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Abstract

Let � ⊂ R
2 be a bounded simply-connected domain. The Eikonal equation |∇u| = 1 for a function u : � ⊂ R

2 → R has 
very little regularity, examples with singularities of the gradient existing on a set of positive H 1 measure are trivial to construct. 
With the mild additional condition of two vanishing entropies we show ∇u is locally Lipschitz outside a locally finite set. Our 
condition is motivated by a well known problem in Calculus of Variations known as the Aviles–Giga problem. The two entropies 
we consider were introduced by Jin, Kohn [26], Ambrosio, DeLellis, Mantegazza [2] to study the �-limit of the Aviles–Giga 
functional. Formally if u satisfies the Eikonal equation and if

∇ ·
(
�̃e1e2(∇u⊥)

)
= 0 and ∇ ·

(
�̃ε1ε2(∇u⊥)

)
= 0 distributionally in �, (1)

where ̃�e1e2 and ̃�ε1ε2 are the entropies introduced by Jin, Kohn [26], and Ambrosio, DeLellis, Mantegazza [2], then ∇u is locally 
Lipschitz continuous outside a locally finite set.

Condition (1) is motivated by the zero energy states of the Aviles–Giga functional. The zero energy states of the Aviles–Giga 
functional have been characterized by Jabin, Otto, Perthame [25]. Among other results they showed that if limn→∞ Iεn(un) = 0

for some sequence un ∈ W
2,2
0 (�) and u = limn→∞ un then ∇u is Lipschitz continuous outside a finite set. This is essentially a 

corollary to their theorem that if u is a solution to the Eikonal equation |∇u| = 1 a.e. and if for every “entropy” � (in the sense of 
[18], Definition 1) function u satisfies ∇ ·

[
�(∇u⊥)

]
= 0 distributionally in � then ∇u is locally Lipschitz continuous outside a 

locally finite set. In this paper we generalize this result in that we require only two entropies to vanish.
The method of proof is to transform any solution of the Eikonal equation satisfying (1) into a differential inclusion DF ∈ K

where K ⊂ M2×2 is a connected compact set of matrices without Rank-1 connections. Equivalently this differential inclusion can 
be written as a constrained non-linear Beltrami equation. The set K is also non-elliptic in the sense of Sverak [32]. By use of this 
transformation and by utilizing ideas from the work on regularity of solutions of the Eikonal equation in fractional Sobolev space 
by Ignat [23], DeLellis, Ignat [15] as well as methods of Sverak [32], regularity is established.
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1. Introduction

The Eikonal equation is a much studied equation whose more general form |∇u| = f occurs in numerous areas 
of physics (geometric optics, wave propagation) and applied mathematics. Historically there has been great interest 
in first uniqueness and then subsequently regularity of the Eikonal equation. Uniqueness was largely resolved by the 
development of the theory of viscosity solutions [14], and subsequent regularity results have been established by a 
number of authors, [10,11]. Indeed, regularity and uniqueness of viscosity solutions of the Eikonal equation was one 
of the early triumphs that followed the development of the theory of viscosity solutions. Without additional hypotheses 
solutions of the Eikonal equation need have little regularity, it is easy to construct examples whose gradient is singular 
on a set of positive H 1 measure. One of the simplest Eikonal equations is

|∇u(x)| = 1 for a.e. x ∈ �, (2)

where � ⊂R
2 is a bounded simply-connected domain. Our main theorem is a strong regularity result for solutions of 

equation (2) with an additional condition that is best described as having two vanishing entropies. The two entropies 
we consider were introduced into the study of the Aviles–Giga functional by Jin, Kohn [26], Ambrosio, DeLellis, 
Mantegazza [2], later works by DeSimone, Kohn, Müller, Otto [19], Jabine, Otto, Perthame [25] and Otto, DeLellis 
[16] characterized a wide class of entropies and used this characterization in a fundamental way to prove the strongest 
results known for the functional. In truth our main motivation also came from the Aviles–Giga functional and for this 
reason we will introduce it in some detail:

The Aviles–Giga functional is the second order functional

Iε(u) =
ˆ

�

∣∣1 − |∇u|2∣∣2
ε

+ ε

∣∣∣∇2u

∣∣∣2 dx

minimized over the space of functions W 2,2
0 (�; R) or W 2,2

0 (�; R) ∩ {u : ∇u(x) = ηx on ∂�} where ηx is the inward 
pointing unit normal to ∂�, where � ⊂ R

2 is a simply-connected Lipschitz domain. The Aviles–Giga functional 
Iε forms a model for blistering and (in certain regimes) a model for liquid crystals [6,26,21]. In addition there is a 
closely related functional modeling thin magnetic films known as the micromagnetics functional [18,19,13,30,31,1,3]. 
For function u ∈ W

2,2
0 (�) we refer to Iε(u) as the Aviles–Giga energy of u. The Aviles–Giga functional is the most 

natural higher order generalization of the Modica–Mortola functional [28].
The biggest open problem in the study of the Aviles–Giga functional is the characterization of its �-limit, [6,7,26,

2]. Given the structure of Iε it is not a surprise that the conjectured limiting function class is a subspace of functions 
that satisfy the Eikonal equation (2). By analogy to the Modica–Mortola functional, it might be expected that the 
limiting function space is also a subspace of {v : ∇v ∈ BV } and the limiting energy is related to ‖D [∇u]‖. However 
this is completely false; see the example following Theorem 3.9 of [2]. It is necessary to build a function class that is in 
a sense analogous to the function class {v : ∇v ∈ BV } that is tailored to the functional Iε . This is done by introducing 
certain entropies on the space of solutions of the Eikonal equation. The divergence of these entropies will (by virtue of 
the structure of Iε) form measures that in regular examples pick up the jump in the gradient ∇u. Specifically it can be 
shown [2,18] that if un ∈ W

2,2
0 (�) with the property that lim supn→∞ Iεn(un) < ∞ then for some subsequence {nk}

we have unk

W 1,3(�)→ u. This allows us to show that if the vector field �ξηu is defined by

�ξηu := uξ

(
1 − u2

η − 1

3
u2

ξ

)
ξ − uη

(
1 − u2

ξ − 1

3
u2

η

)
η, (3)

(where uξ and uη are the partial derivatives along ξ and η respectively) then ∇ · (�ξηu
)

is a measure. So instead of 
having that the gradient of the gradient is a measure (as would be the case if u ∈ {v : ∇v ∈ BV }) we have that the 
divergence of a vector field made up of first order partial gradients is a measure, which “morally” is not that far away.

Following [2], we denote by (e1, e2) the canonical basis of R2, and by

ε1 :=
(

1√
2
,

1√
2

)
, ε2 =

(
− 1√

2
,

1√
2

)
(4)

the basis obtained from (e1, e2) under an anticlockwise rotation of π . It is straightforward to check that
4
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�e1e2u =
(

u,1

(
1 − u2

,2 − u2
,1

3

)
,−u,2

(
1 − u2

,1 − u2
,2

3

))
(5)

and

�ε1ε2u =
(

u,2

(
1 − 2u2

,2

3

)
, u,1

(
1 − 2u2

,1

3

))
. (6)

It has been shown in [2] that the measure

S →
∣∣∣∣∣
∣∣∣∣∣
(∇ · (�e1e2u

)
∇ · (�ε1ε2u

) )∣∣∣∣∣
∣∣∣∣∣ (S) for any S ⊂R

2

forms a lower bound on the energy Iεn(un) of any sequence {un} such that limn→∞ un = u. As such the functional

u →
∣∣∣∣∣
∣∣∣∣∣
(∇ · (�e1e2u

)
∇ · (�ε1ε2u

) )∣∣∣∣∣
∣∣∣∣∣ (�) (7)

was conjectured in [2] to be the �-limiting energy of the Aviles–Giga functional.
Following [18,16] we say � ∈ C∞

c (R2; R2) is an entropy if

z · D�(z)z⊥ = 0 for all z∈ R
2,�(0) = 0,D�(0) = 0, (8)

where z⊥ = (−z2, z1) is the anticlockwise rotation of z by π
2 . Note that in [18], entropies are applied to divergence 

free vector fields m : � → S1, in our paper they will be applied to m = ∇u⊥ where u satisfies (2). Vector fields

�̃e1e2(x, y) :=
(

y

(
1 − x2 − y2

3

)
, x

(
1 − y2 − x2

3

))
and �̃ε1ε2(x, y) :=

(
−x

(
1 − 2x2

3

)
, y

(
1 − 2y2

3

))
(9)

satisfy

z · D�̃e1e2(z)z
⊥ = 0 for all z ∈ S

1, �̃e1e2(0) = 0 (10)

and

z · D�̃ε1ε2(z)z
⊥ = 0 for all z ∈ S

1, �̃ε1ε2(0) = 0. (11)

Note that �e1e2u 
(5), (9)= �̃e1e2(∇u⊥) and �ε1ε2u 

(6), (9)= �̃ε1ε2(∇u⊥), where ∇u⊥ = (−u,2, u,1). Since we are applying 
�̃e1e2 , �̃ε1ε2 to gradient vector fields ∇u that satisfy |∇u| = 1 a.e., for simplicity, and following the convention of 
[16], we will call them entropies even though they only satisfy (10), (11). However this is just a naming convenience 
and is not important to the mathematics that follows. Whenever we use any results about entropies from [18] we will 
mean vector fields � ∈ C∞

c (R2; R2) that satisfy (8). The main point about entropies is that given a sequence {un} that 
satisfies lim supn→∞ Iεn(un) < ∞ and u = limn→∞ un, if � is an entropy then ∇ · [� (∇u⊥)] is a measure.

The characterization of this class of entropies is one of the main achievements of [18] and it leads to many further 
developments. It was the main tool used in [18] to prove pre-compactness in W 1,3(�) of a sequence of functions {un}
of bounded Aviles–Giga energy (an alternative proof just using two entropies �̃e1e2 , �̃ε1ε2 is provided in [2]). More 
importantly it allows for the classification achieved by Jabin, Otto, Perthame in [25] of all functions u and all domains 
� for which there exists a sequence {un} ⊂W

2,2
0 (�) such that u = limn→∞ un and limn→∞ Iεn(un) = 0. Functions u

with this property are called zero energy states. It was shown in [25] that if � �=R
2 then � is a ball and (after possibly 

change of sign) u is just the distance function away from the boundary of the ball. The characterization of entropies 
also permitted the deep work on the structure of solutions of the Eikonal equation u that arise as limits of sequences 
of finite Aviles–Giga energy [17].

While the works [17,25] are impressive achievements and indeed represent the state of the art with respect to 
the structure of solutions of the Eikonal equation that arise as limits of sequences of finite (or converging to zero) 
Aviles–Giga energy, when these results are formulated simply in terms of the Eikonal equation, the statements can 
appear a bit technical.
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Theorem 1 ([25]). Let � be any open set in R2. Let m: � → R
2 be a measurable function that satisfies |m(x)| = 1

for a.e. x ∈ � and

ξ · ∇χ (·, ξ) = 0 distributionally in � for all ξ ∈ S
1, (12)

where

χ(x, ξ) :=
{

1 for m(x) · ξ > 0,

0 for m(x) · ξ ≤ 0.
(13)

Then m is locally Lipschitz outside a locally finite set of points.

It turns out that ξχ(·, ξ) is the pointwise limit of a sequence of entropies {�n} (see the proof of Lemma 4, [18]), 
so if vector field m is such that

∇ · [�(m)] = 0 distributionally in � for all entropies �, (14)

then m satisfies (12). Hence by Theorem 1 any vector field m satisfying (14) is locally Lipschitz outside a locally 
finite set of points. This is the main result needed by Jabin, Otto, Perthame [25] to characterize all zero energy states 
of the Aviles–Giga energy.

Corollary 2 ([25]). Let u be a limit of a sequence {un} ⊂ W
2,2
0 (�) with limn→∞ Iεn(un) = 0 then ∇u is Lipschitz 

outside a finite set of points.

Actually in [25] a more general result is proved that includes zero energy states of the micromagnetic functional, 
but since our interest is focused on the Aviles–Giga functional we do not state their result in full generality.

What is achieved in this paper is a proof of the regularity result under the much weaker condition that only the 
divergence of two entropies �̃e1e2 and �̃ε1ε2 applied to ∇u⊥ vanishes.

Theorem 3. Let � ⊂ R
2 be a bounded simply-connected domain and u be a solution to the Eikonal equation (2). 

Suppose

∇ · (�e1e2u
) = 0 and ∇ · (�ε1ε2u

) = 0 distributionally in �. (15)

Then ∇u is locally Lipschitz outside a locally finite set of points S. Moreover, in any convex neighborhood O ⊂⊂ �

of a point ζ ∈ S there exists α ∈ {−1,1} such that

u(x) = α |x − ζ | for any x ∈O. (16)

This result also includes Corollary 2 as a consequence in the case that � satisfies the assumptions of Theorem 3. 
The value of this result is twofold. The Eikonal equation with the additional assumption of two vanishing entropies 
seems to us a fairly natural condition and as such the statement of Theorem 3 is of interest purely from the perspective 
of the Eikonal equation alone. Essentially our theorem says that the dimension of the set of singularities of solutions 
of the Eikonal equation is reduced by one under the additional hypothesis of having two vanishing entropies. On this 
topic we mention the recent powerful results of Ignat [23] and DeLellis, Ignat [15] on regularity of solutions of the 
Eikonal equation in fractional Sobolev spaces. We learned a great deal and took numerous ideas from these works.

Remark 1. The choice of �e1e2 , �ε1ε2 is arbitrary among the class defined by (3). If (ξ1, η1), (ξ2, η2) are any two 
different orthonormal bases for R2 then we could instead have the hypothesis

∇ · (�ξ1η1u
) = 0 and ∇ · (�ξ2η2u

) = 0 distributionally in �. (17)

This follows from Theorem 3.2 [2] where it is shown that �ξiηi
u = cos(2θi)�e1e2u + sin(2θi)�ε1ε2u where ξi =

(cos(θi), sin(θi)), ηi = (− sin(θi), cos(θi)). Thus

sin (2θ1 − 2θ2)�ε1ε2u = cos(2θ2)�ξ1η1u − cos(2θ1)�ξ2η2u (18)

and hence (17), (18) implies ∇ · (�ε1ε2u
) = 0 distributionally in �. In the same way
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sin (2θ1 − 2θ2)�e1e2u = sin(2θ1)�ξ2η2u − sin(2θ2)�ξ1η1u (19)

and so (17), (19) implies ∇ · (�e1e2u
) = 0 distributionally in �. Thus (17) implies (15).

Remark 2. Under the hypothesis that ∇ · (�ξηu
) = 0 for a single entropy then Theorem 3 is false. Since we have 

just one entropy we can assume without loss of generality that (η, ξ) = (e1, e2). And finding a scalar function u that 
satisfies

|∇u| = 1 a.e. and ∇ · (�e1e2u
) = 0 (20)

is equivalent to finding a function w : � →R
2 that satisfies the differential inclusion

Dw ∈
{(

cos(ψ) sin(ψ)

2
3 sin3(ψ) 2

3 cos3(ψ)

)
: ψ ∈ (−π,π]

}
=: � a.e. in �. (21)

Now � has non-trivial rank-1 connections because

det

(
cos(ψ2) − cos(ψ1) sin(ψ2) − sin(ψ1)

2
3

(
sin3(ψ2) − sin3(ψ1)

) 2
3

(
cos3(ψ2) − cos3(ψ1)

))

= 2

3

((
cos3(ψ2) − cos3(ψ1)

)
(cos(ψ2) − cos(ψ1)) −

(
sin3(ψ2) − sin3(ψ1)

)
(sin(ψ2) − sin(ψ1))

)
= 0

has non-trivial solutions, for example given by ψ2 = πn − ψ1 − π
2 for n ∈ Z. Thus we can construct non trivial func-

tions w satisfying (21) for which Dw is singular along lines running through �, such functions are called laminates
(see [29], Section 2.1). This gives us solutions to (20) whose gradient is singular along lines in �.

As stated previously our principal interest is in the Aviles–Giga functional. As described the original conjectured 
�-limiting energy from [2] is given by (7). As the study of the Aviles–Giga functional evolved it was increasingly 
understood that to make progress the conjectured �-limiting energy had to be an energy that incorporated all the 
entropies, not simply �̃e1e1 and �̃ε1ε2 . As mentioned the proof of Corollary 2 requires the use of a sequence of 
entropies {�n} that approximates ξχ(·, ξ). In [16] DeLellis, Otto proved many strong structural results on a class of 
solutions of the Eikonial equation denoted by A(�) that includes all W 1,3(�) limits of sequences {un} ⊂W

2,2
0 (�)

that have equibounded Aviles–Giga energy. Among the results they proved was that for any u ∈ A(�) there exists a 
set of σ -finite H 1 measure J on which ∇u has jumps and has traces in exactly the way it would have if ∇u ∈ BV . 
What would be most natural is if J was the singular set of vector valued measure that is the �-limiting energy of 
Iε . However this is not exactly the case and J has to be defined as the singular set of measure into the dual space 
of all entropies (see [16], proof of Proposition 1). It is in some sense a singular set of an infinite set of entropies 
simultaneously.

While utilizing the information available from all entropies is in our opinion the best way to progress with the 
study of the Aviles–Giga functional, it does have the disadvantage that the statements of the theorems proved are less 
transparent. It is for example not clear what the conjecture for the �-limiting energy of the Aviles–Giga energy is. 
What Theorem 3 does is to raise the possibility of reformulating the structure results of [16,25] in terms of the two 

entropies �̃e1e2 , �̃ε1ε2 . Were this to be accomplished it would return the measure S →
∣∣∣∣∣∣∣∣(∇ · (�e1e2u

)
∇ · (�ε1ε2u

) )∣∣∣∣∣∣∣∣ (S) as the 

natural conjecture for �-limiting energy for the Aviles–Giga functional.

1.1. Reduction to differential inclusions

We denote

E(�) := {u ∈ W 1,∞(�) : |∇u| = 1 a.e. and (15) is satisfied}. (22)

The starting point for our work is the transformation of functions u ∈ E(�) into functions Fu : � → R
2 that satisfy 

the differential inclusions DFu ∈ K , where K ⊂ M2×2 is a compact connected set defined by (42). This can be done 
because (15) can be rewritten as
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curl
(
(�e1e2u)⊥

)
= 0 and curl

(
(�ε1ε2u)⊥

)
= 0 distributionally in �.

Hence we can find some potential F 1
u such that ∇F 1

u = (�e1e2u)⊥ and F 2
u such that ∇F 2

u = (�ε1ε2u)⊥.1 The structure 
of �e1e2 , �ε1ε2 implies that DFu ∈ K a.e. in �. It is a calculation to see that K does not have rank-1 connections, 
i.e., there do not exist A, B ∈ K , A �= B with Rank(A −B) = 1. Regularity of differential inclusions into sets without 
rank-1 connections has been studied by Sverak in his seminar paper [32]. He showed that if function v satisfies 
Dv ∈ S ⊂ M2×2 where S has no rank-1 connections and is elliptic in the sense that if A, B ∈ S, then det(A − B) ≥
c |A − B|2, then v is smooth. The set K defined by (42) is not elliptic in the sense of Sverak, but it turns out that 
for some constant c0> 0, det(A − B) ≥ c0 |A − B|4 for any A, B ∈ K . This is not enough to establish smoothness 
of Fu (indeed since ∇u⊥ could be a vortex, smoothness of Fu could not be true) by using the methods of [32], but 
is enough to establish fractional Sobolev regularity. The fact that an inequality of this form is enough to establish 
fractional Sobolev regularity was previously noted by Faraco and Kristensen [20], Proposition 1. The differential 
inclusion DFu ∈ K can be reformulated as a constrained non-linear Beltrami equation and our proof of fractional 
Sobolev regularity can hence be formulated as the following theorem.

Theorem 4. Given a bounded simply-connected domain �̃ ⊂C, and f ∈ W 1,∞(�̃; C) that satisfies f (0) = 0 (assum-
ing 0 ∈ �̃) and the non-linear Beltrami system

∂f

∂z̄
(z) = 4

3

(
∂f

∂z
(z)

)3

,

∣∣∣∣∂f∂z
(z)

∣∣∣∣ = 1

2
for a.e. z ∈ �̃, (23)

we have that

Df ∈ W
σ,4
loc (�̃) for all σ ∈

(
0,

1

3

)
. (24)

In addition, given �̃′ ⊂⊂ �̃, for all ε ∈
(

0, 1
2 dist(�̃′, ∂�̃)

)
, we have that

ˆ

�̃′

ˆ

Bε(0)

|Df (z + y) − Df (z)|4
ε2+ 4

3

dydz < C (25)

for some constant C independent of ε.

Now if we define H0 (ξ) := 4
3ξ3 then (23) can be written as ∂f

∂z̄
(z) = H0

(
∂f
∂z

(z)
)

, 
∣∣∣ ∂f
∂z

∣∣∣ = 1
2 . We will call this a 

constrained non-linear Beltrami equation. The study of equations of the form ∂f
∂z̄

= H
(
z,

∂f
∂z

)
has flourished in the 

last few years. Under the assumptions that

(I) z → H (z,w) is measurable
(II) And for w1, w2 ∈ C, |H (z,w1) −H (z,w2)| ≤ k |w1 − w2| for some k < 1

the existence and regularity theory of non-linear Beltrami equations resembles that of the linear theory; see [8,24,
9,5,4]. But note when restricted to the circle ∂B 1

2
(0) the Lipschitz constant of H0 is exactly 1, so in some sense 

H0 is a critical case.2 We are not aware of any other regularity results for non-linear Beltrami equations without the 
assumptions (I), (II). While Theorem 4 is essentially a regularity result for differential inclusions, we formulate it in 
the language of non-linear Beltrami equations because these are much better known and more studied objects. We 
also find the connection to this area is interesting and potentially worth further investigation.

The connection between Theorem 3 and Theorem 4 is made by the following result.

1 The idea to study Fu comes from [2], see the proof of Proposition 4.6.
2 If instead we had H0 (ξ) = 4

3 ξ3 and 
∣∣∣ ∂f
∂z

∣∣∣ = α for some α ∈ (0, 12 ) we believe the standard methods of [4] would give regularity.
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Theorem 5. Let � ⊂R
2 be a bounded simply-connected domain. Define ̃� := {x1 + ix2 ∈ C : (x1, x2) ∈ �} and define 

B(�̃) as the set of functions f ∈ W 1,∞(�̃; C) that satisfy f (0) = 0 (assuming 0 ∈ �) and the constrained non-linear 
Beltrami equation

∂f

∂z̄
(z) = 4

3

(
∂f

∂z
(z)

)3

,

∣∣∣∣∂f∂z
(z)

∣∣∣∣ = 1

2
for a.e. z ∈ �̃. (26)

Then there exists an injective transformation

� : [E(�)/R
] → B(�̃),

where E(�) is defined in (22) and two functions u1, u2 ∈ E(�) satisfy u1 = u2 in 
[
E(�)/R

]
if and only if u1 =

u2 + C for some constant C. Further � restricted to 
[
E(�)/R

] ∩ W 2,1(�) forms a bijective transformation onto 
B(�̃) ∩ W 2,1(�̃).

However Theorem 4 and Theorem 5 will only give us fractional Sobolev regularity. Ignat [23] studied regularity 
of solutions of the Eikonal equation in fractional Sobolev space, and showed that if u is a solution of the Eikonal 

equation and ∇u ∈ W
1
p

,p

loc (�) for some p ∈ [1,2] then ∇u is locally Lipschitz outside a locally finite set of points. 
Note that if ∇u is smooth and � is an entropy it follows from properties of entropies from [18] (see Lemma 10 of this 
paper) that ∇ · [� (∇u⊥)] = 0. The proof of [23] carefully exploits the structure of entropies to weaken the hypothesis 
on ∇u to that of fractional Sobolev space. Following this work DeLellis and Ignat [15] substantially weakened the 

hypothesis to ∇u ∈ W
1
p

,p

loc (�) for some p ∈ [1,3]. It again was achieved by very careful work using the structure of 
entropies and by use of an estimate of Constantin, E and Titi [12]. However close though it is, this result is not quite 
what we need because it requires a full 1/3 of a derivative and with the methods of [32], a 1/3 of a derivative is not 
available – Theorem 4 just stops short of what is required.

An interesting question that we were not able to answer is whether or not the transformation � from Theorem 5
is actually a bijection. If this were so then Theorem 3 would also yield local Lipschitz regularity of the gradient DF

outside a locally finite set of points in � for the differential inclusion DF ∈ K . This would be a very attractive result 
and would hint at the possibility of a regularity theory for differential inclusions into sets S that do not have rank-1
connections but are not elliptic.

Acknowledgments. The first author would like to thank Camillo DeLellis for pointing out that the Hilbert Schmidt 
norm of the matrix Mh(x) (of the proof of Proposition 4.6. [2]) tends towards 10

36 as h → 0. Roughly speaking Mh(x)

is (in the limit) analogous to DFu(x) from this paper and hence from this calculation it is clear that Fu is a quasiregular 
mapping. Our desire to further investigate this observation was the starting point of this paper. We would also like to 
thank the referee for many clarifying comments that have greatly improved the paper. The first author would also like 
to acknowledge the support of a Simons Foundation collaborative grant, award number 426900.

2. Sketch of the proof

As explained in the introduction, via the reduction to differential inclusions we get fractional Sobolev regularity 
∇u ∈ Wσ,4(�′) for all σ ∈ (0, 13 ) and all �′ ⊂⊂ �. In particular we have estimate (25). The main thing we gain from 
this is the following estimate (see Lemma 14, (103)) which is one of our key technical toolsˆ

�′

∣∣∣1 − |∇uε |2
∣∣∣ ∣∣uε,mn

∣∣ |g|dx ≤ C‖g‖Lr(�′) for any g ∈ Lr
(
�′) , m,n ∈ {1,2} , r ≥ 4. (27)

We will use (27) repeatedly.
Our strategy will be to show that for

�ξ(z) :=
{|z|2ξ for z · ξ > 0,

0 for z · ξ ≤ 0,
(28)

we have
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∇ ·
[
�ξ

(
∇u⊥)] = 0 distributionally in �, for any ξ ∈ S

1\ {e1,−e1, e2,−e2} . (29)

Regularity then follows by Theorem 1 because any �ξ
(∇u(x)⊥

) = ξχ (x, ξ) for |∇u(x)| = 1, hence ξ ·∇χ (x, ξ) = 0
distributionally in �. This is a somewhat similar strategy to that of Ignat [23] and DeLellis, Ignat [15] except that in 
[23,15] it was shown that ∇ · [� (∇u⊥)] = 0 distributionally in � for all entropies �, they then conclude (12) using 
(as explained in the introduction) the fact that ξχ(·, ξ) is the limit of a sequence of entropies. We will build toward 
establishing (29) in a couple of steps.

Step 1. Harmonic entropies vanish: In this step we identify a class of entropies whose divergence vanishes when 
applied to ∇u⊥ as consequences of (15) holding. From Lemma 3 [18] (see Lemma 11 in this paper) we know there is 
a one to one correspondence between entropies � and functions ϕ ∈ C∞

c (R2) via the formula

�(z) = ϕ(z)z +
(
∇ϕ(z) · z⊥) z⊥. (30)

As we will sketch, it will turn out that under the assumption of (15), if ϕ is harmonic then ∇ · [�(∇u⊥)
] = 0. We will 

call entropies � that come from (30) via a harmonic ϕ, harmonic entropies.
To see this we argue as follows. One of the key lemmas on entropies is Lemma 2 [18] (see Lemma 10 in this paper), 

says that we can write

∇ · [�(m)] = �(m) · ∇(1 − |m|2) for some � ∈ C∞
c (R2;R2). (31)

Now let gε := g ∗ ρε where ρε(z) = ρ
(

z
ε

)
ε−2 and ρ is the standard convolution kernel. Let w = (w1, w2) = ∇u⊥. 

For �′ ⊂⊂ �, let ζ ∈ C∞
c (�′) be a test function, so integrating by parts we haveˆ

�′
∇ · [�(wε)] ζdx ≈ −

ˆ

�′
(1 − |wε |2)∇ · [�(wε)] ζdx

= −
ˆ

�′
(1 − |wε |2)

(
�1,1(wε)w

1
ε,1 + �1,2(wε)w

2
ε,1 + �2,1(wε)w

1
ε,2 + �2,2(wε)w

2
ε,2

)
ζdx.

The key point is that if � is a harmonic entropy then it is a calculation to see that �1,2 = �2,1. Now we have

∇ ·
[
�̃e1e2(∇u⊥

ε )
]

(111)= (uε,11 − uε,22)(1 − |∇uε |2) = (w2
ε,1 + w1

ε,2)(1 − |wε |2) (32)

and

∇ ·
[
�̃ε1ε2(∇u⊥

ε )
]

(112)= 2uε,12(1 − |∇uε |2) = −2w1
ε,1(1 − |wε |2) = 2w2

ε,2(1 − |wε |2). (33)

Proceeding formally and absorbing �1,1(wε) into the test function ζ (strictly speaking we can not do this because 
�1,1(wε) depends on ε, however this can be overcome with estimate (27)) we have that since ∇ · [�̃ε1ε2(∇u⊥)

]
vanishes soˆ

�′
(1 − |wε |2)�1,1(wε)w

1
ε,1ζdx ≈ 0.

In the same way 
´
�′(1 − |wε |2)�2,2(wε)w

2
ε,2ζdx ≈ 0 and, since ∇ · [�̃e1e2(∇u⊥)

] = 0 and �1,2 = �2,1,
ˆ

�′
(1 − |wε |2)

(
�1,2(wε)w

2
ε,1 + �2,1(wε)w

1
ε,2

)
ζdx =

ˆ

�′
(1 − |wε |2)�1,2(wε)

(
w2

ε,1 + w1
ε,2

)
ζdx ≈ 0.

Thus ∇ · [�(∇u⊥)
] = 0 for all harmonic entropies.

Step 2. Estimate (29) holds: As we can see the real issue of getting the divergences of entropies to vanish from 

hypothesis (15) is the term (1 −|wε |2) 
(
�1,2(wε)w

2
ε,1 + �2,1(wε)w

1
ε,2

)
. Given that we started with just two entropies 

�̃e1e2 and �̃ε1ε2 whose divergence vanishes (when applied to ∇u⊥) and end up with an entire class of entropies (what 
we call harmonic entropies) whose divergence vanishes, the natural way to proceed is to attempt to use our class of 
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harmonic entropies to further expand into a larger class of vanishing entropies. So what we need is a harmonic entropy 
to deal with terms of the form �1,2(wε)w

2
ε,1 + �2,1(wε)w

1
ε,2. It turns out there is a harmonic entropy that serves this 

purpose.
Now notice thatˆ

�′

(
1 − |wε |2

)[
�1,2(wε)w

2
ε,1 + �2,1(wε)w

1
ε,2

]
ζdx

=
ˆ

�′

(
1 − |wε |2

) (
�1,2(wε) + �2,1(wε)

)
2

(
w2

ε,1 + w1
ε,2

)
ζdx

+
ˆ

�′

(
1 − |wε |2

) (
�1,2(wε) − �2,1(wε)

)
2

(
w2

ε,1 − w1
ε,2

)
ζdx.

The first term can be dealt with by absorbing 
(
�1,2(wε)+�2,1(wε)

)
2 into ζ as before then applying (32). So the 

term we have to deal with is the latter term. Now if ϕ is related to � by (30) it is a calculation to see that 

�1,2(z) − �2,1(z)
(97)= 1

2∇ (�ϕ(z)) · z⊥ =: ψ(z). So

ˆ

�′

(
1 − |wε |2

) (
�1,2(wε) − �2,1(wε)

)
2

(
w2

ε,1 − w1
ε,2

)
ζdx

= 1

2

ˆ

�′

(
1 − |wε |2

)
ψ (wε)

(
w2

ε,1 − w1
ε,2

)
ζdx

= 1

2

ˆ

�′

(
1 − |wε |2

)
ψ (wε)�uεζdx. (34)

Thus what we need is a harmonic entropy that includes the term �uε . Now taking ϕ(z) = z2
1 − z2

2, via formula (30)
we obtain entropy �0(z) = (z3

1 + 3z1z
2
2, −3z2

1z2 − z3
2) and a short calculation gives

∇ · [�0(wε)] = −6
(
uε,1uε,2�uε + |∇uε |2uε,12

)
.

Now it is a calculation (see (152)) using (31) to writeˆ

�′

(
1 − |∇uε |2

)(
uε,1uε,2�uε + |∇uε |2uε,12

)
ζdx

= − 1

12

ˆ

�′
∇ ·

[
�0(wε)

(
1 − |wε |2

)2
]

ζdx + 1

12

ˆ

�′

(
1 − |wε |2

)2 ∇ · [�0(wε)] ζdx.

The first term can be dealt with by integration by parts, and the second can be controlled via estimate (27). It follows 
that ˆ

�′

(
1 − |∇uε |2

)(
uε,1uε,2�uε + |∇uε |2uε,12

)
ζdx → 0 as ε → 0.

Now as |∇u| = 1 a.e. we haveˆ

�′

(
1 − |∇uε |2

)
|∇uε |2 uε,12ζdx ≈

ˆ

�′

(
1 − |∇uε |2

)
uε,12ζdx

(33)= 1

2

ˆ
′

∇ · [�ε1ε2uε

]
ζdx → 0 as ε → 0.
�
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So ˆ

�′

(
1 − |∇uε |2

)
uε,1uε,2�uεζdx → 0 as ε → 0. (35)

Now from (34), using wε = ∇u⊥
ε , we can write

ˆ

�′

(
1 − |wε |2

) (
�1,2(wε) − �2,1(wε)

)
2

(
w2

ε,1 − w1
ε,2

)
ζdx = 1

2

ˆ

�′

(
1 − |∇uε |2

)
uε,1uε,2�uε

ψ (wε) ζ

uε,1uε,2
dx.

It turns out that if
ψ (wε)

uε,1uε,2
remains uniformly bounded for small ε > 0, (36)

then it can be absorbed (via estimate (27)) into ζ , and as a result of (35) we have
ˆ

�′

(
1 − |wε |2

) (
�1,2(wε) − �2,1(wε)

)
2

(
w2

ε,1 − w1
ε,2

)
ζdx → 0 as ε → 0. (37)

Hence the estimate (37) holds as long as (36) holds true. So we need to restrict ourselves to a class of en-
tropies for which (36) is true. The key point is that for the sequence of entropies {�k} that approximates �ξ (for 
ξ ∈ S

1\ {e1,−e1, e2,−e2}) we can guarantee that (36) holds true. Thus we can establish (29).

Sketch of proof completed. The choice of coordinate system axis {e1, e2} in (29) is completely arbitrary. We 
could have carried out the proof with the coordinate system axis {ε1, ε2} and could then conclude (29) for any 
ξ ∈S1\ {ε1,−ε1, ε2,−ε2}. Thus (29) holds from any ξ ∈ S

1 and therefore (12) holds true and regularity follows by 
Theorem 1.

3. Background

In this section we provide some background. Any two by two matrix can be uniquely decomposed into conformal 
and anticonformal parts as follows(

a11 a12

a21 a22

)
= 1

2

(
a11 + a22 −(a21 − a12)

a21 − a12 a11 + a22

)
+ 1

2

(
a11 − a22 a21 + a12

a21 + a12 −(a11 − a22)

)
.

So for a matrix A =
(

a11 a12
a21 a22

)
, define

[A]c := 1

2

(
a11 + a22 −(a21 − a12)

a21 − a12 a11 + a22

)
and [A]a := 1

2

(
a11 − a22 a21 + a12

a21 + a12 −(a11 − a22)

)
. (38)

It is easy to see that

det (A) = det([A]c) + det([A]a). (39)

Given w : � → R
2 such that w(x1, x2) = (u(x1, x2), v(x1, x2)), for z = x1 + ix2, let �(z) = u(x1, x2) + iv(x1, x2). 

Note that ∂�
∂z

(z) = 1
2 ( ∂

∂x1
+ i ∂

∂x2
)� = 1

2 (u,1 − v,2) + i
2 (v,1 + u,2) and ∂�

∂z
(z) = 1

2 ( ∂
∂x1

− i ∂
∂x2

)� = 1
2 (u,1 + v,2) +

i
2 (v,1 − u,2). Now identifying complex numbers with conformal matrices in the standard way

[x1 + ix2]M =
(

x1 −x2

x2 x1

)
, (40)

we have that

[Dw(x)]a =
[
∂�

∂z
(z)

]
M

(
1 0

0 −1

)
and [Dw(x)]c =

[
∂�

∂z
(z)

]
M

. (41)
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4. Proof of Theorem 5

Lemma 6. Let � and �̃ be as in Theorem 5. Define

K :=
⎧⎨⎩
⎛⎝ 2

3 sin3(θ) 2
3 cos3(θ)

− cos(θ)
(

1 − 2
3 cos2(θ)

)
sin(θ)

(
1 − 2

3 sin2(θ)
) ⎞⎠ : θ ∈ [0,2π)

⎫⎬⎭ . (42)

Let a map F = (F1, F2) ∈ W 1,∞(�; R2) and a function f ∈ W 1,∞(�̃; C) be related by f (x1 + ix2) = F1(x1, x2) +
iF2(x1, x2). Then DF ∈ K at x ∈ � if and only if f satisfies the following non-linear Beltrami equation and constraint 
at z = x1 + ix2 ∈ �̃:

∂f

∂z̄
(z) = 4

3

(
∂f

∂z
(z)

)3

,

∣∣∣∣∂f∂z
(z)

∣∣∣∣ = 1

2
. (43)

Proof of Lemma 6. First assume x ∈ � is such that DF(x) ∈ K . We show that f satisfies (43) at z = x1 + ix2. Note 
that since DF(x) ∈ K , there exists θ ∈ [0,2π) such that

DF(x) =
⎛⎝ 2

3 sin3(θ) 2
3 cos3(θ)

− cos(θ)
(

1 − 2
3 cos2(θ)

)
sin(θ)

(
1 − 2

3 sin2(θ)
)⎞⎠ . (44)

As described in Section 3, for any matrix A, we decompose A = [A]c + [A]a , where [A]c and [A]a are the conformal 
and anticonformal parts of A, respectively. Using (38) and (44) we have

[DF(x)]c = 1

2

(
sin(θ) cos(θ)

− cos(θ) sin(θ)

)
. (45)

Now recalling the trigonometry

sin (3θ) = −4 sin3 (θ) + 3 sin (θ) , cos (3θ) = 4 cos3 (θ) − 3 cos (θ) . (46)

Note that

[DF(x)]a = 1

2

⎛⎝ 4
3 sin3(θ) − sin(θ) 4

3 cos3(θ) − cos(θ)

4
3 cos3(θ) − cos(θ) −

(
4
3 sin3(θ) − sin(θ)

)⎞⎠
(46)= 1

2

(− 1
3 sin(3θ) 1

3 cos(3θ)

1
3 cos(3θ) 1

3 sin(3θ)

)

= 1

6

(− sin(3θ) cos(3θ)

cos(3θ) sin(3θ)

)
. (47)

Recall that f (x1 + ix2) = F1(x1, x2) + iF2(x1, x2). It follows from (41) that[
∂f

∂z
(z)

]
M

(41)= [DF(x)]c and

[
∂f

∂z̄
(z)

]
M

(41)= [DF(x)]a

(
1 0
0 −1

)
. (48)

Thus

∂f

∂z
(z)

(40), (45), (48)= 1

2
(sin(θ) − i cos(θ)) , (49)

[DF(x)]a

(
1 0
0 −1

)
(47)= 1

6

(− sin(3θ) − cos(3θ)

cos(3θ) − sin(3θ)

)
. (50)

Therefore it follows that
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∂f

∂z̄
(z)

(48), (50), (40)= −1

6
(sin(3θ) − i cos(3θ))

= 1

6
(sin(θ) − i cos(θ))3

(49)= 1

6

(
2
∂f

∂z
(z)

)3

= 4

3

(
∂f

∂z
(z)

)3

. (51)

We obtain from (51) and (49) that f satisfies the constrained non-linear Beltrami equation (43) at z ∈ �̃.
Conversely, suppose the function f ∈ W 1,∞(�̃; C) satisfies (43) at z = x1 + ix2. Recall that F(x1, x2) =

(Re(f (x1 + ix2)), Im(f (x1 + ix2))). We will show that DF(x) ∈ K . Indeed, we have

∂f

∂z
= 1

2

[(
F1,1 + F2,2

)+ i
(
F2,1 − F1,2

)]
(52)

and

∂f

∂z̄
= 1

2

[(
F1,1 − F2,2

)+ i
(
F2,1 + F1,2

)]
. (53)

Since 
∣∣∣ ∂f
∂z

(z)

∣∣∣ = 1
2 , there exists θ ∈ [0, 2π) such that

∂f

∂z
= 1

2
(cos(θ) + i sin(θ)) . (54)

Now since f satisfies (43) at z, we have

∂f

∂z̄
(z) = 4

3

(
1

2
(cos(θ) + i sin(θ))

)3

= 1

6

(
cos(3θ) + i sin(3θ)

)
. (55)

Now we obtain from (52)–(55) that

F1,1 + F2,2 = cos(θ),

F2,1 − F1,2 = sin(θ),

F1,1 − F2,2 = 1

3
cos(3θ),

F2,1 + F1,2 = 1

3
sin(3θ).

(56)

So solving (56) for F1,1, F1,2, F2,1, F2,2, we obtain

F1,1 = 1

2
cos(θ) + 1

6
cos(3θ)

(46)= 2

3
cos3(θ),

F1,2 = 1

6
sin(3θ) − 1

2
sin(θ)

(46)= −2

3
sin3(θ),

F2,1 = 1

2
sin(θ) + 1

6
sin(3θ)

(46)= sin(θ) − 2

3
sin3(θ),

F2,2 = 1

2
cos(θ) − 1

6
cos(3θ)

(46)= cos(θ) − 2

3
cos3(θ).

Now letting θ̃ = π
2 + θ , we have cos(θ̃ ) = − sin(θ) and sin(θ̃) = cos(θ). One can check immediately that DF ∈ K at 

x = (x1, x2) with the phase function ̃θ . �
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4.1. Proof of Theorem 5 completed

Firstly given u ∈ E(�) we can define Fu : � →R
2 by Fu(0, 0) = (0, 0) and

DFu =

⎛⎜⎜⎝ u,2

(
1 − u2

,1 − u2
,2
3

)
u,1

(
1 − u2

,2 − u2
,1
3

)
−u,1

(
1 − 2u2

,1
3

)
u,2

(
1 − 2u2

,2
3

)
⎞⎟⎟⎠ . (57)

The existence of Fu over bounded simply-connected Lipschitz domains in the classical L2 framework can be found 
in [22]. We provide a proof of the existence of Fu over bounded simply-connected domains in Lemma 23 in the 
Appendix. Such results might be well-known to experts, but we were not able to find a reference. Therefore we 
include a proof for the convenience of the readers. Since |∇u| = 1 a.e. in �, it is clear that Fu ∈ W 1,∞(�; R2) is a 
mapping that satisfies

DFu ∈
⎧⎨⎩
⎛⎝ sin(θ)(1 − cos2(θ) − sin2(θ)

3 ) cos(θ)(1 − sin2(θ) − cos2(θ)
3 )

− cos(θ)
(

1 − 2
3 cos2(θ)

)
sin(θ)

(
1 − 2

3 sin2(θ)
)

⎞⎠ : θ ∈ [0,2π)

⎫⎬⎭ (42)= K a.e. in �.

Thus applying Lemma 6 we have that fu(x1 + ix2) := F 1
u (x1, x2) + iF 2

u (x1, x2) satisfies the non-linear Beltrami 
system (26). So defining

�(u) := fu, (58)

we have that � forms a transformation of 
[
E(�)/R

]
into B(�̃). Now we show that � is injective. Given u, w ∈[

E(�)/R
]

such that �(u) = �(w), we have DFu = DFw . Note that for all x ∈ � such that |∇u(x)| = 1, we deduce 
from (57) that

u,1 = F 1
u,2 − F 2

u,1 and u,2 = F 1
u,1 + F 2

u,2. (59)

The same relations hold for ∇w. This implies ∇u = ∇w a.e. in � and hence u = w in 
[
E(�)/R

]
. Thus we have 

shown that � is injective.
Now for the second part of the theorem, given a function f ∈ B(�̃) ∩ W 2,1(�̃) we need to show that there exists 

some u ∈ [
E(�)/R

]∩ W 2,1(�̃) such that �(u) = f . Let us define

F(x1, x2) = (Re(f (x1 + ix2)), Im(f (x1 + ix2))) .

By Lemma 6 we have

DF ∈ K a.e. in �.

We have that DF ∈ W 1,1(�) and there exists θ(x) : � → [0,2π) such that

DF(x) =
⎛⎜⎝ sin(θ(x))

(
1 − cos2(θ(x)) − sin2(θ(x))

3

)
cos(θ(x))

(
1 − sin2(θ(x)) − cos2(θ(x))

3

)
− cos(θ(x))

(
1 − 2

3 cos2(θ(x))
)

sin(θ(x))
(

1 − 2
3 sin2(θ(x))

)
⎞⎟⎠ (60)

for a.e. x ∈ �. Similar to (59), we deduce from (60) that

cos (θ(x)) = F1,2(x) − F2,1(x) and sin(θ(x)) = F1,1(x) + F2,2(x) a.e. in �.

Hence α(x) := cos (θ(x)) and β(x) := sin (θ(x)) are such that α, β ∈ W 1,1(�). Now we have, for a.e. x ∈ �,

0 = curl (∇F1) = curl

(
β(x)

(
1 − α(x)2 − β(x)2

3

)
, α(x)

(
1 − β(x)2 − α(x)2

3

))
=

(
1 − α(x)2 − β(x)2

)(
α,1(x) − β,2(x)

)+ 2α(x)β(x)
(
α,2(x) − β,1(x)

)
= 2α(x)β(x)

(
α,2(x) − β,1(x)

)
, (61)

and
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0 = curl (∇F2) = curl

(
−α(x)

(
1 − 2

3
α(x)2

)
, β(x)

(
1 − 2

3
β(x)2

))
= β,1(x)

(
1 − 2β(x)2

)
+ α,2(x)

(
1 − 2α(x)2

)
= β,1(x)

(
1 − 2β(x)2

)
+ β,1(x)

(
1 − 2α(x)2

)
+ (

α,2(x) − β,1(x)
)(

1 − 2α(x)2
)

= 2β,1(x)
(

1 − β(x)2 − α(x)2
)

+ (
α,2(x) − β,1(x)

)(
β(x)2 − α(x)2

)
= (

α,2(x) − β,1(x)
)(

β(x)2 − α(x)2
)

. (62)

Taking the squares of (61) and (62) and adding, and using the fact that α(x)2 + β(x)2 = 1, we have

0 =
[(

α(x)2 − β(x)2
)2 + 4α(x)2β(x)2

]
|curl(α(x),β(x))|2

=
(
α(x)2 + β(x)2

)2 |curl(α(x),β(x))|2 = |curl(α(x),β(x))|2 for a.e. x ∈ �.

Therefore, we have

curl (α(x),β(x)) = 0 for a.e. x ∈ �.

Since (α(x), β(x)) ∈ L∞(�; R2), by Lemma 23 in the Appendix, there exists u ∈ H 1(�) such that ∇u = (α, β) =
(cos(θ), sin(θ)). Since α(x)2 + β(x)2 = 1, it is clear that u also belongs to W 1,∞(�). This along with (60) and the 
fact that α, β ∈ W 1,1(�) implies that u ∈ [

E(�)/R
]∩ W 2,1(�). Now looking at (60) and the definition of � in (58), 

it is clear that �(u) = f . Hence, this completes the proof of the bijective part of the theorem.

5. Proof of Theorem 4

Define F(x1, x2) = (Re (f (x1 + ix2)) , Im (f (x1 + ix2))). By Lemma 6 the function F satisfies the differen-
tial inclusion DF ∈ K a.e. in �, where K is the subset of all two by two matrices defined by (42). Let 
� = {

(x1, x2) : x1 + ix2 ∈ �̃
}
. Define

M(θ) :=
⎛⎝ 2

3 sin3(θ) 2
3 cos3(θ)

− cos(θ)
(

1 − 2
3 cos2(θ)

)
sin(θ)

(
1 − 2

3 sin2(θ)
)⎞⎠ .

By Lemma 6, there exists ψ : � → [0,2π) such that

DF(x) = M (ψ(x)) for a.e. x ∈ �.

Given �′ ⊂⊂ �, denote γ := dist(�′, ∂�) > 0. Let h ∈ Bγ (0) and define

αh(x) = ψ(x + h) − ψ(x) for x ∈ �′. (63)

First, we prove the following lemma.

Lemma 7. For all x ∈ �′ and h ∈ Bγ (0) such that DF(x), DF(x + h) ∈ K , we have that

det (DF(x + h) − DF(x)) > c0 |DF(x + h) − DF(x)|4 , (64)

where the constant c0 is independent of x and h.

Proof. Given x ∈ �′ and h ∈ Bγ (0) such that DF(x), DF(x + h) ∈ K , we will show the estimate (64) in several 
steps.

Step 1. We have

det (DF(x + h) − DF(x)) = 4 − 2
cos(αh(x)) + 2

cos3(αh(x)) = α4
h + o(α4

h). (65)

9 3 9 6
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Proof of Step 1. We know

DF(x) = [DF(x)]c + [DF(x)]a

(45), (47)= 1

2

(
sin(ψ(x)) cos(ψ(x))

− cos(ψ(x)) sin(ψ(x))

)
+ 1

6

(− sin(3ψ(x)) cos(3ψ(x))

cos(3ψ(x)) sin(3ψ(x))

)
. (66)

It follows that

DF(x + h) − DF(x)

(66)= 1

2

(
sin(ψ(x + h)) − sin(ψ(x)) cos(ψ(x + h)) − cos(ψ(x))

− cos(ψ(x + h)) + cos(ψ(x)) sin(ψ(x + h)) − sin(ψ(x))

)

+1

6

(− sin(3ψ(x + h)) + sin(3ψ(x)) cos(3ψ(x + h)) − cos(3ψ(x))

cos(3ψ(x + h)) − cos(3ψ(x)) sin(3ψ(x + h)) − sin(3ψ(x))

)
. (67)

So using (39) we have

det (DF(x + h) − DF(x))

= 1

4

(
(sin(ψ(x + h)) − sin(ψ(x)))2 + (cos(ψ(x + h)) − cos(ψ(x)))2

)
− 1

36

(
(sin(3ψ(x + h)) − sin(3ψ(x)))2 + (cos(3ψ(x + h)) − cos(3ψ(x)))2

)
= 1

4
(2 − 2 sin(ψ(x + h)) sin(ψ(x)) − 2 cos(ψ(x + h)) cos(ψ(x)))

− 1

36
(2 − 2 sin(3ψ(x + h)) sin(3ψ(x)) − 2 cos(3ψ(x + h)) cos(3ψ(x))) . (68)

Recall that αh(x) is defined by (63), so ψ(x + h) = ψ(x) + αh(x). Now

sin (ψ(x + h)) = sin(ψ(x)) cos(αh(x)) + cos(ψ(x)) sin(αh(x)) (69)

and

cos (ψ(x + h)) = cos(ψ(x)) cos(αh(x)) − sin(ψ(x)) sin(αh(x)). (70)

Thus

2 − 2 sin(ψ(x + h)) sin(ψ(x)) − 2 cos(ψ(x + h)) cos(ψ(x))

(69), (70)= 2 − 2 (sin(ψ(x)) cos(αh(x)) + cos(ψ(x)) sin(αh(x))) sin(ψ(x))

−2 (cos(ψ(x)) cos(αh(x)) − sin(ψ(x)) sin(αh(x))) cos(ψ(x))

= 2 (1 − cos(αh(x))) . (71)

Note that 3ψ(x + h) − 3ψ(x) = 3αh(x), so 3ψ(x + h) = 3ψ(x) + 3αh(x). Thus

2 − 2 sin(3ψ(x + h)) sin(3ψ(x)) − 2 cos(3ψ(x + h)) cos(3ψ(x))

= 2 − 2 (sin(3ψ(x)) cos(3αh(x)) + cos(3ψ(x)) sin(3αh(x))) sin(3ψ(x))

−2 (cos(3ψ(x)) cos(3αh(x)) − sin(3ψ(x)) sin(3αh(x))) cos(3ψ(x))

= 2 (1 − cos(3αh(x))) . (72)

Thus putting (71) and (72) together with (68) we have that

det (DF(x + h) − DF(x)) = 1

2
(1 − cos(αh(x))) − 1

18
(1 − cos(3αh(x))) .

Now cos (3αh(x))
(46)= 4 cos3 (αh(x)) − 3 cos (αh(x)). So
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det (DF(x + h) − DF(x)) = 1

2
(1 − cos(αh(x))) − 1

18

(
1 − 4 cos3(αh(x)) + 3 cos(αh(x))

)
= 4

9
− 2

3
cos(αh(x)) + 2

9
cos3(αh(x)).

Now since cos(αh(x)) = 1 − α2
h

2 + α4
h

24 + o(α4
h), we have

4

9
− 2

3
cos(αh(x)) + 2

9
cos3(αh(x)) = 4

9
− 2

3

(
1 − α2

h

2
+ α4

h

24

)
+ 2

9

(
1 − α2

h

2
+ α4

h

24

)3

+ o(α4
h)

= −2

9
+ α2

h

3
− α4

h

36
+ 2

9

(
1 − 3

2
α2

h + 7

8
α4

h

)
+ o(α4

h)

= α4
h

6
+ o(α4

h)

for αh > 0 sufficiently small.

Step 2. We have

|DF(x + h) − DF(x)|2 = 10

9
− 2

3
cos(αh(x)) − 4

9
cos3(αh(x)) = α2

h + o(α2
h). (73)

Proof of Step 2. Now looking at (67), it is clear that the two matrices in the decomposition are orthogonal when 
they are identified as vectors in R4. Therefore, using similar calculations as in Step 1, we have

|DF(x + h) − DF(x)|2 (67)=
1

2

(
(sin(ψ(x + h)) − sin(ψ(x)))2 + (cos(ψ(x + h)) − cos(ψ(x)))2

)
+ 1

18

(
(sin(3ψ(x + h)) − sin(3ψ(x)))2 + (cos(3ψ(x + h)) − cos(3ψ(x)))2

)
= 1

2
(2 − 2 sin(ψ(x + h)) sin(ψ(x)) − 2 cos(ψ(x + h)) cos(ψ(x)))

+ 1

18
(2 − 2 sin(3ψ(x + h)) sin(3ψ(x)) − 2 cos(3ψ(x + h)) cos(3ψ(x)))

(71), (72)= (1 − cos(αh(x))) + 1

9
(1 − cos(3αh(x)))

(46)= 10

9
− 2

3
cos(αh(x)) − 4

9
cos3(αh(x)).

When αh is sufficiently small, we have

10

9
− 2

3
cos(αh(x)) − 4

9
cos3(αh(x)) = 10

9
− 2

3

(
1 − α2

h

2

)
− 4

9

(
1 − α2

h

2

)3

+ o(α2
h) = α2

h + o(α2
h).

Step 3. We have

det (DF(x + h) − DF(x)) > c0 |DF(x + h) − DF(x)|4
for some constant c0 independent of x and h.

Proof of Step 3. It follows from (65) and (73) that there exist δ > 0 and c1 > 0, such that, for all 0 ≤ αh < δ, we 
have

det (DF(x + h) − DF(x)) > c1 |DF(x + h) − DF(x)|4 . (74)

Let �(t) = 4
9 − 2

3 cos(t) + 2
9 cos3(t). Then �′(t) = 2

3 sin3(t). Note that �(0) = 0 and 
´ t

0
2
3 sin3(s)ds > 0 for all t ∈

(0, 2π), since sin3(t) > 0 and sin3(t) = − sin3(t + π) for t ∈ (0, π). Therefore, for all t ∈ (0, 2π), we have �(t) =
�(0) + ´ t 2 sin3(s)ds > 0. By periodicity of the function �, it is clear that �(t) ≥ 0 for all t ∈ R, and �(t) = 0 if and 
0 3
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only if t = 2kπ , k ∈ Z. Similarly, given 0 < δ < π , by the odd symmetry of �′(t) with respect to t = π , we have ´ t

δ
�′(s)ds ≥ 0 for all δ ≤ t ≤ 2π − δ. As a consequence, for all δ ≤ t ≤ 2π − δ, we have �(t) ≥ �(δ). Thus for all 

δ ≤ αh ≤ 2π − δ we have

4

9
− 2

3
cos(αh(x)) + 2

9
cos3(αh(x)) ≥ 4

9
− 2

3
cos(δ) + 2

9
cos3(δ) > 0. (75)

Note that |DF(x + h) − DF(x)|4 is uniformly bounded for all x and h such that DF(x), DF(x +h) ∈ K . Therefore, 
it follows from (65) and (75) that there exists some c2 > 0 such that for all δ ≤ αh ≤ 2π − δ

det (DF(x + h) − DF(x)) > c2 |DF(x + h) − DF(x)|4 . (76)

Since �(t) is even with respect to t = 0 and periodic with period 2π , and so is the function τ(t) = 10
9 − 2

3 cos(t) −
4
9 cos3(t), it is clear that the estimate (74) also holds for 2π − δ < αh < 2π . Combining (74) with (76), and using the 
periodicity of the functions � and τ , we conclude that

det (DF(x + h) − DF(x)) > c0 |DF(x + h) − DF(x)|4 ,

where c0 = min{c1, c2} > 0 is independent of x and h. �
Proof of Theorem 4 completed. Here we follow the idea in the proof of Theorem 3 in [32] to show the regularity of 
Df . Let �′ ⊂⊂ � and γ := dist(�′, ∂�) > 0. Let η ∈ C∞

c (�) be such that η ≡ 1 on �′ and dist(Spt(η), ∂�) ≥ γ
2 . 

Given e ∈ S
1 and h ∈ R satisfying 0 < h < γ

2 , we have DF(x), DF(x + he) ∈ K for a.e. x ∈ Spt(η). It follows from 
Lemma 7 that

det

(
η(x)

DF(x + he) − DF(x)

h

)
= η(x)2

h2
det (DF(x + he) − DF(x))

(64)≥ c0η(x)2 |DF(x + he) − DF(x)|4
h2

for a.e. x ∈ Spt(η). (77)

Using the identity det(A + B) = det(A) + det(B) + A : Cof(B), where Cof

(
a11 a12

a21 a22

)
=

(
a22 −a21

−a12 a11

)
, we have

0 =
ˆ

�

det

(
D

(
η(x)

(
F(x + he) − F(x)

h

)))
dx

=
ˆ

�

det

(
Dη(x) ⊗

(
F(x + he) − F(x)

h

)
+ η(x)

(
DF(x + he) − DF(x)

h

))
dx

=
ˆ

�

det

(
Dη(x) ⊗

(
F(x + he) − F(x)

h

))

+Dη(x) ⊗
(

F(x + he) − F(x)

h

)
: Cof

(
η(x)

(
DF(x + he) − DF(x)

h

))
+det

(
η(x)

(
DF(x + he) − DF(x)

h

))
dx.

Since det(a ⊗ b) = 0 for any a, b ∈ R
2, the above simplifies to

0 =
ˆ

�

Dη(x) ⊗
(

F(x + he) − F(x)

h

)
: Cof

(
η(x)

(
DF(x + he) − DF(x)

h

))

+ det

(
η(x)

(
DF(x + he) − DF(x)

h

))
dx.

(78)

Using (77), (78) and Hölder’s inequality, we have
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ˆ

�

η(x)2 |DF(x + he) − DF(x)|4
h2

dx

(77)≤ 1

c0

ˆ

�

det

(
η(x)

(
DF(x + he) − DF(x)

h

))
dx

(78)≤ 1

c0

ˆ

�

|Dη(x)|√
h

∣∣∣∣F(x + he) − F(x)

h

∣∣∣∣ |η(x)|
∣∣∣∣DF(x + he) − DF(x)√

h

∣∣∣∣dx

≤ C(�)

c0
‖Dη‖L∞(�)‖√η‖L∞(�)Lip(F )

1√
h

⎛⎝ˆ

�

η(x)2 |DF(x + he) − DF(x)|4
h2

dx

⎞⎠
1
4

≤ C(�,γ )√
h

⎛⎝ˆ

�

η(x)2 |DF(x + he) − DF(x)|4
h2

dx

⎞⎠
1
4

,

(79)

where the constant C(�, γ ) depends only on � and γ .
Given β ∈ (0, 43 ), it follows from (79) that

1

hβ

ˆ

�

η(x)2 |DF(x + he) − DF(x)|4
h2

dx

(79)≤ 1

hβ

C(�,γ )√
h

⎛⎝ˆ

�

η(x)2 |DF(x + he) − DF(x)|4
h2

dx

⎞⎠
1
4

= C(�,γ )

h
1
2

1

h
3β
4

⎛⎝ˆ

�

η(x)2 |DF(x + he) − DF(x)|4
h2+β

dx

⎞⎠
1
4

.

(80)

Note that the above estimate (80) holds for all e ∈ S
1 and for all 0 < h < γ

2 . So for 0 < R <
γ
2 we have

ˆ

BR

ˆ

�

η(x)2 |DF(x + y) − DF(x)|4
|y|2+β

dxdy

(80)≤ C(�,γ )

ˆ

BR

1

|y| 3β+2
4

⎛⎝ˆ

�

η(x)2 |DF(x + y) − DF(x)|4
|y|2+β

dx

⎞⎠
1
4

dy. (81)

Now by Holder’s inequality

ˆ

BR

1

|y| 3β+2
4

⎛⎝ˆ

�

η(x)2 |DF(x + y) − DF(x)|4
|y|2+β

dx

⎞⎠
1
4

dy

≤
⎛⎜⎝ˆ

BR

1

|y|β+ 2
3

dy

⎞⎟⎠
3
4
⎛⎜⎝ˆ

BR

ˆ

�

η(x)2 |DF(x + y) − DF(x)|4
|y|2+β

dxdy

⎞⎟⎠
1
4

. (82)

As β ∈ (0, 43 ), let δ := 2 − (β + 2
3 )> 0, then β + 2

3 = 2 − δ. We have

ˆ
1

|y|2−δ
dy = 2π

R̂

1

r2−δ
rdr = 2π

R̂

r−1+δdr = 2π

δ
Rδ. (83)
BR 0 0
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Putting this together with (81)–(82) we have

ˆ

BR

ˆ

�

η(x)2 |DF(x + y) − DF(x)|4
|y|2+β

dxdy

(81), (82), (83)≤ C(�,γ )

(
2π

δ
Rδ

) 3
4

⎛⎜⎝ˆ

BR

ˆ

�

η(x)2 |DF(x + y) − DF(x)|4
|y|2+β

dxdy

⎞⎟⎠
1
4

. (84)

Thus, noting δ = 2 − (β + 2
3 ) > 0, we deduce from (84) that

ˆ

BR

ˆ

�

η(x)2 |DF(x + y) − DF(x)|4
|y|2+β

dxdy < C(�,γ,β) (85)

for some constant C(�, γ, β) depending only on �, γ and β . Note that η(x) ≡ 1 for x ∈ �′. Therefore, we deduce 
from (85) that

ˆ

BR

ˆ

�′

|DF(x + y) − DF(x)|4
|y|2+β

dxdy < C(�,γ,β).

It follows that

ˆ

�′

ˆ

�′

|DF(x) − DF(w)|4
|x − w|2+β

dwdx

≤
ˆ

�′

ˆ

BR(x)

|DF(x) − DF(w)|4
|x − w|2+β

dwdx +
ˆ

�′

ˆ

�′\BR(x)

|DF(x) − DF(w)|4
|x − w|2+β

dwdx

< C(�,γ,β) + 1

R2+β

ˆ

�′

ˆ

�′\BR(x)

|DF(x) − DF(w)|4 dwdx < C.

So this implies DF ∈ W
β
4 ,4(�′). Recall that F(x1, x2) = (Re (f (x1 + ix2)) , Im (f (x1 + ix2))). Therefore we have 

established (24).
Now from (79) we have that for any y ∈ Bγ

2
(0)

ˆ

�′

|DF(x + y) − DF(x)|4
|y|2 dx ≤

ˆ

�

η(x)2 |DF(x + y) − DF(x)|4
|y|2 dx

(79)≤
(

C(�,γ )√|y|
) 4

3

.

It follows that

ˆ

�′

|DF(x + y) − DF(x)|4
|y| 4

3

dx ≤ C̃(�,γ ). (86)

Given 0 < ε <
γ
2 , integrating the above with respect to y over Bε(0) and using the fact that |y| ≤ ε for all y ∈ Bε(0), 

we obtain
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ˆ

�′

ˆ

Bε(0)

|DF(x + y) − DF(x)|4
ε2+ 4

3

dydx

≤ 1

ε2

ˆ

�′

ˆ

Bε(0)

|DF(x + y) − DF(x)|4
|y| 4

3

dydx

(86)≤ C̃(�,γ )

ε2

ˆ

Bε(0)

1dy = πC̃(�,γ ).

This establishes (25). �
As a corollary of Theorem 4, we have

Corollary 8. Let � ⊂R
2 be a bounded simply-connected domain and u ∈ E(�), where E(�) is defined in (22). Then 

∇u ∈ W
σ,4
loc (�) for all 0 < σ < 1

3 . Further, for any �′ ⊂⊂ �, there exists a constant C such that

ˆ

�′

ˆ

Bε(0)

|∇u(x + y) − ∇u(x)|4
ε2+ 4

3

dydx < C (87)

for all ε sufficiently small, where the above constant C is independent of ε.

Proof of Corollary 8. Since u ∈ E(�), it follows from Theorem 5 that there exists Fu such that

DFu =

⎛⎜⎜⎝ u,2

(
1 − u2

,1 − u2
,2
3

)
u,1

(
1 − u2

,2 − u2
,1
3

)
−u,1

(
1 − 2u2

,1
3

)
u,2

(
1 − 2u2

,2
3

)
⎞⎟⎟⎠

and therefore DFu ∈ K a.e. in �, where the space K is defined in (42). Using (59) we have that

u,1 = F 1
u,2 − F 2

u,1 and u,2 = F 1
u,1 + F 2

u,2 a.e. in �. (88)

From Theorem 4, we have DFu ∈ W
σ,4
loc (�) for all σ < 1

3 , and for any �′ ⊂⊂ �,

ˆ

�′

ˆ

Bε(0)

|DFu(x + y) − DFu(x)|4
ε2+ 4

3

dydx < C (89)

for some constant C independent of ε. It follows from (88) that ∇u ∈ W
σ,4
loc (�) for all σ < 1

3 .
By the inequality |A + B|4 ≤ 8(|A|4 + |B|4) we have that∣∣u,1(x + y) − u,1(x)

∣∣4 (88)=
∣∣∣(F 1

u,2(x + y) − F 2
u,1(x + y)

)
−

(
F 1

u,2(x) − F 2
u,1(x)

)∣∣∣4
≤ 8

∣∣∣F 1
u,2(x + y) − F 1

u,2(x)

∣∣∣4 + 8
∣∣∣F 2

u,1(x + y) − F 2
u,1(x)

∣∣∣4
≤ C |DFu(x + y) − DFu(x)|4 . (90)

In the same way we can show that∣∣u,2(x + y) − u,2(x)
∣∣ ≤ C |DFu(x + y) − DFu(x)|4. (91)

Thus

|∇u(x + y) − ∇u(x)|4 (90), (91)≤ C |DFu(x + y) − DFu(x)|4 (92)

for some pure constant C. Finally, putting (89) and (92) together, we immediately obtain (87). �
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6. Vanishing of harmonic entropies

Recall the definition of entropies in (8). We first recall a few lemmas from [18].

Lemma 9 ([18], Lemma 1). Let � ∈ C∞
c (R2; R2) be an entropy. Then there exists a � ∈ C∞

c (R2; R2) such that

D�(z) + 2�(z) ⊗ z is isotropic for all z. (93)

Consequently, we have

�1(z) = − 1

2z2
�1,2(z) and �2(z) = − 1

2z1
�2,1(z). (94)

Lemma 10 ([18], Lemma 2). Let � ∈ C∞
c (R2; R2) and � ∈ C∞

c (R2; R2) satisfy (93). Let m ∈ H 1(�; R2) satisfy

∇ · m = 0 a.e. in �.

Then

∇ · [�(m)] = �(m) · ∇
(

1 − |m|2
)

a.e. in �. (95)

Lemma 11 ([18], Lemma 3). There is a one-to-one correspondence between entropies � ∈ C∞
c (R2; R2) and functions 

ϕ ∈ C∞
c (R2) with ϕ(0) = 0 via

�(z) = ϕ(z)z +
(
∇ϕ(z) · z⊥) z⊥, (96)

where z⊥ = (−z2, z1) is the anticlockwise rotation of z by π2 .

Using the above lemmas, we have the following relationship between � and ϕ.

Lemma 12. Let � ∈ C∞
c (R2; R2) be an entropy, and � and ϕ be the functions related to � through Lemmas 9 and 11, 

respectively. Then we have

�1,2(z) − �2,1(z) = 1

2
∇ (�ϕ) · z⊥. (97)

Proof. Using formula (96), we have

�1,2(z) = 2z2ϕ,1(z) + z2
2ϕ,12(z) − z1z2ϕ,22(z), �2,1(z) = 2z1ϕ,2(z) + z2

1ϕ,12(z) − z1z2ϕ,11(z).

Putting the above into (94), we obtain

�1(z) = −ϕ,1(z) − z2

2
ϕ,12(z) + z1

2
ϕ,22(z), �2(z) = −ϕ,2(z) − z1

2
ϕ,12(z) + z2

2
ϕ,11(z).

By direct calculations, we have

�1,2(z) = −3

2
ϕ,12(z) − z2

2
ϕ,122(z) + z1

2
ϕ,222(z), �2,1(z) = −3

2
ϕ,12(z) − z1

2
ϕ,112(z) + z2

2
ϕ,111(z).

Hence, we have

�1,2(z) − �2,1(z) = 1

2

(
ϕ,122 + ϕ,111, ϕ,112 + ϕ,222

) · (−z2, z1) = 1

2
∇ (�ϕ) · z⊥. �

Given a function u ∈ W 1,∞(�), for all ε > 0, we denote uε = u ∗ ρε , where ρε is the standard convolution kernel 
supported in Bε(0) ⊂ R

2. Very often in this paper, we use the following notation

w := (∇u)⊥ = (−u,2, u,1
)
. (98)

Then we have
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wε =
(
w1

ε ,w
2
ε

)
= (−uε,2, uε,1

)
. (99)

The main result of this section is the following theorem.

Theorem 13. Let � ⊂ R
2 be a bounded simply-connected domain. Let � ∈ C∞

c (R2; R2) be an entropy, and ϕ ∈
C∞

c (R2) with ϕ(0) = 0 be the smooth function related to � through (96). In addition, we assume that

∇ (�ϕ) · z⊥ = 0 for all z ∈R
2. (100)

Then, for all u ∈ E(�), where E(�) is defined in (22), we have

∇ ·
[
�(∇u⊥)

]
= 0

in the sense of distributions.

Proof of Theorem 13. Given �′ ⊂⊂ �, let ζ ∈ C∞
c (�′) be a test function. Recall w

(98)= (∇u)⊥ = (−u,2, u,1). So as 
in Step 6 of the proof of Proposition 3 [15] we haveˆ

�′
ζ(x)∇ · [�(wε)]dx

(95)=
ˆ

�′
ζ(x)�(wε) · ∇

(
1 − |wε |2

)
dx

=
Iε︷ ︸︸ ︷ˆ

�′
ζ(x)∇ ·

[
�(wε)

(
1 − |wε |2

)]
dx −

�ε︷ ︸︸ ︷ˆ

�′
ζ(x)

(
1 − |wε |2

)
∇ · [�(wε)]dx . (101)

Since �(wε) 
(
1 − |wε |2

) L1→ 0, integrating by parts we see that

Iε → 0. (102)

In the following, we show that, under the additional assumption (100), we have

�ε → 0.

Thus, we haveˆ

�′
�(w) · ∇ζdx = lim

ε→0

ˆ

�′
�(wε) · ∇ζdx = − lim

ε→0

ˆ

�′
∇ · [�(wε)] ζdx = 0,

from which Theorem 13 will follow.
We will need several lemmas. First, we provide the following lemma, which will be used repeatedly.

Lemma 14. Let � be as in Theorem 13 and u ∈ E(�). Given �′ ⊂⊂ �, there exists a constant ε0 = ε0(�
′) such that, 

for all ε < ε0, and for all r ≥ 4 and g ∈ Lr(�′), we haveˆ

�′

∣∣∣1 − |∇uε |2
∣∣∣ ∣∣uε,mn

∣∣ |g|dx ≤ C‖g‖Lr(�′) (103)

for all m = 1, 2 and n = 1, 2, and for some constant C independent of ε.
Consequently, if gj → g in Lr(�), then for any sequence {εj } such that 0 < εj < ε0 for all j , we haveˆ

�′

∣∣∣1 − |∇uεj
|2
∣∣∣ ∣∣uεj ,mn

∣∣ ∣∣g − gj

∣∣dx → 0 as j → ∞ (104)

for all m = 1, 2 and n = 1, 2.
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Proof. Given r ≥ 4 and g ∈ Lr(�′), by Hölder’s inequality, we have

ˆ

�′

∣∣∣1 − |∇uε |2
∣∣∣ ∣∣uε,mn

∣∣ |g|dx ≤
⎛⎝ˆ

�′

∣∣∣1 − |∇uε |2
∣∣∣r ′ ∣∣uε,mn

∣∣r ′
dx

⎞⎠
1
r′

‖g‖Lr(�′), (105)

where 1
r

+ 1
r ′ = 1. Now as in (i) and (ii) of Step 6 of the proof of Proposition 3 [15], we have that

1 − |wε(x)|2 ≤ 2‖ρ‖L∞(R2)

ε2

ˆ

Bε

|w(x − z) − w(x)|2 dz, (106)

and ∣∣wε,j (x)
∣∣ ≤ ‖∇ρ‖L∞(R2)

ε3

ˆ

Bε

|w(x − z) − w(x)|dz, (107)

where recall that we defined the vector fields w and wε in (98) and (99), respectively. For the convenience of the 
reader, we take the proofs of (106)–(107) in [15] and put them into Lemma 22 in the Appendix.

Note that since r ≥ 4, we have r ′ ≤ 4
3 and, therefore, 3r ′

4 ≤ 1. Now arguing very similarly to (iii) of Step 6 of 
Proposition 3 [15], we haveˆ

�′

∣∣∣1 − |∇uε |2
∣∣∣r ′ ∣∣uε,mn

∣∣r ′
dx

(106), (107)≤ C

εr ′

ˆ

�′

⎛⎜⎝−
ˆ

Bε

|w(x − z) − w(x)|2 dz

⎞⎟⎠
r ′ ⎛⎜⎝−

ˆ

Bε

|w(x − z) − w(x)|dz

⎞⎟⎠
r ′

dx

≤ C

εr ′

ˆ

�′

⎛⎜⎝−
ˆ

Bε

|w(x − z) − w(x)|4 dz

⎞⎟⎠
r′
2
⎛⎜⎝−
ˆ

Bε

|w(x − z) − w(x)|4 dz

⎞⎟⎠
r′
4

dx

= C

εr ′

ˆ

�′

⎛⎜⎝−
ˆ

Bε

|w(x − z) − w(x)|4 dz

⎞⎟⎠
3r′
4

dx

≤ C

εr ′

⎛⎜⎝ˆ

�′
−
ˆ

Bε

|w(x − z) − w(x)|4 dzdx

⎞⎟⎠
3r′
4

=C

⎛⎜⎝ˆ

�′

ˆ

Bε

|w(x − z) − w(x)|4
ε2+ 4

3

dzdx

⎞⎟⎠
3r′
4

(87)≤ C.

(108)

Putting (108) into (105), we immediately obtain (103). The estimate (104) is a direct consequence of (103). �
Lemma 15. Let � be as in Theorem 13 and u ∈ E(�). Denote w := (∇u)⊥. Given �′ ⊂⊂ �, for all ζ ∈ C∞

c (�′), we 
have ˆ

�′
(1 − |wε(x)|2)w1

ε,1(x)ζ(x)dx → 0,

ˆ

�′
(1 − |wε(x)|2)w2

ε,2(x)ζ(x)dx → 0, (109)

and ˆ

�′
(1 − |wε(x)|2)

(
w2

ε,1(x) + w1
ε,2(x)

)
ζ(x)dx → 0 (110)

as ε → 0.
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Proof. Given a smooth function v, by direct calculations, we have

∇ · [�e1e2v
] (5)= (

v,11 − v,22
)(

1 − |∇v|2
)

(111)

and

∇ · [�ε1ε2v
] (6)= 2v,12

(
1 − |∇v|2

)
. (112)

Recall the definition of wε in (99). In particular, we have

w1
ε,1 = −uε,12, w2

ε,2 = uε,12, w2
ε,1 + w1

ε,2 = uε,11 − uε,22. (113)

Thus, using (99), (112) and (113), we haveˆ

�′

(
1 − |wε(x)|2

)
w1

ε,1(x)ζ(x)dx
(99), (113)= −

ˆ

�′

(
1 − |∇uε(x)|2

)
uε,12(x)ζ dx

(6), (112)= −1

2

ˆ

�′
∇ ·

(
uε,2

(
1 − 2u2

ε,2

3

)
, uε,1

(
1 − 2u2

ε,1

3

))
ζ dx

= 1

2

ˆ

�′

(
uε,2

(
1 − 2u2

ε,2

3

)
, uε,1

(
1 − 2u2

ε,1

3

))
· ∇ζ dx.

(114)

Since u ∈ W 1,∞(�), it follows from (114) and (15) thatˆ

�′

(
1 − |wε(x)|2

)
w1

ε,1(x)ζ(x)dx

(114)→ 1

2

ˆ

�′

(
u,2

(
1 − 2u2

,2

3

)
, u,1

(
1 − 2u2

,1

3

))
· ∇ζ dx = 1

2

ˆ

�′
�ε1ε2u(x) · ∇ζ(x)dx

(15)= 0.

(115)

Similarly, as w2
ε,2 = uε,12, we have

ˆ

�′

(
1 − |wε(x)|2

)
w2

ε,2(x)ζ(x)dx → 0.

Next, using (99), (111) and (113), we haveˆ

�′

(
1 − |wε(x)|2

)(
w2

ε,1(x) + w1
ε,2(x)

)
ζ(x)dx

(99), (113)=
ˆ

�′

(
1 − |∇uε(x)|2

)(
uε,11(x) − uε,22(x)

)
ζ(x)dx

(5), (111)= 1

2

ˆ

�′
∇ ·

(
uε,1

(
1 − u2

ε,2 − u2
ε,1

3

)
,−uε,2

(
1 − u2

ε,1 − u2
ε,2

3

))
ζ dx.

By (15) and the same arguments as in (115), we conclude (110). �
Lemma 16. Let � be as in Theorem 13 and u ∈ E(�). Denote w := (∇u)⊥. Given �′ ⊂⊂ � and any F ∈ C∞

c (R2), 
we haveˆ

′

(
1 − |wε |2

)
wn

ε,m (F (w) − F(wδ)) dx → 0 as ε, δ → 0 (116)
�
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for all m = 1, 2 and n = 1, 2. As a consequence, we haveˆ

�′

(
1 − |wε |2

)
wn

ε,m (F (wε) − F(wδ)) dx → 0 as ε, δ → 0. (117)

Proof. First, it is clear that by applying Lemma 14, we have∣∣∣∣∣∣
ˆ

�′
(1 − |wε(x)|2) (F (w(x)) − F(wδ(x)))wn

ε,m(x)dx

∣∣∣∣∣∣
≤ sup

R2
|DF |

ˆ

�′
(1 − |wε(x)|2) ∣∣wn

ε,m(x)
∣∣ |w(x) − wδ(x)|dx

(103)≤ C sup
R2

|DF | ‖w − wδ‖Lr(�′)

(118)

for all r ≥ 4. Now as w ∈ L∞(�) ⊂ Lr(�) so wδ
Lr(�)→ w. Applying this to (118), equation (116) follows.

To show (117), we writeˆ

�′

(
1 − |wε |2

)
wn

ε,m (F (wε) − F(wδ)) dx

=
ˆ

�′

(
1 − |wε |2

)
wn

ε,m (F (wε) − F(w))dx +
ˆ

�′

(
1 − |wε |2

)
wn

ε,m (F (w) − F(wδ)) dx.

By applying (116) to the above two terms on the right side, we obtain (117). �
Lemma 17. Let � be as in Theorem 13 and u ∈ E(�). Denote w := (∇u)⊥. Given �′ ⊂⊂ �, for any F ∈ C∞

c (R2)

and any ζ ∈ C∞
c (�′), We haveˆ

�′

(
1 − |wε(x)|2

)
w1

ε,1(x)F (wε(x))ζ(x)dx → 0, (119)

ˆ

�′

(
1 − |wε(x)|2

)
w2

ε,2(x)F (wε(x))ζ(x)dx → 0, (120)

and ˆ

�′

(
1 − |wε |2

)(
w2

ε,1 + w1
ε,2

)
F(wε(x))ζ(x)dx → 0 (121)

as ε → 0.

Proof. We writeˆ

�′

(
1 − |wε(x)|2

)
F(wε(x))w1

ε,1(x)ζ(x)dx

=
ˆ

�′

(
1 − |wε(x)|2

)
F(wδ(x))w1

ε,1(x)ζ(x)dx

+
ˆ

�′

(
1 − |wε(x)|2

)
(F (wε(x)) − F(wδ(x)))w1

ε,1(x)ζ(x)dx,

where wδ = ρδ ∗ w. It follows from Lemma 15 (109) that, for any fixed δ > 0,
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ˆ

�′
(1 − |wε(x)|2)F (wδ(x))w1

ε,1(x)ζ(x)dx → 0 as ε → 0. (122)

On the other hand, we obtain from Lemma 16 that
ˆ

�′
(1 − |wε(x)|2) (F (wε(x)) − F(wδ(x)))w1

ε,1(x)ζ(x)dx → 0 as ε, δ → 0. (123)

Given α > 0, it follows from (123) that there exist δ0 = δ0(α), ε0 = ε0(α) > 0 sufficiently small such that, for all 
ε < ε0, we have∣∣∣∣∣∣

ˆ

�′
(1 − |wε(x)|2) (F(wε(x)) − F(wδ0(x))

)
w1

ε,1(x)ζ(x)dx

∣∣∣∣∣∣ < α

2
. (124)

By (122), there exists ε1(= ε1(α)) such that, for all ε < ε1, we have∣∣∣∣∣∣
ˆ

�′
(1 − |wε(x)|2)F (wδ0(x))w1

ε,1(x)ζ(x)dx

∣∣∣∣∣∣ < α

2
. (125)

Define εα := min{ε0, ε1}. Combining (124), (125), we have that, for all ε < εα∣∣∣∣∣∣
ˆ

�′

(
1 − |wε(x)|2

)
F(wε(x))w1

ε,1(x)ζ(x)dx

∣∣∣∣∣∣ < α. (126)

This implies (119). The estimates (120) and (121) follow exactly the same lines. �
Proof of Theorem 13 completed. Now we return to (101). We have

�ε =
ˆ

�′

(
1 − |wε |2

)[
�1,1(wε)w

1
ε,1 + �1,2(wε)w

2
ε,1 + �2,1(wε)w

1
ε,2 + �2,2(wε)w

2
ε,2

]
ζ(x)dx. (127)

By Lemma 17 (119)–(120), we have

ˆ

�′

(
1 − |wε |2

)[
�1,1(wε)w

1
ε,1 + �2,2(wε)w

2
ε,2

]
ζ(x)dx → 0 as ε → 0. (128)

By Lemma 12, the assumption (100) implies �1,2(wε) = �2,1(wε). Therefore, we have

ˆ

�′

(
1 − |wε |2

)[
�1,2(wε)w

2
ε,1 + �2,1(wε)w

1
ε,2

]
ζ(x)dx =

ˆ

�′

(
1 − |wε |2

)
�1,2(wε)

(
w2

ε,1 + w1
ε,2

)
ζ(x)dx.

(129)

Now applying Lemma 17 (121) to (129) implies that

ˆ

�′

(
1 − |wε |2

)[
�1,2(wε)w

2
ε,1 + �2,1(wε)w

1
ε,2

]
ζ(x)dx → 0 as ε → 0. (130)

Finally, putting (128) and (130) into (127), we obtain �ε → 0 as ε → 0. This together with (101) and (102) completes 
the proof of Theorem 13. �
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7. Vanishing of the special entropies

Given ξ ∈ S
1, recall the definition of the function �ξ in (28). The main result of this section is the following 

theorem.

Theorem 18. Let � ⊂R
2 be a bounded simply-connected domain and u ∈ E(�), where E(�) is defined in (22). Then 

for every ξ ∈ S
1 \ {e1,−e1, e2,−e2}, we have that

∇ · [�ξ(w)] = 0 in the sense of distributions, (131)

where w(x) = (−u,2(x), u,1(x)).

We first recall the following lemma from [18].

Lemma 19 ([18], Lemma 4). For a fixed ξ ∈ S
1, the map �ξ defined in (28) is a generalized entropy in the sense that 

there exists a sequence {�ν}ν→∞ of entropies in C∞
c (R2; R2) such that

{�ν(z)}ν→∞ is bounded uniformly for bounded z,

�ν(z) → �ξ(z) for all z. (132)

For the convenience of the reader, we include the proof of Lemma 19 in the Appendix. Now we provide the proof 
of Theorem 18.

Proof of Theorem 18. Given ξ ∈ S
1 \ {e1,−e1, e2,−e2}, we may approximate �ξ by smooth entropies �k as in 

Lemma 19. We prove that

∇ · [�k(w)] = 0 in the sense of distributions

for all k sufficiently large. As a result, we have (131).
As can be understood from the proof of Theorem 13, by virtue of Lemma 17 the only thing we need to show isˆ

�′

(
1 − |wε |2

)[
�k

1,2(wε)w
2
ε,1 + �k

2,1(wε)w
1
ε,2

]
ζdx → 0, (133)

where the function �k is related to �k through Lemma 9 and ζ ∈ C∞
c (�′) is any test function. Let us writeˆ

�′

(
1 − |wε |2

)[
�k

1,2(wε)w
2
ε,1 + �k

2,1(wε)w
1
ε,2

]
ζdx

=
ˆ

�′

(
1 − |wε |2

) �k
1,2(wε) + �k

2,1(wε)

2

(
w2

ε,1 + w1
ε,2

)
ζdx

+
ˆ

�′

(
1 − |wε |2

) �k
1,2(wε) − �k

2,1(wε)

2

(
w2

ε,1 − w1
ε,2

)
ζdx.

We deduce from Lemma 17 (121) that
ˆ

�′

(
1 − |wε |2

)(
w2

ε,1 + w1
ε,2

) �k
1,2(wε) + �k

2,1(wε)

2
ζdx → 0 as ε → 0. (134)

In the following, we show
ˆ

′

(
1 − |wε |2

) �k
1,2(wε) − �k

2,1(wε)

2

(
w2

ε,1 − w1
ε,2

)
ζdx → 0 as ε → 0. (135)
�



508 A. Lorent, G. Peng / Ann. I. H. Poincaré – AN 35 (2018) 481–516
Let us denote ψk(z) = ∇(
�ϕk

)·z⊥
4 , where the function ϕk is related to �k through Lemma 11. Using this new 

function ψk and the calculation (97), we write
ˆ

�′

(
1 − |wε |2

) �k
1,2(wε) − �k

2,1(wε)

2

(
w2

ε,1 − w1
ε,2

)
ζdx

=
ˆ

�′

(
1 − |wε |2

)
ψk(w)

(
w2

ε,1 − w1
ε,2

)
ζdx +

ˆ

�′

(
1 − |wε |2

)(
ψk(wε) − ψk(w)

)(
w2

ε,1 − w1
ε,2

)
ζdx.

(136)

Recall the definition of wε in (99). For the above first term, we further writeˆ

�′

(
1 − |wε |2

)
ψk(w)

(
w2

ε,1 − w1
ε,2

)
ζdx

=
ˆ

�′

(
1 − |∇uε |2

)
ψk(w)

(
uε,11 + uε,22

)
ζdx

=
ˆ

�′

(
1 − |∇uε |2

)
ψk(w)

(
uε,11 + uε,22 + uε,12

u,1u,2

)
ζdx −

ˆ

�′

(
1 − |∇uε |2

)
uε,12

ψk(w)

u,1u,2
ζdx.

(137)

In the following, we will establishˆ

�′

(
1 − |wε |2

)(
ψk(wε) − ψk(w)

)(
w2

ε,1 − w1
ε,2

)
ζdx → 0, (138)

ˆ

�′

(
1 − |∇uε |2

)
ψk(w)

(
uε,11 + uε,22 + uε,12

u,1u,2

)
ζdx → 0, (139)

and ˆ

�′

(
1 − |∇uε |2

)
uε,12

ψk(w)

u,1u,2
ζdx → 0 (140)

as ε → 0, respectively. Putting (136)–(140) together, we obtain (135), which together with (134) gives us (133). This 
will conclude the proof of the theorem.

First note (138) follows as a direct consequence of Lemma 16. Equations (139), (140) will be established in the 
following two lemmas. �
Lemma 20. We have for sufficiently large k

ˆ

�′

(
1 − |∇uε |2

)
uε,12

ψk(w)

u,1u,2
ζdx → 0 as ε → 0. (141)

Proof. A key observation in the proof is that, for k sufficiently large, χk := ψk(w)
u,1u,2

is an L∞ function. Indeed, we use 

smooth entropies �k to approximate the entropy �ξ in the way that is given in the proof of Lemma 19 in the Appendix. 
In particular, for k sufficiently large, the function ϕk satisfies D2ϕk = 0 outside a sufficiently small neighborhood of 

the line z · ξ = 0 inside the ball Bk(0). Consequently, on S1, ψk(z) = ∇(
�ϕk

)·z⊥
4 is supported in a sufficiently small 

neighborhood of the points z · ξ = 0 with |z| = 1. Since we have chosen ξ ∈ S
1 to be such that ξ is not parallel to the 

axes, for k sufficiently large, the support of ψk(z) on S1 is bounded away from the axes. Indeed, let α > 0 denote the 
distance between the support of ψk on S1 and the axes. Then, either |u,i | < α

2 for some i = 1, 2, so ψk(w) = 0, or 

|u,1| ≥ α
2 and |u,2| ≥ α

2 , so |χk| ≤ 4‖ψk‖∞
α2 . Therefore, for all x ∈ � such that |∇u(x)| = 1, we have χk(x) ≤ Ck for 

some constant Ck depending only on �k . Since |∇u| = 1 a.e. in �, we have χk ∈ L∞(�).
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In particular, we have χk ∈ L4(�). Let {χj } be a sequence of smooth functions such that

χj → χk in L4(�).

Then we haveˆ

�′

(
1 − |∇uε |2

)
uε,12

ψk(w)

u,1u,2
ζdx

=
ˆ

�′

(
1 − |∇uε |2

)
uε,12χj ζdx +

ˆ

�′

(
1 − |∇uε |2

)
uε,12

(
χk − χj

)
ζdx.

(142)

It follows from Lemma 14 thatˆ

�′

(
1 − |∇uε |2

)
uε,12

(
χk − χj

)
ζdx → 0 as ε → 0, j → ∞. (143)

On the other hand, we have χjζ ∈ C∞
c (�′). It follows from Lemma 15 (noting the relationship between wε and uε as 

in (99)) thatˆ

�′

(
1 − |∇uε |2

)
uε,12χj ζdx → 0 as ε → 0. (144)

Putting (142)–(144) together and using arguments similar to those in (124)–(126), we obtain (141). �
Lemma 21. We haveˆ

�′

(
1 − |∇uε |2

)
ψk(w)

(
uε,11 + uε,22 + uε,12

u,1u,2

)
ζdx → 0 as ε → 0.

Proof. Recall that we defined χk := ψk(w)
u,1u,2

∈ L∞(�). We write

ˆ

�′

(
1 − |∇uε |2

)
ψk(w)

(
uε,11 + uε,22 + uε,12

u,1u,2

)
ζdx

=
ˆ

�′

(
1 − |∇uε |2

)(
u,1u,2

(
uε,11 + uε,22

)+ uε,12
) χk︷ ︸︸ ︷
ψk(w)

u,1u,2
ζdx

=
I︷ ︸︸ ︷ˆ

�′

(
1 − |∇uε |2

)(
uε,1uε,2

(
uε,11 + uε,22

)+ uε,12
)
χkζdx

+
II︷ ︸︸ ︷ˆ

�′

(
1 − |∇uε |2

)(
uε,11 + uε,22

) (
u,1u,2 − uε,1uε,2

)
χkζdx

=
I︷ ︸︸ ︷ˆ

�′

(
1 − |∇uε |2

)(
uε,1uε,2

(
uε,11 + uε,22

)+ |∇uε |2uε,12

)
χkζdx +

ˆ

�′

(
1 − |∇uε |2

)2
uε,12χ

kζdx

+
II︷ ︸︸ ︷ˆ

′

(
1 − |∇uε |2

)(
uε,11 + uε,22

) (
u,1u,2 − uε,1uε,2

)
χkζdx .

(145)
�
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First, we have (noting |∇u| = 1 a.e.)ˆ

�′

(
1 − |∇uε |2

)2
uε,12χ

kζdx =
ˆ

�′

(
|∇u|2 − |∇uε |2

)(
1 − |∇uε |2

)
uε,12χ

kζdx. (146)

Since |∇uε | ≤ 1 and |∇u| = 1, and χkζ ∈ L∞(�), we have∣∣∣∣∣∣
ˆ

�′

(
|∇u|2 − |∇uε |2

)(
1 − |∇uε |2

)
uε,12χ

kζdx

∣∣∣∣∣∣ ≤ C

ˆ

�′
|∇u − ∇uε |

(
1 − |∇uε |2

) ∣∣uε,12
∣∣dx. (147)

Since ‖∇u − ∇uε‖L4(�′) = ‖w − wε‖L4(�′) → 0, we deduce from (147) and Lemma 14 thatˆ

�′

(
|∇u|2 − |∇uε |2

)(
1 − |∇uε |2

)
uε,12χ

kζdx → 0 as ε → 0. (148)

Combining (146) with (148), we obtainˆ

�′

(
1 − |∇uε |2

)2
uε,12χ

kζdx → 0 as ε → 0. (149)

For the last term in (145), since ‖w − wε‖Lp(�′) → 0 for all p ≥ 1, it is clear that ‖u,1u,2 − uε,1uε,2‖L4(�′) → 0. 
It follows from the fact that χkζ ∈ L∞(�) and Lemma 14 again thatˆ

�′

(
1 − |∇uε |2

)(
uε,11 + uε,22

) (
u,1u,2 − uε,1uε,2

)
χkζdx → 0 as ε → 0. (150)

Finally, we look at the first term in (145). Following the arguments in Lemma 20, we choose a sequence of smooth 
functions {χj } such that

χj → χk in L4(�).

Note that we have |uε,1uε,2| ≤ 1 and |∇uε | ≤ 1. Therefore, we have∣∣∣∣∣∣
ˆ

�′

(
1 − |∇uε |2

)(
uε,1uε,2

(
uε,11 + uε,22

)+ |∇uε |2uε,12

)(
χk − χj

)
ζdx

∣∣∣∣∣∣
≤
ˆ

�′

(
1 − |∇uε |2

)(∣∣uε,11
∣∣+ ∣∣uε,22

∣∣+ ∣∣uε,12
∣∣) ∣∣∣χk − χj

∣∣∣ |ζ |dx.

Let α > 0. By Lemma 14 there exists some j0 ∈ N such that∣∣∣∣∣∣
ˆ

�′

(
1 − |∇uε |2

)(
uε,1uε,2

(
uε,11 + uε,22

)+ |∇uε |2uε,12

)(
χk − χj

)
ζdx

∣∣∣∣∣∣ ≤ α

2
for all ε ∈ (0, ε0), j ≥ j0

(151)

where ε0 is the small constant as in Lemma 14.
Using the harmonic polynomial ̃ϕ(z) = z2

1 − z2
2 and the formula (96), we obtain �̃(z) = (z3

1 + 3z1z
2
2, −3z2

1z2 − z3
2). 

Let η ∈ C∞
c (R2) be a cut-off function such that η ≡ 1 on B2(0) and define ϕ := ϕ̃η ∈ C∞

c (R2). Let � be the entropy 
obtained from the function ϕ through formula (96). As noted in Lemma 11, � is an entropy in the sense of (8) and 
hence we can apply Lemma 9. Since ϕ = ϕ̃ on B2(0), we have � = �̃ on B2(0). Since |w| = 1 a.e. and |wε | ≤ 1, we 
see that �(w) = �̃(w) for a.e. x ∈ � and �(wε) = �̃(wε) for all x ∈ �′. By direct calculations, we have

∇ · [�(wε)] = ∇ ·
(
−u3

ε,2 − 3uε,2u
2
ε,1,−3u2

ε,2uε,1 − u3
ε,1

)
= −6

(
uε,1uε,2

(
uε,11 + uε,22

)+ |∇uε |2uε,12

)
.
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Let us apply (101) to our particular entropy �:ˆ

�′

(
1 − |∇uε |2

)(
uε,1uε,2

(
uε,11 + uε,22

)+ |∇uε |2uε,12

)
χj0ζdx

= − 1

6

ˆ

�′

(
1 − |wε |2

)
χj0ζ∇ · [�(wε)]dx

(95)= − 1

6

ˆ

�′

(
1 − |wε |2

)
χj0ζ�(wε) · ∇

(
1 − |wε |2

)
dx

= − 1

12

ˆ

�′
χj0ζ�(wε) · ∇

(
1 − |wε |2

)2
dx

= − 1

12

ˆ

�′
χj0ζ∇ ·

[
�(wε)

(
1 − |wε |2

)2
]

dx + 1

12

ˆ

�′
χj0ζ

(
1 − |wε |2

)2 ∇ · [�(wε)]dx,

(152)

where � ∈ C∞
c (R2; R2) is related to the particular entropy � via Lemma 9. It is clear that {sup |�(wε)|} is uniformly 

bounded. It follows from integration by parts that
ˆ

�′
χj0ζ∇ ·

[
�(wε)

(
1 − |wε |2

)2
]

dx → 0 as ε → 0. (153)

Now we write out the other term in (152)ˆ

�′
χj0ζ

(
1 − |wε |2

)2 ∇ · [�(wε)]dx

=
ˆ

�′
χj0ζ

(
1 − |wε |2

)2 [
�1,1(wε)w

1
ε,1 + �1,2(wε)w

2
ε,1 + �2,1(wε)w

1
ε,2 + �2,2(wε)w

2
ε,2

]
dx.

(154)

For all m, n ∈ {1, 2}, using |w| = 1 a.e., we haveˆ

�′
χj0ζ

(
1 − |wε |2

)2
�m,n(wε)w

n
ε,mdx =

ˆ

�′
χj0ζ

(
|w|2 − |wε |2

)(
1 − |wε |2

)
�m,n(wε)w

n
ε,mdx. (155)

Since ‖w − wε‖L4(�′) → 0 and {sup |�m,n(wε)|} is uniformly bounded, an application of Lemma 14 yields
ˆ

�′
χj0ζ

(
|w|2 − |wε |2

)(
1 − |wε |2

)
�m,n(wε)w

n
ε,mdx ≤ C

ˆ

�′
|w − wε |

(
1 − |wε |2

)
wn

ε,mdx → 0. (156)

Putting (155)–(156) together, we obtainˆ

�′
χj0ζ

(
1 − |wε |2

)2
�m,n(wε)w

n
ε,mdx → 0.

Taking the sum over all m, n, we deduce from (154) thatˆ

�′
χj0ζ

(
1 − |wε |2

)2 ∇ · [�(wε)]dx → 0. (157)

Combining (157) with (153) and (152), we haveˆ
′

(
1 − |∇uε |2

)(
uε,1uε,2

(
uε,11 + uε,22

)+ |∇uε |2uε,12

)
χj0ζdx → 0 as ε → 0.
�
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So there exists some ε1 ∈ (0, ε0) such that
ˆ

�′

(
1 − |∇uε |2

)(
uε,1uε,2

(
uε,11 + uε,22

)+ |∇uε |2uε,12

)
χj0ζdx <

α

2
for any ε ∈ (0, ε1) . (158)

Inequality (158) together with (151) yield∣∣∣∣∣∣
ˆ

�′

(
1 − |∇uε |2

)(
uε,1uε,2

(
uε,11 + uε,22

)+ |∇uε |2uε,12

)
χkζdx

∣∣∣∣∣∣ < α for any ε ∈ (0, ε1).

As this is true for any α > 0 we have shown

ˆ

�′

(
1 − |∇uε |2

)(
uε,1uε,2

(
uε,11 + uε,22

)+ |∇uε |2uε,12

)
χkζdx → 0 as ε → 0. (159)

Finally, putting (149), (150) and (159) into (145) concludes the proof of Lemma 21. �
8. Proof of Theorem 3

By Theorem 18, (131) we have that

∇ ·
[
�ξ

(
∇u⊥)] = 0 distributionally in �, for any ξ ∈ S

1\ {e1,−e1, e2,−e2} . (160)

As explained in the sketch of the proof, we could carry out the argument that establishes (160) for a coordinate axis 
{ε1, ε2} (see (4)) and this gives (160) for all ξ ∈ S

1\ {ε1,−ε1, ε2,−ε2} and hence (160) holds for any ξ ∈ S
1.

Now defining w(x) = ∇u(x)⊥ we have that �ξ
(∇u(x)⊥

) (13)= ξχ (x, ξ) for a.e. x ∈ � and so

0 = ∇ ·
[
�ξ

(
∇u⊥)] = ∇ · [ξχ (·, ξ)

] = ξ · ∇χ (·, ξ) in D′(�)

and thus applying Theorem 1 we have that ∇u is locally Lipschitz outside a locally finite set of points.
It has been observed in [23] that the results of [25] imply that under the hypothesis of Theorem 1, if O ⊂⊂ � is a 

convex neighborhood of a point ζ ∈ S (where w= ∇u⊥ is locally Lipschitz outside of S) then there exists α ∈ {1, −1}
such that

w(z) = α
(z − ζ )

|z − ζ |
⊥

for any z ∈ O. (161)

Since we have shown that w satisfies (12), this implies (16). For the convenience of the reader, we note that (161)
follows from the results of [25] in the following way. Firstly by Lemma 5.1 [25] for any x0, y0 ∈ O that are Lebesgue 
points of w we have

|w(x0) − αw(y0)| ≤ |x0 − y0|
d

for some α ∈ {1,−1} , (162)

where d = dist(O, ∂�) > 0. In the proof of Theorem 1.3 (that follows the proof of Lemma 5.1) the estimate (162) is 
strengthened in that it is shown that α = 1. Thus w is 1

d
-Lipschitz in O. This contradicts the fact that ζ ∈O and hence 

(161) follows. �
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Appendix A. Some auxiliary results

We have used in a fundamental way a couple of estimates from [15], these in turns were inspired by a commutator 
estimate of Constantin, E, Titi [12]. For convenience of the reader we repeat the proof from [15].

Lemma 22 ([15]). Let � ⊂ R
2 be a bounded domain and w ∈ L3(�; R2) satisfy |w| = 1 a.e. in �. Given �′ ⊂⊂ �, 

let γ := dist(�′, ∂�) > 0. Then, for all x ∈ �′ and 0 < ε < γ , denoting wε = w ∗ ρε , we have

1 − |wε(x)|2 ≤ 2‖ρ‖L∞

ε2

ˆ

Bε

|w(x − z) − w(x)|2 dz, (163)

and

|∂jwε(x)| ≤ ‖∇ρ‖L∞

ε3

ˆ

Bε

|w(x − z) − w(x)|dz. (164)

Proof. First, for x ∈ �′ and for 0 < ε < γ , using |w| = 1 a.e., we have

1 − |wε(x)|2 = |w|2 ∗ ρε(x) − |w ∗ ρε |2

=
ˆ

R2

|w(x − z)|2 ρε(z)dz

−
⎛⎜⎝ˆ

R2

w(x − z)ρε(z)dz

⎞⎟⎠ ·
⎛⎜⎝ˆ

R2

w(x − y)ρε(y)dy

⎞⎟⎠
=
ˆ

R2

ˆ

R2

w(x − z) (w(x − z) − w(x − y))ρε(z)ρε(y)dzdy

z:=y,y:=z= 1

2

ˆ

R2

ˆ

R2

|w(x − z) − w(x − y)|2 ρε(z)ρε(y)dzdy

≤ 2
ˆ

R2

|w(x − z) − w(x)|2 ρε(z)dz

≤ 2‖ρ‖L∞

ε2

ˆ

Bε

|w(x − z) − w(x)|2 dz.

This establishes (163).
To show (164), note that 

´
Bε

∂jρ( z
ε
)dz = 0 for j = 1, 2. Therefore, we have

∣∣∂jwε(x)
∣∣ = ∣∣w ∗ ∂jρε(x)

∣∣ =

∣∣∣∣∣∣∣
1

ε3

ˆ

Bε

w(x − z)∂jρ(
z

ε
)dz

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1

ε3

ˆ

Bε

(w(x − z) − w(x)) ∂jρ(
z

ε
)dz

∣∣∣∣∣∣∣
≤ ‖∇ρ‖L∞

ε3

ˆ

Bε

|w(x − z) − w(x)|dz. �
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Lemma 23. Let � ⊂ R
2 be a bounded simply-connected domain and v ∈ L∞(�; R2) be such that curlv = 0 weakly. 

Then there exists some potential f ∈ W 1,∞(�) such that ∇f = v a.e. on �.

Proof of Lemma 23. We follow some of the ideas in the proof of Theorem 2.9 in [22]. The proof goes in two steps.
Step 1. We can find a sequence {�k}k of open simply-connected sets with the following properties:

(1) �k ⊂⊂ �;
(2) �k ⊂ �k+1;
(3)

⋃
k �k = �.

Proof of Step 1. Define Ok := {x ∈ � : dist(x, ∂�) > 2−k}. We start with some k0 sufficiently large such that 
Ok0 is nonempty. Define �k0 to be any connected component of Ok0 . For all k > k0, define �k to be the connected 
component of Ok that contains �k0 . It is clear that the sequence {�k}k≥k0 satisfies (1) and (2). To see (3), we claim 
that for any k1 ≥ k0, Ok1 ⊂ �k for all k sufficiently large. Indeed, let {Oj

k1
}mj=1 be the connected components of Ok1 . 

Without loss of generality, assume O1
k1

= �k1 . For each j = 1, 2, ..., m, we fix a point aj ∈ O
j
k1

. Since � is connected, 

we can find continuous paths γ j

1 ⊂ � connecting a1 and aj for j = 2, 3, ..., m. Denote δj = dist(γ j

1 , ∂�) > 0, and 

let Tj be a tubular neighborhood of γ j

1 of size δj

2 for j = 2, 3, ..., m. Now denote δk1 := min{δj } > 0. It is clear that 

Ok1

⋃(⋃m
j=2 Tj

)
⊂ � is connected, and for any x ∈ Ok1

⋃(⋃m
j=2 Tj

)
, dist(x, ∂�) > min{2−k1 , 

δk1
2 }. Therefore 

Ok1

⋃(⋃m
j=2 Tj

)
⊂ Ok for k sufficiently large. Since Ok1

⋃(⋃m
j=2 Tj

)
is connected and �k0 ⊂ Ok1 , by definition 

of �k , we have Ok1

⋃(⋃m
j=2 Tj

)
⊂ �k . Since � = ⋃

Ok , it follows that (3) is satisfied.

Now we claim that each �k is simply-connected. We argue by contradiction. Suppose �k is not simply-connected 
for some k. Then we can find some closed curve � ⊂ �k such that there exists x ∈ Int(�) ∩ (Ok)

c . By the definition of 
Ok , we have dist(x, ∂�) ≤ 2−k . Let y ∈ ∂� be such that |x − y| = dist(x, ∂�), and let z be the intersection of � with 
the line segment joining x and y. Then clearly we have |z − y| ≤ |x − y| ≤ 2−k . On the other hand, since z ∈ � ⊂ �k , 
we have |z − y| ≥ dist(z, ∂�) > 2−k . This is a contradiction. It follows that �k is simply-connected.

Step 2: proof of Lemma completed. Without loss of generality we can assume 0 ∈ �k for all k. For any ε ∈ (0, 2−k), 
vε = v ∗ρε is such that curlvε = 0 on �k . Since �k is simply-connected, there exists fε such that ∇fε = vε on �k and 

fε(0) = 0. Now take some sequence εn → 0. By basic properties of convolutions, we know ∇fεn

Lp(�k)→ v as n → ∞, 
for all 1 ≤ p < ∞.

Since v ∈ L∞(�; R2), we have ‖vε‖∞ ≤ ‖v‖∞, and hence {fεn} is a sequence of equicontinuous functions on �k

with fεn(0) = 0. It follows from the Arzelà–Ascoli Theorem that for some subsequence (not relabeled) fεn

L∞(�k)→ fk

for some Lipschitz function fk with fk(0) = 0. Therefore ∇fk = v a.e. on �k .
We claim

fl = fk on �k for all l > k. (165)

Indeed, the equation (165) follows from the facts that fl − fk is Lipschitz and fl(0) = fk(0) and ∇(fl − fk) = 0 a.e. 
on �k . Thus by (165) we can define

f (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f1(x) on �1
f2(x) on �2

. . .

fk(x) on �k

. . .

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

And finally ∇f = v a.e. on �. �
Finally, we provide the proof of Lemma 19.

Proof of Lemma 19. We mostly follow the proof of Lemma 4 in [18]. Let us consider the function ϕ defined by
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ϕ(z) =
{

z · ξ for z · ξ > 0,

0 for z · ξ ≤ 0,

and the map F given by

F(z) =
{

ξ for z · ξ > 0,

0 for z · ξ ≤ 0.

Note that F is the gradient of ϕ whenever ϕ is differentiable.
Now we construct a sequence {ϕk}k in C∞

c (R2) such that

{(ϕk(z),∇ϕk(z))}k is bounded uniformly for bounded z, (166)

(ϕk(z),∇ϕk(z))
k→∞→ (ϕ(z),F (z)) for all z. (167)

Here we use an approximation that was used by the first author in [27] to make the proof more transparent than that 
in [18]. Clearly there exists a monotone smooth function s0 : R → R such that s0(x) ≡ 0 for x ≤ 0 and s0(x) = x for 
x ≥ 1. Given k ∈ N

+, define sk(x) := 1
k
s0(kx). It is easy to check that sk is a smooth function satisfying

{(sk(x), s′
k(x))} is bounded uniformly for bounded x, (168)

(sk(x), s′
k(x))

k→∞→ (s(x), f (x)) for all x, (169)

where

s(x) =
{

x for x > 0,

0 for x ≤ 0,

and

f (x) =
{

1 for x > 0,

0 for x ≤ 0.

Now we define ϕk(z) = sk(z · ξ)χk , where χk ∈ C∞
c (R2) satisfies Spt(χk) ⊂⊂ Bk+1(0) and χk ≡ 1 on Bk(0). It is 

clear that ϕk ∈ C∞
c (R2) and ∇ϕk(z) = s′

k(z · ξ)ξ for z ∈ Bk(0). One can check directly that the properties (168)–(169)
for sk translate to (166)–(167).

According to Lemma 11,

�k(z) := ϕk(z)z +
(
∇ϕk(z) · z⊥) z⊥

is an entropy. It is clear that (166) implies that {�k(z)} is bounded uniformly for bounded z. According to (167),

�k(z) → ϕ(z)z +
(
F(z) · z⊥) z⊥ =

{
|z|2ξ for z · ξ > 0,

0 for z · ξ ≤ 0,

which is (132). �
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