=1

αj 〈zj , z1 − zk〉 = 0,

gives

(∑p

j=1 αj

)
(R2 − R1) − 2

∑p

j=1 αj 〈zj , z1 − z2〉 = 0,(∑p

j=1 αj

)
(R3 − R1) − 2

∑p

j=1 αj 〈zj , z1 − z3〉 = 0,

...(∑p

j=1 αj

)
(Rp − R1) − 2

∑p

j=1 αj 〈zj , z1 − zp〉 = 0.

(36)

This means that thep-tuple(α1, . . . , αp) is solution of a system ofp − 1 linear equations inRp. We can write
(36) with matrices; using the definition of thezj ’s, the system is equivalent to

(N + Nβ)α = 0, (37)

where the matrixN is in Mp−1,p(R) and does not depend upon theβj ’s and whereNβ ∈ Mp−1,p(R) is defined
by:

Nβ =


〈β1, β1 − β2〉 〈β2, β1 − β2〉 . . . 〈βp,β1 − β2〉
〈β1, β1 − β3〉 〈β2, β1 − β3〉 . . . 〈βp,β1 − β3〉

...
...

. . .
...

〈β1, β1 − βp〉 〈β2, β1 − βp〉 . . . 〈βp,β1 − βp〉

 .

This matrix can also be written as follows:

Nβ = (NtMt )M − (NtMt )M , (38)
1 β β 2 β β
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where the matricesN1,N2 ∈ Mp,p−1(R) are defined by,

N1 :=


1 1 . . . 1
0 0 . . . 0
...

...
. . .

...

0 . . . . . . 0


and

N2 :=



0 0 . . . . . . 0
1 0 . . . . . . 0

0 1
. . . . . .

...
... 0

. . .
. . .

...
...

...
. . .

. . . 0
0 . . . . . . 0 1


.

The system (37) becomes[
N + (N1 − N2)

tMt
βMβ

]
α = 0. (39)

Now if (β1, . . . , βp) = (λe1, . . . , λep) whereλ is some real number, then we deduce thatα is solution of the system[
N + λ2(N1 − N2)

t
]
α = 0.

Note that thep −1 last columns of the matrix(N1 −N2)
t is a matrix inMp−1,p−1(R) which equals−Ip−1. Hence

we deduce that the matrixQ(λ) ∈ Mp−1,p−1(R) which corresponds to thep − 1 last columns of the matrix[N +
λ2(N1 − N2)

t ] has rankp − 1 for almost everyλ ∈ R. This proves that the matrixQ(β1, . . . , βp) ∈ Mp−1,p−1(R)

which equals thep − 1 last columns of[N + (N1 − N2)
tMt

βMβ ] has rankp − 1 for (β1, . . . , βp) in an open

dense set of full measureT ⊂ (RN)p. For suchp-tuples(β1, . . . , βp), the set of solutions of (36) is a vector lin
in R

p. In fact we can give a nonzero vector(α1, . . . , αp) which spans this vector line. For instance it is the solut
(ᾱ1, . . . , ᾱp) of the linear system (39) with first coefficient

ᾱ1(β1, . . . , βp) = det
(
Q(β1, . . . , βp)

) �= 0.

Hence by Cramer’s formulas the vector(ᾱ1, . . . , ᾱp) is a polynomial in theβ ′
j s. Moreover whenever(β1, . . . , βp) =

(λe1, . . . , λep), eachᾱj (j = 1, . . . , p) is a polynomial inλ of degree 2(p − 1) with leading term 1.
On the other hand, (35) also implies that∥∥∥∥∥

p∑
j=1

αj (x − zj )

∥∥∥∥∥
2

= 0.

Hence we get that

p∑
j=1

α2
j‖x − zj‖2 +

∑
j �=k

2αjαk〈x − zj , x − zk〉 = 0. (40)

But for each couple(j, k) ∈ {1, . . . , p}2, (28) gives that

2〈x − zj , x − zk〉 = 2‖x − zj‖2 + 2〈x − zj , zj − zk〉 = 2‖x − zj‖2 + Rk − Rj − 2〈zj , zj − zk〉.
By (27), we know that for everyj , ‖x − z ‖2 = R + ‖z ‖2. Thus (40) becomes
j j j
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d of 0.
p∑
j=1

α2
j

(
Rj + ‖zj‖2)+

∑
j �=k

αjαk

[
2
(
Rj + ‖zj‖2)+ Rk − Rj − 2〈zj , zj − zk〉

]

=
p∑

j=1

α2
j

(
Rj + ‖zj‖2)+

∑
j �=k

αjαk

[
Rj + Rk + 2〈zj , zk〉

]= 0. (41)

Denote byP(α1, . . . , αp) the polynomial in several variablesα1, . . . , αp which appears in (41). Let us prove th
whenever(β1, . . . , βp) ∈ T , the vector(ᾱ1, . . . , ᾱp) is generically not a solution of (41).

Actually, the function P ◦ (ᾱ1, . . . , ᾱp) is a polynomial in the coefficient of theβj ’s. But whenever
(β1, . . . , βp) = (λe1, . . . , λep) ∈ T , the functionP ◦ ᾱ(λ) is a polynomial inλ of degree 2(2p − 1) with lead-
ing termp henceP ◦ ᾱ(λ) �= 0 for almost everyλ ∈ R. Since the polynomialP is homogeneous, this proves th
the intersection of the set of solutions of (41) and of the solution of (36) equals generically{0}. This proves that for
everyx ∈ O, the vectorsx − z1, . . . , x − zp are independent and hence that∂V β(x) is a convex set of dimensio
p in R

N .10

We leave it to the reader to develop this proof for any subsetI1 andI2 of J 1 andJ 2. In conclusion, we proved
that there exists a generic setT4 in (RN)|J 2| such that if(β1, . . . , β|J 2|) ∈ T4 then for anyx ∈ OI1,I2, the generalized
gradient ofV β has dimension min{N,|I1| + |I2| − 1} and has min{N, |I1| + |I2| − 1} + 1 extreme points.

In conclusion, we proved that if(β1, . . . , β|J 2|) belongs to the generic setT3 ∩T4 ⊂ (RN)|J 2|, then the setOI1,I2

is a submanifold ofRN of dimension max{0,N − |I1| − |I2| + 1} and that the generalized gradient ofV β has
dimension min{N,|I1| + |I2| − 1} and has min{N, |I1| + |I2| − 1} + 1 extreme points. Furthermore it is clear fro
the proof that the closure of each of theOI1,I2’s is a smooth submanifold and that the functionV β is smooth on
it. In addition, it is clear by (34) that the functions which give the extreme points of∂V β are smooth and can b
smoothly extended to the closure of each connected component ofOI1,I2 (and that∂V β is smoothly extended int
a convex set with the right number of extreme points by footnote 9). Thus this proves that assertions (ii),
(iv) in Definition 18 hold. Finally, by classical properties of semiconcave function (see Appendix), we hav
for anyx ∈OI1,I2,

TxOI1,I2 = ∂V β(x)⊥.

Since the multivalued map∂V β(·) is upper semicontinuous, we deduce from the facts above thatΣ(V β) is gener-
ically a Whitney stratification. This completes the proof of Lemma 21.�

We proved that the minimum of both functionsV1 andV2 can in fact be approximated generically by a stratifi
semiconcave functionV β . Since the covering given in(P1) is locally finite, starting fromV1, we will are able
to construct step by step some functionsV

β

2 , . . . , V
β
l such that the function min{V1, . . . , V

β

2 , . . . , V
β
l } is stratified

semiconcave inRN . But when we have constructed theV
β
l ’s on all the adjacent cubes toK1, the next construction

will not change the global minimum function onK1. In this way we perform the construction of a global stratifi
semiconcave onΩ .11 Furthermore it is clear that since the initial functioñV satisfies (17) and (18), if the perturb
tionsβ are taken small enough, then the resulting stratified semiconcave (onΩ) functionV satisfies (17) and (18
for the function 2ε(·). This concludes the proof of Theorem 20.

10 Notice that actually we also proved that for eachx ∈ O, the set defined by the right-hand side in (34) is a convex compact set of dime
p in R

N (because anyx ∈ O satisfies (30)).
11 Notice that the function that we obtain is not stratified at the origin because the stratification is not locally finite in the neighborhoo
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1.5. Additional comments

In fact, the procedure of regularization that we apply in the previous section can be used for any semi
function. We leave as an exercise for the reader to supply the details of the proof of the following theorem:

Theorem 22. LetΩ be an open set ofRN . If u :Ω → R is a semiconcave function then for any continuous func
ε :Ω → (0,∞) such that for everyx ∈ Ω,BN(x, ε(x)) ⊂ Ω , there exists a stratified semiconcave functionuε such
that for anyx ∈ Ω ,

(i) |u(x) − uε(x)| � ε(x),
(ii) ∂P uε(x) ⊂ ∂P u(x + ε(x)BN) + ε(x)BN .

This result applies to the approximation of viscosity solutions introduced by Crandall and Lions [17,
F :Ω × R × R → R denotes a Hamiltonian which is continuous in the three variables, Theorem 22 giv
following:

Corollary 23. Let Ω be an open set ofRN . If u :Ω → R is a semiconcave supersolution of the Hamilton–Jac
equation

F(x,u,Du) = 0, (42)

then for any continuous functionε :Ω → (0,∞), there exists a functionv :Ω → R such that

(i) v is a supersolution ofF(x, v,Dv) − ε(x) = 0,
(ii) the functionv is stratified semiconcave,

(iii) |u − v| � ε.

Proof. Recall that since the HamiltonianF is continuous in the third variable then the supersolutionu of (42)
satisfies

∀x ∈ Ω, ∀ζ ∈ ∂Lu(x), F (x,u(x), ζ ) � 0.

By semiconcavity ofu, for everyx ∈ Ω , the limiting subgradient∂Lu(x) is a compact subset ofRN . Hence the
continuity of the HamiltonianF in the last variable implies that there exists a positive constantδx such that if
ζ ∈ ∂Lu(x) + 2δxBN then

F(x,u(x), ζ ) � −ε(x)

2
. (43)

But the limiting subgradient is an upper semicontinuous multivalued map, hence there existsµx > 0 such that if
y ∈ x + µxBN then

∂Lu(y) ⊂ ∂Lu(x) + δxBN . (44)

In addition the continuity ofF in the second variable and the compactness of the limiting subgradients imp
existence ofβx > 0 such that if|u′ − u(x)| � βx then

∀ζ ∈ ∂Lu(x) + δxBN,
∣∣F(x,u′, ζ ) − F(x,u(x), ζ )

∣∣� ε(x)

2
. (45)

Set for everyx ∈ Ω ,

ε′(x) := min

{
ε(x),

d(x,Ωc)
, inf

{
min{µx,βx}

}}
.

2 y∈RN
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The three functions that appear in the minimum above are continuous, henceε′ is continuous. Since for anyx ∈
Ω,ε′(x) � d(x,Ωc)/2, we can apply Theorem 22. We get the existence of a stratified semiconcave fu
v :Ω → R with

∀x ∈ Ω,
∣∣u(x) − v(x)

∣∣� ε′(x) (46)

and

∀x ∈ Ω, ∂P v(x) ⊂ ∂P u
(
x + ε′(x)BN

)+ ε′(x)BN . (47)

Assertions (ii) and (iii) are already given, it remains to prove (i).
Considerx ∈ Ω andζ ∈ ∂P v(x). The definition ofε′(x) combined with (47) and (44) gives that

ζ ∈ ∂P u
(
x + µx(x)BN

)+ δxBN ⊂ ∂Lu(x) + 2δxBN .

Hence by (43) we deduce thatF(x,u(x), ζ ) � − ε(x)
2 . But sinceε′(x) � βx , (46) with (45) imply that

F(x, v(x), ζ ) � −ε(x).

We conclude easily. �

2. Consequences for stabilizing feedbacks

2.1. Carathéodory stabilizing feedbacks

In our previous paper [24], we proved that every GAC control system of the form (1) (we authorized
control systems with drift as well) admits a feedbackα(·) :RN → Bm which makes the closed-loop system
GAS in the sense of Carathéodory.12 In order to produce such a feedback, we considered a semiconcave c
Lyapunov function and we constructed a continuous feedback outside a subset of its singular set. Altho
technique achieved the construction of a stabilizing feedback in the sense of Carathéodory, we were no
describe the behavior of the closed-loop system around the singular set and then to deduce the existence o
feedback. Here, in our situation, the knowledge of a stratified semiconcave CLF will help us to construct ex
the stabilizing feedback in a neighborhood of “each” stratum of the singular setΣ(V ).

SetΩ := R
N \ {0}. Let us considerV to be a stratified semiconcave control-Lyapunov function for the con

system (1). Before proving Theorem 5, we need to construct some stabilizing feedbackα(·) :RN → Bm for which
we understand exactly the bifurcation points which are produced by the closed-loop system (2) (which s
in the sense of Carathéodory); this particular result will be precisely stated in Theorem 37. Let us desc
construction of the feedbackα(·). In a first time, we do not assume thatN = 2.

First of all in order to simplify our construction, we modify the control-Lyapunov functionV . We claim the
following:

Lemma 24. There exists some functionW :Ω → R which is stratified semiconcave onΩ , proper, which satisfie
limx→0 W(x) = −∞ and such that

∀x ∈ Ω,∀ζ ∈ ∂LW(x), min
α∈Bm

{〈
f (x,α), ζ

〉}
� −1. (48)

12 Recall that the closed-loop system (2) is said to be GAS in the sense of Carathéodory if for everyx ∈ RN the solutions (we call them
Carathéodory solutions) of

ẋ(t) = f
(
x(t), α(x(t))

)
a.e., x(0) = x0,

exist, converge to the origin ast → ∞ and satisfy the property of Lyapunov stability.



366 L. Rifford / Ann. I. H. Poincaré – AN 22 (2005) 343–384

the

m

union

y

i-
Proof. Set for everyx ∈ Ω , W(x) := lnV (x). By smoothness of the logarithm, we have for everyx ∈ Ω ,

∂W(x) = 1

V (x)
∂V (x).

Consequently, since the functionx �→ lnx is smooth, concave and increasing on[0,∞) it is straightforward to
show thatW is stratified semiconcave onΩ , proper, satisfies limx→0 W(x) = −∞ and such that

∀x ∈ Ω, ∀ζ ∈ ∂P W(x), min
α∈Bm

{〈
f (x,α), ζ

〉}
� −1.

By continuity of the dynamicsf the same property holds for limiting subgradients. Therefore we get (48).�
Define the functionΨ :Ω → (−∞,0] as follows,

∀x ∈ Ω, Ψ (x) := min
α∈Bm

max
ζ∈∂W(x)

{〈
f (x,α), ζ

〉}
. (49)

Since for anyx ∈ Ω , f (x,0) = 0 we verify that the functionΨ has nonpositive values; moreover we have
following result:

Lemma 25. The functionΨ is upper semicontinuous onΩ .

Proof. Since for anyx ∈ Ω , the sets∂W(x) andBm are convex and since the functionsζ �→ 〈f (x,α), ζ 〉 and
α �→ 〈f (x,α), ζ 〉 are affine (do not forget thatf (x,α) =∑m

i=1 αifi(x)), the Minimax Theorem (see [5, Theore
3.7.9, p. 115]) allows us to write the functionΨ as follows:

∀x ∈ Ω, Ψ (x) = max
ζ∈∂W(x)

min
α∈Bm

{〈
f (x,α), ζ

〉}= max
ζ∈∂W(x)

min
α∈Bm

{〈
m∑

i=1

αifi(x), ζ

〉}

= max
ζ∈∂W(x)

min
α∈Bm

{
m∑

i=1

αi

〈
fi(x), ζ

〉}
. (50)

Now since for everyζ ∈ RN the map

x �→ min
α∈Bm

{
m∑

i=1

αi

〈
fi(x), ζ

〉}
is continuous, the upper semicontinuity of the multivalued mapx �→ ∂W(x) gives the result. �

Since the functionW is stratified semiconcave, its singular set can be written as a countable disjoint
of strata of dimension less thanN . Actually each singular subsetΣk(W) (for k ∈ {1, . . . ,N}) is a locally finite
disjoint union of strata of dimensionN − k, hence there existsN countable setsI1, . . . , IN such that

Σ(W) =
⋃

k∈{1,...,N}
Σk(W) =

⋃
k∈{1,N}

⋃
i∈Ik

SN−k
i .

From Definition 18 we note that the functionΨ is smooth on each stratum ofΣ(W); as a consequence it will enjo
the following property:

Lemma 26. For almost everyλ ∈ (0,1), the following property is satisfied:
For eachk ∈ {1, . . . ,N}, for anyi ∈ Ik either, the set{x ∈ SN−k

i : Ψ (x) = −λ} is empty or a Lipschitz subman

fold ofSN−k of dimensionN − k − 1 (if k = N this means that the set is empty).
i
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Proof. By (50) the functionΨ can be expressed as

Ψ (x) = max
ζ∈∂W(x)

min
α∈Bm

{
m∑

i=1

αi

〈
fi(x), ζ

〉}
.

But by the Cauchy–Schwarz Theorem the minimum inside this formula can be computed, and therefore
that for everyx ∈ Ω ,

Ψ (x) = max
ζ∈∂W(x)

{
−
√√√√ m∑

i=1

〈
fi(x), ζ

〉2}
.

We are now ready to prove Lemma 26. In fact it is sufficient to prove that for every integerp � 2, for almost every
λ ∈ (0,1− 1/p), the property given in the lemma is satisfied. Fixp ∈ N \ {1} and let us prove this fact.

Let SN−k
i be a stratum of dimensionN − k (with k ∈ {1, . . . ,N − 1} andi ∈ Ik) in the Whitney stratification o

Σ(W). By Definition 18 there existk + 1 functionsζ1, . . . , ζk+1 which are smooth onS and such that for ever
x ∈ S,

∂W(x) = co
{
ζ1(x), . . . , ζk+1(x)

}
.

If we denote by∆k+1 the simplex of dimensionk + 1 defined by

∆k+1 :=
{

(t1, . . . , tk+1) ∈ R
k+1: ∀j, tj � 0 and

k+1∑
i=1

ti = 1

}
,

this means that for everyx ∈ SN−k
i we have,

Ψ (x) = max
t∈∆k+1

−

√√√√√k+1∑
j=1

m∑
i=1

tj
〈
fi(x), ζj (x)

〉2 . (51)

Note that for everyx ∈ SN−k
i the limiting gradient ofW atx equals the set{ζ1(x), . . . , ζk+1(x)} . Thus by (48) this

implies that for everyj ∈ {1, . . . , k + 1} we have

−
√√√√ m∑

i=1

〈
fi(x), ζj (x)

〉2 � −1. (52)

Denote byS the set ofx ∈ SN−k
i such that−Ψ (x) ∈ (0,1− 1/p); of courseS is open inSN−k

i .
From (52) we deduce that for each pointx ∈ S , the maximum in (51) cannot be attained at some(k + 1)-tuples

of the form (0, . . . ,0,1,0, . . . ,0) i.e. at some vertex of the simplex∆k+1. Actually since by Definition 18 the

mapsζ1, . . . , ζk+1 can be smoothly extended toSN−k
i , this means that for eachj ∈ {1, . . . , k+1} there exists som

neighborhoodVj of the(k + 1)-tupletj (with tj = 1 andtl = 0 for l �= j ), such that for anyx ∈ S the maximum in
(51) is not attained in

⋃k+1
j=1Vj . In consequence, there exists a smooth compact submanifoldMk,p with boundary

in the simplex∆k+1 such that for anyx ∈ S ,

Ψ (x) = max
t∈Mk,p

−

√√√√√k+1∑
j=1

m∑
i=1

tj
〈
fi(x), ζj (x)

〉2 .

To summarize, we have shown that on the open setS , the functionΨ can represented as the maximum of sev
smooth functions over a compact smooth manifold with boundary. Therefore the Morse–Sard theorem de
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in [26, Theorem 3] applies,13 then we get that for almost everyλ ∈ (0,1− 1/p) the set{x ∈ S: Ψ (x) = −λ} is a
Lipschitz submanifold ofSN−k

i of codimension 1.
We proved the property of Lemma 26 for every stratum of dimension 1, . . . ,N− 1. On the other hand the resu

is obvious for strata of dimension zero. Finally, the global number of strata ofΣ(W) being countable, we conclud
easily. �

Let λ ∈ (0,1) be some constant satisfying the property of Lemma 26. For eachk ∈ {1, . . . ,N − 1}, we divide
the setΣk(W) into three subsets as follows: LetS be some stratum inΣk(W),

• we say thatS is stable if for everyx ∈ S,Ψ (x) � −λ;
• we say thatS is repulsive if for everyx ∈ �S,Ψ (x) > −λ;
• we say thatS is a bifurcation stratum if there existsx ∈ �S andy ∈ S such thatΨ (x) � −λ andΨ (y) > −λ.

We denote byΣk
s (W) (resp. byΣk

r (W) and resp. byΣk
b (W)) the set of stable (resp. repulsive and resp. bifurcat

strata ofΣk(W). Thus the singular setΣ(W) is partitioned into three subsets:

Σ(W) = Σs(W) ∪ Σr(W) ∪ Σb(W).

Recall that for each stratumS in Σb(W), the set{
x ∈ S: Ψ (x) = −λ

}
is a (nonempty) Lipschitz submanifold ofS of codimension 1. Hence wheneverS is a bifurcation stratum we ca
define the Lipschitz manifold (with boundary)̃S by

S̃ := {
x ∈ �S: Ψ (x) � −λ

}
. (53)

We define the setS ⊂ Σ(W) by:

S := Σr(W) ∪
⋃

S∈Σb(W)

S̃. (54)

This set satisfies the following:

Lemma 27. The setS is closed inΩ .

Proof. Both setsΣr(W) andΣb(W) are locally finite unions of strata of the singular setΣ(W). From definition
of repulsive strata, this implies that the setΣr(W) is closed inΩ . On the other hand, by upper semicontinuity
the functionΨ each stratum̃S given by (53) is closed. Hence we deduce that the setS is closed. �

Therefore the subset ofΩ defined by

D := Ω \ S

13 Theorem 3 in [26] asserts the following:
Let U be an open subset ofR

n and letN be a smooth compact manifold. Letφ :U × N → R be a smooth function. Then the functio
f :U → R defined by

f (x) := min
q∈N

{
φ(x, q)

}
satisfies the Morse–Sard theorem: That is, for almost everyλ in f (U) the set{x ∈ U : f (x) = λ} is a Lipschitz submanifold ofU of codimension
one. In particular the result applies also in the case of smooth compact manifolds with boundary.
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is an open dense set ofR
N . From now we follow more or less the method of proof that we used in [24] in o

to produce a stabilizing feedback which was continous on an open dense set. First we define a multival
G1 : D → Bm as follows:

For everyx ∈ D, we set

G1(x) := {
α ∈ Bm: ∀ζ ∈ ∂W(x),

〈
f (x,α), ζ

〉
� −λ

}
.

It enjoys the following property:

Lemma 28. The multifunctionG1 has nonempty compact convex values and is lower semicontinuous on theD.

Proof. By construction, we have that for everyx ∈ D, Ψ (x) � −λ. Hence by (49), this means that the setG1(x)

is never empty onD. On the other hand, recall that for everyx ∈ D and for everyζ ∈ ∂W(x),

〈
f (x,α), ζ

〉= m∑
i=1

αi

〈
fi(x), ζ

〉
.

Hence it is clear that for everyx ∈D, the setG1(x) is compact and convex. Let us prove the upper semicontin
of G1. We then have to prove that for any sequence(xn)n of points inD converging to somex ∈ D, and for any
α ∈ G1(x), there exists a sequence(αn)n of points inG1(xn) with limit α.

Let (xn)n be a sequence inD converging tox̄ ∈ D, and letᾱ ∈ G1(x̄). Define for everyx ∈ D the function
gx :Rm → R by

∀α ∈ R
m, gx(α) := max

ζ∈∂W(x)

〈
f (x,α), ζ

〉
.

The functiongx is convex as a maximum of affine functions. We claim that for each integern, there existsαn ∈
G1(xn) such that

‖ᾱ − αn‖ � 2

√
1− gxn(ᾱ)2

λ2
. (55)

We argue by contradiction; assume that for some integern we have

∀α ∈ G1(xn), ‖ᾱ − α‖ > 2

√
1− gxn(ᾱ)2

λ2
=: l. (56)

In particular this implies that̄α /∈ G1(xn) and thatgxn(ᾱ) > −λ (in fact by upper semicontinuity of the multivalue
mapx �→ ∂W(x), we can assume thatgxn(ᾱ) ∈ (−λ,0)). In addition, sincegxn(0)= 0 andG1(xn) �= ∅, (56) means
that there existsα ∈ G1(xn) with gxn(α) = −λ and such that

‖ᾱ − α‖ > l.

By Pythagorean Theorem, this implies that if we setβ := ᾱ+α
2 ∈ Bm, we have

‖β‖ <

√
1− l2

4
. (57)

Note that by convexity of the functiongxn , we have thatgxn(β) � gxn(ᾱ). Set β̄ := 1√
1−l2/4

β which by (57)

belongs to the control setBm. Therefore we conclude that

gxn(β̄) � 1√ gxn(ᾱ).

1− l2/4
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sult:
By an easy calculus, the definition ofl gives that

1√
1− l2/4

gxn(ᾱ) = −λ

which gives a contradiction.
In consequence, we proved that for each integern, there existsαn ∈ G1(xn) such that (55) holds. By uppe

semicontinuity of the multivalued mapx �→ ∂W(x), it is straightforward to show that

lim
n→∞gxn(ᾱ) = −λ;

which gives the result by (55).�
We can apply the well-known Michael’s Selection Theorem (see [18] or [5, Theorem 6.5.7, p. 228]) to d

the existence of a continuous selectionα1(·) :D → Bm of G1 on the setD. In particular, this means that for eve
x ∈ D we can define the Cauchy problem

ẋ(t) = f
(
x(t), α1

(
x(t)

))
, x(0)= x. (58)

The Cauchy–Peano Theorem says that for everyx ∈ D there exists some solutionx(·) of (58) defined on som
interval [0, T ] and such thatx(t) ∈ D for every t ∈ [0, T ]. (Note that 0 does not belong to the open setD.) The
construction ofα1(·) yields the following:

Lemma 29. Letx(·) be a solution of(58)defined on some interval[0, T ]. Then for anyt ∈ [0, T ], we have

W(x(t)) � W
(
x(0)

)− λt. (59)

In particular the trajectory can be extended as long asx(t) does not converge to the setS .

Proof. By continuity ofα1(·), the functionθ defined by,

∀t ∈ [0, T ], θ(t) := W
(
x(t)

)
is locally Lipschitz on the interval[0, T ]. Thus by the classical Chain Rule for limiting subgradients (see
Theorem 10.4, p. 62]), for everyt ∈ (0, T ) and for everyη ∈ ∂Lθ(t), there existsζ ∈ ∂LW(x(t)) such that

η = 〈
ζ, ẋ(t)

〉= 〈
ζ, f

(
x(t), α1

(
x(t)

))〉
.

Hence by construction ofα1(·), we deduce that for everyt ∈ (0, T ), ∂Lθ(t) � −λ. This means that the functio
t �→ θ(t) + λt is decreasing, which gives (59).14

Actually, (59) says also that the trajectoryx(·) remains in the set

SW

(
W
(
x(0)

)) := {
x ∈ R

N : W(x) � W
(
x(0)

)}
,

which is compact by properness ofW . In particular this means that as soon asx(T ) will belong toD, it will be
possible to extendx(·) on some new interval of the form[0, T + ε] (for someε > 0). This proves Lemma 29.�

We conclude that ifx(·) is solution of (58) then there existsT > 0 such thatx(t) belongs toD for anyt ∈ [0, T )

and such thatx(T ) ∈ S ;15 such a solution will be called a maximal solution of (58). We claim the following re

14 Here we use the fact that a Lipschitz functiong :R → R is decreasing iff for everyt ∈ R and for everyζ ∈ ∂Lg(t),

ζ � 0.

15 Notice that since the dynamicsf (x,α (x)) is bounded on the compact level-setS (W(x(0))), the limit lim x(t) exists.
1 W t→T
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Lemma 30. Letx(·) be a maximal solution of(58)defined on the interval[0, T ] such thatx(T ) �= 0. Then we have

Ψ
(
x(T )

)= −λ. (60)

Proof. By semiconcavity of the functionW (see Proposition 10) nearx(T ) �= 0, there existsσ > 0 such that for
anyζ ∈ ∂P W(x(T )), we have

−W(y) + W
(
x(T )

)+ σ
∥∥y − x(T )

∥∥2 �
〈−ζ, y − x(T )

〉
whenevery is in a neighborhood ofx(T ). We deduce that for somes < T and close toT , we have

W
(
x(T )

)− W
(
x(s)

)+ σ
∥∥x(s) − x(T )

∥∥2 �
〈−ζ, x(s) − x(T )

〉
. (61)

But Lemma 29 asserts that

W
(
x(t)

)− W
(
x(s)

)
� −λ(s − t)

whenever 0< s < t < T . Hence by continuity ofW we deduce that〈
ζ, x(T ) − x(s)

〉
� W

(
x(T )

)− W
(
x(s)

)+ σ
∥∥x(s) − x(T )

∥∥2 � −λ(T − s) + σ
∥∥x(s) − x(T )

∥∥2
. (62)

Now by convexity of the setf (x(T ),Bm) there exists a sequence(sn)n andαT in Bm such that

lim
n→∞

x(T ) − x(sn)

T − sn
= f

(
x(T ),αT

)
. (63)

Consequently, passing to the limit for the sequence(sn)n in (62), we obtain〈
ζ, f

(
x(T ),αT

)〉
� −λ.

We can repeat this argument for allζ ∈ ∂P W(x(T )), that is,

∀ζ ∈ ∂P W
(
x(T )

)
,

〈
ζ, f

(
x(T ),αT

)〉
� −λ.

Since∂P W(x(T )) = ∂W(x(T )) (by semiconcavity ofW ), this means that

Ψ
(
x(T )

)
� −λ.

On the other hand,x(T ) does not belong toD. By (54) this givesΨ (x(T )) � −λ. Hence we conclude.�
In fact, we could now prove that the feedbackα1(·) stabilizes the system (1) in the sense of Carathéodor

we did in [24]). However the feedbackα1(·) does maybe not possess the properties that will be needed in the
of Theorem 5. For example, if̄x is given inS , we do not know what is the set of pointsx ∈ D such thatx(T ) = x

for someT > 0; this set could have positive measure inR
N ! That is the reason why we are going to detail how

can modify the feedbackα1(·) in a neighborhood ofS in such a way that we understand exactly the set of po
in x ∈D such thatx(T ) ∈ S for someT > 0. For that, we denote bySλ the set ofx ∈ S such thatΨ (x) = −λ, and
we denote bydS :RN → the distance function to the setS .

Let x̄ ∈ S \ Sλ. Sincex̄ belongs to the stratificationΣ(W), there existk ∈ {1, . . . ,N} and a unique stratumS
of dimensionN − k such that̄x ∈ S. Let us first assume that the stratumS is isolated inS , that is such thatS does
not meet the closure of another stratum ofΣ(W) meetingS . In particular this means that on every faceF of the
k-simplex∂W(x̄), we have

Ψ (x̄) = max
ζ∈F

min
α∈Bm

〈
f (x̄, α), ζ

〉
� −λ.

SetC := ∂W(x̄) and denote byF1, . . . ,Fk+1 its k + 1 faces of dimensionk − 1. Moreover setK := f (x̄,Bm); this
setK is compact, strictly convex in the subspace generated by it, and symmetric with respect to the origin.



372 L. Rifford / Ann. I. H. Poincaré – AN 22 (2005) 343–384

el. If
by HC the unique subspace of dimensionk such that there existsζ ∈ C which satisfiesC ⊂ ζ + HC and defineEC

to be the vector subspace ofRN which is spanned byC (note thatEC has dimensionk + 1 if 0 /∈ C and dimension
k otherwise). Recall that by semiconcavity ofW , the normal cone to the stratumS at the pointx̄ equals

Nx̄S = HC.

DefinePEC
:RN → EC to be the orthogonal projection onEC in R

N and set

K̃ := PEC
(K).

The setK̃ has the same properties asK . Moreover by construction, we note that for everyv ∈ K and for every
ζ ∈ C, we have

〈v, ζ 〉 = 〈
PEC

(v) + (
v − PEC

(v)
)
, ζ
〉= 〈

PEC
(v), ζ

〉
sincev − PEC

(v) ⊥ C in R
N . Before continuing we recall a notation which will used frequently in the sequ

A is a subset ofRN thenA⊥ is defined by

A⊥ := {
p ∈ R

N : q �→ 〈q,p〉 is constant onA
}
.

We have the following lemma:

Lemma 31. Assume thatΨ (x̄) < 0. There exists an affine hyperplaneH of dimensionk in EC which intersects the
vector lineC⊥ at a unique point and such that the convex setK̃ ∩ H has dimensionk and satisfies

∀w ∈ ∂(K̃ ∩ H), ∃ζ ∈ C such that〈w,ζ 〉 � −λ. (64)

Proof. Note that the assumptionΨ (x̄) < 0 implies that 0/∈ C, which gives thatHC is a hyperplane inEC . Recall
that by construction of the set̃K , we know that

max
ζ∈C

min
w∈K̃

〈w,ζ 〉 = Ψ (x̄).

Since the stratumS is isolated inS , the concave functionζ �→ minw∈K̃ 〈w,ζ 〉 attains its maximum onC at some
ζ̄ which does not belong to a face ofC. This means that̄ζ belongs to the relative interior ofC in EC and satisfies
for everyw ∈ K̃ ,

〈w, ζ̄ 〉 ∈ [Ψ (x̄),−Ψ (x̄)
]⊂ (−λ,λ). (65)

For each faceFi of thek-simplexC, there existswi ∈ K̃ such that

〈wi, ζ 〉 � −λ,∀ζ ∈ Fi.

SetW := co{w1, . . . ,wk+1} ⊂ EC ; we claim thatW is a simplex of dimensionk. We argue by contradiction.
If the dimension ofW is strictly less thank, then there exists an affine spaceL of dimensionk − 1 such that

W ⊂ L. SinceL⊥ is a vector plane inEC , there existsu ∈ HC such that the mapw �→ 〈w,u〉 is constant onW .
Sinceu ∈ HC andζ̄ is in the interior ofC, there existst > 0 such that̄ζ + tu belongs to some faceFi of C. This
gives by construction ofwi ,

〈wi, ζ̄ + tu〉 � −λ,

which implies by (65) that〈wi,u〉 < 0. Finally sinceu ∈ L⊥ we deduce that

〈w,u〉 < 0, ∀w ∈ W. (66)

On the other hand, there exists alsot ′ > 0 such that the vector̄ζ − t ′u is on a faceFj of C. By (65) we get that

〈w ,u〉 > 0
j
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which contradicts (66). Hence we proved thatW is ak-simplex.
Prove now thatW ∩ C⊥ is a singleton. Again we argue by contradiction.
If W ∩ C⊥ is empty, then this means that there existsu ∈ HC such that

〈w,u〉 > 0, ∀w ∈ W. (67)

As before sincēζ belongs to the interior ofC, there existst > 0 such that̄ζ is on a face ofW . This means that ther
existsi ∈ {1, . . . , k + 1} such that〈wi, ζ̄ + tu〉 � −λ. By (65) we deduce that〈wi,u〉 < 0 which contradicts (67)
This proves thatW ∩ C⊥ is nonempty. Furthermore, itW meetsC⊥ in two points, then a face ofW meetsC⊥
which is impossible by construction. As a matter of fact for every faceF of the k-simplexW , there exists an
extreme pointζF ∈ C such that〈w,ζF 〉 � −λ for anyw ∈ F . Hence if somew ∈ C⊥ then this would imply tha
for anyζ ∈ C, 〈w,ζ 〉 = 〈w,ζF 〉 � −λ which is impossible.

Denote byH the unique affine space of dimensionk which containsW and prove that it satisfies the requir
properties. First sinceW ⊂ K̃ is a simplex of dimensionk, it has dimensionk. Moreover it intersectsC⊥ at a
unique point. Finally the set ofw ∈ H such that there existsζ ∈ C which satisfies〈w,ζ 〉 � −λ is the complemen
(in H ) of the convex open set{

w ∈ H : 〈w,ζ 〉 > −λ, ∀ζ ∈ C
}
.

But this set containsW ∩ C⊥ and does not meet the boundary ofW . This concludes the proof of Lemma 31.�
We can improve this lemma ifΨ (x̄) = 0. In this case, the hyperplaneH is not affine; it passes through th

origin.

Lemma 32. Assume thatΨ (x̄) = 0. There exists a vector hyperplaneH of dimensionk in EC which does no
contain the vector lineC⊥ and such that the convex set̃K ∩ H has dimensionk and satisfies

∀w ∈ ∂(K̃ ∩ H),∃ζ ∈ C such that〈w,ζ 〉 � −λ. (68)

Proof. We distinguish two cases:
First case: 0∈ C.
SetK̂ := PHC

(K̃) wherePHC
denotes the projection onHC . Note that for anyw ∈ K̃ , we have

〈w,ζ 〉 = 〈
PHC

(w), ζ
〉
.

As before since the stratumS is isolated inS , for each faceFi there existswi ∈ K̂ such that

〈wi, ζ 〉 � −λ, ∀ζ ∈ Fi.

SetW := co{w1, . . . ,wk+1}; we claim thatW is a simplex of dimensionk. We argue by contradiction.
As before if it is not the case, this means that there exists an affine spaceL ⊂ HC of dimensionk − 1 which

containsW . We deduce that there existsu �= 0 in L⊥. Since 0 belongs to the interior ofC, there ist > 0 such that
tu is on a faceFi of C. This implies that

〈wi,u〉 � −λ

t
< 0

which gives that

〈w,u〉 < 0, ∀w ∈ W. (69)

But there exists alsot ′ > 0 such that−t ′u is on a faceFj . This gives that

〈wj ,u〉 > 0

which contradicts (69).
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By the same method we can prove that 0∈ W . Consequently we deduce that̂K ∩ HC is a k-simplex which
contains the set ofw ∈ K̂ such that

〈w,ζ 〉 < −λ, ∀ζ ∈ C.

Hence we conclude that for everyw ∈ ∂(K̂ ∩ H , there existsζ ∈ C such that〈w,ζ 〉 � −λ. From definition ofK̂ it
is clear that there exists an vector hyperplaneH of dimensionk with PHC

(H) = HC such thatK̃ ∩ H is a convex
set of dimensionk and such that (68) is satisfied.

Second case: 0/∈ C.
In this case there exists̄ζ ∈ C such that

〈w, ζ̄ 〉 = 0, ∀w ∈ K̃.

This means that̃K is included in the vector hyperplaneH := (ζ )⊥. If we setC̃ := PH (C) wherePH denotes the
orthogonal projection onH , then we see that for everyζ ∈ C,

〈w,ζ 〉 = 〈
w,PH (ζ )

〉
, ∀w ∈ K̃.

So we can apply the first case. This concludes the proof of Lemma 32.�
Lemmas 31 and 32 permits us to show that our control system admits near each point of an isolated st

S a control which makesW anddS increasing. Let us state the result precisely in the following lemma.

Lemma 33. Let x̄ ∈ S \ Sλ and letS be a stratum of dimensionn − k (k ∈ {1, . . . ,N}) which is isolated inS and
such thatx̄ ∈ S. Then there existsδx̄ > 0 such that for everyx ∈ BN(x̄, δx̄) \ S ⊂ Ω satisfyingprojS(x) ∈ S, there
existsα ∈ Bm which satisfies〈

f (x,α), ζ
〉
� −λ

2
, ∀ζ ∈ ∂W(x), (70)

and 〈
f (x,α), ξ

〉
� δx̄, ∀ξ ∈ ∂dS(x). (71)

Proof. Since�S is a smooth manifold with boundary inΩ , the distance function to�S, denoted byd�S is of classC1

on a neighborhood of�S minus�S and satisfies for every pointx /∈ �S of this neighborhood

∇d�S(x) = x − p(x)

‖x − p(x)‖ ∈ Np(x)
�S,

wherep(x) is defined byp(x) := projS(x) (we refer the reader to [12] for the proof of this result). Sincex̄ ∈ S,
there exists some constantδ > 0 such thatd�S anddS coincide on the ballBN(x̄, δ). In particular, this implies tha
for everyx ∈ BN(x̄, δ) \ S ,

ξ(x) := ∇dS(x) = x − p(x)

‖x − p(x)‖ ∈ Np(x)S. (72)

On the other hand, recall that the functionW is semiconcave in the ballBN(x̄, δ). By Proposition 11, this mean
that there exists some constantσ � 0 such that for every pair of pointsx, y ∈ BN(x̄, δ) and for anyζx ∈ ∂W(x),
ζy ∈ ∂W(y), we have

〈−ζy + ζx, y − x〉 � −σ‖y − x‖2.

By (72) we deduce that for anyζ ∈ ∂W(x) and for anyζ ′ ∈ ∂W(p(x)) we have,〈
ζ, ξ(x)

〉
�
〈
ζ ′, ξ(x)

〉+ σd (x). (73)
S
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Notice that by continuity off and by smoothness of the manifoldS, we just need to prove the existence of so
positive constantδx̄ such that (70) and (71) hold wheneverx is close tox̄ and such thatp(x) = x̄. As before, we
define the elementsC,K,EC,HC andK̃ for the pointx̄. We distinguish two cases:

First case:Ψ (x̄) < 0.
Let x ∈ BN(x̄, δ) such thatx �= x̄ andp(x) = x̄. The vectorξ(x) �= 0 belongs toHC hence by Lemma 31 ther

exist w ∈ ∂(K̃ ∩ H) and t > 0 such thatPHC
(w) = tξ(x), which means that〈w,ξ(x)〉 = t‖ξ(x)‖2 = t . On the

other hand, Lemma 31 says also that there isζ ′ ∈ ∂W(x̄) such that〈w,ζ ′〉 � −λ which gives by (73) for every
ζ ∈ ∂W(x),

〈w,ζ 〉 = 〈
tξ(x), ζ

〉+ 〈
w − tξ(x), ζ

〉
= t
〈
ξ(x), ζ

〉+ 〈
w − tξ(x), ζ ′〉 (sincew − tξ(x) ⊥ HC)

� t
〈
ξ(x), ζ ′〉+ tσdS(x) + 〈

w − tξ(x), ζ ′〉� 〈w,ζ ′〉 + tσdS(x)

� −λ + σ tdS(x).

We conclude easily.
Second case:Ψ (x̄) = 0.
Since the vectorξ(x) �= 0 belongs toHC , Lemma 32 says that there existw ∈ ∂(K̃ ∩ H) and t > 0 such that

PHC
(w) = tξ(x), which means that〈w,ξ(x)〉 = t . We conclude as before.�

The same results holds for strata which are not isolated.

Lemma 34. Assume thatN = 2 and letx̄ ∈ S \ Sλ. Then there existsδx̄ > 0 such that for everyx ∈ BN(x̄, δx̄B) \
S ⊂ Ω , there existsα ∈ Bm which satisfies〈

f (x,α), ζ
〉
� −λ

2
, ∀ζ ∈ ∂W(x), (74)

and 〈
f (x,α), ξ

〉
� δx̄, ∀ξ ∈ ∂dS(x). (75)

Proof. Let us assume thatx̄ ∈ S \Sλ ⊂ R
2. Necessarily the point̄x belongs either toΣ1(W) either toΣ2(W), but

since the strata of dimension one are isolated inS , we ever proved the result in that case; hence we can assum
x̄ belongs toΣ2(W). Moreover notice that by construction ofλ andS the pointx̄ cannot be isolated inS , thus we
are in the situation of Fig. 1. This means that in a little ballB centered at̄x, the singular set ofW consists in one
stratum of dimension 0, the singleton{x̄}, plus three strata of dimension one, that is three submanifoldsS1, S2, S3
of dimension one which join at̄x (we refer the reader to comments concerning Fig. 1 for a complete descript
this situation). As before we denote byζ1, ζ2, ζ3 the three extreme points of the convex compact setC := ∂W(x̄)

and we denote byR1,R2,R3 the three regions where the functionW is smooth inB. In addition since the distanc
functiondS is smooth on a neighborhood of each stratumSi , we note that, changing the ballB if necessary, we ca
assume that the generalized gradient ofdS writes for everyx ∈ R1 (resp. for everyx ∈R2 and for everyx ∈R3),

∂dS(x) =


ξ2(x) if dS2(x) < dS3(x),
ξ3(x) if dS3(x) < dS2(x),
co
[
ξ2(x), ξ3(x)

]
if dS2(x) = dS3(x),

where

ξ2(x) := x − projS2
(x)

and ξ3(x) := x − projS3
(x)
‖x − projS2
(x)‖ ‖x − projS3

(x)‖
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(respectively with the corresponding formulas forx in the two other regions). Let us now prove our result; si
the strataS1, S2, S3 are not necessarily included inS , different cases appear:

First case: the three strataS1, S2, S3 are inS .
Let us prove that there existsδx̄ > 0 such that for everyx ∈ R1 there existsα ∈ Bm for which (74) and (75)

hold.
By semiconcavity of the functionW , the upper limit of the sets∂dS(x) whenx ∈ R1 tends tox̄ is included in

the set

co

{
ζ2 − ζ1

‖ζ2 − ζ1‖ ,
ζ3 − ζ1

‖ζ3 − ζ1‖
}
.

Therefore it is sufficient to prove that there existsα ∈ Bm such that〈
f (x̄, α), ζ1

〉
� −λ, (76)

and 〈
f (x̄, α), ξ

〉
> 0, ∀ξ ∈ [ζ2 − ζ1, ζ3 − ζ1]. (77)

But since the strataS2 andS3 belong toS , every controlα ∈ Bm such that〈f (x α), ζ1〉 � −λ satisfies〈
f (x,α), ζi

〉
> −λ, ∀i = 1,2,

which implies〈
f (x,α), ξi

〉
> 0, ∀ξ ∈ [ζ2 − ζ1, ζ3 − ζ1].

In conclusion we get that there existsα ∈ Bm which satisfies (76) and (77). The same conclusion hold for
regionsR2 andR3; we conclude easily.

Second case: one of theSi ’s is not inS .
Without loss of generality we can assume thatS1 does not meetS . If x ∈ B is in the regionR1 then the first

case gives the result. Otherwise settingR = R2 ∪ R3 ∪ S1, we note that the upper limit of the sets∂W(x) when
x ∈ R tends tox̄ is included in the segment[ζ2, ζ3] and that the upper limit of the sets∂dS(x) whenx ∈ R tends
to x̄ is included in the set

co

{
ζ1 − ζ2

‖ζ1 − ζ2‖ ,
ζ1 − ζ3

‖ζ1 − ζ3‖
}
.

Therefore it is sufficient to prove that there existsα ∈ Bm such that〈
f (x̄, α), ζ

〉
� −λ, ∀ζ ∈ [ζ2, ζ3], (78)

and 〈
f (x̄, ξ

〉
> 0, ∀ξ ∈ [ζ1 − ζ2, ζ1 − ζ3]. (79)

But since the stratumS1 is not inS , there existsα ∈ Bm such that〈
f (x̄, α), ζ

〉
� −λ, ∀ζ ∈ [ζ2, ζ3].

In consequence since both strataS2 andS3 are inS we deduce that for suchα,〈
f (x,α), ξ

〉
> 0, ∀ξ ∈ [ζ1 − ζ2, ζ1 − ζ3].

This conclude the proof of the second case.
Third case: two of theSi ’s are not inS .
Without loss of generality we can assume thatS2 andS3 do not meetS . Notice that sinceS2 (resp.S3) does not

meet the setS , there exists some controlα2 ∈ Bm (resp.α3 ∈ Bm) such that〈
f (x̄, α ), ζ

〉
� −λ, ∀ζ ∈ [ζ , ζ ].
2 1 2
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(Respectively〈
f (x̄, α3), ζ

〉
� −λ, ∀ζ ∈ [ζ1, ζ3].)

On the other hand, since the stratumS1 meetsS , we have〈
f (x̄, α2), ζ3 − ζ2

〉
> 0.

(Respectively〈
f (x̄, α3), ζ2 − ζ3

〉
> 0.)

This implies easily that Lemma 34 holds in the third case.�
In order to conclude the construction of our feedback, we need to define the concept of bifurcation po

closed-loop system.

Definition 35. Assume that we are given a closed subsetF of Ω , an open setU ⊂ Ω containingF and a feedback
α(·) :U → Bm which is continuous onU \F and such that the corresponding closed-loop system

ẋ = f
(
x,α(x)

)
, (80)

has always local Carathéodory solutions inU (that is for any initial state inU ). Then a pointx in F is called a
bifurcation point of the feedbackα(·) if there existt > 0 and a Carathéodory trajectoryx(·) of (80) defined on
[0, t] such that

x(t) = x.

Using a locally finite covering of the setS \Sλ by the balls given by Lemma 34, we deduce that we can cons
in a neighborhood ofS in Ω a feedback which makesW decreasing and with nice properties of bifurcation (
lemma below and Figs. 2, 3). Furthermore, we note that the additional assumption we made on the smoo
the vector fieldsf1, . . . , fm is in fact not necessary. Actually, the smoothness of thefi ’s helped us, by Lemma 26, t
truncate easily and properly the bifurcation strata of the singular setΣ(W) into Lipschitz manifolds with boundary
and then to get a nice setS . If the vector fields are only assumed to be locally Lipschitz, this truncation can
be done but in a different way. In any case, based on Lemma 34 and constructing meticulously a feedbac
step in a neighborhood ofS , we can prove the following:

Lemma 36. Assume thatN = 2. There exists some open neighborhoodV of the setS , a closed subset̃S of S and
a feedbackα2(·) :V → R

m such that the following properties are satisfied:

(i) the setS̃ is closed inΩ and stratified by strata of dimension less thanN − 1;
(ii) the feedbackα2(·) is smooth onV \ S̃ ;
(iii) for everyx ∈ V \ S̃ , we have〈

f
(
x,α2(x)

)
, ζ
〉
� −λ

2
, ∀ζ ∈ ∂W(x);

(iv) for everyx ∈ V , the Carathéodory solutions ofẋ = f (x,α2(x)), x(0)= x exist locally and satisfy

W
(
x(t)

)
� W

(
x(0)

)− λ

2
t,

for any t � 0 such thatx(t) ∈ V ;
(v) for each stratumS of S̃ of dimensionk (k ∈ {1, . . . ,N −1), the set of bifurcation points ofα2(·) in S is a finite

union of smooth connected submanifolds of dimension strictly less thank (whenever it is nonempty);
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(vi) if we denote bỹSb the set of bifurcation points ofα2(·) in S̃ , then for everyx ∈ S̃b there existsδ > 0 such
thatx + δB ⊂ V and such that for everyy ∈ S̃b ∩ (x + δB), the Cauchy probleṁx = −f (x,α2(x)), x(0)= y

admits locally a unique solution which can in addition be defined on the interval[0, δ); moreover the flow o
this dynamical system is continuous oñSb ∩ (x + δB) × [0, δ).16

Fig. 2. Bifurcation of the feedback near an isolated stratum.

Fig. 3. Bifurcation of the feedback in the general case.

16 We call flow of the dynamical systeṁx = −f (x,α2(x)) on S̃b ∩ (x + δB) × [0, δ), the functionθ : S̃b ∩ (x + δB) × [0, δ) → V defined by
θ(y, t) := x(t) wherex(·) is the unique solution oḟx = −f (x,α (x)), x(0) = y.
2
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In order to obtain our stabilizing feedbackα(·), we now pasteα2(·) to our first stabilizing feedbackα1(·). Let
W be some open neighborhood of̃S such that�W ⊂ V ; we proceed as follows:

SetD̃ := Ω \ S̃ and define the new multifunctionG : D̃ → Bm by

G(x) :=


α1(x) if x /∈ V,{
α ∈ Bm: ∀ζ ∈ ∂W(x),

〈
f (x,α), ζ

〉
� −λ/2

}
if x ∈ V \ �W,

α2(x) if x ∈ �W.

Sinceα1(·) andα2(·) are continuous and sinceG is lower semicontinuous onV \ �W (by Lemma 28 applied with
λ = λ/2), it is clear that the multifunctionG is lower semicontinuous oñD. Hence by Michael’s Selection Theore
it admits a continuous selectionα(·) on D̃ which satisfies by Lemma 36 (iii) and by construction ofG andα1(·),

∀x ∈ D̃, ∀ζ ∈ ∂W(x),
〈
f
(
x,α2(x)

)
, ζ
〉
� −λ

2
.

Therefore up to regularization the feedbackα(·) by convolution onV \ �W if necessary, we can assume thatα(·) is
smooth onD̃ and satisfies

∀x ∈ D̃, ∀ζ ∈ ∂W(x),
〈
f
(
x,α2(x)

)
, ζ
〉
� −λ

4
.

Consequently by Lemma 36(iv) and by Lemma 29 (applied withλ = λ/4), the Carathéodory trajectoriesx(·) of
the closed-loop systeṁx = f (x,α(x)) satisfy for anyt � 0,

W
(
x(t)

)− W
(
x(0)

)
� −λ

4
t.

From properties ofW , this proves easily that the feedbackα(·) is stabilizing in the sense of Carathéodory. Furth
more by construction, the bifurcation points ofα(·) correspond exactly to the bifurcation points ofα2(·). In other
terms, we have proved the following result which will be fundamental for the proof of Theorem 5.

Theorem 37. Assume thatN = 2. If the system(1) is GAC then there exists a feedbackα(·) :RN → Bm and a set
S ⊂ R

N \ {0} which satisfy the following properties:

(i) the setS is closed inΩ and stratified by strata of dimension less thanN − 1;
(ii) the feedbackα(·) is smooth inΩ \ S ;

(iii) the closed-loop systeṁx = f (x,α(x)) is GAS in the sense of Carathéodory;
(iv) for every stratumS of S of dimensionk (with k ∈ {1, . . . ,N − 1}), the set of bifurcations points ofα(·) in S is

a finite union of smooth connected submanifolds of dimension strictly less thank (whenever it is nonempty);
(v) if we denote bySb the set of bifurcation points ofα(·) in S , then for everyx ∈ Sb the Cauchy problem

ẋ = −f (x,α2(x)), x(0)= x admits locally a unique solution which can in addition be defined on the inte
[0,∞); moreover the flow of this dynamical system is continuous onSb × [0,∞).

We are now ready to prove the main result of the paper.

2.2. Proof of Theorem 5

As we said, Theorem 5 is a direct consequence of Theorem 37. HereN = 2, denote byθ the flow of the system
ẋ = −f (x,α(x)) onSb × [0,∞). For each stratumS of the setS , we consider̃Sb defined by

S̃b := {
θ(x, t): x ∈ S ∩ Sb, t � 0

}
.

By (iv) and (v) of Theorem 37, this set is a submanifold ofR
N of dimension less thanN − 1. Thus if we conside

S̃ to be the union of all thẽS, it has measure zero (since the number of strata ofS is at most countable). An
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moreover by (iii) everyx ∈ R
N \ S̃ is stabilized to the origin without meeting the setS . To conclude the proof o

Theorem 5, we need the following lemma.

Lemma 38. There exists some functionρ :RN → [0,∞) which is of classC1 onR
N \ {0}, continuous at the origin

and such that

(i) ρ(0)= 0;
(ii) ρ(x) = 0⇔ x ∈ S ;

(iii) ∇ρ(x) = 0, ∀x ∈ S .

Proof. The closure of each stratumS of the setS is a smooth submanifold with boundary. Hence the function

x �→ dS(x)2

is of classC1 on a neighborhood of�S and satisfies

∇[d2
S](x) = 0, ∀x ∈ �S.

This means that for each stratumS of the setS , there exists a functionhS : R
N → [0,1] of classC1 which satisfies{

hS(x) = 0⇐⇒ x ∈ �S,

∇hS(x) = 0, ∀x ∈ �S.

Since the setS is a locally finite union of such strata inΩ = R
N \ {0}, this means that on each open subsetO ⊂ Ω

which is relatively compact inΩ (i.e. such thatO ⊂ Ω), the setS is included in finite union of strataS1, . . . , Sp.
Define onO the functionkO by

∀x ∈ O, kO(x) := ‖x‖
p∏

i=1

hSi
(x) (� ‖x‖).

It is straightforward to show that the functionkO satisfies the assertions (ii) and (iii) onO. Consequently, we
conclude by pasting together the different functionshO by a smooth partition of unity subordinate to a loca
finite (and relatively compact) covering ofΩ . �

Now set for everyx ∈ R
N ,

α̃(x) := ρ(x)α(x).

The feedback̃α(·) is clearly continuous onRN and of classC1 whereα(·) is smooth, that is outside{0} ∪ S .
Besides since∇ρ = 0 onS , we get that̃α(·) is of classC1 on the setS . Furthermore since the scalar function h
positive values outside{0} ∪ S, it is straightforward to show that the closed-loop system

ẋ = f
(
x, α̃(x)

)
is AGAS, which completes the proof of Theorem 5.

3. Additional comments on the two preceding sections

3.1. Control systems with drift

We could wonder if Theorem 5 holds in the general case of control system with drift, of the form

ẋ = f (x,α) := f0(x) +
m∑

αifi(x), (81)

i=1
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wheref0, f1, . . . , fm are locally Lipschitz vector fields onRN and where the controlα is in Bm. The answer is no
This gives us the opportunity to draw attention to the importance of the Lyapunov stability in the conclus
Theorem 5. The absence of drift permitted us to vanish the dynamics at the points of discontinuity of the re
stabilizing feedback and hence to avoid the escape of the state far from the equilibrium. However in the c
control system with drift, we cannot vanish the dynamics and then we cannot insure the Lyapunov stabilit
smooth AGAS feedback. In fact, one sees easily that Theorem 37 remains in the case of GAC control syst
drift. Hence it is natural to ask the following:

Open Question. If the system (81) is GAC, does there exist a smooth (outside the origin) feedbackα(·) :Rn → R
m

such that for almost everyx ∈ R
N , the solution of the closed-loop system

ẋ(t) = f0
(
x(t)

)+
m∑

i=1

αi

(
x(t)

)
fi

(
x(t)

)
, x(0)= x

converge to the origin ast tends to infinity?

3.2. Control systems on manifolds

All the results that we develop in the present paper remain valid on smooth manifolds. If we want to
Theorems 3 on a smooth manifold, we have to apply the same procedure of regularization as the one
Section 1.4. Let be given a semiconcave control-Lyapunov function for the system (1) on a smooth manM

(of course this means that (1) is defined by vector fields defined on a smooth manifoldM), starting from a open
cube included in some chart, we regularize step by step the CLF everywhere. From Theorem 3, we can p
existence of AGAS feedbacks by the construction given in Sections 2.1 and 2.2. Since we do not want
these results and hence to have to introduce the natural notions of viscosity solutions and semiconcavity o
manifolds, we prefer stopping our remark here. We notice that if the reader just wants to develop our resu
smooth submanifold of the Euclidean space (which is indeed sufficient by Whitney’s embedding theorem)
read the paper of Sontag [32] which explains how to extend a given system to the ambient space and th
the known results in the case of the Euclidean space.

3.3. Invariance, repulsivity and last comments

In Theorem 37, we constructed a stabilizing feedbackα(·) (in the sense of Carathéodory) which is smo
outside a certain closed setS (closed inRN \ {0}). As we saw, the setRN \ S is not necessarily invariant wit
respect to the closed-loop system given byα(·); some bifurcation singularities can appear along the trajectori
the system. We can wonder if it is possible to construct a closed setS in R

N \ {0} and a stabilizing feedbackα(·)
such that the setRN \ S is invariant under the dynamicṡx = f (x,α(x)). The answer is probably no; Theorem
allows us to construct such an invariant couple(S, α) but the setS has no reason to be closed. Let us state
following definition (see [4]):

Definition 39. The closed-loop system (2) is said to be almost (smoothly) exponentially stable in the
R⊂ R

N if the feedbackα(·) is smooth17 onR and if the following holds:

(i) for all initial statex0 ∈ R the closed-loop system (2) admits a unique solution and this solution remainsR
for all t � 0;

17 We have to make clear what we mean by smooth if the setR is not open. We say thatα(·) :R → Bm is smooth if there exists an open s
D which containsR and a smooth functionα′(·) :D → B such thatα′(·) = α(·) onR.
m
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(ii) there exists a continuous positive definite functionΨ : R
N → R such that for allt � 0 one has, along th

trajectories of the closed-loop system,

Ψ
(
x(t)

)
� Ψ (x0) e−t .

As we said above, Theorem 37 leads naturally to the following:

Theorem 40. If the system(1) is GAC then there exists a dense subsetR ⊂ R
N of full measure and a feedbac

α(·) :Ω → Bm such that(the closed-loop system2) is almost exponentially stable.

Proof. According to the proof of Theorem 5, we setR := R
N \ S and the result follows. �

As we said above, the regionR that we construct may not be open. Hence one question arises:

Open Question. Under what condition on the GAC control system (1) does there exist an open dense seD of
R

N \ {0} associated with a smooth feedbackαD(·) :D → R
m such that the closed-loop systeṁx = f (x,αD) is

GAS at the origin and such thatD is invariant with respect to this system?

In [24], we saw that some control systems possess a stronger property of stabilizability. There are system
admit a stabilizing feedback in the sense of Carathéodory which is smooth on an open dense set of full
D ⊂ R

N \ {0}, and such that every Carathéodory solution of the closed-loop system evolves inD for any positive
time (this property is stronger than the invariance ofD). We say that such control systems possess a smooth r
sive stabilizing (SRS) feedback. In [24], we showed some control systems which cannot have SRS feedb
we gave some sufficient conditions on the CLF of a control system which imply the existence of SRS fee
The problem of the existence of SRS feedbacks seems quite difficult; we refer the reader to [27,28] for firs
on this problem.
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Appendix A

Here we present an important corollary of a result concerning semiconcavity, which was proven by A
Ambrosio and Cannarsa in [2] (the reader is also referred to the recent book on semiconcavity written rec
Cannarsa and Sinestrari, see [8]). Given a semiconcave function

u :Ω → R,

they established a link between the Boulingand’s contingent cone to the singular setΣ(u) at x ∈ Ω , and the
generalized gradient∂u(x). Below, we prove this result in the very particular case of semiconcave function
nice singular set.

Assume that there existsk ∈ {1, . . . ,N} and a setS ⊂ Ω which satisfy the following properties:

(a) S is a smooth submanifold (without boundary) of dimensionN − k in Ω ,
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(b) there existsk + 1 mapsζ1(·), . . . , ζk+1(·) which are smooth onS and such that for everyx ∈ S,

∂u(x) = co
{
ζ1(x), . . . , ζk+1(x)

}
,

(c) for everyx ∈ S, the convex set∂u(x) has dimensionk.

If A is a given set inRN , we denote byA⊥ the set defined by

A⊥ := {
p ∈ R

N : q �→ 〈q,p〉 is constant onA
}
.

The following result follows.

Proposition 41. For everyx ∈ S,

TxS = ∂u(x)⊥.

Proof. Fix p ∈ TxS and prove thatp ∈ ∂u(x)⊥. Let ζ1, ζ2 ∈ ∂u(x); we have to prove that〈ζ1,p〉 = 〈ζ2,p〉.
First, note that without loss of generality we can assume that‖p‖ = 1. By definition of the tangent space, the

exists a sequence(xn)n in S such that

lim
n→∞

xn − x

‖xn − x‖ = p.

Moreover by (b), there exists some sequence(qn)n which converges toζ2 in R
N . In addition by Proposition 10

there existsσ > 0 and some neighborhoodV of x such that

−u(z) + u(y) + σ‖z − y‖2 � 〈−ζ, z − y〉,
for all y, z ∈ V andζ ∈ ∂u(y). Applying this inequality withy = x, z = xn andζ = ζ1 gives for eachn,

−u(xn) + u(x) + σ‖xn − x‖2 � 〈−ζ1, xn − x〉.
Now applying the same inequality withy = xn, z = x andζ = qn gives for eachn,

−u(x) + u(xn) + σ‖x − xn‖2 � 〈−qn, x − xn〉.
Summing both inequalities and lettingn → ∞ implies

〈ζ2,p〉 � 〈ζ1,p〉.
Inverting the roles played byζ1 andζ2, we conclude.

Prove now that∂u(x)⊥ ⊂ TxS. By (c), ∂u(x)⊥ is a vector subspace of dimensionN − k, hence it coincides
with TxS. The proof of Proposition 41 is complete.�
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