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Abstract

In this paper, we study the dynamics of a system of infinitely many fermions in dimensions d > 3 near thermal equilibrium and
prove scattering in the case of small perturbation around equilibrium in a certain generalized Sobolev space of density operators.
This work is a continuation of our previous paper [11], and extends the important recent result of M. Lewin and J. Sabin in [19] of
a similar type for dimension d = 2. In the work at hand, we establish new, improved Strichartz estimates that allow us to control
the case d > 3.
© 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper, we study the dynamics of a system of infinitely many fermions in dimensions d > 3 near thermal
equilibrium. In particular, we prove scattering in the case when the perturbation around equilibrium is small in a
certain generalized Sobolev space of density operators. This work is a continuation of our previous paper [11], and
extends some important recent result of M. Lewin and J. Sabin in [19] of a similar type for two dimensions (d = 2).
In the work at hand, we are employing new, improved Strichartz estimates that allow us to access higher dimensions.

To set up the problem, we start with a finite system of N fermions interacting via a pair potential w in mean-field
description. The dynamics is described by N coupled Hartree equations

iup =(—A+wx*pu; ui(t=0)=uypo
(1.1)

iduy = (—A+w*puy , un(t=0)=upo
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where p is the total density of particles

N
plt.x) = lujt. 0. (12)
j=I
In order to be in agreement with the Pauli principle, we require that the initial data {u j,o}?’:1 is an orthonormal family.

Given that the Cauchy problem is well-posed in a suitable solution space, the solution {u J'J};V=l continues to be an
orthonormal family for ¢ > 0.
We introduce the one-particle density matrix corresponding to (1.1),

N
YN () =D () (i (1)]. (1.3)

J=1

It corresponds to the rank-N orthogonal projection onto the span of the orthonormal family {u j(t)}j.vzl. The system
(1.1) is then equivalent to a single operator-valued equation

10, yN =[—A+w* ppy, YN (1.4)
with initial data
N
yn(E=0)=>"lujo}ujol. (1.5)
j=1

where the density function is given by

Py (8, x) =yN (1, %, X). (1.6)

Orthonormality of the family {u j}?;l implies that 0 <y < 1.

The expected particle number [ pydx diverges as N — oo for the system (1.1)—(1.2), respectively (1.4)—(1.6).
Therefore, the one-particle density matrix y = Z?i] | j)(u | is not of trace class; on the other hand, it has a bounded
operator norm L2 — L2,

For a dilute gas with a finite density (for instance, with p(¢, x) = % Z?’zl |uj (2, x)|2 as N — oo, or p(t,x) =
2?11 Ajluj(t, x)|2 with A; > 0 and > j = 1), the system (1.1) has been extensively analyzed in the literature, see
for instance [1,7-10,22]. In this setting, y = limy_. yn is trace class. See also for instance [3,2,12,15,4,20] and
the references therein for its derivation from a quantum system of interacting fermions; we remark that the fermionic
exchange term is negligible in this limit.

The Cauchy problem, obtained from (1.6) as N — oo but with p, ¢ L', is much more difficult than in the earlier
works noted above. The main problem is to understand in which framework the Cauchy problem

iy =[-A+wx*py,,y] (L.7)
with initial data

y(©0) =y, (1.8)
and density

py(t,x) =y, x,x), (1.9)

can be meaningfully posed.' Lewin and Sabin were the first authors who introduced a framework for this problem
[18,19], which can be described as follows. First, we observe that given a non-negative function f : R — Rxq, the
operator yy = f(—A) is a stationary solution to (1.7) having infinite particle number, i.e., p,, ¢ L', since the density
function p,, is a constant function. Examples of y¢ include the Fermi sea of the non-interacting system. For inverse
temperature 8 > 0 and chemical potential p > 0, the Fermi sea y is given by the Fermi—Dirac distribution

1 Again, it is required that 0 <y < 1, to be in agreement with the Pauli principle; hence, y has a bounded operator norm.
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ei[’(X—y) 1
_ — I 1.1
vr(x,y) /eﬂ<P2—M>+1dp (eﬂ(_A_erl)(x,y), (1.10)
Rd

while in the zero temperature limit,

vr=M,=1Ca<y- (1.11)
Then, the main idea is to consider a perturbation
Q:=y—vyr (1.12)

from the reference state y s, which evolves according to the following Cauchy problem:

iQ=[-A+wx*pgo, Q+vrl,
0(0) = Qo.

In [18], Lewin and Sabin proved that the Cauchy problem (1.13) for Q is globally well-posed for d > 2 in a suitable
subspace of the space of compact operators, provided that the pair interaction w is sufficiently regular. An important
tool used in [18] was a Strichartz estimate for density functions originally established in [13], which is extended to
the optimal range [14]. The case of a more singular interaction potential, with w = § given by the Dirac delta, was
analyzed by authors of the paper at hand; in [11], we proved global well-posedness of the perturbative system (1.13),
at zero temperature yy = Il /, by employing new Strichartz estimates for regular density functions and those for
operator kernels, which were established in the same paper [11].

In the case of a sufficiently regular potential w, Lewin—Sabin in [19] proved scattering for Q in d = 2 via Strichartz
estimates from [13]. The case of higher dimensions was left open, and the purpose of the paper at hand is to address
it.

Before we state the main result of this paper in Theorem 1.1, we present a brief review of the notation. For p > 1,
the Schatten class G is defined via

IAllsr = (Tr(1AIP)'7,
while for « > 0 a Hilbert—Schmidt Sobolev space H® is equipped with the norm?
Q11 = I{V)* Q(V)* | &2-

Also, we use the standard notation

(1.13)

¢(x) = er d
i = G [eese s
to denote the inverse Fourier transform of a function g.
Theorem 1.1. Let d > 3, o > % and aq be given by
o) =20 — % ifa < %,
a <o ifo =41, (1.14)
o) =uo ifa > %
d+2
and B > =5=.

We assume that
(i) (assumptions on ) f is real-valued, (-\? f € L%, f'(r) <0 forr >0,

r>0

JeP o1 i <0 ana /ﬁ(Tx_)de <0, (1.15)
X
0 R4

where g(§) = f(I51%).

2 For details, see (3.2).
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(ii) (assumption on w) The interaction potential w = w1 * wy € L is even,

I ~ ~ p— — A
Nl 2, b2l aa s 2O 2y ([ oo, D2 llzoe, NI - 1712 ()70 | oo < 00, (1.16)
and
HOIP . 2
il < 21471 /| = ) and ;. (0) < =I5"7], (1.17)
8

where AL =max{£A, 0} and €, is given by (4.4).

Then, there exists small € > 0 such that if || Qo|ly« < €, there exists a unique global solution Q(t) € C;(R; &24)y
to the equation (1.13) with initial data Qo. Moreover, the associated density function pg obeys the global space—time
bound,

lw # poll 12 4y < 00 (1.18)

and Q(t) scatters in &2 as t — 400; in other words, there exist Q+ € &*¢ such that e "2 Q(t)e!'® — Q4 con-
verges strongly in &*¢ as t — Fo0.

Remark 1.2. (i) In Theorem 1.1, various conditions are imposed on the reference state y s, the interaction potential w,
and the initial data Q¢. Our main goal is to prove scattering in high dimensions. We do not pursue any optimality on the
hypotheses. Some physically important examples, such as the Fermi—Dirac distribution (1.10), satisfy these assump-
tions. The assumptions on f and the assumptions in (1.17) are used for the linear response theory (see Proposition 4.1).
The assumptions in (1.16) are used for the proof of the global space—time bound (1.18) (see Section 7).
(i7) The method in our paper might be applied to the two-dimensional case with different conditions on the interaction
potential w and initial data Qg from Lewin and Sabin [19]. However, we omit the case d = 2, as it was already proved
n [19]; moreover, some exponents would have to be modified in the proof. For instance, we are using the endpoint
Strlchartz estimate for convenience, but the endpoint estimate is known to be false in R2 [21].
(iii) As a crucial new ingredient that allow us to extend the work of Lewin—Sabin [19] to dimensions higher than 2, we
establish new Strichartz estimates for density functions and density matrices in Section 3. Compared to the Strichartz
estimates derived in [13], and used in [19], our Strichartz estimates exhibit an improved summability gain by imposing
more regularity on the initial data.

2. Outline of the proof of Theorem 1.1

In this part of our analysis, we explain the strategy to prove the main result of this article, Theorem 1.1. First, in
Section 2.1, we show that if the density function p¢ of the solution to (1.13) satisfies the global space—time bound (see
(2.10)), then the solution Q(¢) scatters. Next, in §2.2, we set up a suitable contraction map I" (see (2.19)) to construct
a solution obeying the desired global space—time bound.

2.1. A global space—time bound for a density function implies scattering

We follow the strategy in Lewin and Sabin [19]. For simplicity, we present the argument only for the forward-in-
time direction, as it can be easily modified to prove scattering backward in time.

Given a time-dependent potential V = V (¢, x), we denote by Uy (¢) the linear propagator for the linear Schrodinger
equation

ioiu+ Au—Vu=0, (2.1)
i.e., Uy (1)@ is the solution to (2.1) with initial data ¢. We define the “finite-time” wave operator Wy (t) by
Wy (1) := e AUy (7). (2.2)

Iterating the Duhamel formula
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t
Uy (t) =e"™ —i f TRy (1)U (1)dt (2.3)
0
infinitely many times, the wave operator can be written as an infinite sum,

oo

Wy () =Y Wi o), 2.4)
n=0

where W\ (+) :=1d, and for n > 1,

15}

t In
W (1) ::(—i)”/dt,,/dtn_l~--/dt1e_i’"AV(tn)ei’"A
0 0 0
'e_itn_]AV(tnfl)eitn_lA . 'e_itlAV(tl)eitlA (25)
t
- (_i)/dr,,e—”nAV(tn)e”nAW&*‘)(z,,).
0

By the definition of the finite-time wave operator, the equation (1.13) is equivalent to

Q1) = "™ Wapy (D) (7 + Q0)Wapspo () e T2 — vy, (2.6)
because Q(t) =y (1) — yr and
y () =Uy () yolly (t)*. (2.7)

Inserting the sum (2.4) into the equation (2.6), it becomes

0w =e"( > Wiy (U)Vf(i W) e~y
m=0 n=0

(09) (09)
I eitA( Z WI%LQ (t)) Qo( Z Wzs)nﬁpg (l)>*e_i[A
m=0 n=0

(2.8)
— eiZA Qoefl'tA + Z eilAWl(,_)yiz)Q (t)nyI(U}’LﬂBPQ (t)*efiIA
(m,n)#(0,0)
+ D W (D QoW (e A
(m,n)#(0,0)
In [13], Frank, Lewin, Lieb and Seiringer prove that if d > 2, then
Wy @) le2 < ———(CIIVIlL2 ,_ 1q)"s Vnz1 2.9)
(n|)2 € ,+00)

for any small € > 0 (see Theorem 2 for n = 1 and Theorem 3 for n > 2 in [13]). Therefore, if the density function
obeys the space—time norm bound

lw* pg ||L,2([0,+oo);L‘,{) < 00, (2.10)

by (2.9) with V = w * pg, the series is absolutely convergent in C;([0, 4+-00); GZd), so it is well-defined.
Using this series expansion, we prove that the global space—time bound (2.10) implies scattering.

Lemma 2.1 (A global space—time bound for a density function implies scattering). Let d > 3. Suppose that Q(t) €
C; ([0, +00); 62d) is a solution to the equation (2.6) and its density satisfies (2.10). Then, Q(t) scatters in 62 gs
t — +00.
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Proof. As in the proof of the absolute convergence of the series, applying the inequality (2.9) to the series ex-
pansion of the difference between e 12 Q(r)e!'® and e~ 22 Q(t)e!2®, one can show that e 12 Q(r)e!1® —
e~ A Qe — 0 in 6% as 11, 1o — +00. Therefore, e 2 Q(1)e’® has a strong limit Q4 in &2 as t — +o0.
That is, Q(¢) scatters in 2 as t — +o00. O

2.2. Set-up for the contraction mapping argument

By Lemma 2.1, the goal is now to prove that the equation (2.6) has a unique solution Q(¢) in a suitable space
obeying the space—time bound (2.10). To this end, as in Lewin—Sabin [19], we write the equation (2.6) as an equation
for density functions,

P01 = P[€"* Warspg ()7 + Qo) Warsgy "¢ | . .11

One of the advantages of this wave operator formulation in density is that the unknown is given only by the density
function, and there is no unknown operator.

We further simplify the equation by splitting the interaction potential w into w = w; * w;, and subsequently
convolving the density function pg with wo,

w3 * PQ(r) = W2 * P[eimwwl*(w*/)g)(t)(yf + QO)WW*(Wz*PQ)(t)*e_”A] — W2k Py (2.12)

Now we consider the equation for w; * pg. The motivation for this formulation is that the solution w; * p¢ is expected
to be contained in a larger function space (or bounded in a weaker norm) than the one for pg, provided that wy is
sufficiently nice; our constructions will exploit this fact.

Next, inserting the sum (2.4) for the finite time wave operators acting on y s, we write

o0 o
itA (m) (n) ¥ o—itA
W2 * PQ(r) = W2 * p[e” ( Z er:l*(wz*pg)(t))yf ( Z anl *(wz*pg)(t)> e ]
m=0 n=0
+ wo * P[eitAle*(wz*pQ)(t)QOle*(wz*pQ)(t)*e_itA] — W2k Py

. 1 1 .
= w2 * ,ol:e”A (Wrgjl)*(wz*pg)(t)yf + yfwziu)*(wz*,OQ)(t)*)e ltA] (2'13)

oo
it Ayp,(m) (n) —itA
+ Z wz*p[e’ le*(wz*PQ)(t)yfwwl*(wz*pg)(t)*e l ]

m,n=1
+ wy * ’O[eitAWWI*(wz*pQ)(t)QOWw]*(wz*pQ)(t)*efifA]'

Then, introducing the operators,

L@)(@) 1= —wy 5 p e (Wi vy + 7 W5 07 )e 2], (2.14)
A n(@)(0) 1= w3 5 p AW 0y W, (172 2.15)
B@) () 1= w2 5 p[€" Wy (1) QoWaysg (1) *e 2], (2.16)
we write
wy s pg =—L(wrxpg) + | D Awn(w xpg) +Blwz# po)). 2.17)
m,n=1

We note that compared to the formulation in [19], the equation (2.17) is slightly simpler in that B(w; * pg) is not
expanded as an infinite sum. However, due to the linear nature of the operator £, which is not perturbative even for
small functions, the series expansion Y _ A, (w2 * pg) does not seem to be avoidable.

Later in Section 4, it will be shown that (1 + £) is invertible on L2

tZOLi' As a result, the equation can be reformu-
lated as
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wpkpg=(+0)7 3 Aun(wrxpo)+Bws xpo). (2.18)

m,n=1

Our goal is now to show that the map I', defined by

F@=0+07" 3 Aunn@) +B@)}, (2.19)

m,n=1

is contractive in a suitable function space, and its solution satisfies the space—time bound
”¢”L;2>0L§ < 00. (2.20)

Then, the main theorem follows (see Section 7).
3. Strichartz estimates for density functions

In this section we present the Strichartz estimates that will be used in our analysis. First, we give an overview of
the notation.

3.1. Notation

As already mentioned in Section 1, we denote by G the Schatten spaces, equipped with the norms

1/
IQler = (Trol) ", G.1)

for p > 1.
For a > 0, we define the Hilbert—Schmidt Sobolev space H* as the collection of Hilbert—Schmidt operators (which
are not necessarily self-adjoint) with a finite norm

Vol == I{V)*y0(V)“lls2 = I{V)* (Ve ) o (x, x/)||L§L§,- (3.2)

Here, yp(x, x’) is the integral kernel of yy, i.e.,

(Y0g)(x) = / yo(x, x")g(x")dx’. (3.3)
R4
In order to review Strichartz estimates for operator kernels in Subsection 3.3, we need to recall notation from [11]

related to Strichartz norms. An exponent pair (g, r) is (Strichartz) admissible if 2 < q,r < oo, (q,1,d) # (2,00,2)
and

2 d d
—+—-—==. 34
qg r 2

Assume that y (7) is a time-dependent operator on an interval / C R. Then, its Strichartz norm is defined by

r@lscn= s [TV Y g2
(¢.r): admissible ! (3.5

+ IV (Tl y g 1oz, 1) |-

It is clear that S* (1) — L;’O(‘I; HY).

We identify the operator e//2ype~"'2 with its integral kernel

(eitAyoe—itA)(x’ x) = (e”(AX_AX’))/o)(x, x). 3.6)
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3.2. Strichartz estimates for density functions

In this section, we prove new Strichartz estimates for density functions, which extend Strichartz estimates proved
in the authors’ previous work [11] by allowing asymmetric derivatives (o1 not necessarily equal to o). Those are
presented in Theorem 3.1, and as a main application, we obtain Corollary 3.2, which we use to control the operators

Amon.

Theorem 3.1 (Strichartz estimates for density functions). Suppose that oy, a1, op > 0. When d = 1, we assume that
o =minf{ay, ar}. When d > 2, we assume that

o] + oy > % (3.7
and
0to=061+012—% ifmax{al,az}<d%l,
ap < minfay, oz} if max{oy, 00} = 5L, (3.8)
op = min{ay, ar} if max{o, a2} > %
Then,
|| V| l/zpe"’Ayge*"’A || LtzeRHfO 5 | <V)0‘l y()(V)O‘z I S2- (3.9

Corollary 3.2. Suppose that g, o1 and oy satisfy the assumptions in Theorem 3.1. Then,

vy f TV (1)el 1A dr (V)
R

& < c||V(t)||L2 2 . (3.10)

t=x

Proof of Corollary 3.2, assuming Theorem 3.1. For a compactly supported smooth function V (¢, x) and a finite
rank smooth operator yy, we write

Tr((V)_O“ /e—”AV(t)e“Adt(v>—“2)yo

R
:/Tr(e"’AW)—“zyo(vr“le—”AV(t))dz a.11)
R
=//peitA<v)fa2y0<v>70qe—itA(X)V(t,x)dxdt,
R Rd

where the first identity is from cyclicity of trace. Therefore, (3.10) is dual to
loeita ype-irall 21 < cl{V)*2y0(V)*' |2, (3.12)
L2

which follows from (3.9) and the Sobolev inequality. O

The main strategy to prove the Strichartz estimate for density functions is to reformulate it as an integral esti-
mate through the space—time Fourier transformation. This approach, via bilinear estimates based on the space—time
L2-norm, has been introduced by Bourgain [5,6] and Klainerman and Machedon [16,17], and subsequently developed
by many authors.

Lemma 3.3 (Reduction to an integral estimate). Let & be any real number. Then if the integral

|& %% (&) 200

<n>2max{a1,a2} <§ _ 7])Zmin{oz] ,an}

Ig = 8(t + 1> — 1€ — nHdn (3.13)

n<I§—n|
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is bounded uniformly in T and &, the Strichartz estimate
V1% pgira e —isllpa g S KV (V) le: (3.14)

holds.

Proof. The Fourier transform of the density function of y is given by

1 .
7© =F | [ [ 706 Odsde @)

R4 R4
1 N ix-
— o | [ 7o oR [0 fanac
R4 Rd

1
- o [ [7.00-@oytsie = n - opana

R4 R4

1
=w/37(77»5—77)d77-

R4

(3.15)

Hence, the space-time Fourier transform of the density function p,ira,,-ira is

- 1 it —lE— R
(Petts pye-ita) (r,g)szft{e HnP e n|2>}7,0(,7,§_,7)d,7
d

1 (3.16)
= 2y fé(r +nl* = 1€ =070, & — mdn.
R4

Thus, by the Plancherel theorem and Cauchy—Schwarz, we get

o 2
”lvlape”Ayoe_”A” 2 H”O

m”l&l )X (Pt ype-irn)” (T, .s;)

R Rd

L2

2
Lierl

teR

‘(2 ya—1 / 8(t+ Inl* — & =)o@, E—n)dn‘ dédt

1 %y 2a0 /3(T+|77|2—|5—’7| J (3.17)
5(2n)4d/ Jrere {Rd o =)

R Rd

: {[m + 02 = 1§ = 1Y) 0(V)*)" (0, § — ) Pdn|dsd

sup /l$|2“ £)208 (T + n|* — IS—nI) }
(2n)4d ()2 (E — e

-//fw + 0> = & = nI)HIAV)* 0 (V)*) (1, & — n)|*dndEdr.
R R4 Rd

Then, integrating out the delta function with respect to T and using the Plancherel theorem again,
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o 2
|||V|a,0€itA eanH 2

RHO
|§ 2% (& 2“05(f+|77|2 & —nl? 1 o o (3.18)
= sup / T = d } a1V 10 (V)* &2

Therefore, it suffices to show that sup ¢{-- -} is bounded.
We decompose

/|s|2°‘ £)2008(t + |n|* — |é—n|2>
)2 (& — n)20

B (3.19)
&% (£)208 (T + ] — |s—n|2>

(n)21 (& — n)22

[
n<lg=nl  Inl=IE—nl
By change of the variable (¢ — 1) — n, the second integral becomes

&% (&)2%058 (T + ] — Ié—nl)
()21 (g — )2

n=1&—n|

B £ ()28 + 1 =l = In?)
B ()22 (& — )20 7 (3.20)
In|<|&—n|

|E17% (&)2%08 (—1 + |n|* — |s—n|>
(n)?@2 (& — n)2

n<|§—n|
Thus, by the assumption (3.13), we prove the desired uniform bound,

&% (& 2"05(f+|n|2 1€ —nl?)
n)21 (g — )2

dn<ILig+1 ;¢ <2supl g <oo. O (3.21)
T.§

Proof of Theorem 3.1. By Lemma 3.3, the proof of Theorem 3.1 can be reduced to the proof of a uniform bound on
the integral

|§1(5)>08(z + In* = 1§ = nl*)

IT,E = <n>2max{oc1,oc2}(é: _ n)Zmin{m,az}
{InI=<I§—nl} (3.22)
|E1(£)2058(t — |E|* 42 - )
>2max{c{1,cc2}<€ _ ,7>2min{0t|,a2}
{nl<I&—nl}

Here, we may assume that T > 0, since if t < 0, then v + |n|2 — & — n|2 < 0 in the integral domain, so the delta
function in (3.22) is zero.
When d = 1, using the trivial inequality

E1 <Inl+1§ —nl <2[§ —n] (3.23)

in the integral domain, we obtain

(&)
(g)min{al,az}
n<I&—n|

ILg S |E18(z — &2+ 2En)dn ~ 1.

Suppose that d > 2. Given & € R?, changing the variable ; by a rotation making (1,0, ---,0) € Rf]' parallel to & and
then integrating out the delta function, we write the integral as
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I .= / / |£1(8)2058(x — (&2 + 2I€|m) dnadif
e ((n1, n))2max{en.a2} () — |&|, n’))2 min{er,e}

RA-1 1] <|ni—I&l| (3.24)

- (&) dy
= ER(PI ((UT, n/))max{al,az}«nik — I&], 17’))2min{a1,a2}’

where n = (91, 17) € R x R~! and ny= |52|Tg|r with [n}] < [} — |&]|. Note that by the trivial inequality as in (3.23),

we have |77’1k — &l = % Thus, Theorem 3.1 follows from the uniform bound on

P f (§)>*0dn
T,E - 3 (n,>2max{a1,a2}<(ﬁzl’n/)>2min{a1,o¢z}.

We decompose

2a0d !
: (&) - n — ,Tu$>+11(2§> (3.25)
) max{m,az}((T’n/)) min{oy,a;}

it,g = / +
I=<IEl ' 1=1§]

For the first integral, using that % =< I(%‘, n)l < \/T§|§| in the integral domain, we get

(S)Za—Zmin{al,az}dn/

1(1)
T, (n/>2max{a1,a2}
n'1<I&]
<%.>2a0—2((x1+012)+d—1 if 0 < max{al, Olz} < %7 (326)
- 209—2 min{a, - _d-1
(E)=0 min{ery “z}ln(é) if max{ey, n} =5,

200—2 min{o a0} . d—1
(&) if max{ay, oz} > 5.

The second integral fr(zg is bounded by

/ (§)20dy _ / (,<7 PO g e+, (327)

<n/)2max{a1 ;02142 minfoy, 0} /)2(a1+a2) ~
In'|=€] 1= 1&]

since 2(a; + @) >d — 1. Both I, r(ls) and I r(zs) are uniformly bounded due to the assumption (3.8). O
Next, we prove optimality of the Strichartz estimate (3.9).
Theorem 3.4 (Optimality of Theorem 3.1). The assumptions in Theorem 3.1 are necessary.
The following dual formulation is useful to find the necessary conditions on the Strichartz estimate (3.9).

Lemma 3.5 (Dual inequality). The Strichartz estimate (3.14) holds if and only if

H|s| &)V (—In> + |& — nl?, s)‘
(m*1(§ — n)*2

e <|V(, Mz p2- (3.28)

Proof. Using the Plancherel theorem and (3.16) and then integrating out the delta function, we write
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//(|V|6‘(V)“Ope;myoe—im)(x)V(t,x)dxdt

R R4
= oot | [z [ 3+ =1 = nyinta.& — wan)
G e T (3.29)
[§1 )0V (z.§)ded
=yt [ [ 70008 = E IV In I = . E)dnde.

R4 R4

By Holder inequality and the Plancherel theorem, it is bounded by

H &% &)V (—|nl* + 1§ — nl?,

dll((V)“' o(V)*) 12

2m)2 o (g —
@m) . (m) (25 % i (330)
1 V) 10 (V) [ H |E1%(€)*V (=In* + € —nl*, &)
~ 2n) (M (& — ) L,
Therefore, by duality, (3.14) is equivalent to (3.28). O
Proof of Theorem 3.4. By the duality lemma (Lemma 3.5), the inequality (3.9) holds if and only if
E1%(E)*V (=Inl* + 15 —nl*, &)
H I | SIV @O (3:31)
The square of the left hand side is
H E1(E)V (=Inl* + 1§ —nP, 5)\
(my(§ —m*2 LL}
|€|2a 2(10 ) (3.32)
// e V(6P 26 -, ) Pnd.

Rd Rd
Changing the variable n by a rotation making (1,0,---,0) € R‘g parallel to & and then changing the variable T =
|€]> — 2| |n; as in the proof of Theorem 3.1, we write

|£12% (5)20 . ) ,
\% -2 , dnidn'd
/// G, 2 (G — [,y (51— 218l SFdmdids

R4 Rd-1 R
! / £ ()2 7o &) Pdrd

= |V (2. 8)dvdsdg 333
2 (gt a2 (= B e G

Rd RI-1 R

120 (g)> Mo oo
V(r, dédr,
// / E| BT pry)2en ((— |§|§+T )2 dn ]' (v.§)["dédr

R Rd Rd 1 2|E|

where n = (71, 7) € R x R?.
1. Necessity of the condition (3.7): From the inner integral {---}over R~ 1 in (3.33), we see that it is necessary to

assume that o1 + oy > d21 in (3.7), because if o] + ap < <dd , the inequality (3.9) fails.

2. Necessity of the homogeneous half derivative on the left hand side of (3.9): Suppose that o] + s > 451, Let
d+2

Va(m. &) =n"T 11 1,(01p, (),

where By, is the ball of radius r centered at 0 in R?. Note that for large n, ‘7,, is localized in low frequencies. We
observe that by (3.33), if & < 5, then
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H E1% )V (=Inl* + 1§ —nl%, E)‘

(m)1(§ — n)“2 L1}
G (3.34)
Ay 2 o 1-2&
// / 2(O¢1+0tz) }'V(T’ E)I"dgdr ~n njo)o o0,
R Rd Rd-1

while ||V, ||L2 12 ~ 1. Thus, the inequality (3.9) fails when & < %

3. Necessuy of the condition (3.8): Suppose that o1 + o > d2] and o % We further assume that o1 > . Now
we define the sequence {V,,}7° ; by

Vn(T’ §) = 1[n2,l’n2+l](T)l[n,l)nJrl]x[%’%]d—l ), (3.35)
where & = (£1,&") € R x R~ 50 that ||V"||L2L2 — 1. Then, | <3 1 +o0,(1) and — = —n+0,(1) in the

support of V(z, &), where 0, (1) — 0 as n — oco. Hence, by (3.33),
H E1Y2E) 0 Va(=Inl* + 15 —nP?, s>’
(mer(§ —me2

n2a0
> / — - dn Nn2a0 20 /
~ ()21 {(=n,n"))=*2

L2L2

20(1

In'I<3 n'i<4 (3.36)
p200—2(1+e)+d—1 if0<a) < %
~{ n*0 2 np if o) = 451,
n2e0—2e ifoa; > %

for sufficiently large n. Thus, (3.31) fails unless (3.8) is not satisfied.
When a1 < a3, we use the sequence {V,}7 | given by

V(t, &)= 1[_n2_%’_n2+%](r)l[n_%’”%]x[%’%]d,l &) (3.37)
to prove that the condition (3.8) is necessary. O

3.3. Strichartz estimates for operator kernels

We finish this section by recalling the statement of the Strichartz estimates for operator kernels, that we established
in[11].
Theorem 3.6 (Strichartz estimates for operator kernels). Let I C R. Then, we have
e S y0e™ Al sery < I0llaee,

t
) ) (3.38)
(t—9)A —i(t—s)A
| / HIIAR(s)e T dsHSa(R)5||R<r)||L;(R;Ha).

4. Linear response theory: invertibility of (1 + £)

We review the linear response theory from Section 3 of Lewin and Sabin [19], which addresses the invertibility of
the operator (1 + £), with £ defined by

£@) = —wo 'OI: " (W( 1% Oyr+ Vfwzill)*d) (t)*>€_itA]

t

=iwy | / T (wy % $) (1), vy JeT A |

0

A.1)
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where w = w; * wy. Roughly speaking, it asserts that (1 + £) is invertible on Lt2>OL)ZC, provided that f is strictly

decreasing, and that 1, (0) and Ww_ are not too large, where A; = max{4A,0}sothat A=A, — A_.

Proposition 4.1 (Invertibility of (1 + L)). Let d > 3. We assume that f € Lrogo is real-valued, f'(r) <O forr > 0,

o
f(rd/2*1|f(r)| +1f/(Mdr <oo and / |g|(;_)2dx <0, 4.2)
X
0 R4
where g(&) = (& |2). Moreover, we assume that the interaction potential w € L' is even,
. 4 5
1|1 < 2|Sd‘1|< 1§00l dx) and 4 (0) < =S4, 4.3)
|x|d72 €g
R4
where
. Re(my(z,§))
=— 1 _— 4.4
8 w00 2/ @5
and
(F; 'mp)(t, &) = 21,07/ 27 sin(t £ %)  (28). (4.5)
Then, 1+ L is invertible on LIZZOL)ZC.

Sketch of the proof. We sketch the proof for the sake of completeness of the article and for the convenience of the
reader. For details, we refer the reader to [19, Proposition 1, Proposition 2 and Corollary 1]. We assume d > 3 for
brevity, however, the invertibility of (1 4+ £) was proved in [19] for any dimension d > 1.

The space—time Fourier transformation of £(¢) is directly computed as

(LP) ™ (1,8) = W(E)mp(t,6)(r,£), V¢ € D([0, +00) x RY), (4.6)
with (4.5), in other words,

o0
Lo(t.&) =2v2mib (&) / sin(s[€1%) & (2s€)p(t — s, §)ds. 4.7)
0
Note that the operator £ maps LtzzoL)% to itself, because @(r, &) =0 for t < 0. Moreover, we have
1 1€ (x)]
Il < 5ea ( |x|d,2dx) (4.8)

R4

and

@]l e 180

1201z 222002 = g (| fya2?) (4.9)
R4

(see [19, Proposition 1]). We remark that the operator £ looks different from the corresponding linear operator £ in

Lewin—Sabin [19] at first glance, however they are indeed the same, since

t
(L) (x.6) = b2(®)(p|i / A [y @) (1), yr]e A ) (. 8)
0 (4.10)
=ty (&)1 (E)m (. £)B(z. &) (by [19. Proposition 1])
= W(E)my(z, (T, §).

When yr =1(_a<y), one can compute the multiplier mg(,u, 7,8):=my(1,§) as
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2
mb(u, 7,6 = ﬁ/mf(u(l — ), 7, &)r? 2dr, (4.11)

(2m) 2

where

‘ (€17 + 2161 /> — 72 ’

F
my (. 7. 8) = 2«/_|%‘| (€7 — 2| Jm? — 2

2[|§|{ (Iz+I&l |<2ﬁ|§|)_1(|f |¥|2|<2f\$\)}

4.12)

(see [19, Proposition 2]). By the relation yy = f(—A) = — fooo 1_a<s)f'(s)ds, m s can be written in terms of m(f
as

e¢]

mf(t,é):—/mg(s,t,é)f’(s)ds. (4.13)

0

For ¢ € Lt>0 , the space—time Fourier transformation of (1 4+ £)¢ is given by (1 +w(&)m ¢ (t, & N(T, £). Thus,
the invertibility of (1 + L) follows from a uniform lower bound on |1 4 wm ¢|. Let

Ig(X)I }

4|Sd 1| |x|d 2

A={geRr!: 10®) 2 (4.14)

Then, by the bound (4.8), |(1 + wm )| > 5 on A. Note that A€ is a compact subset in R4, because w(&) — 0 as

& — 0o. Moreover, by (4.13), my is contmuous on R x (R4 \ {0}) (so as (1 4+ wm ) by the Riemann-Lebesgue

lemma), since m 5 is continuous on R x (R? \ {0}). Therefore, it suffices to show that (1 + wm ) is non-zero for all &.
We consider the four cases separately.

Case 1 ((1,£) = (0, ) with & 7 0) We observe that m £(0, &) > 0 for £ # 0, since f'(s) < 0 and mf(s, 0,£)>0in

the integral (4.13) (see (4.12)). Hence, it follows that

mp0,6)wE) +1=1—w_(&)my(0, E)
180

> 1= il 2|Sd : fl adx) by (45) “.15)

>0 (by the assumption (4.3) on w_).

Case 2 ((1,&) = (1, 0) with t # 0) In this case, mf(r, 0)=0,s0 (m¢(r,)w(O)+1)=1.

Case 3 ((r, &) with v # 0 and £ # 0) It suffices to show that Im(m ¢ (7, §)) # 0. By the relation Im(m ¢ (-7, §)) =
—Im@m ¢(z,&)), we may assume that T > 0. By (4.13) and (4.11), one can write the imaginary part of m ¢(z, &)
explicitly as

1 (r;\az)i
4152 (1-r2)
|Sd72| d—2 -1,
Im(m ¢ (1, £) = ——_ [ { s f(s)ds}dr. (4.16)
4Q2m) 7
(r—|§)2
4g12(1-r2)

Since by the assumption f’(s) < 0, we conclude from (4.16) that Im(m ¢ (7, £)) # 0.
Case 4 ((z, ) in the neighborhood of (0, 0)) By the definition of m s and (4.13), one can show that

_ 1 20|
—€2I8%7!| <Re(m s (1.8)) < 2|Sd_1|( |x|d—2dx> @.17)
R4

near (0, 0) (see [19] for details). Thus, by the assumptions on W, Re(zi)(é)mf(r, &+1)>0. O
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5. Bound on A,, ,(¢)
In this section, we estimate the operator Ay, ,.

Proposition 5.1 (Bounds on Ap ). Let d >3, 8 > d# and Bo > %. Then, there exists C 4 > 0 such that for any
(m,n) withm,n > 1,

1 Ann(@l2, = CE O Flle ol (5.1)

and

I Apn (D) — Apn (1”)||L%x
. 5.2)
< (m 4+ m)CTHH ||<.>:Bf||Loc{”¢”Lt2.x + I|W||L,2.x} o=z,

where the constant C 4 depends only on d, ||(-YP0w1 ||, |02z, |01l 2, | w2 ]| 2, and || ;]| 2
Li- Ld- =

Proof. We will prove the proposition by the standard duality argument. For notational convenience, we denote W =
w1 * ¢. By the definition of A,, ,, we write

o0

/ / A n (@) OU (¢, x)dxdt

0 Rd

_ / / wz*p[e"’AWSV")(t)yfw‘&;’)(r)*e*im]U(t,x)dxdr (5.3)
0 Rd

o
=//p[eimwég”(r)yfw$>(r)*e—ffA](w2*U)(z,x)dxdr.
0 R4

Then, by the formal identity

/ Py, Vdx =Tr(ypV) (5.4)
R4

and the cyclicity of the trace, it becomes

//Am,n(d))(t)U(t,x)dxdt

0 Rd
o0

_ itAyay(m) (n) (% —itA

=Tr e WW (t)nyW (t)%e (wr x U)(t)dt (5.5)
0

o
:Tr(/W&")(z)yfws’;)(t)*e—fm(wz* U)(t)e’mdt).
0

Note that the application of the formal identity (5.5) in (5.9) will be justified by the estimates below.
First, we consider the higher order terms with m + n > 3. In this case, we employ the following two inequali-
ties,
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o0
” fe—”AV(t)e”Adt H oo =WVl (5.6)
0
o0
H/e_,-mv(t)enAdMV)—ﬂ”6% <cllVilas, (5.7)
0

where ﬁ =p-2> %. Here, (5.6) is from Theorem 2 in [13] and (5.7) can be obtained from the complex interpo-

lation between (5.6) and (3.10) with ; =0 and ay > %. Expanding Wg,”)(t) and W(W")(t) in the expression (5.5)
(see (2.5)) and applying the inequality |Tr(AB)| < Tr(|A||B]), we write

| 7 f A @ OU (1, ¥)dxdr|

0 R4
o0 o0 o0
sn{f (/-~-/e_i””AIW(tm)le”'”A~~-e_i’1A|W(t1)|ei"Adt1-~-dtm)Vf
0 0 0
o0 o0
(/---/e”"iA|W(t]’)|e”fA--~e’”'/lA|W(tl;)|e”»;Adt{---dt,/z>
0 0
eIy * U(t)|ei’Adt} (5.8)
o0 o0
:Tr{([e*i’1A|W(z1)|e”1Adtl) ---(/e*”mA|W(rm)|e"’mAdtm)yf
0 0
o0 o
-(/e*"’éA|W(t,;)|e”4Adt,;)---(/e*i’iA|W(z{)|e”iAdt{)
0 0
0
~(/e_i’A|w1 *U(t)|e”Adt)}.
0

When m, n > 1, by the Holder inequality in the Schatten spaces, (5.6) and (5.7), we obtain

o
/ / Apn @ OU 1, x)dxdr
0 R4
o0 I o0
—itA itA 5 || —itA itA -8
SH/e W)l d;HGM /e W ()¢ dt (V) HG%
0 0
o0
N = 8Pyl [0 [ B wie ] (5.9)
0
o0 1 o0
—itA itA n- —itA itA
.er' W)l dt‘sz /e' lwa * U (1) dt”GM
0 0

< @Wll2 )" 2N W 202" I A+1-DP fllese - cllwa s Ullpag (W =wi %)

J TS +n=2.~ 12 ~ +
<M TP I D e 02l 2 1L+ |- 1P fllzos N2 5 NU N 22
Ld-2 tx r=x

L2
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where B(L?) is the operator norm and in the last step, we used that if » > 2,

lw s @l < llwx @l =lddl,, (by Hausdorff-Young)

R . X (5.10)
< Ilelerfr2 ol 2 = Ilelerfr2 l¢ll,2  (by Plancherel).

When either m =0 or n = 0, we give the negative derivative (V)_’§ to the integral having U and use (5.7) for that
term. Then, estimating as above, we can show that

/ / A (@)U (¢, x)dxdt

0 Rd (5.11)
+n—1 +
<" ™ "2 1l oo l2ll oo 1(L+ 1 - DP £l oo ||¢||Tz:2||U||LgL%-
Li- ¥ :

Therefore, by duality, we complete the proof of (5.1) for higher order terms.

It remains to consider the case m=n=1.In this case the inequalities (5.6) and (5.7) does not suffice. Indeed, the
first inequality in (5.9) requires 2 7 (m+n—1) +4=1.2>1,ie., m 4 n > 3. Thus, motivated by Corollary 3.2, in
order to upgrade summability, we put negative derlvatlves on the last term,

/ /AL] (@)U (t, x)dxdt

0 R4

oot
/// AW (1) Ay "’fAW(t;)e"’iAe*"’A(wz*U)(z)efmdz{dndr)

0 (5.12)
oot
=T /// ﬂ()e—lt|Aw(t )eltlA e—lt AW(t )elt A( >/3
000
(V) PoemiA (i U)(;)e”A<V)—/f‘0dt1dt1dt>.
We now claim that
oot ot
Tr(///efitlAvl(tl)eizlAyfefiz{AVz(t]/)eit;A
000 ' , (5.13)
(V) Poe= I (1 5 U) ()2 (V) ~Podr] dtldt)
S IIwzll 20 (WVill 22 IVall 22 WU 22
Indeed, by complex interpolation between (5.6) and (3.10) with «1 = o > d= T L we have
o
H<v>—f’0fe—”AV(t)e”Adz(vrﬁO <SUVI - aa. (5.14)
& L2y
0

Thus, repeating (5.9) but using (5.14) instead of (5.7),
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oot ot
Tr(///e—mAVl(tl)eizlAyfe—iz;AVz(ti)eir;A
000

(V) PoeTI (s 5 U) (1) (V) Podrdiydr )

o0
<[ [ s mieaney | i = 8Pyl
0

o0
e / AVl At
G-I
0

(5.15)

o0
-H(V)*ﬂ()fe*"’ﬂwz*U(z)|e"’Adt<v>*ﬁ0
0
S ||V1||L[2L§||V2||L’2L§||(1 +1-DP fllpee lwy * U||L2 u

Ly

Sd

; p
Sliall 2 1+ 1 DP Pl IVill 22 1Vall 021U 22

where in the last step, we used (5.10).
Next, distributing derivatives | — A =1 — Z?:] 8%}, and then applying (5.13), we can obtain

oottt
([ [ [a-me vy e it vaapetiaa - a)
0 0 0

(V) PoeiA (1, « U)(z)e”A<v>—ﬁ0dz;dndz)

SIA=2)Vill 2010 = A)Vall 22 1(1+ 1 P2 Fllpe flws * UIIL2 u

Ly

< Illi)zllL% I+ 1-DP fllze (1= MVillpzp2 1= 2)Vall 22Ul 22

Hence, interpolating it with (5.13), we get

oot ot
TI'(/f/(V)ﬁoe_itlAV1(l])emA)/fe_”iAVz(ti)eitiA<V>ﬂo
000

V) TP A () % U)(t)e”A<V)—ﬁ0dt{dt1dt> (5.16)

<
SVl o1 Vall o o w2+ UL g

FLx

< ||lw Y
<l 2a 1A+ 1D FIL Vil 0 1Vl 2o MU T 212

Finally, coming back to (5.12), applying this inequality, we prove that

]

/ /.Al,] (@)U (t, x)dxdt

0 R4

<1 .NB
Slhiall I+ 1D Fllzclwn @l w0 % 9l 10122

A 2 A 2
SNOPDTo lidall 20 I +1-DF e li@l 21U 23-

(5.17)

For (5.2), we decompose Wg?w (t) — ngl)*w (#) into the sum of n integrals,
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t n 15}
(_i)n/.dtn/dtnfl --~/dtle_”"A(w1 *(¢—1//))(tn)eitnA
0 0 0
e 1A (K @) (tg—1)e 1A e T (wy k@) (1) A
t tn t
+(—i)”/dt,,/dt,,_l '--fdtle_””A(wl 5 ) (ty) el
o 0 (5.18)
eI (W (@ — Y)) (b)) 1A e T (k) (1) A
t tn f
+(_i)n/dfn/dtn71~~/.dtle_”"A(w1 5 ) ()€l
0 0 0

ce TR (W ) (a1 e (wr ok (¢ — ) (1) A
Using this sum, we decompose the difference
Am,n(¢)(t) - Am,n(l”)(t)
= wy * p[eitA(W(m) (I) _ W(m) (t))ny(n) (t)*e—itA] (519)

wikP wi Y w*¢
wy [ BWI O (W00 = W, (0)e ™2,

into (m + n) terms. For each term, we estimate as in the proof of (5.1). Collecting all, we obtain (5.2). O
6. Bounds on B(¢)

We prove the bounds on the operator

B@)(1) = wa 5 o€ Wa (1) Q0Wa g ()¢ 2
introduced in (2.16).
Proposition 6.1 (Bounds on B(¢)). Let d > 3, o > 4=2 4nd ag be given by (3.8) with o] = an = . Suppose that
P 5 8 y PP
w=w *wy, and | - |V, | - |T1/2 ()% %, € L. Then, there exist small €g > 0 and large Cp, Cg > 0 such
that if |92 W2 < en, then
IB@)l,2 = CsllQoll3e,

6.1
1B(¢) = Bl 2 < CpllQolinellé — ¥l 2 - o

The constants €, Cp and Cé depend only on d, ||| - |12 (Y% || oo and ||| - |72 (-) "%, | poo.

Proof. For notational convenience, we denote

0 (1) = " AW 16 (1) QoW g ()€ T12 = Uiy, (1) Qolhipy 19 () (6.2)

Note that by definition, B(¢) = w2 * pg,(1)-
Recalling (2.1) and (2.2), we see by differentiating (6.2) in ¢ that Q4 solves the following equation:

i0:Qp=[-A+wy*x¢, Oyl
with initial data Q4(0) = Qyp, equivalently,
t

0y (1) = e"* Qe "2 —ife“’—m[w] x ¢, Qpl(s)e Vs (6.3)
0
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Hence, by the Strichartz estimates in Theorem 3.6, we get

1Qsllse = ellQollae + ¢ (V) (V) w1 %, Qplr,, )

172
L, Lx‘x,

< el Qollpe +2¢ (V) (V) (w1 )1 1) 0 1, . ) | (6.4

172
Lle w

’

+ 26| (V) (V) (w1 %) (0,5 01, . )

H Lir? ,

where the time interval [0, 4+00) is omitted in the norms for notational convenience. Moreover, applying the triangle
inequality, the Strichartz estimate in Theorem 3.1 with ] = @y = « to the density of (6.3), we get

1/2 1/2
V120,12 %0 < NV pgita gge-isn Il 2 %0

—}-/ |||V|1/2pei(tﬂm[w1*¢,Q¢](S)efi(tﬂm||L12H;>tods
R

<l Qollge +c f le™ 2wy x ¢, Qgl(s)e™ ™ [|peds 6.5)
R

< el Qollzer +2¢ | (V) (Vi) (w1 + )0, ) Q1. x,)) |

1r2
4 Lx,x’

+ 2cH (V)% (V) ((wl £ §)(1,x) Qpt, X, x’)) ‘

L) Lix/

By the fractional Leibniz rule and Sobolev inequalities with the choices of «g and « (both are applied only for the
x-variable),

[(7:0% (V) (wr % ) (1, 0 Q1 %, X)) [ 12

S s @)l 214 (V) (Vi) Qqs(t,)mc/)llL2 2d

L3212,
H VIS D)2 (V) Qo (t 2, X 2002, (6.6)
SV i % @) 220 (V) (Vi) Qg (1. x, XN 2a
t Hx L2Ld—2L2
t~x x/
1/2 vag »
<1201l 1 Qpllse

We estimate (wy *@)(r, x") Qg (t, x, x’) in a similar way, interchanging x and x’. Thus, we prove that if |¢||,> <ep,
1,x
then

1Qgllse +11V1"2pg,ll 220 < 2¢ll Qollaea +2¢'11- 1Y) 01l L2101 2 1| Qpllse

< 2¢]|Qollpe +2¢egll] - |2 ()0 [l | Qg se “r
We take e := m Then, we get
10g s« +1V1'2 00|l 2420 < 4ell Qoll e (6.8)
As aresult, by (5.10), we conclude that
IB@)I 2, = llwapo,ll2, < I1- 1720 ol VI pg, Il 2 o0 < CBll Qollpe, 6.9)

where Cg =4c||| - |7V/2(-) %05 || poo.
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For the difference

t

Q(/J(t) - Ql/f(t) = —i/Ei(t_S)A[wl * (¢ — W)’ Q¢](S)e—i(l—s)AdS

° (6.10)
— i/ei(’_s)A[wl * 9, Qp — Oy |()e 7944,
0
repeating the estimates in the proof of (6.7), we prove that if ”¢”L;2,x’ [l ||Lt2,x < €p, then
106 = Qylls« +11V1"2pgy—0, Il 2 g0
< NVIY2wi % @ = ) 20 Qpllse + NV wix Yl 200 1 Qg — Oyl
<1200 b2 ld = vl 1Qgllse 61n
+ - 120D 2l 12 106 — Qyllse '
<N 12O%D1 el =2 - 4ellQollwa (by (6.8))
+ 12D e - €5 10 — Qyllse
By the choice of €5,
IV1Y200,-04 | 220 < declll- 12 ()0 i [l | Qollaga i — W1l 2 - (6.12)

Thus, by (5.10), we conclude that
1B(¢) = BW)l 2, = llwa * (o, = o)1z,
< I 1720 702 |12 11V 2 pg,- 0y | 250 (6.13)
< Cill Qoll=li¢ = vll;2 .

where Cpg = 4cc/[[| - |V2()%0by | oo ||| - [71/2 () "0y |1, O
7. Proof of the main theorem

First, we prove that
F@=0+07" 3 A +B@)) (.1)
m,n=1

is contractive in a small ball in L?’x. Let € > 0 be a sufficiently small number. Suppose that || Qol||3e= < € and

19052, W l2, <2CIN+ LI ) 1ol =t R. (72)

Note that R is also a sufficiently small number, since ||Qg||#« is assumed to be small. Then, by Proposition 5.1
and 6.1,

oo
IP@ I, <N +L1E s {30 CHP IO IR +Col Qolle | < R, (7.3)

m,n=1

where in the second inequality, we used that the sum ) > C:T—Hl 1Y% f Il oo R is O (R?), so it is bounded by
CgllQoll4= = O(R). Similarly, we prove that
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IT(@) =T W)z,

SI+LIS o | Dm0 fls QR + Cpe g = vl (7.4)

m,n=1
1
<>lé—vil .

Thus, by the contraction mapping theorem, there exists a unique ¢ € Ltz’x such that ¢ =T (¢).
Next, we derive the equation (2.6) from ¢ = I'(¢). Precisely, we claim that Q(t), defined by

Q1) := "Wy o (1) (71 + Q0)Wa o () *e ™A — yy, (7.5)

is a solution to (2.6). Indeed, it follows from the series expansion for the wave operator (see (2.4)) and its boundedness
(see (2.9)) that Q(r) is well-defined in 2. Moreover, we have

lwaxpg=dllz, =| =L@+ Y Ana@)+B@) - 9|

2
— Lt,x
m,n=1

(7.6)

2
Lt,x

=|-co+a+oa+o7| i A (@) +B@)| — ¢
m,n=1

== L@+ A+ LT @) = dl 2,
== L@) + 1+ L3¢ —¢l2 =0 (byT(@)=¢),

where the first identity follows from straightforward calculations using the infinite series expansion of the wave op-
erator and the definitions of £, A,, , and B. Now, inserting ¢ = w» * pg into (7.5), we conclude that Q satisfies the
equation (2.6),

o(r) :uwl*wg*pQ ®O(yr+ QO)Z/{wl*wz*pQ " — 143

* (71.7)
= Uwxpg Oy + QO)uw*pQ " —vyr
in ([0, +-00); &%)
Finally, by (5.10), we prove the desired global-in-time bound,
lw* pgllp2pa < llwy w2 pollz2pa < W11l 24 [lw2 * poll;2
t=x t=x Ld=2 t,x (78)

< ||11)1||Ldz%12 b2l i@l 2, < oo,
which implies scattering in &> by Lemma 2.1.
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