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Abstract

In this paper we investigate the validity and the consequences of the maximum principle for degenerate elliptic operators whose 
higher order term is the sum of k eigenvalues of the Hessian. In particular we shed some light on some very unusual phenomena 
due to the degeneracy of the operator. We prove moreover Lipschitz regularity results and boundary estimates under convexity 
assumptions on the domain. As a consequence we obtain the existence of solutions of the Dirichlet problem and of principal 
eigenfunctions.
© 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper we shall study solutions of Dirichlet problem for degenerate elliptic operators whose higher order 
term is given by some sort of “truncated Laplacian”, i.e.

P−
k (D2u) =

k∑
i=1

λi(D
2u) and P+

k (D2u) =
N∑

i=N−k+1

λi(D
2u),

where λ1(D
2u) ≤ λ2(D

2u) ≤ · · · ≤ λN(D2u) are the ordered eigenvalues of the Hessian of u. These operators have 
lately been investigated in various contexts e.g. [1,12–14,20,21,31,32]. We are interested in the case N ≥ 2 and k < N
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since P−
N (D2u) = P+

N (D2u) = �u. In the whole paper solutions are meant in the viscosity sense, see e.g. [16] and 
Definition 2.1.

Clearly, for any symmetric matrix X, P+
k (X) = −P−

k (−X) hence we will mainly state the results for P−
k with 

obvious equivalents when the operator P+
k is considered. Such operators are positively homogeneous of degree one 

and degenerate elliptic.
In the following we propose to consider the Dirichlet problem{

P±
k (D2u) + H(x,∇u) + μu = f (x) in �

u = 0 on ∂�,
(1.1)

where � is a bounded domain of RN and the Hamiltonian H ∈ C(� × RN ; R) is assumed to satisfy the structure 
condition:

∃b ∈ R+ s.t. |H(x, ξ)| ≤ b |ξ | ∀(x, ξ) ∈ � ×R
N. (SC 1)

The prototype we have in mind is H(x, ∇u) = b(x)|∇u| or H(x, ∇u) = b(x) · ∇u with b(x) a bounded continuous 
function in �.

In particular, in bounded domains �, we want to raise and partially answer the following questions, which are very 
intertwined:

(1) Under which conditions do the operators P±
k (D2u) + H(x, ∇u) + μu satisfy the maximum principle, be it weak 

or strong?
(2) What are the regularity of the solutions of the Dirichlet problem?
(3) Do the principal eigenvalues and corresponding eigenfunctions exist?

In order to be more specific, let us describe what we call maximum or minimum principle in the sense of the sign 
propagation property.

Definition 1.1. F satisfies the maximum or weak maximum principle in � if

F [u] ≥ 0 in �, lim sup
x→∂�

u ≤ 0 =⇒ u ≤ 0 in �.

It satisfies the strong maximum principle if

F [u] ≥ 0 in �, u ≤ 0 in � =⇒ either u < 0 or u ≡ 0.

Respectively, F satisfies the minimum or weak minimum principle in � if

F [u] ≤ 0 in �, lim inf
x→∂�

u ≥ 0 =⇒ u ≥ 0 in �.

It satisfies the strong minimum principle if

F [u] ≤ 0 in �, u ≥ 0 in � =⇒ either u > 0 or u ≡ 0.

Of course when F is odd then the notions of maximum and minimum principle are equivalent, but here we shall 
see that they differ quite a lot.

Just to give a flavor of the kind of results that we shall obtain, let us begin by saying that for any k < N , the Hopf 
Lemma, the Harnack inequality and the strong minimum principle do not hold in general for solutions of (1.1). On 
the other hand, if bR ≤ k, the weak minimum principle holds in any domain � ⊂ BR . For subsolutions, instead, the 
strong maximum principle will be a consequence of the Hopf Lemma. The condition bR ≤ k has been shown to be 
optimal in a previous work of the second named author with Vitolo [18]. Other phenomena which are unusual with 
respect to the uniformly elliptic case will be described in subsection 4.2.

Historically, the maximum (or minimum) principle for degenerate elliptic operators has been mostly studied when 
the degeneracy depends on the points where the operator acts, e.g.

Lu = tr(A(x)D2u) with A ≥ 0

or
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Lu =
k∑

i=1

X2
i u,

where the Xi are vector fields that may fail to generate the whole space, see e.g. the fundamental works of Bony [10]
or Kohn and Nirenberg [25]. We shall not even try to enumerate the results in these sub-elliptic contexts.

Other class of degenerate operators are the quasilinear operators such as the p-Laplacian or the ∞-Laplacian, 
whose degeneracy depends on the solution itself, but more precisely on the gradient of the solution. Here also, for 
the truncated Laplacian, the “direction” of the degeneracy depends on the solution but through the eigenvectors of the 
Hessian of the solution. Let us furthermore remark that these operators are neither linear nor variational.

The operators P±
k have initially been introduced in connection with Riemannian manifolds. In particular when 

the manifolds are k convex this was studied by Sha in [31], the case of partially positive curvature was seen by Wu 
in [32]. Later they can be found in [16, Example 1.8], as examples of fully nonlinear degenerate elliptic operators, 
and [1], where Ambrosio and Soner have investigated the mean curvature flow with arbitrary codimension through a 
level set approach. More recently, in a PDE context, we wish to recall the works of Harvey and Lawson [20,21] that 
have given a new geometric interpretation of solutions, while Caffarelli, Li and Nirenberg in [12,13] in their study 
of degenerate elliptic equations, give some results concerning removable singularities along smooth manifolds for 
Dirichlet problems associated to P−

k . See also [2] for the extended version of the maximum principle and [14] in the 
case of entire solutions.

In order to describe the results contained in this work let us introduce the generalized principal eigenvalues à la 
Berestycki, Nirenberg, Varadhan [5]. For the following equation

P−
k (D2u) + H(x,∇u) + μu = 0 in �, (1.2)

we define the following “generalized principal eigenvalues”:

μ+
k = sup{μ ∈ R : ∃w > 0 in � a supersolution of (1.2)},

μ+
k = sup{μ ∈ R : ∃w > 0 in � a supersolution of (1.2)}

and

μ−
k = sup{μ ∈ R : ∃w < 0 in � a subsolution of (1.2)},

μ−
k = sup{μ ∈ R : ∃w < 0 in � a subsolution of (1.2)}.

When we say that w is a supersolution of (1.2) and w > 0 in � as in the definition of μ+
k above, it is implicit that the 

function w is defined, as a real-valued function, and lower semicontinuous in �. Similar assumptions are made in the 
definition of μ−

k above.
It is immediate that μ±

k ≤ μ±
k and also, using the sub-additivity of P−

k (see (2.2)), that μ−
k ≤ μ+

k and μ−
k ≤ μ+

k if 
H is odd in the gradient. What we prove in section 4 is that these values are thresholds for the validity of the weak 
maximum or the weak minimum principle, precisely below μ−

k and below μ+
k the minimum principle and respectively 

the maximum principle holds.
In order to be able to reach the values μ+

k and μ−
k , which are the standard upper bounds in the uniformly elliptic 

case, we shall need some further conditions. Precisely, if � ⊂ BR with bR < k the maximum principle holds for any 
μ since, we prove in Proposition 4.3 that μ+

k = μ+
k = +∞. For the minimum principle the situation is more delicate. 

The weak minimum principle holds up to μ−
k if, beside the above condition on R, we shall require that � satisfies a 

convexity type assumption, precisely that it is the intersection of a family of balls of same radius; in that case we say 
that � is a “hula hoop” domain. In particular a C2 strictly convex domain is a hula hoop domain, see Proposition 2.7. 
A similar notion of strict convexity has been previously considered in e.g. [28].

Under these hypotheses, in Proposition 4.5, we prove that for μ = μ−
k the minimum principle does not hold. 

This implies also that μ−
k = μ−

k , see Theorem 4.4; let us emphasize that the hula hoop condition does not imply the 
regularity of the domain e.g. the intersection of two balls of same radius. In general the question of whether μ−

k and 
μ−

k coincide is an open problem.
In the recent paper [4] that had a great influence on this research, Berestycki, Capuzzo Dolcetta, Porretta and 

Rossi have studied the validity of the maximum principle for degenerate elliptic operators. For that aim they introduce 
another value
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μ∗ := sup{μ ∈R : ∃�′ ⊃ �,w > 0 in �′,F [u] + μu ≤ 0 in �′}.
Observe that for F [u] := P−

k (D2u) + H(x, ∇u), the value μ∗ ≤ μ+
k . In [4] they prove that F [·] + μ· satisfies the 

maximum principle in � in the viscosity sense if and only if μ < μ∗. In section 4 of that paper, they also study the 
equality between the different definitions of generalized principal eigenvalues, but the sufficient conditions require 
that the domain be regular.

The existence of solutions for Dirichlet problems are proved in Section 5 when � is a hula hoop domain. When 
the operators concern P−

k for general k, the existence and uniqueness is given provided that the Hamiltonian is 
Lipschitz in the gradient variable and μ < μ−

k,b ≤ μ−
k , where μ−

k,b refers to the generalized principal eigenvalue of 
P−

k (D2·) −b|∇ · | with b the Lipschitz constant of H . Instead, thanks to the Lipschitz estimates, for k = 1 the existence 
is given without the extra condition on the Hamiltonian and for any μ < μ−

1 . In the particular case f ≤ 0 the existence 
holds for any μ. Some questions concerning existence remain open, e.g. does the existence of solutions holds when 
μ > μ−

1 for a more general class of forcing terms f ? Is the hula hoop condition optimal?
Of course a natural question is whether these generalized principal eigenvalues correspond to an eigenfunction. In 

the case of uniformly elliptic fully nonlinear operators, this has been proved to be the case in different context (see 
[3,6,11,22,26,30]). We are able to give a positive answer to this question when k = 1 and � is a hula hoop domain. 
This will be somehow an application of the global Lipschitz results that are proved in section 3. The proof of the 
Lipschitz regularity is extremely sleek.

It is quite clear that there are a number of open problems. Maybe the most important one is whether the global 
Lipschitz or Hölder regularity of the solutions holds also for k ≥ 2. This would in particular lead to the existence of 
the principal eigenfunction in that case as well. On one hand it is not surprising that the case of P−

1 is simpler since, 
when the lower order term is zero, solutions of P−

1 (D2u) = f (x) are semiconvex. On the other hand, it is also the 
most degenerate of these operators, so it would be very surprising that the case k = 1 and the case k = N give rise to 
smooth solutions and that it is not the case for the values of k in between.

Still concerning the regularity, let us recall that in the context of convex analysis, Oberman and Silvestre in [27]
prove the C1,α regularity of solutions of

P−
1 (D2u) = 0 in �, u(x) = g(x) on ∂�,

under some regularity condition on g. The solution of this problem is the convex envelope, of given boundary data g. 
They proved that the solutions of the Dirichlet problem with C1,γ boundary data, are C1,γ in the interior. When f
is not zero and there is a first order term the question of the Hölder regularity of the gradient is to our knowledge 
completely open.

Of course there are other open questions concerning these generalized principal eigenvalues. One concerns the 
simplicity of the eigenvalue. Observe that this is not so obvious, as can be seen in [8], for other degenerate fully 
nonlinear operators. Another question is whether the symmetry of the domain decreases the eigenvalues. Since the 
eigenvalues are not characterized by a sort of “Rayleigh quotient” standard techniques are not available. We refer to 
[9] for analogous questions concerning the Pucci’s operators. These problems will be the object of subsequent papers.

In the next section, beside recalling a few standard facts, we give estimates near the boundary that will be crucial 
along the paper. In section 3, using those bounds, we prove global Lipschitz regularity of solutions when k = 1. Sec-
tion 4 is divided into two subsections, in the first one we prove that the generalized principal eigenvalues bound the 
validity of the maximum and minimum principle; in the second subsection we describe some unusual phenomena. 
Section 5 is dedicated to the existence of solutions for the Dirichlet problem and existence of the principal eigenfunc-
tion. In the last section we prove that C2 strictly convex domains are “hula hoop domains”.

2. Barrier functions, bounds, Hopf lemma

For convenience of the reader, we begin this section by recalling the definition of viscosity solution and some facts 
concerning the operators P−

k and P+
k .

Let us denote by SN the set of N × N real symmetric matrices, endowed with the standard partial order: X ≤ Y

in SN if 〈Xξ, ξ 〉 ≤ 〈Yξ, ξ 〉 ∀ξ ∈ R
N . The identity matrix will be denoted by I and the trace of X ∈ S

N by tr(X). 
A continuous mapping F : � ×R ×R

N ×S
N �→ R is degenerate elliptic if it is nondecreasing in the matrix argument: 

for any (x, r, ξ) ∈ � ×R ×R
N
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F(x, r, ξ,X) ≤ F(x, r, ξ, Y ) whenever X ≤ Y. (2.1)

Definition 2.1. u is a viscosity supersolution of

F(x,u,∇u,D2u) = 0 in �

if it is lower semicontinuous in � and for any x in �, for any C2 function ϕ touching u from below at x then

F(x,u,∇ϕ(x),D2ϕ(x)) ≤ 0.

Analogously, u is a viscosity subsolution if it is upper semicontinuous in � and for any x in �, for any C2 function ϕ
touching u from above at x then

F(x,u,∇ϕ(x),D2ϕ(x)) ≥ 0.

A continuous function u is a viscosity solution if it is both a subsolution and a supersolution.

If X ≤ Y in SN , the Courant’s min-max representation formula for eigenvalues implies that λi(X) ≤ λi(Y ), for 
i = 1, . . . , N . In particular the operators P−

k and P+
k satisfy (2.1). Moreover the representation formula

P−
k (X) = min

{
k∑

i=1

〈Xξi, ξi〉 | ξi ∈ R
N and

〈
ξi, ξj

〉 = δij , for i, j = 1, . . . , k

}
,

see [12, Lemma 8.1], allows us to obtain easily the inequalities

P−
k (Y ) ≤ P±

k (X + Y) −P±
k (X) ≤P+

k (Y ) (2.2)

and deduce the superadditivity (subadditivity) property of P−
k (P+

k ).

We will consider a couple of radial barrier functions in the paper and hence we recall the following elementary 
Lemma that can be found e.g. in [17].

Lemma 2.2. Let η ∈ C2([0, b]), with 0 < b such that η′(0) = 0. Set v(x) = η(|x|) in Bb . Then, v is C2(Bb) and, for 
x �= 0, the eigenvalues of D2v(x) are η′′(|x|) and η′(|x|)/|x|, and the (algebraic) multiplicity of η′(|x|)/|x| is equal 
to N − 1, if η′′(|x|) �= η′(|x|)/|x|, and N otherwise. For x = 0, they are all equal to η′′(|x|).

We start with a computation that leads to a remark on the Hopf lemma for the operator P−
k (D2·) + H(x, ∇·). In 

BR = BR(0), the ball of radius R and center the origin, let

w(x) = (R2 − |x|2)γ with γ > 1. (2.3)

By Lemma 2.2 or a straightforward computation, the eigenvalues of the Hessian of w are

λi(D
2w) = −2γ (R2 − |x|2)γ−1 < 0 for i = 1, . . . ,N − 1

while

λN(D2w) = −2γ (R2 − |x|2)γ−1 + 4|x|2γ (γ − 1)(R2 − |x|2)γ−2

= 2γ (R2 − |x|2)γ−2((2(γ − 1) + 1)|x|2 − R2).

In this way, from (SC 1)

P−
k (D2w) + H(x,∇w) ≤P−

k (D2w) + b |∇w|
= 2γ (R2 − |x|2)γ−1 (b|x| − k) ≤ 0 if bR ≤ k,

so that w is a positive supersolution, for k < N , of P−
k (D2w) + H(x, ∇w) = 0 in BR , which is zero on the boundary 

and such that the outer normal derivative ∂νw(x) = 0 for x on ∂BR . This proves the following remark.
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Remark 2.3. For any k < N , the Hopf lemma does not hold in general for supersolutions of P−
k (D2·) + H(x, ∇·), 

i.e. there exists a positive supersolution in BR which is zero together with its gradient at the boundary.

Moreover the extension

w̄(x) =
{

w(x) if |x| < R

0 otherwise

yields, for γ > 2, a counterexample of C2-function invalidating the strong minimum principle.
In [18] the authors dealt with the removable singularities issue for second order elliptic operators whose principal 

part is a weighted version of P±
k . By means of an explicit counterexample they deduced the sharpness of the condition 

bR ≤ k < N for the validity of the weak maximum/minimum principle in the cases H(x, ∇u) = ±b|∇u|. For the 
reader’s convenience we report the proof in the case of the minimum principle. Assume bR ≤ k and by contradiction 
let v be a lower semicontinuous function such that{

P−
k (D2v) + H(x,∇v) ≤ 0 in � ⊂ BR

lim inf
x→∂�

v(x) ≥ 0

and v(x0) < 0 for some x0 ∈ �.
Set ϕ(x) = ε|x|2 and 0 < ε < − v(x0)

R2 . Since

lim inf
x→∂�

(v − ϕ)(x) ≥ −εR2 > v(x0) ≥ (v − ϕ)(x0)

then

inf
x∈�

(v − ϕ)(x) = (v − ϕ)(xε), xε ∈ �.

Using ϕ as test function we get

0 ≥P−
k (D2ϕ(xε)) + H(xε,∇ϕ(xε))

≥ 2εk − 2εb|xε|
> 2ε(k − bR)

a contradiction. For the sharpness of the condition see Example 4.9.
Summarizing we can assert that for H fulfilling (SC 1).

Proposition 2.4. P−
k (D2·) + H(x, ∇·) does not satisfy the strong minimum principle in any bounded domain �.

On the other hand, the weak minimum principle holds true in � ⊂ BR if bR ≤ k and in the case H(x, ∇u) =
−b|∇u|, the condition bR ≤ k is sharp.

For later purposes we need to compare the distance function to the boundary of � i.e. d(x) = inf
y∈∂�

|y − x| with 

subsolutions of (1.1). This is the content of the next propositions.

Proposition 2.5 (Hopf for subsolutions). Let � be a bounded C2-domain and let u satisfy{
P−

k (D2u) + H(x,∇u) ≥ 0 in �

u < 0 in �.

Then there exists a positive constant C = C(�, u, k, b) such that

u(x) ≤ −Cd(x).

Proof. The proof is quite standard. We report it for the sake of completeness. The conditions on � imply the existence 
of a positive constant δ, depending on �, such that for any x ∈ �δ = {x ∈ � |d(x) < δ} there are a unique y ∈ ∂� for 
which d(x) = |y − x| and a ball B2δ(y) ⊂ � such that B2δ(y) ∩ (

R
N\�) = {y} (see [19, Lemma 14.16] for details).
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Let us fix an arbitrary x0 ∈ �δ and consider the smooth negative radial function

v(x) = β
(
e−2αδ − e−α|x−y0|

)
in the annular region A = B2δ(y0)\Bδ(y0). For α >

(
k−1
δ

+ b
)

and β = sup�\�δ
u(

e−2αδ − e−αδ
) , a direct calculation (or 

Lemma 2.2) yields

P−
k (D2v(x)) + H(x,∇v(x)) ≤ P−

k (D2v(x)) + b |∇v(x)|
= αβe−α|x−y0|

(
k − 1

|x − y0| + b − α

)
< 0 in A

and

lim sup
x→∂A

(u − v)(x) ≤ 0.

Using the comparison principle between a classical strict supersolution and a viscosity subsolution, we get

u(x0) ≤ v(x0) = β
(
e−α|y0−y0| − e−α|x0−y0|

)
≤ −αβe−2αδd(x0).

Moreover since max
�\�δ

u(x)

d(x)
< 0 we conclude by taking C small enough. �

Remark 2.6. Standard procedures allow us to deduce from the above computation that the strong maximum principle 
holds for P−

k (D2·) + H(x, ∇·) + μ· for any μ ∈R.

In Proposition 2.8, we shall prove that for any γ ∈ (0, 1) and any subsolution u of P−
1 (D2u) + H(x, ∇u) = f (x)

in �, the ratio u(x)
d(x)γ

is bounded from above by a constant C, without requiring further assumptions on �. The constant 
C depends in particular on γ and blows up for γ → 1. In order to obtain a similar bound with γ = 1 and in the general 
case of subsolutions of the equation (1.1), we restrict to convex domains � satisfying the following assumption: there 
exist R > 0 and Y ⊂R

N , depending on �, such that

� =
⋂
y∈Y

BR(y). (2.4)

For any R > 0 we define the class CR of such domains, i.e.

CR :=
{
� ⊂R

N : representation formula (2.4) holds
}

, and set C =
⋃
R>0

CR.

The class C includes the set of bounded domains with C2-boundary which are strictly convex in the sense that all the 
principal curvatures of the surface ∂� are positive everywhere. Indeed, we shall give, in section 6, the proof of the 
following

Proposition 2.7. Let � be a bounded domain with C2-boundary. Let κi(x) denote the principal curvatures of ∂� at 
x for i = 1, . . . , N − 1, set

κ = min{κi(x) : i = 1, . . . ,N − 1, x ∈ ∂�},
and assume that κ > 0. If R ≥ 1/κ , then � ∈ CR .

By means of (2.4) we show that the distance function d(x) is an upper barrier for any subsolution of (1.1).

Proposition 2.8. Let m be a positive constant and let u satisfy{
P−

1 (D2u) + H(x,∇u) ≥ −m in �

u ≤ 0 on ∂�.
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Then for any γ ∈ (0, 1) there exists C = C(γ, b, m, 
∥∥u+∥∥∞) such that

u(x) ≤ Cd(x)γ .

Let R > 0, � ∈ CR and u be a solution of{
P+

k (D2u) + H(x,∇u) ≥ −m in �

u ≤ 0 on ∂�.

If H satisfies (SC 1) and bR < k then there exists C = C(�, b, k, m) such that

u(x) ≤ Cd(x). (2.5)

Proof. Let �δ = {x ∈ � |d(x) < δ} with

δ = min

(
1 − γ

2b
,

(
γ (1 − γ )

4m

∥∥u+∥∥∞

) 1
2
)

(2.6)

and without loss of generality we may assume u+ �≡ 0. For x0 ∈ �δ , take y0 ∈ ∂� such that d(x0) = |x0 − y0| and 

consider the function v(x) = C|x − y0|γ , where C =
∥∥u+∥∥∞

δγ . Then v(x) satisfies in Bδ(y0) ∩ �

P−
1 (D2v(x)) + H(x,∇v(x)) ≤ Cγ |x − y0|γ−2 (γ − 1 + b|x − y0|)

≤ −Cγ
1 − γ

2
δγ−2 < −m.

Moreover

u(x) ≤ v(x) for any x ∈ ∂(Bδ(y0) ∩ �)

and by comparison u(x0) ≤ v(x0) = Cd(x0)
γ . Since x0 is arbitrary we obtain the desired inequality u(x) ≤ Cd(x)γ

in �δ and the same conclusion is still true in �\�δ by the choice of the constant C.
For the second inequality, fix any y ∈ Y and consider the function vy(x) = M(R2 − |x − y|2), where M = m

(k−bR)
. 

Note that vy(x) ≥ 0 for all x ∈ BR(y) and hence vy(x) ≥ 0 in �. Then

P+
k (D2vy(x)) + H(x,∇vy(x)) ≤ 2M(−k + b|x − y|)

≤ −2M(k − bR) < −m in BR(y)

and by comparison

u(x) ≤ vy(x) in �. (2.7)

We will show that this implies that

u(x) ≤ Cd(x) for all x ∈ �

with C = 2MR. Indeed, let x ∈ � and select z ∈ ∂� so that d(x) = |x − z|. Then select y ∈ Y so that z /∈ BR(y). 
Since x ∈ BR(y), we have

R2 − |x − y|2 = (R − |x − y|)(R + |x − y|) ≤ 2R(R − |x − y|)
= 2Rd(x, ∂BR(y)) = 2R|x − z| = 2Rd(x)

and we conclude by (2.7). �
We end this section by observing that the upper bound (2.5) fails to be true if the boundary ∂� is flat, at least if �

is unbounded. Indeed in the case of the half space

� =
{
x = (x1, . . . , xN) ∈R

N : x1 > 0
}

,

the function u(x) = x
γ

1 is a solution in � of P+
k (D2u) = 0 for any γ ∈ (0, 1) and k < N , but on the other hand the 

ratio u(x)
d(x)

= 1
1−γ is unbounded near x1 = 0.
x1
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3. Lipschitz regularity, compactness

In this section we will study the Lipschitz regularity of viscosity solutions of{
P−

1 (D2u) + H(x,∇u) = f (x) in �

u = 0 on ∂�
(3.1)

and, in a dual fashion, of{
P+

1 (D2u) + H(x,∇u) = f (x) in �

u = 0 on ∂�,
(3.2)

where f is continuous and bounded in �.

Proposition 3.1. Let � ∈ CR . If H satisfies (SC 1) and bR < 1, then the solutions u of (3.1) and (3.2) are Lipschitz 
continuous in �. The Lipschitz norm of u can be bounded by a constant depending only on �, b and the L∞ norms 
of u and f .

Proof. We shall write the proof in the case P−
1 , since if v is a solutions of (3.2), then u = −v is a solution of 

P−
1 (D2u) + H̃ (x, ∇u) = −f (x) in �, where H̃ (x, ξ) = −H(x, −ξ) satisfies in turn (SC 1).

Let u be a solution of (3.1). It is sufficient to show that for any x, y ∈ � such that |x − y| < δ, where δ is a positive 
constant to be determined, then

u(x) − u(y) ≤ L|x − y|
with L = L(�, b, ‖u‖∞ , ‖f ‖∞).

Fix θ ∈ (1, 2) and consider

v(x) = |x| − |x|θ , x ∈ B1.

The function v is strictly positive for x �= 0 and satisfies the inequality

P−
1 (D2v(x)) + H(x,∇v(x)) ≤ −θ(θ − 1)|x|θ−2 + b(1 + θ |x|θ−1), x ∈ B1\ {0} . (3.3)

Since the right hand side in (3.3) tends to −∞ as |x| → 0, we can then pick a δ = δ(b, θ, ‖f ‖∞) ∈ (0, 1) such that

P−
1 (D2v(x)) + H(x,∇v(x)) < −‖f ‖∞ in ∈ Bδ\ {0}.

Moreover, in view of Proposition 2.8, there exists a positive constant C = C(�, b, ‖f ‖∞) such that

−u(x) ≤ Cd(x) ∀x ∈ �. (3.4)

For x0, y0 ∈ �, with |x0 − y0| < δ and L = max
(

2‖u‖∞
δ−δθ , C

1−δθ−1

)
, let

vy0(x) := u(y0) + Lv(x − y0), x ∈ Bδ(y0). (3.5)

By construction

P−
1 (D2vy0(x)) + H(x,∇vy0(x)) < −‖f ‖∞ in Bδ(y0)\ {y0}

and

vy0(y0) = u(y0).

We claim that

u(x) ≤ vy0(x) on ∂(Bδ(y0) ∩ �), (3.6)

so that the comparison principle yields the conclusion

u(x0) ≤ vy0(x0) ≤ u(y0) + L|x0 − y0|.
To prove the inequality (3.6) we note that for any x ∈ ∂Bδ(y0) ∩ �
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vy0(x) = u(y0) + L(δ − δθ ) ≥ u(y0) + 2‖u‖∞ ≥ u(x),

while if x ∈ Bδ(y0) ∩ ∂�, we obtain in view of (3.4), together with the choice of L,

u(x) = 0 ≤ u(y0) + Cd(y0) ≤ u(y0) + C|x − y0|
≤ u(y0) + L(|x − y0| − |x − y0|θ ) = vy0(x)

as we wanted to show. �
The conditions concerning the geometry of � and the smallness of the Hamiltonian in the Proposition 3.1, i.e.

� ∈ CR and bR < 1, (3.7)

are only used to get the inequality (3.4), in order to apply comparison principle up to the boundary. For this reason 
and following the arguments of the previous proof, it is easy to obtain interior Lipschitz regularity for any bounded 
domain � and any H satisfying (SC 1), assuming u to be merely a subsolution of (3.1).

Moreover the assumptions (3.7) can be dropped if we require that the subsolution u satisfies (3.4). These observa-
tions are summarized as follows.

Proposition 3.2. Suppose that � is a bounded domain and H satisfies condition (SC 1). The following holds:

i) any subsolution u of (3.1) is a locally Lipschitz continuous function in �;
ii) any subsolution u of (3.1) that satisfies (3.4) for some constant C is Lipschitz continuous in �.

The Lipschitz norm of u can be estimated by a constant which depends on b and the L∞ norms of u and f .

Finally the same conclusion holds for supersolutions u of (3.2), with (3.4) replaced by the inequality u ≤ Cd in �.

This globally Lipschitz regularity result for nonnegative subsolutions of (3.1), a consequence of Proposition 3.2 ii), 
is quite surprising, considering that the global C0,γ -regularity may fail for any γ ∈ (0, 1] in the class of nonpositive 
subsolutions of (3.1). Here below an example: the nonpositive radial function

u(x) =

⎧⎪⎨⎪⎩
1

log(1−δ)
if |x| ≤ δ

1
log(1−|x|) if δ < |x| < 1

0 if |x| = 1,

is convex for δ ∈ (0, 1) close to 1 and

P−
1 (D2u(x)) ≥ 0 in B1.

On the other hand, for any γ ∈ (0, 1],

sup
x,y∈B1

x �=y

|u(x) − u(y)|
|x − y|γ = +∞.

4. Demi-eigenvalues

4.1. Maximum and minimum principle

We now investigate the relationship between the generalized principal eigenvalues μ±
k and μ±

k given in the intro-
duction and the validity of the maximum and minimum principle.

In the following we shall sometimes need to reinforce the assumptions on the Hamiltonian H . In particular:

H(x, tξ) = tH(x, ξ) ∀(x, t, ξ) ∈ � ×R+ ×R
N, (SC 2)

∃ω modulus of continuity s.t. |H(x, ξ) − H(y, ξ)| ≤ ω (|x − y| (1 + |ξ |)) . (SC 3)
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Observe that (SC 2) implies (SC 1) with b = sup(x,ξ)∈�×B1
|H(x, ξ)| hence this will be the meaning of b under 

condition (SC 2). Furthermore (SC 2) and (SC 3) imply that H is Lipschitz continuous in the following sense:

|H(x, ξ) − H(y, ξ)| ≤ C|x − y||ξ |
for some constant C > 0. Indeed, for η = ξ

|ξ ||x−y| ,

|H(x, ξ) − H(y, ξ)| = |H(x,η) − H(y,η)||ξ ||x − y|
and

|H(x, ξ) − H(y, ξ)| ≤ ω(|x − y|(1 + |η|))|ξ ||x − y| ≤ ω(1 + diam(�))|x − y||ξ |.

Theorem 4.1. Let � be a bounded domain. Under the assumption (SC 2)–(SC 3), the operator

P−
k (D2·) + H(x,∇·) + μ·

satisfies

i) the minimum principle in � for μ < μ−
k ,

ii) the maximum principle in � for μ < μ+
k .

Proof. The proof follows the argument of [6].
Without loss of generality we can suppose that μ ≥ 0, because otherwise the results are well known. We shall 

detail the case i) of the minimum principle, since with minor changes the arguments prove ii) as well. We argue by 
contradiction by assuming that v is a solution of{

P−
k (D2v) + H(x,∇v) + μv ≤ 0 in �

lim inf
x→∂�

v(x) ≥ 0 (4.1)

and v(x0) < 0 for some x0 ∈ �.
By the definition of μ−

k there exists ρ ∈ (μ, μ−
k ) and u < 0 in �, a solution of

P−
k (D2u) + H(x,∇u) + ρu ≥ 0 in �. (4.2)

The function v
u

is upper semicontinuous in the compact set

K =
{
x ∈ � : v(x)

u(x)
≥ v(x0)

u(x0)

}
and if γ := supx∈�

v(x)
u(x)

, then

γ = sup
x∈K

v(x)

u(x)
< +∞ and 0 <

v(x0)

u(x0)
≤ γ. (4.3)

For 0 < ε < γ the lower semicontinuous function v − (γ − ε)u reaches its negative minimum in �, say

min
x∈�

(v(x) − (γ − ε)u(x)) = v(xε) − (γ − ε)u(xε), xε ∈ �,

since

lim inf
x→∂�

(v(x) − (γ − ε)u(x)) ≥ lim inf
x→∂�

v(x) ≥ 0

and by definition of the supremum there exists yε ∈ � such that

v(yε) − (γ − ε)u(yε) < 0.

Moreover, by lower semicontinuity, we can find a subdomain �′ ⊂⊂ �, depending on ε and containing xε , for which

min′ (v(x) − (γ − ε)u(x)) > v(xε) − (γ − ε)u(xε) (4.4)

∂�
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and a sequence (xk, yk) ∈ �′ × �′ such that

v(xk) − (γ − ε)u(yk) + k

2
|xk − yk|2 = min

(x,y)∈�′×�′

(
v(x) − (γ − ε)u(y) + k

2
|x − y|2

)
.

Using [16, Lemma 3.1], up to subsequences, we have

k

2
|xk − yk|2 → 0, (xk, yk) → (x̂ε, x̂ε) for some x̂ε ∈ �′

and

(v(xk), (γ − ε)u(yk)) → (v(x̂ε), (γ − ε)u(x̂ε)) for k → +∞.

Hence (xk, yk) ∈ �′ × �′ for large k and in view of [16, Theorem 3.2] there exist Xk and Yk , N × N symmetric 
matrices, such that

Xk ≥ Yk, (k(yk − xk),Xk) ∈ J
2,−

v(xk), (k(yk − xk), Yk) ∈ J
2,+

(γ − ε)u(yk).

Since the function (γ − ε)u(x) is still a solution of (4.2) by the homogeneity assumption (SC 2), we have from 
(4.1)–(4.2)–(SC 3), that

μv(xk) ≤ −P−
k (Xk) − H(xk, k(yk − xk))

≤ −P−
k (Yk) − H(yk, k(yk − xk)) + ω (|xk − yk|(1 + k|xk − yk|))

≤ ρ(γ − ε)u(yk) + ω (|xk − yk|(1 + k|xk − yk|)) .

Sending k → +∞
μv(x̂ε) ≤ ρ(γ − ε)u(x̂ε). (4.5)

If μ = 0 this is a contradiction. Otherwise, for μ > 0, since γ u(x̂ε) ≤ v(x̂ε) we deduce from (4.5) that

1 <
ρ

μ
≤ γ

γ − ε
;

which is a contradiction for small ε. �
The same proof as above works for general, positively homogeneous of degree one, degenerate elliptic operators 

F(x, ∇·, D2·), to which the proof of comparison principle applies (see [16, Theorem 3.3]).
Theorem 4.1 implies the following

Corollary 4.2. Under the assumption (SC 2)–(SC 3), if BR1 ⊂ �, then

μ−
k ≤ 2(k + bR1)(2 + k + bR1)

R2
1

. (4.6)

Moreover if � ⊂ BR2 and bR2 ≤ k, then

μ−
k ≥ 2(k − bR2)

R2
2

. (4.7)

Proof. For BR1 ⊂ � consider the function

w(x) = −(R2
1 − |x|2)2

extended to zero outside of BR1 , as in [5]. Then

sup
|x|<R1

P−
k (D2w) + H(x,∇w)

−w
≤ sup

|x|<R1

P−
k (D2w) + b|∇w|

−w

≤ 4 sup
|x|<R

(
k + bR1

(R2 − |x|2) − 2|x|2
(R2 − |x|2)2

)
.

1 1 1
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In the set �1 =
{
x ∈ BR1 : |x|2 ≥ R2

1(k+bR1)

2+k+bR1

}
we have

k + bR1

(R2
1 − |x|2) − 2|x|2

(R2
1 − |x|2)2

≤ 0,

while in �2 = BR1\�1

k + bR1

(R2
1 − |x|2) − 2|x|2

(R2
1 − |x|2)2

≤ k + bR1

(R2
1 − |x|2) ≤ (k + bR1)(2 + k + bR1)

2R2
1

.

Hence v is a negative solution in � of

P−
k (D2w) + H(x,∇w) + 2(k + bR1)(2 + k + bR1)

R2
1

w ≤ 0,

which is zero on the boundary ∂�. This contradicts the minimum principle and, by Theorem 4.1,

μ−
k ≤ 2(k + bR1)(2 + k + bR1)

R2
1

,

leading to (4.6).
Let � ⊂ BR2 and w(x) = −(R2

2 − |x|2). For bR2 < k (the case bR2 = k is trivial) we may assume as in the proof 
of Proposition 4.3 that � ⊂ BR2 , so w < 0 in � and

P−
k (D2w) + H(x,∇w) + μw ≥P−

k (D2w) − b|∇w| + μw

= 2(k − b|x|) + μ
(
|x|2 − R2

2

)
≥ 2(k − bR2) − μR2

2 = 0

if μ = 2(k−bR2)

R2
2

and therefore

μ−
k ≥ 2(k − bR2)

R2
2

. �
We now impose some conditions on the domain �. For the maximum principle we get

Proposition 4.3. Under the assumption (SC 1), if � ⊂ BR then, for any k < N ,

bR < k =⇒ μ+
k = μ+

k = +∞. (4.8)

In particular, in the case H ≡ 0, for any bounded domain �, μ+
k = μ+

k = +∞ and the operator P−
k (D2·) + μ·

satisfies the maximum principle for any μ.

Proof. Choose any μ > 0 and assume without loss of generality that � ⊂ BR and γ := μR2

2(k−bR)
> 1, replacing if 

necessary R with R′ > R in order that k − bR′ is positive and sufficiently close to 0. Let w be the function introduced 
in section 2, then w(x) > 0 in � and

P−
k (D2w(x)) + H(x,∇w(x)) + μw(x)

≤ P−
k (D2w(x)) + b|∇w(x)| + μw(x)

= −2γ k(R2 − |x|2)γ−1 + 2γ b|x|(R2 − |x|2)γ−1 + μ(R2 − |x|2)γ
≤ (R2 − |x|2)γ−1(−2γ (k − bR) + μR2)

= 0.

By definition, we have obtained that μ+ ≥ μ+ = +∞. �
k k
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For the minimum principle, the assumptions are slightly stronger.

Theorem 4.4. Let � ∈ CR , and assume (SC 2)–(SC 3) and that bR < k. Then,

μ−
k = μ−

k ,

and the minimum principle holds true if and only if μ < μ−
k .

In order to prove Theorem 4.4 we shall need the following proposition which proves that if � is a hula hoop 
domain, the bound μ−

k of Theorem 4.1 is sharp. We indeed exhibit a supersolution v at level μ−
k which will invalidate 

the minimum principle. The result has been inspired by [4, Proposition 3.2].

Proposition 4.5. Assume (SC 2)–(SC 3). Then μ−
k is finite and, if � ∈ CR and bR < k, there exists a nonpositive 

supersolution v �≡ 0 of{
P−

k (D2v) + H(x,∇v) + μ−
k v = 0 in �

v = 0 on ∂�.

For the proof of the proposition above, we need the following existence result that will be used also in the next 
section.

Proposition 4.6. Assume (SC 2)–(SC 3). Let � ∈ CR and μ < μ−
k , and assume that bR < k. Then, for f bounded, 

there exist a subsolution v and a supersolution w of

P−
k (D2u) + H(x,∇u) + μu = f (x) in � (4.9)

that satisfy w ≤ v in � and w = v = 0 on ∂�.

Proof of Proposition 4.6. Fix ρ ∈ (μ, μ−
k ), and, in view of the definition of μ−

k , we may select a real valued subso-
lution ψ of

P−
k (D2ψ) + H(x,∇ψ) + ρψ = 0 in �

such that ψ < 0 in �. We may assume by multiplying ψ by a positive constant if necessary that (ρ − μ)ψ ≤ −‖f ‖∞
in �. It is now clear that ψ is a subsolution of (4.9) or more precisely

P−
k (D2ψ) + H(x,∇ψ) + μψ = ‖f ‖∞ in �.

By translation, we may assume that 0 ∈ �. Since � is a bounded, open, convex set, for any ε > 0, there is δ > 0 such 
that

(1 + ε)� ⊃ �δ := {x ∈R
N : dist(x,�) < δ}.

We select such a δ = δ(ε) so that 0 < δ < ε.
Define ψε(x) = ψ((1 + ε)−1x) for x ∈ (1 + ε)� and note that ψε is a subsolution of

(1 + ε)2P−
k (D2ψε(x)) + (1 + ε)H((1 + ε)−1x,∇ψε(x)) + μψε(x) = ‖f ‖∞ in (1 + ε)�.

Thus, setting Hε(x, ξ) = (1 + ε)−1H((1 + ε)−1x, ξ) and με = (1 + ε)−2μ, we see that ψε is a subsolution of

P−
k (D2ψε) + Hε(x,∇ψε) + μεψε = (1 + ε)−2‖f ‖∞ in �δ.

For each z ∈ Bδ , we define functions ψz
ε in � and H̃ε in � ×R

N , respectively, by

ψz
ε (x) = ψε(x + z), and H̃ε(x, ξ) = sup

z∈Bδ

Hε(x + z, ξ),

and note that ψz
ε is a subsolution of

P−(D2ψz
ε ) + H̃ε(x,∇ψz

ε ) + μεψ
z
ε = (1 + ε)−2‖f ‖∞ in �. (4.10)
k
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Set

Wε(x) := max
z∈Bδ/2

ψz
ε (x) = max

y∈Bδ/2(x)

ψε(y) = max
y∈Bδ/2(x)

ψ((1 + ε)−1y) for x ∈ �,

and observe that Wε is upper semicontinuous in � and it is a subsolution of (4.10), that Wε ≤ max� ψ < 0 in �, and 
that the function

H̃ε(x, ξ) = sup
z∈Bδ

(1 + ε)−1H((1 + ε)−1(x + z), ξ)

satisfies (SC 2) and (SC 3), with constant (1 + ε)−1b in place of b.
Fix any ε > 0. We show that Wε is bounded from below in �. For this, we argue by contradiction and thus 

suppose that there is a sequence (xn)n∈N ⊂ � such that Wε(xn) < −n for all n ∈ N. We may assume up to extracting 
a subsequence that (xn) converges to some x0 ∈ �. Moreover, we may assume that xn ∈ Bδ/2(x0) for all n, which 
implies that, for any n ∈N, x0 ∈ Bδ/2(xn) and

ψε(x0) ≤ Wε(xn),

which gives a lower bound of the sequence (Wε(xn)), a contradiction.
Next, we choose a sequence (εn)n∈N of positive numbers converging to zero, and, for n ∈ N, set Vn = Wεn , 

Hn = H̃εn , μn = μεn , and observe that, as n → +∞, Hn → H in C(� ×R
N), μn → μ.

Fix any n ∈N, and let fn(x) = (1 + εn)
−2f (x). The above computations show that Vn is a subsolution of

P−
k (D2u) + Hn(x,∇u) + μnu = fn(x) in �, (4.11)

while the standard construction of barrier functions for elliptic PDE yields a supersolution W ∈ C(�) of (4.11) that 
satisfies W = 0 on ∂� and W ≥ 0 in � (see e.g. [15]). If f ≥ 0 then just take W ≡ 0. We define the function zn in �
by

zn(x) = inf{u(x) : u supersolution of (4.11), Vn ≤ u ≤ W in �, u = 0 on ∂�}.
By Perron procedure, the function zn is a “viscosity solution” of (4.11) in the sense that the upper semicontinuous 
envelope (zn)

∗ of zn, given by

(zn)
∗(x) = inf

r>0
sup{zn(y) : y ∈ �, |y − x| < r},

is a subsolution of (4.11) and the lower semicontinuous envelope (zn)∗ of zn, given by

(zn)∗(x) = sup
r>0

inf{zn(y) : y ∈ �, |y − x| < r},

is a supersolution of (4.11). It is clear that inf� Vn ≤ (zn)∗ ≤ (zn)
∗ ≤ W in �. If u is a supersolution of (4.11) and if 

Vn ≤ u ≤ W in � and u = 0 on ∂�, then u is supersolution of

P−
k (D2u) + Hn(x,∇u) = fn(x) − |μn| inf

�

Vn in �.

Proposition 2.8, applied to −u, yields an inequality u(x) ≥ −Cnd(x) for all x ∈ � and some Cn > 0, where Cn is 
independent of the choice of u. This implies that −Cnd ≤ (zn)∗ ≤ (zn)

∗ ≤ W in �, which, in particular, ensures that 
(zn)∗ = (zn)

∗ = 0 on ∂�.
Now, we intend to send n → +∞. We claim that sup‖(zn)∗‖∞ < +∞. To check this, we argue by contra-

diction and suppose that sup‖(zn)∗‖∞ = +∞. We may assume up to a subsequence that limn→+∞ ‖(zn)∗‖∞ =
+∞. Since the sequence (zn)∗ is uniformly bounded from above by W in �, this in particular implies that 
limn→+∞ infx∈�(zn)∗(x) = −∞. Set

Zn(x) = (zn)∗(x)

‖(zn)∗‖∞
for x ∈ �, n ∈ N,

and note that if we set
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M0 = sup
n∈N

‖f ‖∞
‖(zn)∗‖∞

+ |μ|,

then Zn is a supersolution of

P−
k (D2Zn) + Hn(x,∇Zn) = M0 in �.

Since bk < R, by applying Proposition 2.8 to −Zn, we get, for some constant M1 > 0,

Zn(x) ≥ −M1d(x) for all x ∈ �, n ∈ N. (4.12)

We take the lower relaxed limit of (Zn)n∈N, that is, we set

Z−(x) = lim inf
n→+∞∗Zn(x) = sup

r>0
inf{Zn(y) : y ∈ �, |y − x| < r, n > r−1}.

It is a standard observation (see, e.g., [16, Chapter 6]) that Z− is lower semicontinuous in � and a supersolu-
tion of (1.2). It is clear that min� Z− = −1. Moreover, it follows from (4.12) that Z− = 0 on ∂�. According 
to Theorem 4.1, the minimum principle holds for (1.2), but this contradicts that min� Z− = −1. Thus, we have 
supn∈N ‖(zn)∗‖∞ < +∞.

For the sequence (zn), which is uniformly bounded in �, we consider the upper and lower relaxed limits z+ and 
z− defined, respectively, by

z+(x) = lim sup
n→∞

∗zn(x) = inf
r>0

sup{zn(y) : |y − x| < r, n > r−1},
and

z−(x) = lim inf
n→∞∗zn(x) = sup

r>0
inf{zn(y) : |y − x| < r, n > r−1},

and observe that − supn∈N ‖(zn)∗‖∞ ≤ z− ≤ z+ ≤ W in � and that z+ and z− are a subsolution and a supersolution 
of (4.9), respectively.

Similarly to (4.12) for Zn, since (zn) is uniformly bounded in �, we deduce that there is a constant M2 > 0
such that (zn)∗(x) ≥ −M2d(x) for all x ∈ � and n ∈ N, which implies that z− = z+ = 0 on ∂�. The proof is now 
complete. �

We remark that defining Wε from ψε in the proof above is a sort of supconvolution (see [24] for the use of this 
supconvolution in a different situation).

Proof of Proposition 4.5. The finiteness of μ−
k is a consequence of Corollary 4.2 which gives a precise estimate.

For n ∈N let us consider the equation

P−
k (D2w) + H(x,∇w) +

(
μ−

k − 1

n

)
w = 1 in �. (4.13)

For each n ∈N, by Proposition 4.6, there are a subsolution vn and a supersolution wn of

P−
k (D2u) + H(x,∇u) +

(
μ−

k − 1

n

)
u = 1 in �, (4.14)

satisfying wn ≤ vn ≤ 0 in � and wn = vn = 0 on ∂�.
We claim that supn∈N ‖wn‖∞ = +∞. Suppose by contradiction that supn∈N ‖wn‖∞ < +∞. We choose j ∈ N

large enough so that

1

j

(
2 sup

n∈N
‖wn‖∞ + μ−

k + 1

j

)
≤ 1,

which implies that, since wj ≤ vj ≤ 0,

2
vj − 1

(
μ−

k + 1
)

≥ −1 in �,

j j j
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and, hence, vj − 1/j is a subsolution of

P−
k (D2u) + H(x,∇u) + (μ−

k + 1

j
)u = 0 in �.

Since vj − 1/j < 0 in �, this contradicts the definition of μ−
k and proves that supn∈N ‖wn‖∞ = +∞.

Up to extracting a subsequence, we may assume that

lim
n→+∞‖wn‖∞ = +∞.

We introduce bounded functions zn = wn‖wn‖∞ , solutions of

P−
k (D2zn) + H(x,∇zn) +

(
μ−

k − 1

n

)
zn ≤ 1

‖wn‖∞
in �.

We set

v(x) := lim inf
n→+∞∗ zn(x) for x ∈ �.

This is the lower half relaxed limit of (zn) and is a supersolution of P−
k (D2v) +H(x, ∇v) +μ−

k v ≤ 0 in �. Moreover, 
it is clear that v ≤ 0 in � and min� v = −1. Using again the bound (2.5), we deduce that v = 0 on ∂�, and the proof 
is complete. �
Proof of Theorem 4.4. We begin by proving the following

Claim. For μ < μ−
k the operator P−

k (D2·) + H(x, ∇·) + μ· satisfies the minimum principle.

The proof proceeds like the proof of Theorem 4.1, the only difference is that for ρ ∈ (μ, μ−
k ), the lim supx→z u(x)

could be zero for some z ∈ ∂�. But using (SC 2) and the negativity of u(x) we get

P−
k (D2u) + H(x,∇u) ≥ 0 in �

while

P+
k (D2(−v)) − H(x,−∇(−v)) ≥ −μ

∥∥v−∥∥∞ in �.

In view of Propositions 2.5–2.8, with m = μ 
∥∥v−∥∥∞, there exist two positive constants C1 and C2 such that

u(x) ≤ −C1d(x) and − v(x) ≤ C2d(x) for any x ∈ �.

Hence

0 <
v(x0)

u(x0)
≤ γ := sup

x∈�

v(x)

u(x)
≤ C2

C1
< +∞.

Now we can proceed exactly as in the proof of Theorem 4.1 in order to complete the proof of the claim.
To finish the proof of Theorem 4.4 we observe that Proposition 4.5 and the claim imply that μ−

k ≥ μ−
k , but the 

reverse inequality is true by definition. �
Remark 4.7. The bound (4.6) clearly holds for μ−

k under the assumptions of Theorem 4.4.
Since μ−

k ≥ μ−
k , by definition, the inequality (4.7) is a fortiori true for μ−

k . Moreover (4.7) is trivial for bR2 ≥ k. 
We show in the Example 4.9 that μ−

k can be zero.

Remark 4.8. The equality μ−
k = μ−

k holds true also in some non-convex case, for instance if � is a star-shaped 
domain, i.e.

� − {x0} ⊆ (1 + ε)(� − {x0}) (4.15)

for some x0 ∈ � and all ε > 0. That was noticed e.g. in [29] in the case of the Pucci’s extremal uniformly elliptic 
operators. Supposing x0 = 0, for any ε > 0 there exists, by definition, wε < 0 in � satisfying
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P−
k (D2wε) + H(∇wε) + (μ−

k − ε)wε ≥ 0.

Hence vε(x) = wε

(
x

1+ε

)
is negative in � and if

H = H(ξ) = H+(ξ), (4.16)

then

P−
k (D2vε) + H(∇vε) + μ−

k − ε

(1 + ε)2
vε ≥ 0 in �.

In this way

μ−
k − ε

(1 + ε)2
≤ μ−

k

and μ−
k = μ−

k in the limit ε → 0. The same holds true for μ+
k and μ+

k when H = H(ξ) = −H−(ξ).
Note that on one hand the class of the bounded domains satisfying (4.15) strictly includes C, but on the other hand 

the equality μ−
k = μ−

k is here realized under the restriction (4.16), while in Theorem 4.4 the Hamiltonian H is allowed 
to be negative and dependent on the x-variable.

4.2. Some unusual phenomena

It is well known (see e.g. [5]) that in the uniformly elliptic case the principal eigenvalues tend to infinity when the 
measure of the domain tends to zero; the next example shows that this is not necessarily the case for P−

k .

Example 4.9. We show that in an annulus μ−
k = 0, even if the measure of the annulus tends to zero, as long as the 

diameter is sufficiently large. For k < N , the radial function

v(x) = sin |x| + cos ε

is a supersolution of the problem{
P−

k (D2v) − b|∇v| = 0 in Aε = B 3
2 π+ε

\B 3
2 π−ε

v = 0 on ∂Aε

where b = k
3
2 π

and ε is small enough (see [18]). Since v violates the minimum principle, being negative in the annu-

lus Aε , we deduce from i) of Theorem 4.1 that

μ−
k = 0.

In the next example we show how the definition of μ+
k is strongly unstable with respect to perturbations both of 

the operator and the domain.

Example 4.10. Let � = BR . For k < N and n ∈N, the values μ+
k associated to the operators

P−
k (·) + k

R + 1
n

| · |

blows-up to +∞ in view of Proposition 4.3, since in this case k

R+ 1
n

R < k. Moreover

P−
k (·) + k

R + 1
n

| · | −→ P−
k (·) + k

R
| · |

as n → +∞ locally uniformly in SN ×R
N . On the other hand, taking the function w(x) = (

R2 − |x|2)γ
with γ > 1, 

it turns out that

P−
k (D2w) + k

R
|∇w| + 2γ k

R2
w =

(
R2 − |x|2

)γ−1
(

−2γ k + 2
k

R
γ |x| + 2γ k

R2
(R2 − |x|2)

)
≥ 0;

moreover w = 0 on ∂�, w > 0 in � and so μ+ ≤ 2γ k
2 by ii) of Theorem 4.1.
k R
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Concerning the instability with respect to small perturbations of �, we consider the sequence of expanding subdo-
mains �n = B

R− 1
n

and the operator P−
k (·) + k

R
| · |. As before, for any �n one has μ+

k = +∞, while in μ+
k ≤ 1 in the 

limit case � = ∪n∈N�n.

Notice that in [5] the stability of the principal eigenvalue with respect to interior perturbations of the domain is 
proved by means of the Krylov–Safonov Harnack inequality. It is not surprising therefore to expect the failure of the 
Harnack inequality in our degenerate setting, which is indeed the case as can be seen in the following very simple 
example. The nonnegative function u(x1, . . . , xN) = x2

N is clearly a solution of P−
k (D2u) = 0 in B1 for k < N , but 

sup
B1

u = 1 and inf
B1

u = 0.

Other examples of instability are provided in [4] for first order operators.

5. Existence

In this section we shall prove existence results for Dirichlet problems{
P−

k (D2u) + H(x,∇u) + μu = f (x) in �

u = 0 on ∂�,
(5.1)

with � in the class CR . We start with the case where k is any number between 1 and N .

Proposition 5.1. Assume (SC 2)–(SC 3). Assume that � ∈ CR , bR < k and μ < μ−
k . If f is bounded and H satisfies, 

for all x ∈ � and for all ξ, η in RN ,

|H(x, ξ) − H(x,η)| ≤ b|ξ − η|, (5.2)

then for all

μ < μ−
k,b := sup{μ ∈ R : ∃w < 0 in �, P−

k (D2w) − b|∇w| + μw ≥ 0 in �},
there exists a unique solution of (5.1).

Proof. Let v and w be as in Proposition 4.6. By (5.2), the nonpositive function u = w − v is a supersolution of 
P−

k (D2u) − b|∇u| + μu = 0 (see [18]). Using Theorem 4.4 we have that μ−
k = μ−

k then by Theorem 4.1 i), we get 
that u ≥ 0. Hence v = w is the required solution. �

In the rest of the section we shall only consider the case k = 1, in that case beside the existence below the general-
ized eigenvalue we can also prove existence of the eigenfunction. The proofs somehow follow the schemes of [6,7].

Theorem 5.2. Let � ∈ CR , let H satisfying (SC 2)–(SC 3) and let f be a bounded continuous function in �. Assume 
bR < 1. Then there exists a solution u ∈ Lip(�) of{

P−
1 (D2u) + H(x,∇u) + μu = f (x) in �

u = 0 on ∂�,
(5.3)

in the following two cases:

i) for μ < μ−
1 ;

ii) for any μ if f ≤ 0.

The proof uses the construction in Proposition 4.6 and the global Lipschitz regularity obtained in Proposition 3.2
for subsolutions.

Proof of Theorem 5.2. We first consider the case where μ < μ−
1 . By Proposition 4.6, we see that there are a subso-

lution v and a supersolution w of (5.3) such that w ≤ v in �. By estimate (2.5), there is a constant C > 0 such that 
−Cd ≤ w ≤ v in �.
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As in Proposition 4.6, the standard construction of barrier functions for elliptic PDE yields a supersolution W ∈
C(�) of (5.3) that satisfies W = 0 on ∂� and W ≥ 0 in �. If f ≥ 0 then just take W ≡ 0.

We define u in � through the Perron procedure, that is,

u(x) = sup{z(x) : z subsolution of (5.3), v ≤ u ≤ W in �}.
The upper semicontinuous envelope u∗ is a subsolution of (5.3) and satisfies v ≤ u∗ ≤ W in �, which implies that 
u = u∗ in � and, hence, u is upper semicontinuous in �. Since u ≥ −Cd and u = 0 on ∂�, by Proposition 3.2, we 
see that u is Lipschitz continuous in �. Hence u = u∗ and it is a supersolution of (5.3), this ends the proof of i).

For the proof of ii), we can treat the case where f ≤ 0 in � in the same way. The only difference is that, when 
f ≤ 0, the constant function 0 is a subsolution of (5.3) and replaces v in the argument above. Thus, the bound on μ is 
not needed and the resulting solution u is nonnegative. �
Theorem 5.3. Let �, H and b as in the Theorem 5.2. Then there exists a negative function ψ1 ∈ Lip(�) such that{

P−
1 (D2ψ1) + H(x,∇ψ1) + μ−

1 ψ1 = 0 in �

ψ1 = 0 on ∂�.
(5.4)

Proof. Let μn ↗ μ−
1 and use Theorem 5.2 to build un ∈ Lip(�) a solution of{

P−
1 (D2un) + H(x,∇un) + μnun = 1 in �

un = 0 on ∂�.
(5.5)

Observe that un are nonnegative because the forcing term being positive in Perron’s construction we can use “zero” 
as the supersolution that bounds the un from above.

We claim that limn→∞ ‖un‖∞ = +∞. Assume by contradiction that supn∈N ‖un‖∞ < +∞. By Proposition 3.1
the sequence (un)n∈N is bounded in Lip(�) and converges, up to some subsequence, to a nonpositive solution u of{

P−
1 (D2u) + H(x,∇u) + μ−

1 u = 1 in �

u = 0 on ∂�.

The function u is negative in �, otherwise if maxx∈� u = u(x0) = 0 and x0 ∈ �, then ϕ(x) = 0 should be a test 
function touching u from above in x0 and therefore 0 ≥ 1.

Hence, for small positive ε, we have

P−
1 (D2u) + H(x,∇u) + (μ−

1 + ε)u ≥ 0 in �

contradicting the maximality of μ−
1 .

For n ∈N the functions vn = un‖un‖∞ satisfy

{
P−

1 (D2vn) + H(x,∇vn) + μnvn = 1
‖un‖∞ in �

vn = 0 on ∂�
(5.6)

and are bounded in Lip(�), again by means of Proposition 3.1. Extracting a subsequence if necessary, (vn)n∈N con-
verges uniformly to a nonpositive function ψ1 such that ‖ψ1‖∞ = 1. Taking the limit as n → +∞ in (5.6) we have{

P−
1 (D2ψ1) + H(x,∇ψ1) + μ−

1 ψ1 = 0 in �

ψ1 = 0 on ∂�.

By the strong maximum principle (see Remark 2.6), we conclude ψ1 < 0 in � as we wanted to show. �
We end this section by computing explicitly the principal eigenvalue and eigenfunction for P−

1 , with H = 0, in the 
ball BR . We first note that μ− = μ−, as a consequence of Theorem 4.4 or, equivalently, of Remark 4.8.
1 1
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The function

ψ1(x) = − cos
( π

2R
|x|

)
is twice differentiable everywhere, negative in BR and zero on ∂BR . The ordered eigenvalues of the Hessian matrix 
are

λ1

(
D2ψ1(x)

)
=

( π

2R

)2
cos

( π

2R
|x|

)
λ2

(
D2ψ1(x)

)
= . . . = λN

(
D2ψ1(x)

)
=

( π

2R

) sin
(

π
2R

|x|)
|x| ,

if x �= 0 and

λ1

(
D2ψ1(0)

)
= . . . = λN

(
D2ψ1(0)

)
=

( π

2R

)2
,

so that

P−
1

(
D2ψ1(x)

)
+

( π

2R

)2
ψ1(x) = 0 in �.

In particular ψ1 is a negative subsolution of P−
1 (D2·) + (

π
2R

)2 · = 0, hence by definition of μ−
1 we have μ−

1 ≥ (
π

2R

)2. 
On the other hand the function ψ1 invalidates the minimum principle and we get also the reversed inequality μ−

1 ≤(
π

2R

)2 by means of Theorem 4.4. In this way

μ−
1 =

( π

2R

)2

and ψ1 is a negative radial eigenfunction.

It is worth to point out that for the 1-homogeneous infinity Laplacian �∞u =
〈
D2u ∇u

|∇u| ,
∇u
|∇u|

〉
, one has

μ−
1 = μ+

1 =
( π

2R

)2

with ϕ1(x) = cos
(

π
2R

|x|) positive eigenfunction (see [23, Section 4]). In our framework we have on the contrary 
μ+

1 = +∞ in view of Proposition 4.3.

6. Strictly convex domains, a characterization

In this section we give the proof of Proposition 2.7 which we like to refer to as Proposition hula hoop.
We begin with a technical lemma.

Lemma 6.1. Let � be a non-empty bounded and open subset of RN , with C2-boundary, and p ∈ ∂�. Let ν(x) denote 
the outward normal unit vector of � at x ∈ ∂�. Assume that N > 2, and let H ⊂ R

N be a 2-dimensional plane 
passing through p which is not perpendicular to ν(p). Set Δ = � ∩ H . Let H have the Euclidean structure induced 
by RN .

i) Then, Δ is a non-empty bounded and open subset, with C2-boundary, of the plane H .
ii) Assume in addition that the principal curvatures, κ1, . . . , κN−1, of ∂� at p are positive.

Then, the curvature of the planar curve ∂HΔ at p is bounded from below by min1≤i<N κi , where ∂H A denotes the 
boundary of A ⊂ H , relative to H .

In the above, the perpendicularity of H and ν(p) may be expressed as the condition that ν(p) · (q − p) = 0 for all 
q ∈ H .
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Proof. We first prove i). We choose two orthonormal vectors e1, e2 ∈ R
N so that H = {p+x1e1 +x2e2 : x1, x2 ∈R}. 

By the non-perpendicularity of H and ν(p), we may assume that ν(p) · e1 < 0.
Since � has C2-boundary, if δ > 0 is small enough, then p + δe1 ∈ � and p + δe1 is an interior point of Δ, relative 

to H . Since � is open, Δ is open relative to H . Hence, Δ is a non-empty open subset of H . It is clear that Δ is convex 
since it is an intersection of two convex sets and also that Δ is bounded.

Now, we show that Δ is a domain, with C2-boundary, in H . It is obvious that ∂HΔ ⊂ H ∩∂�. Fix any q ∈ H ∩∂�. 
We consider the function ρ ∈ C(RN) given by

ρ(x) =
{

dist(x, ∂�) if x ∈ �,

−dist(x, ∂�) if x ∈R
N \ �.

This function ρ is C2 near the boundary ∂� and ∇ρ(x) = −ν(x) for all x ∈ ∂�. Set pδ = p + δe1 ∈ Δ, note that 
ρ(pδ) > 0, and choose (a, b) ∈R

2 so that q = pδ + ae1 + be2. By the concavity of ρ, we find that for any t ∈ [0, 1],
ρ(pδ + t (ae1 + be2)) = ρ((1 − t)pδ + tq) ≥ (1 − t)ρ(pδ) + tρ(q) = (1 − t)ρ(pδ),

and, hence,

d

dt
ρ(pδ + t (ae1 + be2))

∣∣∣
t=1

≤ −ρ(pδ) < 0,

which shows that

0 > ∇ρ(q) · (ae1 + be2) = −ν(q) · (ae1 + be2).

Noting that

H ∩ ∂� = {pδ + x1e1 + x2e2 : (x1, x2) ∈R
2, ρ(pδ + x1e1 + x2e2) = 0}

and applying the implicit function theorem to the function: R2 � (x1, x2) �→ ρ(pδ + x1e1 + x2e2), we see that, in a 
neighborhood of q , H ∩ ∂� is a C2-curve in H and that q ∈ ∂H Δ. Because of the arbitrariness of q ∈ H ∩ ∂�, we 
find that H ∩ ∂� is a C2-curve in H and also that H ∩ ∂� ⊂ ∂H Δ. Thus, we conclude that ∂HΔ = H ∩ ∂� and that 
Δ has C2-boundary in H .

Next, we prove (ii). We may assume by translation and orthogonal transformation that p = 0 and ν(p) =
(0, . . . , 0, −1). We can choose a neighborhood V ⊂ R

N of p = 0, a neighborhood U ⊂ R
N−1 of 0 ∈ R

N−1 and a 
function g ∈ C2(U) such that for any x = (x1, . . . , xN) ∈ V ,

x ∈ � if and only if (x1, . . . , xN−1) ∈ U and xN > g(x1, . . . , xN−1).

We have g(0) = 0, ∇g(0) = 0 and we may assume further that D2g(0) = diag(κ1, . . . , κN−1). We choose R > 0 so 
that 1/R < min1≤i<N κi , and consider the open ball B with center at −Rν(p) = (0, . . . , 0, R) and radius R. We may 
assume by replacing U and V by smaller ones (in the sense of inclusion), if necessary, that for any x ∈ V ,

x ∈ B if and only if (x1, . . . , xN−1) ∈ U and xN > f (x1, . . . , xN−1),

where f (x1, . . . , xN−1) = R −
√

R2 − (x2
1 + · · · + x2

N−1). Note that ∇f (0) = 0 and D2f (0) = (1/R)I , where I
denotes the identity matrix of order n − 1. By Taylor’s theorem, we may assume again by replacing U and V by 
smaller ones, if necessary, that f (y) < g(y) for all y ∈ U \ {0}. This yields

V ∩ � ⊂ V ∩ B,

which shows that

V ∩ Δ ⊂ V ∩ B ∩ H.

Thus, observing that ∂B ∩ H = ∂H (B ∩ H), which is a special case of the identity, ∂� ∩ H = ∂H Δ, with B in 
place of �, that B ∩ H is a non-empty, planar, open disk with radius smaller than or equal to R and that p = 0 ∈
∂H Δ ∩ ∂H (B ∩ H), we conclude that the curvature of the planar curve ∂HΔ at p is larger than or equal to 1/R. This 
completes the proof. �
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Lemma 6.2. Let � be a non-empty bounded and open subset, with C2-boundary, of RN . Let κ > 0 be a lower bound 
of the principal curvatures of ∂� at every point x ∈ ∂�. Set R = 1/κ . Then, for any z ∈ ∂�, we have

� ⊂ BR(z − Rν(z)). (6.1)

Clearly, (6.1) shows that � ∈ CR . Indeed we have proved that

� ⊂
⋂

z∈∂�

BR(z − Rν(z)).

On the other hand, by the convexity of �, we have

� =
⋂

z∈∂�

{x ∈R
N : (x − z) · ν(z) < 0}.

Observe that for any z ∈ ∂�,

BR(z − Rν(z)) ⊂ {x ∈ R
N : (x − z) · ν(z) < 0}.

Indeed, if x ∈ BR(z − Rν(z)), then

R2 > |x − z + Rν(z)|2 = |x − z|2 + 2R(x − z) · ν(z) + R2 > 2R(x − z) · ν(z) + R2,

and

(x − z) · ν(z) < 0.

Thus,

� ⊃
⋂

z∈∂�

BR(z − Rν(z)).

In conclusion the Lemma 6.2 above proves Proposition 2.7.

Proof. It is enough to show that for any M > R and z ∈ ∂�,

� ⊂ BM(z − Mν(z)). (6.2)

We fix any M > R and p ∈ ∂�. To show (6.2), we suppose to the contrary that (6.2) does not hold, and will get a 
contradiction.

We can thus choose a point q ∈ � \ BM(p − Mν(p)).
Select m > 0 so small that r := p − mν(p) ∈ � ∩ BM(p − Mν(p)). Note that the line segment [r, q] := {(1 −

t)r + tq : 0 ≤ t ≤ 1} is contained in the set � and that r ∈ BM(p − Mν(p)) and q /∈ BM(p − Mν(p)). These imply 
that, for some τ ∈ (0, 1],

(1 − τ)r + τq ∈ � ∩ ∂BM(p − Mν(p)).

Replacing q by (1 − τ)r + τq if τ < 1, we may assume that q ∈ ∂BM(p − Mν(p)).
Since � is open, we may assume by replacing q by a nearby point, if needed, that two vectors ν(p) and q − p are 

linearly independent. In particular, we have q �= p and q �= p − 2Mν(p). Let H be the plane passing through three 
points p, q, p − Mν(p). We set Δ = � ∩ H and BH = BM(p − Mν(p)) ∩ H . Since p − Mν(p) ∈ H , it is clear that 
BH is the planar open disk with center p − Mν(p) and radius M .

Fix Q ∈ (R, M), so that κ > 1/Q. As in the proof of Lemma 6.1 (ii), we can choose a neighborhood V of p so 
that

� ∩ V ⊂ BQ(p − Qν(p)) ∩ V,

from which we find that

Δ ∩ V ⊂ H ∩ BQ(p − Qν(p)) ∩ V. (6.3)

We put e1 = −ν(p) and select a unit vector e2 ∈ R
N , orthogonal to e1, so that two vectors e1, e2 parallel to the plane 

H , that is, H = {p + x1e1 + x2e2 : x1, x2 ∈R}.



440 I. Birindelli et al. / Ann. I. H. Poincaré – AN 35 (2018) 417–441
We select (a, b) ∈R
2 so that q = p + ae1 + be2. Since q ∈ ∂BM(p − Mν(p)) \ {p − 2Mν(p), p}, it follows that 

0 < a < 2M and b �= 0. We may assume by replacing e2 by −e2, if needed, that b < 0.
We set

Δ2 = {(x1, x2) ∈ R
2 : p + x1e1 + x2e2 ∈ Δ},

g(x1) = inf{x2 ∈R : (x1, x2) ∈ Δ2} for x1 ∈ (0, a].
It is easily seen that Δ2 is a strictly convex, bounded and open set, with C2-boundary, in R2, that the line segment 
{t (a, b) : (0, 1]}, connecting the origin and the point (a, b), lies in the set Δ2, that g is locally Lipschitz continuous, 
convex function on (0, a], and that the graph {(x1, g(x1)) : x1 ∈ (0, a]} is a subset of ∂Δ2. The last two remarks 
together with the smoothness of ΔH implies that g ∈ C2((0, a]).

We consider the function fM ∈ C([0, a]) defined by

fM(x1) = −
√

M2 − (x1 − M)2.

Obviously we have, for (x1, x2) ∈ (0, a] ×R,

x2 > fM(x1) if p + x1e1 + x2e2 ∈ BH .

Similarly, we define fQ ∈ C([0, 2Q]) by

fQ(x1) = −
√

Q2 − (x1 − Q)2.

By (6.3), if we define the function h on [0, a] by

h(x) =
{

0 if x = 0,

g(x) if x ∈ (0, a],
then fM(0) = fQ(0) = h(0) = 0 and fM(x1) < fQ(x1) ≤ h(x1) for all x1 ∈ (0, δ] and some small δ > 0. On the other 
hand, since {x1(a, b) : x1 ∈ (0, 1]} ⊂ Δ2, we have h(x1) = g(x1) ≤ (b/a)x1 for all x1 ∈ (0, a]. It is now clear that 
h ∈ C([0, 1]).

Since q = p + ae1 + be2 ∈ Δ ∩ ∂BM(p − Mν(p)), we have h(a) = g(a) < b = fM(a). Consider the function 
φ ∈ C([0, a]) given by

φ(x) = h(x) − fM(x).

It follows that φ(0) = 0, φ(a) < 0 and φ(δ) > 0. Accordingly, φ has a positive maximum at a point d ∈ (0, a). Hence, 
φ′(d) = 0 and φ′′(d) ≤ 0. That is, we have f ′

M(d) = g′(d) and f ′′
M(d) ≥ g′′(d), which shows that the curvature of the 

graph g at (d, g(d)) is smaller than or equal to that of fM , which is 1/M . This shows that the planar curve ∂HΔ has 
curvature smaller than 1/R at p + de1 + g(d)e2. Since the planar curve ∂HΔ has curvature larger than or equal to 
κ = 1/R by Lemma 6.1, this is a contradiction. �
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