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Abstract

We prove the existence of three nodal solutions of the Dirichlet problem for the singularly perturbed equation u =
f ) for ¢ > 0 small on any bounded domaid c RY. The nonlinearity/ grows superlinearly and subcritically. We do not
require symmetry conditions nor conditions on the geometry or the topology of the domain. Two solutions have precisely two
nodal domains, and the third solution has at most three nodal domains. A corresponding result holds true for the semilinear
equation—Au + u = f(u) on §2 provideds2 contains a large ball.
© 2005 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
Résumé

Nous prouvons I'existence de trois solutions nodales du probléeme de Dirichlet pour I'équattort+ u = f (1) avece > 0
petit dans tous les domaines borm@sc RV. La nonlinéaritéf est sur-linéaire et sous-critique. Nous n'avons pas besoin
de conditions de symétrie ni de conditions géométriques ou de conditions liées a la topologie du domaine. Deux solutions
admettent exactement deux domaines nodeaux et la troisiems admet au plus trois domaines nodeaux. Un résultat corresponda
est valide pour I'équation semi-linéaireAu + u = f (1) dans le cas of2 contient une grande boule.
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1. Introduction

In this paper we are concerned with the singularly perturbed problem

{—sAu+au=f(u), x €82, eN0; (1.1)
and with the semilinear Dirichlet problem
{—Au—}—au:f(u), X € $2; (1.2)

Here2 c RN, N > 2, is a bounded domain, aad> 0 is fixed. The nonlinearity’ € C1(R) grows superlinearly
and subcritically. A model nonlinearity is

k I
Fa =) cilulP=2ut 4+ " djlul% %, (1.3)
j=1

i=1

wherep;,q; € (2,2%),¢;,dj >0for 1<i <k, 1< j <! andut = maxu, 0}, u~ = min{u, 0}. Here Z denotes
the critical Sobolev exponent, that is; 2= % forN >3,and 2 =ocofor N = 2.

In the situation that we consider, it is well known that (1.1) and (1.2) have three solutions (cf. [26]), one positive
solutionu ., one negative solution_, and one sign changing solutian (cf. [5,10,11]). No conditions o2 or ¢
are required for this. Morse theory and degree theory do not yield any further solutions. In fact, generically the one-
sign solutions are of mountain pass type with Morse index 1, and the nodal solution has Morse index 2. Together
with the trivial solution O which has Morse index 0 the Morse inequalities are satisfied. The situation changes when
f is odd, or when the domain is radially symmetric or has nontrivial topology.i#f odd then there are infinitely
many solutions of (1.2) (cf. [1]) which change sign (cf. [2]). Related multiplicity results can be found in [18,19].
If £2 is radially symmetric then there exist radially symmetric solutions with prescribed number of nodal domains
(cf. [24]). If £2 has nontrivial topology or geometry then the existence of multiple positive solutions of (1.1) for
smalle > 0 has been obtained in [8,9,20], for instance.

In this paper we prove the existence of three nodal solutiens,, u3 of (1.2) provideds2 contains a large ball
Br(0). As a consequence we obtain three nodal solutions of (1.1) for smal, without any conditions o2
except being bounded. For both resultsnay be contractible or even convex. Of course, we do not requirefthat
is odd (nor homogeneous). The solutiansandu have precisely two nodal domains. In fact, one can prove that as
R — oo the positive pam‘f of u1 converges (after translations) to a positive ground state/of + au = f (1) on
RY, and the negative paut; of u; converges to a negative ground state. The same holds f@learly the above
mentioned results on positive (and similarly, negative) solutions can be combined with our theorems in order to
obtain new multiplicity results. Our proof is based on a new existence mechanism for nodal solutions of (1.2) (and
(1.1)) using a variational approach. A surprising feature of this mechanism is that, although the secondigolution
has precisely two nodal domains it has Morse index 1 (if nondegenerate). Similarly, the third solutiog has
at most three nodal domains and Morse indéx- 2 (if nondegenerate). The existence of such solutions has not
been observed so far.

In order to state our results we first formulate our assumptions:

(f1) f€C'®), f(0)=f'(0)=0.
(f2) There existy € (2,2*) such that
|| <C(1+11P7?) forallreR.

(f3) f'(t) > f()/t forall r 0.
(f4) There exist > 2 suchthatO< 60 F(r) <tf(¢) forall r € R.
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HereF(t) .= fg f(s)ds is a primitive of f. These assumptions in particular hold for the model nonlinearity (1.3).
Our main results are the following:

Theorem 1.1. Suppose thaff,)—(f4) are satisfied. Then, for any bounded domg&inthere issg > 0 such that for
¢ € (0, &o) the problem(1.1) has at least three nodal solutions, v2, v3. Moreover,v; andv2 have precisely two
nodal domains, ands has at most three nodal domains.

Theorem 1.2. Suppose thaf1)—(f4) are satisfied. Then there & > 0 such that for any bounded domaih c RY
with Bg(0) C £2, problem(1.2) has at least three nodal solutiomns, u2, u3. Moreover,u1 anduy have precisely
two nodal domains, ands has at most three nodal domains.

Using the scaling; (x) = u; (x — Q)//¢), someQ € £2, one easily sees that Theorem 1.1 follows from The-
orem 1.2. A strengthened version of Theorem 1.1 is equivalent to Theorem 1.2. In fact, one simply includes in
Theorem 1.1 thatg = £o(£2) only depends on the largest- 0 such thatB,(Q) = {x e RV | |x — Q| <r} C 2
for someQ € £2. Observe that we do not assume that the ground state solutions of (18%?) are unique modulo
translations as is usually required when considering singularly perturbed problems.

Let us make a few remarks concerning the proof of Theorem 1.2. We use the energy functional

@ HX®RY) - R, qf)(u):%/(Wulz—l—auz)dx—/F(u(x))dx,

and its restrictions = Plyia): The one-sign solutions, , u_ mentioned above are obtained from the mountain

pass theorem applied t. Letcy = min{® («) | +u > 0, ¢’ (1) = 0} be the least energy of a positive, respectively
negative, critical point ofv. All nodal solutions of (1.2) lie in the set

Mo ={ueHJ2) lut,u” #0, ¥ wut =0=¥wu"}.

We prove thaty = inf ¥ |, > c4 +c_ is achieved and that everye Mg, with ¥ (1) = ¢ is a critical point of,
hence a nodal solution of (1.2). This last statement is not as obvious as it may seem. Ahg sethot a manifold,
one cannot talk about vector fields @, and one cannot easily construct deformations\dg,. Consequently,
min—max values fo on Mg, are not automatically critical points @f. We mention this point because it has
been overlooked in too many papers. We refer the reader to [6] for a proof of the fagvtthat H?(2) is a
codimension 2 submanifold af2(£2).

We also prove that every nodal solution of (1.2) witliu) < ¢1+min{c, c_} has precisely two nodal domains.
The solutioruy in Theorem 1.2 is obtained as a minimizedon Mg, . In order to obtain the new solutions, u3
we consider the topology of the paiF’ U, £) for v € R wherew” is a sublevel set as usual, afids a thickened
version of g¢++¢- U P U (—P). Here P = {u ¢ H&(Q)| u > 0 a.e} is the cone of nonnegative functions in
H&(Q). We prove thatHy 1(WV UE, E) is trivial if v > ¢1 is close toc;. We also produce a nontrivial element
E e Hyp (W U g, E) for someyg € (c1, c1 + min{cy, c_}). This yields a critical pointy of ¥ in ¥V \ £ with
¥ (u2) > ¥(u1) = c1. Sinceus ¢ £ it must change sign, hence by our energy estimate it has precisely two nodal
domains. Moreover, it§N + 1)-th critical group is nontrivial which implies that in the nondegenerate ease
has Morse indexyV + 1. Finally we prove that maps to 0 inHy1(¥" U &, &) for v large. This yields the third
solutionus ¢ £. If isolated this solution has a nontrivial critical group in dimensir- 2, which implies that in
the nondegenerate casghas Morse indexX/ + 2. Again an energy estimate yields thathas at most three nodal
domains.

The decisive step is the construction&#: 0 € Hy1(¥° U &, £). Here a newgeneralized barycenter map
B:L2(RN)\ {0} — RY plays an important role. This map is continuous and equivariant with respect to the standard
actions of the group of Euclidean motionsA and onL2(RV). This means that faz € L2(RV) \ {0}, b e RV,

A € O(N), the barycenter of(x) := u(Ax +b) is B(v) = A~1(B(u) — b). We give an explicit construction of such
a map independent of any choices of cut-off functions and the like. This provides barycenter niZg& 8y and
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subspaces thereof |ilqeol(9) whose construction does not depend@ne believe thag will have further useful
applications, in particular when variations or scalings of the domain are involved. It can be used, for instance, to
obtain a simpler approach to some existence and multiplicity results on superlinear elliptic equations on domains
with topology, cf. [8,7] and [12, Chapter 6].

The paper is organized as follows. The generalized barycenter map is constructed in Section 2. In fact, we con-
struct a generalized barycenter m@p: LP(RV) \ {0} — R¥ for any p € [1, 00). This construction is completely
independent from any nonlinear equation and of independent interest. In Section 3 we provide various estimates
for the functionakp on H1(R") which are essential for the construction of the nontrivial element in the homology
of (W UE,E). The setM, is studied in some detail in Section 4. Finally, Theorem 1.2 is proved in Section 5.

By | - |, we denote the usual norm & (R") for 1 < p < co. For a subset of a topological space we denote
by int(A) the interior ofA.

2. A generalized barycenter map on L? (RN)

Forb e RV let 7, :RY — RY be the translatiom, (x) := x +b. The group of Euclidean motions & is given
byG:={m,0A|beRY, Ac O(N)}.ltacts onRY (from the left) in the usual way and induces a (left) action on
the space of mapRY — M, M any set, as followsg * u :=u o g~ for g € G, u:RY — M. Explicitly this means
forg =150 A:

gru() =u(A(x —b)).

We call a mapg:LP(RY) \ {0} — R" a generalized barycenter map o’ (R") if it is continuous and
G-equivariant, that isg(g * u) = g(B(u)) for g € G, u € LP(RV) \ {0}. Forb e RN, A € O(N) andu €
LP RN\ {0} this implies that

B(u(- —b))=Bw) +b, and BuoA™ =A(Bw).

As a consequence, if o A = u then8(u) = A(B(u)). Thus an even function, especially a radial functioa
LP(RM)\ {0} has barycente$ (z) = 0. More generally, ift € L?(R") \ {0} is invariant with respect to a subgroup
G C O(N) thenB(u) € RY)S = {x e RN | gx = x forall g € G}.

The main result of this section is as follows:

Theorem 2.1. For any p € [1, c0) there exists a generalized barycenter ngag: 8, : LP(RN)\ {0} — RN which
satisfies8(|u|) = B(u).

Proof. We fix p € [1,00) and writeL” = L?(R"). By B we denote the Banach space of all continuous functions
£ RN — R with f(x) — 0as|x| — oo, endowed with the supremum norm
| floo = max| f (x)|.
xeRN

It is easy to see that for € L? the function

a:RY - [0,00), da(x)= / lu(»)|” dy,
Bi(x)

is an element of8. Moreover, foru € L? we have
=0 ifandonlyif u=0.

We also note that foi, v € L? andx € RY
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() — 900 < / lll? = 1ol?| < p / e — vl (Jul + o))"~

B1(x) B1(x)

1/p » (p=b/p
<p( f Iu—vl”> ( /(Iu|+|vl)>
B1(x)

B1(x)

_ -1
<p2PHu—vl, - (lulh + v]5)P=H7P

hence
PN p—1 p p\(p=D/p
it — Dloo < p2P~Hu — vl - (lulfy + vl}) . (2.1)

Consequently the functioh” — B, u + i is continuous. For € L” we consider the set

Q) = {x eRY: 4(x) > '“g’" }

If u 0 thens2(u) C RY is compact and has nonempty interior. Moreover,

Bi(u) == f (ﬁ(x) — |ﬁ|200> dx >0 foreveryu € L? \ {0}. (2.2)
2(u)

Therefore setting

Bo(u) = / x(ﬁ(x)—%)dxeRN,

2(u)
the function

Bo(u)
B1(u)

is well defined. One easily checlg * u) = g(8(u)) for an Euclidean motiorg € G, u € L? \ {0}, so B is
G-equivariant. Since we also hay&|u|) = B(u), it remains to prove that the maps and 8y are continuous. We
only considergyp, the argument fop is similar. Consider a sequengg — u in L? \ {0}. Theni, — 4 in B, so
for n large enough we have

BiLP\{0} > RY,  B(u)=

}guAn(x)guA(x)_i_} ifﬁn(x»woo.
2 ldnleo il 4 2

Setting
K = {x eRV: ii(x) > lii]oo/4}

we see thaK is compact and tha® («,) C K for n large. Therefore

R linloo \ R litloo \ *
ﬂl(un)=/<un(x)— > ) dx—>/<u(x)—7> dx = B1(u)
K K

by Lebesgue’s dominated convergence theorem because the integg@rtd,inconverges pointwise as— oo,
and it is bounded above uniformly by migk, |~ /2: n € N}. O
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3. Thefunctional on RY

For matters of convenience we assuine 1 in (1.2) from now on, the general case follows by obvious modifi-
cations. We sef = H1(R") endowed with the standard scalar product
(u,v) = /(Vqu +uv)dx, u,veE,
RN
and we denote the induced norm py||. It is well known that, as a consequence a) @nd (§), the functional

®:E—R, ¢(u)=%||u||2—fF(u(x))dx

is of classC?, and that critical points of are weak solutions of (1.2) with=1 on$2 =R".
Let us fix some notation. We defire” = {u € E: &(u) < v} asusualandt’ =AN®’for ACE, veR.
Moreover, foru € E andA C E we put

distt(u, A) = inf |ju —v|| and dist(u, A) = inf |u — v|2.
vEA veEA

We also define foe > 0 the closed neighborhoods
UXA) = {u € E: disty(u, A) < ¢}
and
UZ(A) = {u € E: disb(u, A) < ¢}
of A. Every nontrivial critical point of is contained in the Nehari manifold
N ={ueE\{0}|® uu=0}.
We set
c+ = inf{(D(u) lueN, tu> 0}
and
de =inf{llull |u e N, £u >0},
and consider the sets
Kf={ueE|+u>0&u)=cs, @ (u)=0}
and
KCE = tu € K* | u is radially symmetrig.
Using the compactness of the embeddings (cf. [21])
Erad:={u € E: u radially symmetri¢— L®, s¢€(2,2%)

one can show thaltf;d is compact and nonempty. Moreover, every one-sign solution of (1.2) erR” is radially

symmetric around some pointR" (see [17]) and therefore

KE=RNxKE,={y*u: yeRY, ue iy (3.1)
Here and in the sequel we writex u(x) := u(x — y) for y e R¥ andu € E. We also note that £ implies
1 1
D (u) > <§ - 5) |lul|? for everyu e \V. (3.2)

Moreover we will use the following properties @ which are well known consequences of)(fs); cf.
[8, Lemma 2.1, Lemma 2.2].
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Lemma 3.1. \V is a Cl-submanifold ofE which is diffeomorphic to the unit sphere | by radial projection.
Moreover,

(i) @"(u)(u,u) <O0foreveryu e N;
(i) for everyu € N the functions — @ (tu) is strictly increasing on(0, 1), strictly decreasing or{1, co), and
lim;_ 00 @ (tu) = —o0;
(i) ¢+ > 0;
(iv) dt>0;
(v) inf@(N) =min{cy,c_};
(vi) if u e M satisfiest > 0and @ (u) = ¢, thenu € KT;
(vii) if u e N satisfiest <O0and® (u) =c_, thenu e K.

Lemma3.2. Let (u,) € N be a sequence such that,, > 0 for all n and ® (u,,) — c+. Thendisty (u,,, K*) — 0.

Proof. We only consider the case wherg > 0 for all » € N. It is sufficient to show that digtu,,, 1) — 0 holds
for a subsequence. We define

f@®, t=0,

friR>R, f+(t)={0’ .

t
Fi(t) :=/f+(s)ds fort e R,
0

and

b € CHE), ®r(w)= %nun2 - / Fi(u(x)) dx,

Ny ={ueE\{0}| P/ (wu=0}.
We clearly have

@ (u)=P (), and & (u)=&'(u) foreveryuecE, u>0
andcy =inf,cpnr, @4 (u). In particular we infer that

upn €Ny, Dy (uy) =P (uy)

for everyn, and that(u,) is a minimizing sequence fap, on A.. Hence||u,| is bounded by (3.2). Moreover,
Ny C E is aC-submanifold of codimension one, as follows essentially by the proof of [8, Lemma 2.2]. Now
Ekeland’s variational principle (see e.g. [25]) yields a sequéngec N, with

D4 (vp) = o,

(@4 In,) (V) = 0, (33
lup, — vall = O. (3-4)
We claim that
sup | (y#un)2(x)dx A0 asn— oo. (3.5)
yeRN
B1(0)

Indeed, if on the contrary SUPRN fBl(O) (y * v,)?(x) dx — 0, then|v,|; — O for s € (2,2%) by [22, Lemma .1].
However, as a consequence af)@&nd (&) there exists a constady > 0 such that
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1
lf(] < Sl + Colt|P~t forallt e R.

Sincev, € N, we have

1 1 1
lva 1 = / Fr@ayun dx < S 15+ Colvf [ < Slual + Colualy < Sllunll® +o(D),
RN
which implies|jv,|| — 0O, contrary to (3.4) and the fact thit, || > d > 0 for all n. This shows (3.5), and hence
there arey, e RV, n e N such that for a subsequence — still denotediyy — we have

Wy =Yy, *v, =~ w € E \ {0} (3.6)

We note thatw > 0, sinceu, > 0 andy, * u, — w. Now we considet/ € C1(R) given by J (u) := D (uu.
By (3.3),

o(l)= (q)+|j\/+)/(wn) = q§3,_(wn) — hnJ' (wp) (3.7
for some sequenag.,) C R. Sincew, € Ny, (3.7) implies
And (wy)w, — 0. (3.8)

By Fatou’s Lemma andf3) we also have

limsupJ'(w)w, =limsup | £ (wy)w, — ﬂ_(wn)w,?dx
neN neN

RN
< [ frw - fiwu?dr <o,
RN
and hence (3.8) forces, — 0. SinceJ'(w, ) remains bounded iff*, (3.7) implies that

! (w,) — 0.

In particular this implies tha®’(w) = @/ (w) =0, and hence (w) > ;. In fact, by a standard decomposition
method for Palais—Smale sequencesgf(see e.g. [15]), we now deduce that KT and thatw, — w strongly
in E. Thusy, *u, — w by (3.4) and (3.6), and hence

dist(u,, K1) < |[(=yn) ¥ w —u, | — 0,
as claimed. O

We now put

co=cy tc—.
We also consider the set

M= {u eE|lut,u”#0, & wut=0= (D/(u)u_},
whereu™ = max{u, 0}, v~ = min{u, 0}. Finally we introduce

U ={ueEut e UAKY), u” e UA(K)}
and

V(e,8) = Us \Uej2) N @O

fore, 8 > 0.
From now on we fix a generalized barycenter rap 8> on L2(RV) as constructed in Theorem 2.1. The main
result of this section is the following.
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Proposition 3.3. There existg > 0 andé € (0, min{c4, c_}) such that the following holds.

(i) UR(KTUK™)c E\ {0}, andBu™t) # B(u~) for everyu € U,.
(i) maxi—+ (|®'w)u'|/||u’|) > 68/¢ for everyu € V(e, §).
(ii)y MO CintUs2).
(iv) There exist radially symmetric functiong, w € N with compact support, and there exiéts: 1o < 1 satis-

fying:

wy 2> 0, w2 <0, (3.9)

A+nwr e UAKY), Q40waeUAK™) for |t <10, (3.10)
8 5

P (w1) <crtg P (w2) <e-+ o (3.11)

@((1:|:t0)w1) <oy — 26, @((1:|:t0)w2) <co —26. (3.12)

The remainder of this section is occupied with the proof of Proposition 3.3. We start with the following lemma.
Lemma 3.4. For ¢ > 0 sufficiently small there holds

(i) inf,cp2gcuic- lul3 > 0.
(i) Bu™) £ Bw™) for everyu e U,.

Proof. (i) SinceK;.,U K,,,is compact we have

inf  |uZ= inf |u3>0.
uek+tuK— ueICr;dU rad

This implies (i) fore > 0 sufficiently small.
(i) Suppose by contradiction that thereuis € U1/, with x, := ;") = Bu;) € R¥ for n € N. After transla-
tions we may assume thgt = 0 for everyn. Now we choose, € K with |u;7 — v,[2 < % and sety, = —f(vy).

Theny, x v, € IC,J;d, and, passing to a subsequence if necessary, we may assumgthgt— vy € lCrJ;d. This

impliesy,  u;* — v in L2, and therefore
Yn =B *u,‘f) — 0 asn— oo.

We conclude that;” — y1in L. Passing again to a subsequence, we can also achievg thaty, € K 4in L2
Henceu, — ¥1 + ¥ in L2(RY), which implies that

(W14 v2)" = lim uf =,
n—o0
and
WY1+v2)” = lim u, =y
n—o0
This however contradicts the fact tha is positive andj, is negative on all oRY. O
Lemma 3.5. (i) Let (u,) € E be a sequence such thgt > 0forall n e N,
inf|u,| >0, lim® (u,)u,=0 and limsup®(u,) <cy.
n

Then® (u,) — c4 anddisty (u,, KT) — 0asn — oo.
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(ii) Let(u,) € E be a sequence such that < Ofor all n e N,

inf ||lu,|| >0, lim® (u,)u, =0 and limsup®(u,)<c_.
Then® (u,) — c_ anddisty(u,, K~) — 0asn — oo.

Proof. (i) It is sufficient to show that? (u,,) — ¢ and dist (u,, KT) — 0 hold for a subsequence. We piyt:=
@' (u,)u,, and we note that §J yields

(}—})Hu 1?2 < P (u )—}é/(u Yu +/<F(u )—}f(u u >dx
2 9 n S n 0 n)n n 0 n;%n
RN

< D(uy) — % <cp+o(l). (3.13)
In particular|ju,| remains bounded. Since furthermore,ifif,, || > 0, we may by a similar argument as in the
proof of (3.6) assume that, translating suitably, for a subsequence we have
u, —~u € E\ {0}
By (fa),

1
Ky = f |:f’(tu)u2 — ?f(tu)u] dx >0 forsr>0.
RN
Forn € N we defineg, € C1((0,00)) by g, (1) = @' (tu,)uy,. Theng, (1) = ®” (tu,) (un, u,) for t > 0. Moreover
we set
1
h,(t) = / |:f(u,,)un — ;f(tu,,)uni| dx, forneN, r>0.
RN

Since the functionaly — [ [f (tw)w? — %f(tw)w] dx is weakly lower semicontinuous by virtue og)fand
Fatou's Lemma, we obtain

g;z(t) = (p//(tun)(”n’ up) = ”un”z - / f/(tun)”,zz dx =0, + / Sfun)uy, — f/(t”n)”,% dx

RN RN
=o(1) + / [%f(tun)u,, — f’(tun)u5:| dx + h, ()
RN
<o)+ / [%f(tu)u — f’(tu)uz] dx + 7, (1) =0(1) — ks + hy (1) (3.14)
RN
asn — oo. We claim that
h,(t) > 0 ast — 1 uniformlyinn € N. (3.15)

Indeed, there are constartfs> 0 such that fom e N, ¢ € [%, %] we have

|hn(t)| = ‘ /[.f(“n)un - %f(tun)”n] dx
RN

+

< ‘ /[f(un)un - f(tun)tun] dx I — %H / fQ@up)uy, dx
RN RN
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1
= ‘ / /[f’(su,,)sun +f(sun)]un dsdx|+
RN t

t— %H f f(tuy)u, dx
RN

dx+ Co

1
<c1/'/(|un|2+|un|1’)ds
]RN t

< Calt — 1Y(lun? + llunlI?) + Ca

1
r—;‘/(|un|2+|un|'3)dx
]RN

1
t— ;‘(nunn% llun 1)

< Cslt =11+ Ce

|

r——.

t

Using (3.14) and (3.15), we find numbers (0, %) andng € N such that
g, (1) < _K_21 <0 forte[l—t,14+1¢], n>no.

Hence, sinceg, (1) = 0, — 0 asn — oo, for n large enough there exist € R, |1 — t,| < 20, /k1 < ¢ with
gn(ty) =0, that isw,, := t,u, € N. Moreover,

f [F (1)) — F (it ()] dx

RN

@ () — @ (wn)| < A=) lunll® +

1

f(|un|2+ lun|P) ds

In

1
/f(sun)un ds dx

In

<0(1)+/ dX<0(1)+C7/
RN RN
<o)+ Cgll— ta|(llun1? + llunll”) < 0(1) + Col1 — t,| = 0(1).
Sincew, > 0 for everyn, we have® (w,) > c;, and hence we conclude thé&t(w,) — c4+. Now Lemma 3.2

implies disi(w,, K1) — 0, hence also digtu,, XT) — 0, as claimed.
The proof of (ii) is similar. O

The following is a rather immediate consequence of Lemma 3.5.

Corollary 3.6. Let (u,) € E be a sequence such that
inf ||u,jf|| >0, lim d(u,,)u;—L —0 and Ilimsup® (u,) < co.
n

Thendist, (u, K*) — 0 asn — oo.

n>

We now fixe > 0 such that Lemma 3.4 holds.
Lemma 3.7. For § > 0 small enough we have:

(i) MO Cint@y2); -
(ii) infyeve,s) SUR—x (1P u')/[lu' || > 65 /e.

Proof. (i) Note that ifu € M, thenu™ e \V, and therefordiu™| > 4*. Hence (i) follows from Corollary 3.6.
(ii) Clearly it suffices to prove that

&’ i
Sup| (wu'|

. >0 foré§ > 0small enough. (3.16)
ueV(ed) j=+ lu'll
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In order to see this, suppose to the contrary that there is a sequenge V(e, %) with
| ()|
=t bl

Sinceu € U2(K*), we have inf |uf|| > 0 by Lemma 3.4(i). Hence Corollary 3.6 implies that gisf, £*) —
0, contrary to the assumption that ¢ U, o foralln e N. O

—0. (3.17)

Lemma 3.8. There existsg > 0, np > 0andO0 < 7o < 1 such that for everw € Uglo(lci) there holds

(L+nw e UAKE) for |1] < 1o, (3.18)
¢([1:l: to]u)) <D (w) —no. (3.19)

Proof. Clearly one can choos®), g sufficiently small such that (3.18) holds for evarye Ujo (KF). Now since
K:;d U K\ 4qis compact, Lemma 3.1 yields

n:= max @ "wu,u)= max @"u)u,u)<O0.

ueK+tuK— ueIC:;ldUIC;ad

Hence, makingg > 0 smaller if necessary, we can achieve that
& ((1+Hu) < D) — gtz for |¢| <o, u € KY UK.
Now makingeg > 0 smaller if necessary and using tl#ats continuous, we find that

& ((1+ 10)w) < D (w) — %tg forw e UL (KT UK).

Thus (3.19) holds withyo := 213. O
We fix g9, no andrg such that Lemma 3.8 holds.

Lemma 3.9. For § > 0 small enough there exist radially symmetric functians wo, € A’ N U\,}O(ICJr U K™) with
compact support and such th@.9)—(3.12hold.

Proof. We first choosa); € ICrJgd, V2 € K, We also choose € C3°([0,00)) with0< o <1,9(t) =1forr <1

andg(t) =0fort > 2. Now we definey; , e E,i =1,2, by
Yir (@) =vi(@e(rlx]), xeR".

Itis easy to see that; , — ¥; in E asr — 0. Now letp : E \ {0} — N denote the radial projection on the Nehari
manifold A/, and setw; , := p(¥;,) € N, i =1,2. Thenw; , — ¥; in E asr — oo. Hence there existg such
that

wir € UL (KD, wa, e UL(KY) (3.20)
for r > rg. Now we consider
5e (o, @>, (3.21)
3
and fixr > rg such that
8 8
D (w1,r) <cy+ R D (wz,) <c_ + r (3.22)
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Settingw; := w; , the conditions (3.9)—(3.11) are satisfied. Moreover it follows from (3.20)—(3.22) and Lemma 3.8
that

cD((l:I: to)wl) <@ (w1) —no < cq — 28.

In the same way we dedude((1 + 7p)w2) < c— — 26, hence (3.12) is also satisfied. This finishes the proaof.

The proof of Proposition 3.3 is completed by combining Lemmas 3.4, 3.7-3.9.

4. Theequation on a bounded domain

We now consider a bounded domaihc RY, and we setd = Hol(.Q). We regardH as a closed subspace
of E, henceH is endowed with the scalar produgt-) and the norn - || induced by the embedding c E. Weak
solutionsu € H of (1.2) are critical points of the functional = ®|; € C?(H). It is well known (cf. [1]) that
¥ satisfies the Palais—Smale condition. Wedfjx< 0, and we choose a Lipschitz continuous functjiorR — R
suchthat X x <1, x(s) =1fors >apandy(s) =0fors <ap— 1. Thenthereisaflow: DCcRx H— H
satisfying

d
90, u)=u.

HereD = {(t,u): ue H, t € (T~ (u),>0)}, whereT (1) < 0 is the maximal existence time of the trajectory
t — (¢, u) in negative direction (note that by construction the flow exists for all positive times). We will frequently
write ¢’ in place ofp(z, -). We furthermore introduce

Ne=NnNH, Mo=MnNH
and
¢:=infUWgp), c1:=inf¥r(Mp).
Note that
c1>=co=cy +c_>min{cy,c_} =min®N)
(see Lemma 3.1(V)). Sinc&’ (u)u™ = 0= ¥'(u)u~ for any critical pointu of ¥, all sign changing critical points

are contained inV . We also have

Proposition 4.1. (i) The infimunty is attained inMg,, and every Mfol is a sign changing critical point o .
(i) fue Mg isisolatedamong all sign changing critical points, then the critical groups sfatisfyCy (u, ¥) =
Si2Z for k € 7.
(iii) Every sign changing critical point witl (1) < ¢1 + ¢ has precisely two nodal domains.

We recall that the critical groups of a critical poinbf ¥ with ¥ (1) = ¢ are defined by

Cr(u, ¥) == Hp (W6, ¥\ {u}), keZ,

where H,, denotes singular homology with coefficientsZn Proposition 4.1(i) has been proved under slightly
stronger hypotheses in [10], see also [14]. For the proof of Proposition 4.1 we require the following technical
lemma.
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Lemma 4.2. For everyu € Mg, there exists a continuous functiep: H — [0, 00)? such that
T, (suT +tuT)=(s,t) fors,t >0, (4.2)
,(v)=(1,1) if and only ifv € Mg,. (4.3)

Proof. We first defines : H — [0, c0) by
fg fhHt

Jed v~ + 0:
o(v) = vtz v #0;
0, vt =0.
Note thato is continuous, as follows easily fromyff (f2) and Sobolev embeddings. Moreover
o(w)=1 ifandonlyif vteN. (4.4)

Now we fixu € Mg. Then
s E(s) = o(su™)

is strictly increasing o0, co) by virtue of (f3), andé(s) — oo for s — oco. Hencet ~1 € C([0, 00), [0, 00)) exists
and is strictly increasing. Now we define

14 H —[0,00), 14(v) =& o).

Thent, (su™ +tu~) =s fors,t > 0, and forv € H there holds, (v) =1 if and only ifv™ e N.

In a similar way we construct a continuous functian: H — [0, co) such thatr_ (sut +tu~) =1t fors,t > 0,
andz_(v) = lifand only ifv~ € /. We then set, (v) = (=, (v1), 7_(v™)), and we conclude that the thus defined
mapz, : H — [0, 00)? has the asserted propertiess

Proof of Proposition 4.1. (i) Consider a sequenda, ) C Mg with ¥ (u,) — c1. Since

L D) 2 < )
2 9 Unll % Un

for everyn by (3.2), the sequences¥) are bounded irf. Passing to a subsequence, thereuareu_ € H such
thatu,” — uy, u, = uy asn — oo. Henceu,ﬂlE — u4 strongly in L*(£2) for 1 <s < 2*, which in particular
implies that

ur >0, u_<0, wupr-u_=0 a.e.in2. (4.5)

Using (k) and Lemma 3.1(iv) we also find

d? < lim ||uj||2=nlew/f(uf)uf=/f(ui)ui (4.6)
2 2
and
Il)mw/F(u,j,:):/F(ui). (4.7)
2 2

From (4.6) we infer thak # 0, and that

lus]? < / fus)us (4.8)
2
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by the weak lower semicontinuity ¢f- ||. Hence there are. € (0, 1] with

||t:|:uﬂ:||2:/f([ﬂ:”:|:)mj:- (4.9)
2

Using (4.6), (4.7) and the fact that the function> %f(t)t — F(¢) is increasing on(0, co) by (f3), we find

V(trus) = - /f(t:t”:t)tj:”:t_/F(t:t”i) /f(“i)“i_/F(ui)

2
nll_)moo< /f(ui)un /F(u,f))znli_)moollf(uf).

Moreover, by (4.5) and (4.9) the functian= ¢, u, +¢t_u_ is an element ofM, and

) =Y (tuy +t_u_) < nleoo(W(u,j) + W (u,)) = illeoo (1) = c1.
Henceu is a minimizer for& on M, that is, M3 is non-empty.

Next letu € M3 arbitrary. Fixsg € (0,1) and define

p(s1,52) i=s1ut +sou”  forsy, sp € Ip:=[1— 50, 1+ so]. (4.10)
Thent, o p: I3 — R2is just the inclusion, in particular

degz, 0 p, 1§, (1, 1)) =1
By Lemma 3.1(ii) we have

W(p(s1,52)) <c1 for (s1,s2) € IG\ {(1, D)} (4.11)
Since moreove¥ is nonincreasing along trajectories@fwe infer

¢ op@I)NMg=0a foreveryr >0,
which by (4.3) implies

T, 09" o p(s1,52) # (1,1) for every(sy, sp) € 313, t > 0.
Using the homotopy invariance of the degree we conclude that

degt, 09’ o p, 1§, (1,1)) =1 for everyr > 0.

Hence there existss, s2) € int(13) with 7, o ¢ o p (s1,52) = (1, 1), that is, it := ¢ 0 p (51,52) € Mg. In
particulary (iz) > c1. In fact, (4.11) now forces

i =) and W) =¥ (@wu) =cn.
This implies that

v @)= -+

t —
Py tzo‘l’(w () =0,

henceu is a critical point of.
(i) Consider an isolated critical point € Mt and a neighborhoo& c H of u containing no other sign
changing critical point. Henc& N MG = {u} by (i). In view of (4.3) we may consider, as a map of pairs

(TLNN,¥IAN\ {u}) — (0,002 [0,00%\ {(1, 1)}). (4.12)
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Now chooseyg € (0, 1) small enough so that

p(s,t)e N fors,t eI, (4.13)
wherely and p are defined as in (4.10). Observe thanay be viewed as a map of pairs

(12, 12\ {1, 1)) 2 (¢ N, ¥ TN\ {u)) (4.14)
and that

w0 p: (18, 13\ {(1,1)}) — (10,002 [0,00)%\ {(1,1)})
is the inclusion. Hence

Tus 0 Pt Ho (1§, 12\ { (1, D)}) — Ho([0,00)%,[0,00)%\ {(1, 1)}) = Z
is an isomorphism, which implies that

Co(u, ¥) = Ho(¥1, ¥\ {u}) Z Ho(PTNN,¥INN\ {u})

is nontrivial.
Next we observe that the Morse indexwofs at least 2. In fact this holds for any sign changing critical paint
of ¥, since by Lemma 3.1(i) we have

() (squ™ 4+ sou”, s+ souT) = sflll”(qu)(qu, ut) + s%‘ll”(uf)(uf, u)<0

for every(sy, s2) € R?\ {0}. The claim now follows from [3, Proposition 3.3].

(iif) We note that every critical point of ¥ is a continuous function of2. Hence, if2* is a nodal domain
of u, thenu o+ defines an element df by [23, Lemma 1]; herege+« denotes the characteristic functionf .
Moreover, since

U (uxouxe =¥ Wuxe-=0,

we have¥ (uxo+) > ¢. Now suppose that has three nodal domaing;, 22, 23 suchthat: > 0ong2; andu <0
on 2. Thenuxo,ue, € Mo ander < ¥ (uxo,un,). Hence

c1+ ¢ <V (uxoue,) +¥uxe) <),

which shows the assertion.O

Next we consider the cones
H"={ueH|u>0}, H ={ueH|u<0},
the closed convex sets
Dojf = {u € H | disty(u, HT) < Ol}
and the seD, = D] U D, for & > 0. Moreover, we call a closed subsetc H with nonempty interiostrictly
positively invariantunder the flowy if ¢’ (1) € int(€) for everyu € £, t > 0.

Proposition 4.3. For « > 0 small enough there holds

(i) DoyN Mg =2.
(iiy oD, contains no critical points of'.
(iii) For everyb € [0, ¢1) the setD, U ¥ is strictly positively invariant undep.
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Proof. (i) Foru € Mg we have by (), Lemma 3.1(iv) and Sobolev embeddings
0<(@)?< |t |?= / FEOUE <C(I 3+ 1u™15) <C inf (ju—vl3+ u—vl})
ve—
2

<Cyoinf (lu —v||2+ ||u —v||P),
1ue—79(” I l l )

and similarly

0< (d_)?><Cyinf (Jlu—vl?+ llu—v|?),
veP

whereC; > 0 is a constant. Henc®, N Mg = & for a2 + o < Cil min{(d;)?, (d_)?}.
(i) The gradient of¢ has the formv¥ = ldy —A with A: H — H given by A(u) := (—A + 1)~ f(u) for
u € H. In other wordsp := A(u) is uniquely determined by the relation

/(Vva +ovw) = / fww forallwe H.
R” R”
Now the same argument as in [4, Lemma 3.1] yields that

A@DE) cint(DE), (4.15)

for o > 0 sufficiently small, which in particular implies thaD, contains no fixed points of, that is, no critical
points ofy.
(iii) It suffices to prove the following:

b .
{ For everyu € 3(D, U ¥”) there ise > 0 such that (4.16)

@' (u) € D, UWP fort [0, ¢) andy’ (1) ¢ Dy, UW? forr € (—¢,0).

Consider firsu € 9¥” \ D,. Then¥ (1) = b and hence( (¥ (1)) = 1. Moreoveru changes sign, and sinée< c1,
u is not a critical point ot. Therefore

0
(@' )l =~[ VW] <0,
and thus there is > 0 such thaw (¢’ (1)) < b < ¥ (¢~ ' (u)) for ¢ € (0, £). Makinge > 0 smaller if necessary, we
may also assume that (v) ¢ D, for t € (—¢, 0). Hence (4.16) holds in this case.
Now letu € d D} with ¥ (u) > b. Thenx (¥ (1)) = 1 and consequently

u+A(—=x(Y@)V¥ W) =u+r(=V¥w)=1—Nu+rAwu) € Df

for A € [0,1] by (4.15) and the convexity db;". Since this is also true for € D} close tou, an application of [16,
Theorem 4.1] yields that’ (u) € D} for sufficiently smalls > 0. Moreover, by Mazur's separation theorem, there
exists a continuous linear functionak H* and¢ € R such thatj (1) = ¢ andj (w) > ¢ for w € int(D}). Hence

0

a]@’(u))lt:o =j(-V¥ W) =j(Aw) —u)=j(Aw)—-¢ >0

by (4.15). From this we infer that(¢’ (1)) < ¢ and¥ (¢’ (1)) > b for r € (—¢, 0) provided thats is sufficiently
small. Hencey' (u) ¢ D} U WP for t € (—e, 0). A similar argument shows that fare 9D, with ¥ (u) > b there
is ¢ > 0 such thatp’(u) € D; for t € [0,¢) and ¢’ (u) ¢ D; U WP’ for t € (—e, 0). This completes the proof
of (4.16). O
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5. Proof of Theorem 1.2

Let ¢,8,70 > 0 andwy, w2 € E be given as in Proposition 3.3, and recall the valugsco and the set
U ={ucE|ut e U3(1C+), u- € U}(IC‘)} defined in Section 3. Without loss of generality, we may assume that

cy <c_. (5.2)

We chooseR > 0 so thatBg,2(0) contains the support ob; and wp, and we suppose tha? is a bounded
domain containingBsg,2(0) C £2. As in Section 4 we pull = Hol(.Q), and we consider the functiondl, the sets
Na, Mg, the values, ¢1 and the flowy’ defined in this section. SincBsr/2(0) C £2 and Bg,2(0) contains the
support ofw; andws,

y*wi+ w2 e Mg foreveryy e Sg:=09Bgr(0), (5.2)
and together with (3.11) this implies that
)
c1<co+ > (5.3)

We need a variant of Lemma 4.2.

Lemma5.1. There existsg: H — [0, 00)? such that

to(s(y * w1) +twp) = (s,1) foreverys,r >0, ye Sg, (5.4)
o(v) =(1,1) if and only ifv € Mg. (5.5)

Proof. We consider the maps
f_Q f(vi)vi
o+ H —[0,00), o+(v)= lvE)?
0, vt =0

as in the proof of Lemma 4.2 and observe thats) := o+ (s[y * w1 + w2]) is independent of € Sg. Now we can
definero(v) = (€5 (o (v)), £ (o (v7))) as in the proof of Lemma 4.2.00

, vE#£0;

Next we fixa > 0 such that Proposition 4.3 holds.
Lemma 5.2. There exists a numbé@r > 0 such thatp” (1) € int(Dy U ¥ <0~?) for all u € w3\ intU, N H).

Proof. SinceM g c M contains all sign changing critical points &f, Proposition 3.3(iii) implies that the closed
setgeotd\ int((Us 2 N H) U D,) contains no critical point o . Sincey satisfies the Palais—Smale condition, we
infer that

10 1= inf{|| ¥’ @w)|: u e wO \int(Uej2N H)U D U¥©?)} > 0. (5.6)
We also note that Proposition 3.3(ii) implies

&' (wyu' _ 68
W' 8 for everyu € Ve, 8) N H = U, \Us j2) N WO (5.7)
&

/

Now we setT := 33/r§, and we consider € w0t8 \ int(l4, N H). By Proposition 4.3(iii) it suffices to show that
@' (u) € int(Dy UWw©%)  for somer € [0, T]. (5.8)

We suppose by contradiction that this is false. Then one of the following two cases occurs.
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Case 1p" (u) € Us 2 \ int(D, U w0=?) for somer € [0, T1.
Case 2yp' (u) € U\ int(Us /2N H) U Dy, U W% forall ¢ € [0, T1.
In Case 1 we sep :=inf{s > 0:¢" (1) € Us/2} < v andry :=sup{se [0, &]: ¢*(u) ¢ intU N H)}. Then

lo2@) — "W = |¢2w) — " w),

> max{|(¢"2w) " — (¢ )], 5

(#”)" = (¢"wW) [} > 5.

Moreover,¢' (u) € Us \ Usj2) N geotd for 1 < t < 1o, and therefore (5.7) and the definition@field

2
£ <l -] < [ | w)la
1

7]
i (ot 2 _i t _ t
< g5 [ 19/ (6 @) Por= S ) = (o)
n

HenceV (¢ (1)) — ¥ (92 (1)) > 38 and therefore
W (9" W) < ¥ (92w) < W (p* ) — 38 < co—26.

This yields a contradiction, sineg («) ¢ int(D, U ¥<~%) by assumption.
In Case 2 we find

T
lI/(u)—lI/((pT(u))=/”11/’(<p’(u))”2dt> T§ = 35,
0

by (5.6). Hencel (¢! (1)) € w2 and we come to a contradiction again. Therefore (5.8) holds in any case, as
claimed. O

We now set
= {u € H| <pT(u) € D, U 'J/CO_‘S}.

Then& C H is closed, and it is strictly positively invariant undgras a consequence of Proposition 4.3(iii).
Moreover, Lemma 5.2 yields

YO\ int@, N H) C int(&). (5.9)
In order to find critical points o in H \ £ we need the following facts. Here we use the notation
Ki={ueH\E W) =c, ¥'(u)=0}.

Lemma 5.3. Considera, b € R with 0 < a < b such thatk} = @ for ¢ € (a, b) and K consists of isolated points.
Thenw“ U £ is a strong deformation retract af#” \ K;) UE.

Lemma 5.4. Suppose that > 0 and thatK} consists of finitely many isolated critical points, ..., u,,. Then
there existy > 0 such that

H (W UE w7 UE) =P Culuy. ).
j=1
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Lemma 5.5. Considera, c € R with a < ¢, such thatK} contains only finitely many isolated critical points
uy, ..., u, andK; = @ for b € (a, c). Then there existg > 0 such that

m
H (@ UE v UE) =P Cluy. v).
j=1

Lemma 5.3 can be proved in a standard way along the lines of the proof of [13, Theorem 3.2], using the strict
positive invariance of under the flowp. The proof of Lemma 5.4 proceeds analogously to the proof of [13,
Theorem 4.2]. Lemma 5.5 just follows by combining Lemma 5.3 and Lemma 5.4.

Forvg := @ (w1) + @ (w2) < co+ % we consider the continuous map

g1 Sk % (0,00)2 > W,
(v, 51, 52) = s2(y * w1) + s2w2

which is well defined as a consequence of Proposition 3.3(iv). It follows from (3.11) and (3.12) tlat=$oj0, b]
with b > 1+ 19, g induces a map of pairs

gv:(Sg x 12, Sg x 012) — (WP UE,E),
and hence it induces a homomorphism
Sy L= Hy1(Sk X 12, Sg x 012) — Hy11($O UE,E).
LetiV: (W UEE) — (WY UE,E) be the inclusiony > vg. We first show

Lemma 5.6. If b > 0 is sufficiently large, then for > 2¢; +c_ + %8 the map(i¥ o gp)« is trivial in dimension
N +1.

Proof. We show that fow > 2¢; +c_ + %8 andb sufficiently largei” o g, factorizes in the form

i”0gp:(Sg X I, Sg x 3IZ) <= (Bg x 12, Bg x 31?) B wrue, e, (5.10)

whereBg := Br(0) and the first arrow denotes the inclusion. In order to defjave fix yo € Sog. Fory € Bgr(0)
ands1, so € I, we set

|yl y Iyl ,
8 (¥, s1,52) = sl(?[<R|y_|> * wl] + <1— 7)@0* wl)) +spwp  if y#£0,

S1Y0 * W1 + s2w2 if y=0.

By (3.11) this defines a continuous functig}i: Bg x 12 — w2++c-+3/4 |f p is chosen large enough, then
g, (Br x 81},2) C D, Uw©=?% c £ by Lemma 3.1(ii). Thus, fov > 2c, +c_ + %5, we find thatg; is a map of
pairs

gh:(Br X IZ, Bg x 012) — (W' UE, E).
Note also that" o g; is just the restriction of; to Sg x Ib2 so that (5.10) holds. We conclude by observing that
Hj(Bg x I2,Bg x 31 =0forj>3. O

We now fixb > 1+1tg, I = I, andg = g, according to Lemma 5.6. As an immediate consequence of Lemma 5.3
we obtain

Lemmab.7. Letv e Rwith K = @.
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(i) Fory > 0small enough there holds
Hy (Vv u g &) =0ifandonly if Hy (WYY UE,E) =0.
(i) Ifv>co+ % then forO < y < v — vg small enough there holds:
iv7 o g, is trivial if and only ifi} 7 o g, is trivial.

Next we show

Proposition 5.8. For v € [vg, co + ) the map
(i" 0 g)y: Hy+1(Sg x I%, Sg x 01%) — Hy41 (W' UE, E)
is nontrivial.

Proof. Consider the set$ = [1— g, 1+ 0] C I and. A= I2\ int(J2). By Lemma 3.1, (3.11) and (3.12) the map
iV o g factorizes in the form

(Sg X 12, Sp x 01%) =5 (Sg x 12, Sp x A) <> (W' UE, &).
Here the inclusion induces an isomorphism
ix: Hyi1(Sr x I2, Sg x 01%) — Hy41(Sg x 12, Sg x A).
Now consider the map
g1: (Sr x J2, Sp x 9J%) <> (Sg x I%, Sg x A) = (WY UE, E),
where the first arrow is again the inclusion. By the preceding considerations it suffices to show that
g1, Hy41(Sg x J2, Sgp x 8J%) = Hy,1(W"UE, &) is nontrivial.
Note that by (3.10) the magy, factorizes in the form
g1:(Sk x J2, Sp x 8J%) 5 (W' UEINUe, ENU) 1> W UE.E),

wherej again stands for the inclusion. Now singe \ £ C int(Ud. N H) by virtue of (5.9), the excision property
yields that

Je it Hypa (" UEINU, ENU) = Hypa (WY UE,E)
is an isomorphism. Hence it remains to show that

82+  Hy1(Sg x J2, Sg x 8J%) — Hy+1 (W' UEINU:, ENU,)  is nontrivial
For this we consider the continuous map

h: (W’ UE)NU, — Sk x [0,00)?

+ _ —
N (RM ,O((per(u)(u)))

Bwt) —Bu)|’
whereer : H — [0, T] is defined by
0, ueég;
er(u) = {sup{t €[0,T]|¢'(u) ¢ €&} elsewhere

Note thater is continuous sinc€ is strictly positively invariant. By Proposition 3.3(i) the maps well defined.
Moreover, if to(¢7 ™ (1)) = (1, 1), theng™ ™ (1) € Mg, henceu ¢ £ by Proposition 4.3(i). Thus is a map of
pairs

h: (9" UEINUs, ENU) — (Sg x [0,00)%, Sk x ([0,00)?\ {(1,1)})).
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Moreover, sinc&x(Sg x 9J2) C Dy U w3 the map
ki=hogo:(SgxJ? Sg x 8J%) — (Sg x [0,00)%, Sk x ([0,00)%\ {(1,1)}))

satisfiesk|s, 5,2 = idg, .5 2. HENce, using the long exact sequences of the p&ijrs< J2, Sk x 8J%) and(Sg x
[0,00)2, Sk x ([0,00)?\ {(1,1)})) we conclude that

ket Hy41(Sr x J2, Sg x 8J%) — Hy+1(Sk x [0,00)%, Sg x ([0,00)?\ {(1,1)})) =Z

is an isomorphism. Thug, is nontrivial, as required. O
Finally we have:

Lemma 5.9. If M5 consists of finitely many isolated critical points, théy 1 (¥ 1™ U £, €) = 0 for p > 0
sufficiently small.

Proof. Suppose/\/l?z1 ={u1,...,u,}. Then by Lemma 5.5 and Proposition 4.1(ii) we have
m
Hy 1 (PP UE, €)= (P Crsalu, W) =0
j=1

for p > 0 sufficiently small, sinc&v > 2. 0O
We may now complete the

Proof of Theorem 1.2. By Proposition 4.1 we may assume thlet; contains at least one but only finitely many
isolated critical points o, and these critical points have precisely two nodal domains.
We now define

cp = inf{v >c1l Hyp (WP UE &) 2 0}
and
c3:=supv > c1: i} o g iS nontrivial
Then
3
c1<C2<vo<co+8<C3§2c++c,+4—18

by Lemma 5.6, Proposition 5.8 and Lemma 5.9. Moreover, Lemma 5.7 impliekthgt o for i = 2,3. Since
§ <min{c, c_} < ¢, every critical point ink 7, has precisely two nodal domains by Proposition 4.1(iii). Moreover,
since

3 .
c3< 2c4+c-+ ‘—18 <ct4c—+2minfcy, c_}

by (5.1), a similar argument as in the proof of Proposition 4.1(iii) yields that every;, has at most three nodal
domains. Thus we obtain solutions € K, andus € K, with the required properties.0
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