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Abstract

This paper considers two-dimensional gravity solitary waves moving through a body of density stratified water lying below 
vacuum. The fluid domain is assumed to lie above an impenetrable flat ocean bed, while the interface between the water and 
vacuum is a free boundary where the pressure is constant. We prove that, for any smooth choice of upstream velocity field and 
density function, there exists a continuous curve of such solutions that includes large-amplitude surface waves. Furthermore, 
following this solution curve, one encounters waves that come arbitrarily close to possessing points of horizontal stagnation.

We also provide a number of results characterizing the qualitative features of solitary stratified waves. In part, these include 
bounds on the wave speed from above and below, some of which are new even for constant density flow; an a priori bound on 
the velocity field and lower bound on the pressure; a proof of the nonexistence of monotone bores in this physical regime; and a 
theorem ensuring that all supercritical solitary waves of elevation have an axis of even symmetry.
Published by Elsevier Masson SAS.
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1. Introduction

Water in the depths of the ocean has a lower temperature and higher salinity than that found near the surface. 
The resulting density distribution is thus heterogeneous or stratified, which creates the potential for types of wavelike 
motion not possible in the constant density regime. Indeed, the density strata in the bulk are themselves free surfaces 
along which waves may propagate. This can lead to a remarkable phenomenon wherein large-amplitude waves steal 
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through the interior of the fluid while leaving the upper surface nearly undisturbed. Field observations have revealed 
that these internal waves are a common feature of coastal flows, and they are believed to play a central role in the 
dynamics of ocean mixing (cf., e.g., [43]). Stratified waves can be truly immense while traveling over vast distances: 
they include the largest waves ever recorded, with amplitude measuring up to 500 meters in some instances [3].

In this paper, we investigate two-dimensional solitary waves moving through a heterogeneous body of water. These 
are a type of traveling wave: they consist of a spatially localized disturbance riding at a constant velocity along an 
underlying current without changing shape. Solitary water waves have a long and rich mathematical history, stretching 
back to their discovery by Russell in 1834 (cf. [74]). Most of the work on this subject has been devoted to the 
homogeneous and irrotational regime, that is, the density is assumed to be constant and the curl of the velocity is 
assumed to vanish identically. This choice permits the use of many powerful tools from complex analysis such as 
conformal mappings and nonlocal formulations on the boundary. However, stratification generically creates vorticity, 
and thus investigations of heterogeneous waves are most naturally made in the rotational setting. The first rigorous 
existence theory for traveling waves with stratification was provided by Dubreil-Jacotin [32] over a century after 
Russell’s discovery. She specifically studied the small-amplitude and periodic regime by means of a new formulation 
of the problem that did not rely on conformal transformations.

Solitary waves are typically more difficult to analyze than periodic waves due to compactness issues that we will 
elaborate below. Stratification further complicates matters by allowing for a wealth of possible qualitative structures. 
In [83,85], Ter-Krikorov proved the existence of small-amplitude solitary waves with non-constant density. The first 
large-amplitude existence result for stratified solitary waves was given by Amick [4] and Amick–Turner [8]. This 
was the culmination of a burst of activity in the 1980s devoted largely to channel flows, that is, stratified waves in 
an infinite strip bounded above and below by rigid walls (see also [17,88,89]). Remarkably, these works came two 
decades before the development of an existence theory for large-amplitude periodic water waves with vorticity by 
Constantin and Strauss [24]. What explains this seeming discrepancy is that Amick, Turner, and their contemporaries 
restricted their attention to waves whose velocity is constant upstream and downstream, and hence are asymptotically 
irrotational. This assumption enabled them to handle stratification without confronting the effects of vorticity in their 
full generality. For further discussion of the literature, see Section 1.2.

One of the main contributions of the present work is an existence theory for large-amplitude surface solitary 
waves with density stratification. We are able to allow an arbitrary smooth density distribution and horizontal velocity 
profile at infinity. Moreover, the families we construct continue up to the appearance of an “extreme wave” that has a 
stagnation point. This is connected to the famous Stokes conjecture, which originally pertained to periodic irrotational 
waves (cf., [80,5]) but has since been extended to other regimes. For example, in the setting of irrotational solitary 
waves, Amick and Toland proved the existence of a continuum that limited to stagnation [7]. For stratified solitary 
waves which are asymptotically irrotational, Amick [4] constructed a family of solutions and proved that either it 
contains an extreme wave in its closure, or a certain alternative occurs that he deemed highly unusual and conjectured 
never happens (see [4, Theorem 7.4]). Here, we are able to state without qualification that our continuum limits to 
stagnation. This is the first such result for rotational solitary waves, even in the constant density case (see [96] and 
[97, Section 6]).

Our existence theory is built upon a host of new theorems concerning the qualitative properties of water waves with 
stratification. We first construct a family of small-amplitude waves via center manifold reduction methods. The full 
continuum is then obtained using a new global bifurcation scheme that abstracts and extends the ideas of [96,98]. This 
analysis hinges critically on having a thorough understanding of the possible structures that may arise as one moves 
away from the small-amplitude regime, and hence the qualitative theory plays an essential role.

It is worth mentioning that a great deal of recent research has centered on the Cauchy problem for water waves 
in various physical regimes. At present, a number of authors have proved results concerning the global in time well-
posedness for irrotational waves with small data (see, e.g., [35,100,36,46,1]), or local in time existence for rotational 
waves or interfacial flows (see [26,76,77]). Yet the stratified waves we wish to study are both colossal and long-lived. 
They are also fundamentally rotational due to the baroclinic generation of vorticity. In short, by considering the steady 
regime, we are able to treat waves that lie far beyond the current limitations of the time-dependent theory.

Now, let us describe the setting of the problem more precisely. We are interested in two-dimensional solitary waves 
with heterogeneous density � which travel with constant speed c under the influence of gravity. Changing to a moving 
reference frame enables us to eliminate time dependence from the system. The wave then occupies a steady fluid 
domain
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�= {(x, y) ∈R
2 : −d < y < η(x)},

where the a priori unknown function η is the free surface profile and {y = −d} is an impermeable flat bed. We suppose 
that � > 0 in �, and also that the fluid is continuously stratified in the sense that � is smooth. Moreover, the fluid is 
taken to be stably stratified in that heavier fluid elements lie below lighter elements, which translates to y �→ �(·, y)
being non-increasing.

A stratified water wave is described mathematically by the fluid domain �, density � : � → R+, velocity field 
(u, v) : � → R

2, and pressure P : � → R. The governing equations are the incompressible steady Euler system, 
which consists of the conservation of mass

(u− c)�x + v�y = 0 in �, (1.1a)

conservation of momentum{
�(u− c)ux + �vuy = −Px

�(u− c)vx + �vvy = −Py − g�
in �, (1.1b)

and incompressibility

ux + vy = 0 in �. (1.1c)

Here g > 0 is the gravitational constant of acceleration.
The free surface is assumed to be a material line, which results in the kinematic boundary condition

v = (u− c)ηx on y = η(x). (1.2a)

The pressure is required to be continuous over the interface

P = Patm on y = η(x), (1.2b)

where Patm is the (constant) atmospheric pressure. Finally, the ocean bed is taken to be impermeable and thus

v = 0 on y = −d. (1.2c)

It will be important for our later reformulations to require that there is no horizontal stagnation in the flow:

u− c < 0 in �. (1.3)

One consequence of this assumption is that the streamlines, which are the integral curves of the relative velocity field 
(u − c, v), extend from x = −∞ to x = +∞; see Fig. 1(b). Indeed, a simple application of the implicit function 
theorem shows that each streamline is the graph of a function of x.

In this work we are concerned with solitary waves, which are traveling wave solutions satisfying the asymptotic 
conditions

(u, v)→ (ů,0), � → �̊, η → 0 as |x| → ∞ (1.4)

uniformly in y. Here ů= ů(y) is a given far-field velocity profile, and �̊ = �̊(y) is a given density function. We point 
out again that one of the primary contributions of our result is that ů is allowed to be arbitrary. This is in marked 
contrast to the existing literature which requires that the velocity is constant upstream and downstream.

Rather than using ů, however, it will prove more convenient to fix a (scaled) asymptotic relative velocity 
u∗ : [−d, 0] →R+ and consider the family

ů(y)= c− Fu∗(y), (1.5)

where F > 0 is a dimensionless parameter which we will call the Froude number (cf., (2.2) and (2.5) for the complete 
definition). The positivity of u∗ is consistent with the lack of horizontal stagnation (1.3). In Section 2.1, we switch to 
dimensionless variables so that F is the only parameter appearing in the problem; we think of it as a dimensionless 
wave speed. It will later be proved that there exists a critical Froude number, denoted Fcr, that plays an important role 
in determining the structure of solutions. For constant density irrotational solitary waves, Fcr = 1, but in the present 
context its definition is given in (3.4). We say that a solution with F > Fcr is supercritical.

Observe that the conservation of mass (1.1a) implies that the density is transported by the flow. By fixing �̊, we 
therefore determine the density throughout the fluid region once the streamlines are known.
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Fig. 1. Two important types of traveling wave.

Finally, let us introduce some terminology for describing the qualitative features of these waves. A traveling wave 
is called laminar or shear if all of its streamlines are parallel to the bed. We say that a solitary wave is a wave of 
elevation provided that at each vertical cross section of the domain, the height of every streamline (except the one 
corresponding to the bed) lies above its limiting height as |x| → ∞. In particular, this means that η is strictly positive. 
A traveling wave is said to be symmetric provided u and η are even in x while v is odd. We say a symmetric wave of 
elevation is monotone if the height of every streamline (except the bed) is strictly decreasing on either side of the crest 
line {x = 0}; see Fig. 1.

1.1. Statement of results

1.1.1. Existence theory
The contributions of this paper come in two parts. The first of these is a complete large-amplitude existence theory 

for stratified solitary waves with an arbitrary (smooth and stable) density and smooth upstream velocity.

Theorem 1.1 (Existence of large-amplitude solitary waves). Fix a Hölder exponent α ∈ (0, 1/2], wave speed c > 0, 
gravitational constant g > 0, asymptotic depth d > 0, density function �̊ ∈ C2+α([−d, 0], R+), and positive asymp-
totic relative velocity u∗ ∈ C2+α([−d, 0], R+). There exists a continuous curve

C = {(u(s), v(s), η(s),F (s)) : s ∈ (0,∞)}
of solitary wave solutions to (1.1)–(1.4) with the regularity

(u(s), v(s), η(s)) ∈C2+α(�(s))×C2+α(�(s))×C3+α(R), (1.6)

where �(s) denotes the fluid domain corresponding to η(s). The solution curve C has the following properties.

(a) (Extreme wave limit) Following C , we encounter waves that are arbitrarily close to having points of (horizontal) 
stagnation:

lim
s→∞ inf

�(s)
|c− u(s)| = 0. (1.7)

(b) (Critical laminar flow) The left endpoint of C is a critical laminar flow,

lim
s→0

(u(s), v(s), η(s),F (s)) = (c− Fcru
∗,0,0,Fcr).

Here Fcr is the critical Froude number defined in (3.4).
(c) (Symmetry and monotonicity) Every solution in C is a wave of elevation that is symmetric, monotone, and 

supercritical.

Remark 1.2. (i) When we say that C is continuous, we in particular mean that the mapping (0, ∞) � s �→ η(s) ∈
C3+α(R) is continuous. In fact, we will show in Section 6 that, near any parameter value s0, we can reparametrize C
so that s �→ η(s) is locally real-analytic.

The situation is more subtle for the velocity field (u(s), v(s)), which is defined on the s-dependent domain �(s). 
In Section 2.3, we will introduce a diffeomorphism (the Dubreil-Jacotin transform) depending on (u(s), v(s), η(s))
that sends �(s) to a fixed rectangular strip R. Composing the velocity field with the inverse of this diffeomorphism 
gives a continuous map from the interval (0, ∞) to the fixed function space C2+α(R) ×C2+α(R). One consequence 
of this regularity is that u(s)(x, y) and v(s)(x, y) are jointly continuous in (x, y, s) on the domain {(x, y, s) ∈ R

3 :
s > 0, −d ≤ y ≤ η(s)(x)}.

(ii) In the special case of constant density, Theorem 1.1 recovers and improves upon the main result of [96,97]. For 
some choices of u∗, those earlier papers were forced to include the possibility that F(s) → ∞ while c−u(s) remains 
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uniformly bounded away from 0. Here, using the qualitative results described below, we are able to give the definitive 
statement that (1.7) holds for any u∗.

1.1.2. Qualitative theory
The second part of our results concerns the qualitative properties of solitary stratified waves. These are used at 

critical junctures in the argument leading to Theorem 1.1, but are of considerable interest in their own right. Several of 
them, in fact, improve substantially on the state-of-the-art for homogeneous flows. For the time being, we give slightly 
weaker statements than what is eventually proved because the optimal versions are best made using a reformulation 
of the problem introduced in the next section.

First, we establish a lower bound on P and an upper bound on (u, v) in terms of the given quantities F , u∗, �̊, 
g, and d . To our knowledge, these are the only estimates of this type for stratified steady waves; for constant density 
rotational waves, analogous bounds were obtained by Varvaruca in [91].

Proposition 1.3 (Bounds on velocity and pressure). The pressure and velocity fields for any solitary wave satisfy the 
bounds:

P − Patm +MFψ ≥ 0 and (u− c)2 + v2 ≤CF 2 in �,

where ψ is the pseudo stream function defined uniquely by ∇⊥ψ = √
�(u − c, v) and ψ |y=η = 0, and the constants 

C and M depend only on u∗, �̊, g, d , and a lower bound for F .

See Proposition 4.1, where this is proved in a non-dimensional form. For more on the pseudo stream function ψ , 
see Section 2.2.

Second, we provide estimates for the Froude number from above and below. Results of this type have a long history, 
going back at least to Starr [78], who found sharp bounds for F in the setting of homogeneous irrotational solitary 
waves; we refer the reader to the introduction to [97] for a detailed discussion and further references.

Theorem 1.4 (Upper bound on F ). Let (u, v, η, F) be a solution of (1.1)–(1.4). Then the Froude number satisfies the 
bound

F ≤ 2

π

gd

min(u∗)2

max�

min�

√
gd

min{x=0}(c− u)
.

Eliminating F and u∗ in favor of ů yields

min[√�̊(c− ů)]2

gd min�

min{x=0}[
√
�(c− u)]

1

d

0∫
−d

√
�̊(c− ů) dy

≤ 2

π

max�

min�
. (1.8)

See Theorem 4.7. Observe that the first two factors on the left-hand side of (1.8) are dimensionless measures of 
how close the flow comes to horizontal stagnation at ±∞ and along the crest line {x = 0}, respectively. This is the first 
such estimate for waves with vorticity (with or without density stratification) that makes no additional assumptions 
on the shear profile u∗; in [97], Wheeler established upper bounds for F that are independent of inf{x=0}(c − u), but 
impose further requirements on u∗. Thanks to Theorem 4.7, we can avoid making similar restrictions in Theorem 1.1. 
Under different hypotheses on u∗ than in [97], Kozlov, Kuznetsov, and Lokharu also prove estimates which imply 
upper bounds for F for constant density waves [55]. Their bounds involve the amplitude maxη, and apply not just to 
solitary waves but also to periodic waves as well as waves which are neither periodic nor solitary.

We also mention that, in the special case of homogeneous irrotational waves, the argument leading to Theorem 4.7
can be modified to prove the upper bounds obtained by Starr in [78].

As a lower bound on F , in part we prove the following.

Theorem 1.5 (Critical waves are laminar). Let (u, v, η, F) be a solitary wave solution of (1.1)–(1.4). If F = Fcr, then 
(u, v, η) = (c− Fcru

∗, 0, 0). That is, there exist no nonlaminar solitary waves with critical Froude number.
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Fig. 2. Bores.

In addition, we provide a partial characterization of waves of elevation in terms of the Froude number; for the com-
plete statement, see Theorem 4.4 and the remark afterward. Theorem 1.5 in particular implies that a continuous curve 
of supercritical waves cannot limit to a subcritical wave without passing through a laminar flow. The nonexistence of 
critical solitary waves with constant density was shown by Wheeler [97] and then generalized to arbitrary constant 
density waves by Kozlov, Kuznetsov, and Lokharu [55]. The bound F > Fcr for waves of elevation was obtained by 
Wheeler [97] under the assumption of constant density and Amick and Toland [7] and McLeod [68] under the fur-
ther assumption of irrotationality. Very recently, Kozlov, Kuznetsov, and Lokharu have given an essentially complete 
description of all constant density waves with near-critical Bernoulli constant [56].

A bore is a traveling wave that limits to distinct laminar flows as x → ±∞; see Fig. 2. They are observed in nature 
(see, e.g., [79]) and have been computed numerically in various regimes (cf., e.g., [90,59,41,73]). Rigorous existence 
results for bores in multi-fluid channel flows have been obtained by Amick [9], Makarenko [67], and Tuleuov [87]. 
Bores play a special role in the global bifurcation theory analysis leading to Theorem 1.1. In particular, many previous 
studies of stratified waves include the existence of bores as an alternative to the extreme wave limit (cf., e.g., [8] where 
they are referred to as “surges”); this should be viewed as an indication of the system’s lack of compactness. However, 
with a free upper surface, no bores exist with the property that the asymptotic height of all streamlines upstream lie at 
or below their asymptotic height downstream. This is the content of the next theorem.

Theorem 1.6 (Nonexistence of monotone bores). Suppose that (u, v, η) is a solution of (1.1)–(1.3) which is a bore in 
the sense that

(u(x, · ), v(x, · ), η(x))→ (ů±( · ),0, η±), as x → ±∞
pointwise, where η± >−d are constants and ů± ∈C1([−d, η±]). If the limiting height of each streamline at x = −∞
is no greater (or no less) than the limiting height of the same streamline at x = ∞, then in fact η+ = η− and ů+ ≡ ů−. 
In particular, for any bounded solution of (1.1)–(1.3), v must change signs unless it vanishes identically.

A stronger version of Theorem 1.6 is given in Theorem 4.8; we also generalize it to include multiple fluid flows in 
Corollary 4.12. To the best of our knowledge, the nonexistence of monotone bores with a free upper surface has never 
been previously recorded, which is somewhat surprising in view of the large number of works devoted to studying 
bores in similar physical regimes. Even in the relatively simple case of two homogeneous irrotational layers with a free 
surface, the usual calculations seem highly intractable (cf., [30, Appendix A]). It was proved by Wheeler that bores 
(not necessarily monotone) do not exist for free surface solitary waves with constant density [98], but this argument 
seems to break down entirely for highly stratified waves. Moreover, even in the special case of constant density, our 
method is considerably more direct for monotone bores.

Finally, we prove the following theorem characterizing the monotonicity and symmetry properties of stratified 
waves of elevation.

Theorem 1.7 (Symmetry). Let (u, v, η, F) be a supercritical wave of elevation that solves (1.1)–(1.3) with 
‖u‖C2(�), ‖v‖C2(�), ‖η‖C3(R) <∞. Suppose that

(u, v)→ (ů,0) uniformly as x → +∞ (or as x → −∞).

Then, after a translation, the wave is a symmetric and monotone solitary wave.

The symmetry of steady water waves has been a very active subject of research. Indeed, the reformulated problem 
will turn out to be an elliptic PDE, and hence Theorem 1.7 falls into the larger category of results on the symmetry 
and monotonicity of positive solutions to elliptic systems. More direct antecedents for water waves are given by Craig 
and Sternberg [27]; Maia [66]; Constantin and Escher [23]; Hur [45]; Constantin, Ehrnström and Wahlén [22]; and 
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Walsh [93]. These papers are set in different physical regimes, but are all built around the method of moving planes 
(cf. [37,63]).

Compared to this body of work, Theorem 1.7 has two distinctive features. First, we only impose asymptotic con-
ditions upstream (or downstream), but nevertheless can conclude evenness and monotonicity. Typical moving-plane 
arguments begin with the far more restrictive assumption that the solutions decay in both directions. Moreover, due to 
the stratification, the elliptic problem that we are forced to consider has a zeroth order term with adverse sign, which 
significantly complicates the procedure. For the full statement and further discussion, see Theorem 4.13.

In addition to the above theorems, a number of propositions concerning more refined monotonicity properties of 
solitary stratified waves are given in Section 4.5. These may be of some broader interest, but are primarily important 
for their application in proving Theorem 1.1.

1.2. History of the problem

The first rigorous constructions of exact nonlinear steady water waves were made in the 1920s by Nekrasov [72]
and Levi-Civita [62]. They considered the case of irrotational periodic water waves of infinite depth using conformal 
mappings and power series expansions. Their techniques rely heavily on both irrotationality and the smallness of 
the amplitude. Large-amplitude periodic irrotational waves were first constructed by Krasovskiı̆ [57], and later by 
Keady and Norbury [49], who used global bifurcation theory. These solutions were further studied by Toland [86] and 
McLeod [69], eventually leading to the proof of the Stokes conjecture ([80]) by Amick, Fraenkel, and Toland [5].

Solitary waves present a greater technical challenge to study. This is apparent even in the small-amplitude regime: 
the linearized operator at a critical laminar flow fails to be Fredholm for solitary waves, making the local bifurcation 
theory analysis much more subtle than in the periodic case. The existence theory for small-amplitude irrotational 
solitary waves begins in the mid 1950s and early 60s. Lavrentiev [61] and Ter-Krikorov [83] used a construction 
based on long-wavelength limits of periodic waves. Friedrichs and Hyers [34] introduced a more direct iteration 
method. Later Beale [10] provided an alternative proof using the Nash–Moser implicit function theorem. Mielke 
[70] subsequently used spatial dynamics methods, in particular the center manifold reduction technique. Compared to 
Nash–Moser iteration, and other similar approximation schemes, spatial dynamics gives a fuller qualitative description 
of the small-amplitude solutions. For that reason, we shall use it in this paper for the small-amplitude existence theory.

The construction of large-amplitude solitary waves is further complicated by the loss of compactness coming from 
the unbounded domain. Amick and Toland [6,7] circumvent this difficulty by considering a sequence of approximate 
problems with better compactness properties, constructing global curves of solutions to these approximate problems, 
and then taking a limit using the Whyburn lemma [99]. Large-amplitude irrotational solitary waves are also con-
structed in [14].

Unlike the above works, our interest in this paper lies in stratified flows, which are typically rotational. This is 
a consequence of the fact that vorticity is generated by the component of the density gradient that is orthogonal 
to the pressure gradient. Let us first discuss the constant density rotational theory, which is already significantly 
more involved than the irrotational case. In the presence of non-constant vorticity, the complex analytic machinery 
underlying much of the irrotational theory is no longer applicable; instead, one is required to explore the dynamics 
inside the fluid domain. In 1934 Dubreil-Jacotin [31] was able to use a nonconformal coordinate transformation to 
construct small-amplitude periodic waves with vorticity. Much later, Constantin and Strauss obtained large-amplitude 
periodic solutions with a general vorticity distribution through a global-bifurcation-theoretic approach [24].

The first rigorous construction of small-amplitude rotational solitary waves is due to Ter-Krikorov [84,85], fol-
lowed by Hur [44], who generalized the method of Beale [10], and Groves and Wahlén [40] using spatial dynamics. 
Quite recently, Wheeler developed an existence theory for large-amplitude rotational solitary waves by starting from 
the small-amplitude solutions of Groves and Wahlén, and then continuing them globally [96–98]. In contrast to Amick 
and Toland [7,6], this is done without recourse to approximate problems, relying instead on a new global-bifurcation-
theoretic technique that permits a lack of compactness at the cost of additional alternatives for the structure of the 
solution set. These alternatives are then winnowed down using qualitative theory, specifically the symmetry and 
monotonicity properties of the waves and the nonexistence of monotone bores. We further generalize this result in 
the present paper, obtaining an abstract global bifurcation principle that allows us to construct large-amplitude waves. 
It is important to note that, compared to the homogeneous problem considered by Wheeler, the qualitative theory here 
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presents significant additional difficulties. Despite this, we are able to get a result that, specialized to the constant 
density case, is in fact stronger than the main theorem of [96,97].

Let us now discuss the literature on stratified steady waves. While this paper is interested in the free upper surface 
problem, a large part of the study of inhomogeneous waves has focused on channel flows where the fluid domain is 
confined between two impermeable horizontal boundaries. Two-layered systems of this type have been considered 
in detail in numerous studies, e.g., Amick and Turner [8] and Sun [81], while small-amplitude channel flows with 
continuous stratification were constructed by Ter-Krikorov [85], Turner [88], Kirchgässner [52], Kirchgässner and 
Lankers [54], James [47], and Sun [82]. Large-amplitude existence theory for continuously stratified channel flows 
was provided by Bona, Bose, and Turner [17], Amick [4], and Lankers and Friesecke [60].

The subject of the present work is the free surface problem where there is no rigid lid and the upper boundary 
is instead a surface of constant pressure. This has many implications for the qualitative properties of the waves, 
and complicates the governing equations by introducing a fully-nonlinear boundary condition (see (2.17)). The first 
rigorous small-amplitude existence results for the free surface periodic stratified water wave problem are due to 
Dubreil-Jacotin [32]; Yanowitch [101] used a different approach to obtain similar results. The existence of large-
amplitude periodic stratified waves was proved much more recently by Walsh [94], adapting the ideas of Constantin 
and Strauss [24]. To our knowledge, there are no prior existence results for large-amplitude solitary stratified waves 
with a free upper surface.

We reiterate that all of the above existence theory for solitary stratified waves is restricted to the case where the 
flow is uniform upstream and downstream, corresponding to ů being a constant, which precludes many physically 
interesting situations that involve wave-current interactions in the far field. As far as we are aware, Theorem 1.1 is the 
first existence result of any kind for solitary stratified flows with a free upper surface and a general ů.

1.3. Plan of the article

Let us now briefly explain the overall structure of the paper and the main challenges ahead.
The first of these is already apparent: we are considering a free boundary problem. In Section 2, therefore, we 

begin (after non-dimensionalizing) by performing a change of variables that fixes the domain. This is done using the 
Dubreil-Jacotin transformation, which recasts the Euler system as a scalar quasilinear elliptic PDE with fully nonlinear 
boundary conditions; we can write it abstractly as an operator equation

F (w,F )= 0, (1.9)

where w describes the deviation of the streamlines from their asymptotic heights, and F is the Froude number. In 
these new coordinates, the fluid domain � is mapped to a fixed infinite strip R. Recall that the presence of vorticity 
(and stratification) mean that one cannot simply consider a nonlocal problem posed on the boundary, as is typical for 
irrotational waves.

Density stratification is manifested in (1.9) as a zeroth order term whose sign violates the hypotheses of the max-
imum principle (cf. (2.28) and Theorem 6.11). As we discuss below, maximum principle arguments are crucial to 
proving the existence of large-amplitude waves, and thus the “bad sign” is a serious issue. Curiously, this means that 
it is actually simpler to work with unstable densities rather than the more physically relevant kind we consider here 
(see also [54] where this observation is made).

The second major difficulty is the “singularity” of the bifurcation point, in particular that the linearized opera-
tor at the critical laminar flow Fw(0, Fcr) is not Fredholm (see [44]). This completely rules out using a standard 
Lyapunov–Schmidt reduction to construct small-amplitude waves as in the periodic case [94].

Perhaps the most serious obstacle, though, is a lack of compactness. For periodic waves, one can use Schauder 
estimates to show that bounded sets of solutions are compact (and even more, that F is “locally proper”) [94, Sec-
tion 4]. With our unbounded domain R, however, Schauder estimates are no longer sufficient. In particular, there is 
the possibility that there exists a sequence of solutions to (1.9) for which the crest becomes progressively flatter and 
longer, and which therefore has no convergent subsequences; see Fig. 3.

Proving Theorem 1.1 therefore requires us to overcome the potential loss of the maximum principle due to the 
stratification, the singularity of the bifurcation point, and the loss of compactness. This process begins in Section 3, 
where we establish some important preparatory results concerning the properties of the linearized operator Fw(w, F). 
First, we investigate the linearized equation at a laminar flow (corresponding to w≡ 0) and restricted to functions that 
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Fig. 3. A sequence of waves with increasingly broad and flat crests.

are independent of x. This leads to a Sturm–Liouville problem that, at the critical Froude number Fcr, will have 0 as 
its lowest eigenvalue with the remainder of the spectrum lying on the positive real axis. Physically, Fcr divides the 
regimes of fast-moving (supercritical) waves that outrun all linear periodic waves and slow-moving (subcritical) waves 
that do not. We show that, in the supercritical regime, maximum principle arguments can be successfully carried out 
in many instances despite the adverse sign of the zeroth order term. More generally, we also prove that Fw(w, F)
is a Fredholm operator with index 0 when F > Fcr. This fact follows from the observation that the operator with 
coefficients evaluated at x = ±∞ is invertible (see [96,92]).

Section 4 is devoted to the qualitative theory. A priori bounds on the pressure, velocity, and Froude number are 
established using maximum principle arguments and several new integral identities. Later, these will be key to win-
nowing the alternatives that arise in the global bifurcation argument. The nonexistence of monotone bores is proved 
using a conjugate flow analysis, while the symmetry follows from an adapted moving planes argument. Anticipating 
that these results may have interest beyond their applications to the existence theory, we have gathered them together 
in a single section rather than leaving them dispersed throughout the paper.

The next task, taken up in Section 5, is to construct a family of small-amplitude solitary waves bifurcating from the 
background laminar flow. As discussed above, the fact that Fw(0, F) is not Fredholm presents a serious obstruction. 
Various strategies have been devised to get around this; see the discussion in Section 1.2. In this paper, we choose to 
employ spatial dynamics and the center manifold reduction method. By treating the horizontal variable x as time-like, 
we are able to further reformulate problem (1.9) as an infinite-dimensional Hamiltonian system. As F increases past 
Fcr, the linearized operator has a pair of purely imaginary eigenvalues that collide at the origin and then become real. 
This gives rise to a two-dimensional center manifold and a corresponding reduced ODE system whose solutions can 
be lifted to bounded solutions of the full problem. For Froude numbers just above Fcr, the reduced problem is, to 
leading order, the ODE satisfied by the solitons of the Korteweg–de Vries equation. When F is slightly subcritical, an 
analogous argument gives the existence of periodic stratified waves with periods limiting to infinity as F ↗ Fcr; these 
are heterogeneous waves of cnoidal type. Here we are working very much in the spirit of Groves and Wahlén [39,40], 
who considered homogeneous density solitary waves with vorticity, and also [96], where the construction in [40] is 
linearized step by step to show that the resulting solutions are nondegenerate.

Ultimately, the center manifold analysis furnishes us with a family of small-amplitude solitary waves, Cloc. In 
Section 6, we complete the proof of Theorem 1.1 by continuing Cloc to a global curve C using an adaptation of the 
method of Dancer [28,29] and its generalization by Buffoni–Toland [20]. However, as mentioned above, one cannot 
directly apply this theory because it fundamentally requires that closed and bounded subsets of F−1(0) be compact, 
and also that Fw be Fredholm of index 0 at the bifurcation point. Looking at the proofs in [20], we are first able 
to extract an abstract global bifurcation result, Theorem 6.1, that applies to a wider class of systems for which Fw

may not be Fredholm at the bifurcation point and where F−1(0) may not be locally compact (at the cost, of course, 
of a weaker conclusion). Following the strategy of [96,98], we show that, for general elliptic problems in cylinders, 
compactness can fail for a sequence of asymptotically monotone solutions only if a translated subsequence is locally 
converging to a monotone bore-type solution with different limits as x → ±∞ (see Lemma 6.3). By applying our 
qualitative theory, we are finally able to exclude most of the possibilities in Theorem 6.1 in our case, showing that C
can be continued up to stagnation.

Two appendices are also included. Appendix A contains a number of proofs and calculations that are either largely 
standard or merely technical. To keep the presentation self-contained, in Appendix B we list several results from the 
literature that are used throughout the paper.

2. Formulation

2.1. Non-dimensionalization

In this subsection, we will choose characteristic length, velocity, and density scales in terms of the data �̊, u∗, d, g.
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The natural choice for the length scale is d . For the density scale we will use the density along the free surface 
{y = η(x)}:

�0 := �̊(0). (2.1)

To determine the velocity scale, we first normalize the u∗ appearing in (1.5) so that it satisfies

0∫
−d

√
�̊(y)u∗(y) dy =

√
g�0d3. (2.2)

Next we consider the (relative) pseudo-volumetric mass flux m > 0 defined by

m :=
η(x)∫

−d

√
�(x, y)

[
c− u(x, y)

]
dy, (2.3)

which is a constant independent of x. Sending |x| → ∞ in (2.3) and then using (1.4), we find that m is given in terms 
of �̊, F , and u∗ by

m=
0∫

−d

√
�̊(y)[c− ů(y)]dy = F

0∫
−d

√
�̊(y)u∗(y) dy. (2.4)

From (2.2) we see that F , m, and �0 are related by the simple formula

g�0d
3

m2
= 1

F 2
, (2.5)

and consequently the velocity scale can be chosen to be m/(d
√
�0).

Rescaling lengths we set

(x̃, ỹ) := 1

d
(x, y), η̃(x̃) := 1

d
η(x). (2.6a)

Rescaling the density we define

�̃(x̃, ỹ) := 1

�0
�(x, y), ˜̊�(ỹ) := 1

�0
�̊(y), (2.6b)

and rescaling velocities we set

ũ(x̃, ỹ) :=
√
�0d

m
u(x, y), ṽ(x̃, ỹ) :=

√
�0d

m
v(x, y),

c̃ :=
√
�0d

m
c, ˜̊u(ỹ) :=

√
�0d

m
ů(y).

(2.6c)

Finally, combining the length, density, and velocity scalings we set

P̃ (x̃, ỹ) := d2

m2
(P (x, y)− Patm). (2.6d)

In these variables, (1.1) becomes⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ũ− c̃)�̃x̃ + ṽ�̃ỹ = 0

�̃(ũ− c̃)ũx̃ + �̃ṽũỹ = −P̃x̃

�̃(ũ− c̃)ṽx̃ + �̃ṽṽỹ = −P̃ỹ − 1

F 2
�̃

ũx̃ + ṽỹ = 0

in �̃, (2.7)

where the rescaled fluid domain is

�̃ := {(x̃, ỹ) ∈R
2 : −1 < ỹ < η̃(x̃)}.
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Here the particularly simple formula for the dimensionless parameter appearing in (2.7) is thanks to (2.5). The bound-
ary conditions (1.2) take the dimensionless form⎧⎪⎨⎪⎩

ṽ = (ũ− c̃)η̃x̃ on ỹ = η̃(x̃),

ṽ = 0 on ỹ = −1,

P̃ = 0 on ỹ = η̃(x̃),

(2.8)

and the asymptotic condition (1.4) becomes

(ũ, ṽ)→ ( ˜̊u,0), �̃ → ˜̊�, η̃ → 0 as |x̃| → ∞. (2.9)

For the solutions we construct, analogous convergence in fact holds for the first derivatives of the velocity field and 
density, and up to the second derivative for the surface profile. Combining (2.5) with (1.5), we see that

˜̊u(ỹ)− c̃ = − 1√
gd

u∗(y), (2.10)

so the asymptotic conditions (2.9) are independent of F .
To simplify notation we will from now on drop the tildes on the dimensionless variables defined in (2.6) and the 

fluid domain �̃.

2.2. Stream function formulation

The dimensionless Euler system (2.7) can be turned into a scalar equation by introducing the pseudo (relative) 
stream function ψ defined up to a constant by

ψx = −√
�v, ψy = √

�(u− c). (2.11)

It is apparent from these equations that the streamlines are level sets of ψ . The kinematic condition and impermeability 
condition in (2.8) then imply that ψ is constant on the free surface and bed; we normalize ψ by setting ψ = 0 on 
{y = η(x)}. Thanks to the definition of m in (2.3) and the scaling (2.6), we then have ψ = 1 on the bed {y = −1}. 
Note also that the no stagnation condition (1.3) translates to

ψy < 0 in �. (2.12)

Conservation of mass (1.1a) implies that the density is constant on each streamline. This permits us to introduce a 
streamline density function ρ : [−1, 0] → R

+ such that

�(x, y)= ρ(−ψ(x, y)) in �. (2.13)

For solitary waves, ρ is determined by the flow upstream (or downstream) and hence, and soon as u∗ is fixed, we can 
recover ρ from �̊ and conversely. In the remainder of the paper, we will use ρ in place of �̊, as it is more convenient 
when working in the new coordinates described below in Section 2.3. Notice that stable stratification corresponds to 
assuming that ρ ′ ≤ 0.

Bernoulli’s theorem states that the quantity

E := P + �

2

(
(u− c)2 + v2

)
+ 1

F 2
�y (2.14)

is constant along streamlines, as can be verified by differentiation. This and the absence of stagnation allows us to 
define the so-called Bernoulli function β : [0, 1] → R by

dE

dψ
(x, y)= −β(ψ(x, y)) in �. (2.15)

It can be shown (see, for instance [21, Lemma A.2]) that the Euler system (1.1) under the assumption of no 
stagnation (1.3) is equivalent to Yih’s equation (cf., [102]):


ψ − 1
2
yρ′(−ψ)+ β(ψ)= 0 in �. (2.16)
F
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Earlier versions of this equation were found by Dubreil-Jacotin [32] and Long [65]. The elegant form of (2.16) is the 
main argument for using the pseudo-stream function defined by (2.11) instead of the usual stream function where the 
factors of 

√
� are absent. If � is constant, then (2.16) reduces to the well-known semilinear equation 
ψ = −β(ψ)

for steady rotational water waves (with β ≡ 0 for irrotational waves).
Evaluating E on the free surface, and recalling the normalization (2.6c), the boundary conditions (1.2) become⎧⎪⎪⎨⎪⎪⎩

|∇ψ |2 + 2

F 2
�(y + 1)=Q on y = η(x),

ψ = 0 on y = η(x),

ψ = 1 on y = −1,

(2.17)

where the constant

Q := 2

(
E + 1

F 2
�

)∣∣∣
y=η(x)

=
(
�(ů− c)2 + 2

F 2
�

)∣∣∣
y=0

. (2.18)

Finally, the asymptotic conditions (1.4) become

∇ψ →
(

0,
√
�̊(ů− c)

)
, η → 0, � → �̊, as |x| → ∞. (2.19)

Remark 2.1. For solitary waves, the behavior at infinity strongly constrains the near-field structure as well. In particu-
lar, the Bernoulli function β can be explicitly computed in terms of the asymptotic data at x = ±∞. Here, to compare 
our results to previous works in the literature, specifically those for periodic solutions, we derive an expression for the 
Bernoulli function β in terms of ů and ρ.

Let ẙ(p) be the limiting y-coordinate of the streamline {ψ = −p}, and define

Ů (p) := ů(ẙ(p)). (2.20)

From (2.19), we see that ẙ and Ů are related by

ẙ(p)=
p∫

−1

1√
ρ(s)(c− Ů (s))

ds − 1. (2.21)

Sending |x| → ∞ in (2.16) and applying (2.19), we see that β is given by

β(−p)= 1

F 2
ẙρp − ∂y[√ρ(Ů − c)] =

(
1

F 2
ẙ − 1

2
(Ů − c)2

)
ρp + ρ(Ů − c)Ůp.

2.3. Height function formulation

Although Yih’s equation is scalar, it is still posed on an a priori unknown domain. This presents a serious technical 
challenge for the existence theory (though not necessarily the qualitative theory) and thus we will make a change of 
variables that fixes the domain. Specifically, we use the Dubreil-Jacotin transformation [32]

(x, y) �−→ (x,−ψ(x, y))=: (q,p), (2.22)

which sends the fluid domain � to a rectangular strip

R := {(q,p) ∈R
2 : p ∈ (−1,0)}.

The free (“top”) surface {y = η(x)} is mapped to T := {p = 0} and the image of the bed is B := {p = −1}. The new 
coordinates (q, p) are often called semi-Lagrangian variables.

It is also convenient to work with the new unknown h = h(q, p) which gives the height above the bed of the point 
(x, y) ∈� with x = q and lying on the streamline {ψ = −p},

h(q,p) := y + 1. (2.23)

We call h the height function. From (2.23), it is clear that h must be positive in R ∪ T and vanish on the bed B . In 
terms of h, the no stagnation condition now reads
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hp > 0. (2.24)

Likewise, the asymptotic conditions for h have the form

h(q,p)→H(p) hq(q,p)→ 0, hp(q,p)→Hp(p), as |q| → ∞. (2.25)

A simple calculation shows that we have the change-of-variables identities

hq = v

u− c
, hp = 1√

�(c− u)
, (2.26)

where the left-hand side is evaluated at (q, p) while the right-hand side is evaluated at (x, y) = (q, h − 1). Combining 
(2.21) with (2.20) and (2.10), we see that the upstream (and downstream) height function H(p) is the solution to the 
ODE ⎧⎪⎪⎨⎪⎪⎩

Hp(p)= 1√
�̊(c− ů)

∣∣∣∣∣
y=H(p)−1

in −1 <p < 0,

H(−1)= 0, H(0)= 1.

(2.27)

One can show that Yih’s equation (2.16) and the boundary conditions (2.17) are equivalent to the following quasi-
linear PDE for h:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
−1 + h2

q

2h2
p

+ 1

2H 2
p

)
p

+
(
hq

hp

)
q

− 1

F 2
ρp(h−H)= 0 in R,

1 + h2
q

2h2
p

− 1

2H 2
p

+ 1

F 2
ρ(h− 1)= 0 on T ,

h= 0 on B,

(2.28)

see [21]. One can check that (2.28) is a uniformly elliptic PDE when infR hp > 0, with a uniformly oblique boundary 
condition. The sign of the zeroth order coefficient in the first equation means that (2.28) does not satisfy the hypotheses 
of the maximum principle (Theorem 6.11).

2.4. Flow force

The flow force

S (x) :=
η(x)∫
−1

[
P + �(u− c)2

]
dy (2.29)

is an important quantity to consider for steady waves. It is straightforward to check that S is independent of x. In 
semi-Lagrangian variables, we can equivalently write

S :=
0∫

−1

⎡⎣1 − h2
q

2h2
p

+ 1

2H 2
p

− 1

F 2
ρ(h−H)− 1

F 2

p∫
0

ρHp dp
′
⎤⎦ hp dp. (2.30)

Since H is fixed throughout the paper, we will view S = S (h) as a functional acting on h.
In the spatial-dynamics formulation presented in Section 5, S essentially serves as the Hamiltonian. Later, in 

Section 4.3, we will be interested in q-independent height functions h =K(p) which solve (2.28) and have S (K) =
S (H). In this case we will say that K and H are conjugate (cf., [12,48,50]).



530 R.M. Chen et al. / Ann. I. H. Poincaré – AN 35 (2018) 517–576
2.5. Function spaces and the operator equation

Finally, let us introduce the precise formulation of the problem and in particular the function spaces we will be 
working in. For a (possibly unbounded) domain D ⊂R

n, k a nonnegative integer and α ∈ [0, 1), we denote

C∞
c (D) := {φ ∈C∞(D) : the support of φ is a compact subset of D

}
,

Ck+α(D) :=
{
u ∈Ck(D) : ‖φu‖Ck+α <∞ for all φ ∈C∞

c (D)
}
.

The spaces C∞
c (D) and Ck+α(D) are defined analogously. Furthermore, let

Ck+α
b (D) :=

{
u ∈Ck(D) : ‖u‖Ck+α <∞

}
,

which is a Banach space when equipped with the obvious norm. We also consider the closed subspace

Ck+α
0 (D) :=

{
u ∈ Ck+α

b (D) : lim
r→∞ sup

|x|=r

|Dju(x)| = 0 for 0 ≤ j ≤ k

}
,

of Ck+α
b (D), which is a Banach space under the Ck+α

b (D) norm. Finally, we write

un → u in Ck+α
loc (D) ⇐⇒ ‖φ(un − u)‖Ck+α(D) → 0 for all φ ∈C∞

c (D).

Remark 2.2. Note that, if un → u in Ck
loc(D) and ‖un‖Ck+α is uniformly bounded, then in fact u ∈Ck+α

b (D).

Introducing the difference

w(q,p) := h(q,p)−H(p)

between the height function h and its asymptotic value H at |q| = ∞, the asymptotics conditions (2.25) become 
simply w ∈ C1

0(R). Note also that η(q) =w(q, 0). In terms of w, the height equation (2.28) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
− 1 +w2

q

2(Hp +wp)2
+ 1

2H 2
p

)
p

+
(

wq

Hp +wp

)
q

− 1

F 2
ρpw = 0 in R,

1 +w2
q

2(Hp +wp)2
− 1

2H 2
p

+ 1

F 2
ρw = 0 on T ,

w = 0 on B.

(2.31a)

The no stagnation assumption (1.3) and the boundedness of u translate to

0 < inf
R
(Hp +wp) <∞. (2.31b)

Define the Banach spaces X and Y = Y1 × Y2 by

X :=
{
w ∈ C3+α

b,e (R)∩C2
0(R) :w = 0 on B

}
,

Y1 := C1+α
b,e (R)∩C0

0(R), Y2 := C2+α
b,e (T )∩C1

0(R),
(2.32)

where the subscript “e” denotes evenness in q . From (2.26) it is clear that the evenness of w in q is equivalent to the 
symmetry discussed in the paragraph before Section 1.1. We write (2.31) as an operator equation

F (w,F )= 0, (2.33a)

where

F = (F1,F2) : U ⊂X ×R−→ Y

is given by
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F1(w,F ) :=
(

− 1 +w2
q

2(Hp +wp)2
+ 1

2H 2
p

)
p

+
(

wq

Hp +wp

)
q

− 1

F 2
ρpw, (2.33b)

F2(w,F ) :=
(

1 +w2
q

2(Hp +wp)2
− 1

2H 2
p

+ 1

F 2
ρw

)∣∣∣∣
T

. (2.33c)

Here we seek solutions in the open subset

U :=
{
(w,F ) ∈X ×R : inf

R
(Hp +wp) > 0, F > Fcr

}
⊂X ×R, (2.34)

where Fcr, the critical Froude number, will be defined in (3.4). Since F is a rational function of w and its derivatives, 
one easily checks that it is (real-)analytic with domain U and values in Y . All of this remains true when Fcr in the 
definition of U is replaced by 0; we will occasionally use this extended definition of F .

3. Linearized operators

In this section we prove several lemmas about the linearized operators Fw(w, F). The results in Section 3.1 will 
be needed in Section 4, while the work done in Section 3.2 lays the foundation for the existence theory in Sections 5
and 6.

3.1. Sturm–Liouville problems

We begin by studying the eigenvalue problem for the linearized operator Fw(0, F) around a laminar flow. Restrict-
ing to q-independent functions, this becomes the Sturm–Liouville problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( ẇp

H 3
p

)
p

−μρpẇ = −ν
ẇ

Hp

in −1 <p < 0,

ẇ = 0 on p = −1,

− ẇp

H 3
p

+μρẇ = 0 on p = 0,

(3.1)

where we have introduced the shorthand μ := 1/F 2 and ν is the eigenvalue.
First, we consider the situation for ν = 0, characterizing the smallest positive value of μ for which the system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( ẇp

H 3
p

)
p

−μρpẇ = 0 in −1 <p < 0,

ẇ = 0 on p = −1,

− ẇp

H 3
p

+μρẇ = 0 on p = 0,

(3.2)

has a nontrivial solution ẇ. One can approach this task using variational methods, but for later convenience we instead 
give an argument in terms of the (unique) solution � =�(p; μ) of the initial value problem(�p

H 3
p

)
p

−μρp�= 0 in −1 <p < 0, �(−1)= 0, �p(−1)= 1, (3.3)

together with the related function

A(μ) := −�p(0;μ)
H 3
p(0)

+μρ(0)�(0;μ),

which is defined so that � solves (3.2) for a given μ if and only if A(μ) = 0. Note that in the constant density case 
where ρp ≡ 0, � is independent of μ and hence A is simply an affine function.
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Lemma 3.1 (Existence of critical Froude number). There exists a unique μcr > 0 such that the following holds.

(a) The Sturm–Liouville problem (3.2) has a nontrivial solution ẇ for μ = μcr. Moreover, we can take ẇ =�cr(p) :=
�(p; μcr).

(b) If 0 ≤ μ ≤ μcr, then �(p; μ) > 0 for −1 <p ≤ 0 and �p(p; μ) > 0 for −1 ≤ p ≤ 0.
(c) For 0 ≤ μ <μcr, A(μ) < 0.

Recalling the definition of μ, this gives us at last the definition of the critical Froude number

Fcr :=
√

1

μcr
. (3.4)

A simple calculation confirms that in the case of constant density irrotational flow, Fcr = 1, as in the classical theory.

Proof of Lemma 3.1. Observe that (3.2) has a nontrivial solution ẇ �≡ 0 if and only if B(μ) =μρ(0)H 3
p(0), where

B(μ) := �p(0;μ)
�(0;μ) , (3.5)

and that in this case we can take ẇ =�( · ; μ). (Note that, by uniqueness for the initial value problem, the numerator 
and denominator in (3.5) cannot vanish simultaneously.) For μ = 0 we compute

�(p;0)= 1

Hp(−1)3

p∫
−1

Hp(s)
3 ds (3.6)

and hence

B(0)= Hp(0)3∫ 0
−1 H

3
p dp

> 0.

Clearly, � depends smoothly on μ. Differentiating (3.3) we see that its derivative �μ solves the inhomogeneous 
initial value problem(�μp

H 3
p

)
p

−μρp�μ = ρp� in −1 <p < 0, �μ(−1)=�pμ(−1)= 0. (3.7)

Together (3.7) and (3.3) lead to the Green’s identity(
�μp�

H 3
p

− �p�μ

H 3
p

)∣∣∣∣
p=0

=
0∫

−1

ρp�
2 dp. (3.8)

Differentiating (3.5) and using (3.8), we obtain

Bμ =
(
�μp�−�p�μ

�2

)∣∣∣∣
p=0

= Hp(0)3

�(0)2

0∫
−1

ρp�
2 dp < 0,

provided, of course, that �(0) = �(0; μ) �= 0. From this and the positivity of B(0) it follows that there is a unique 
smallest μ = μcr > 0 such that B(μ) = μρ(0)H 3

p(0) (see Fig. 4(a)), and hence that (3.2) has a nontrivial solution 
ẇ = �cr. The inequality A(μ) < 0 is a consequence of the inequality B(μ) > μρ(0)H 3

p(0) for 0 ≤ μ < μcr. We 
observe that B(μ), �(0; μ), and �p(0; μ) are all strictly positive for 0 ≤μ ≤ μcr.

Next we will show that

�(p;μ) > 0 for −1 <p ≤ 0 and 0 ≤ μ≤ μcr. (3.9)

Toward that purpose, define the set
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Fig. 4. (a) The function B = B(μ) from the proof of Lemma 3.1. (b) The function B = B(ν) from the proof of Lemma 3.3.

N := {μ ∈ [0,μcr] :�(p;μ) > 0 for −1 <p < 0}.
From (3.6) it is clear that 0 ∈ N . The continuous dependence of � on μ, together with the positivity �p > 0 for 
p = −1, 0 and 0 ≤μ ≤ μcr, show that N is a relatively open subset of [0, μcr]. Seeking a contradiction, suppose that 
it is not closed. Then there exists a limit point μ̄ ∈ [0, μcr] \ N . By definition, this means that there must be a point 
p̄ ∈ (−1, 0) where �(p̄, μ̄) = 0. On the other hand, as μ̄ is a limit point, we have �(p; μ̄) ≥ 0 for −1 ≤ p ≤ 0. This 
further implies that � attains a local minimum at p̄ and hence �p(p̄; μ̄) = 0. As before, �(p̄; μ̄) = �p(p̄; μ̄) = 0
forces �( · ; μ̄) ≡ 0 by uniqueness for the initial value problem, a contradiction. Thus we have proved that N is both 
relatively open and closed as a subset of [0, μcr]. It follows that N = [0, μcr], which, unraveling notation, gives the 
bound (3.9).

Fix μ ∈ [0, μcr]. It remains to prove the second inequality in (b), that is, �p(p; μ) > 0 for −1 ≤ p ≤ 0. Consider 
the function

f (p) := �p(p;μ)
H 3
p(p)

.

By construction f (−1) > 0, and we have shown that f (0) > 0 as well. By (3.3) and (3.9), fp(p) = μρp�(p; μ) ≤ 0
so that f is monotonically decreasing. Thus f > 0 and hence �p(p; μ) > 0 for −1 ≤ p ≤ 0, as desired. �

An easy extension of the proof of Lemma 3.1 gives the following corollary; see Fig. 4(a).

Corollary 3.2. There exist μD, μN with μcr <μN ≤ μD ≤ +∞ such that the following hold.

(a) If 0 ≤ μ <μN, then �(p; μ) > 0 for −1 <p ≤ 0 while �p(p; μ) > 0 for −1 ≤ p ≤ 0. Moreover, �p(0; μN) = 0.
(b) �(0; μ) > 0 for 0 ≤ μ <μD, while �(0; μD) = 0.
(c) For μcr <μ ≤ μN, A(μ) > 0.

We define the associated Froude numbers FD := 1/
√
μD, FN := 1/

√
μN. Their significance for the qualitative 

theory is discussed in Corollary 4.5. The first, FD, is the critical Froude number for channel flow.
Now we return to the full eigenvalue problem (3.1), but with μ =μcr fixed.

Lemma 3.3 (Spectrum). Let � denote the set of eigenvalues ν for the Sturm–Liouville problem (3.1) with μ = μcr.

(a) � = {νj }∞j=0, where νj → ∞ as j → ∞, and νj < νj+1 for all j ≥ 0;
(b) ν0 = 0; and
(c) each ν ∈� has geometric and algebraic multiplicity 1.

Proof. As with (3.2), we will analyze (3.1) by introducing the solution M =M(p; ν) to the initial value problem(Mp

H 3
p

)
p

−μcrρpM = −ν
M

Hp

in −1 <p < 0, M(−1)= 0, Mp(−1)= 1, (3.10)

and the associated function
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B(ν) := Mp(0;ν)
M(0;ν) .

Note that w = M( · ; ν) solves (3.1) for ν provided B(ν) = μcrρ(0)Hp(0)3. Also, B will have a pole at each νD that 
is an eigenvalue of the Dirichlet problem corresponding to (3.1):

−
(
ẇp

H 3
p

)
p

+μcrρpẇ = νD
ẇ

Hp

, ẇ(−1)= ẇ(0)= 0, ẇ �≡ 0. (3.11)

By classical theory, the set of Dirichlet eigenvalues �D is countably infinite, contains a sequence limiting to +∞, and 
has no finite accumulation points. Moreover, each νD ∈ �D is simple. We can therefore enumerate �D = {ν(j)D }∞j=1

where ν(j)D < ν
(j+1)
D and ν(j)D → ∞ as j → ∞. Due to the sign of ρp , a priori it is possible that several of the Dirichlet 

eigenvalues are negative. However, the definition of μcr ensures that this does not occur, as the following simple 
argument demonstrates.

Suppose that νD ≤ 0 and let ẇ be a corresponding solution of (3.11). For δ > 0, consider a new function

v̇δ := ẇ

δ +�cr
, (3.12)

which will then satisfy

−
(
δ +�cr

H 3
p

v̇δp

)
p

− (�cr)p

H 3
p

v̇δp +
(
μcrρpδ − νD

δ +�cr

Hp

)
v̇δ = 0, (3.13)

where we have used the equation (3.3) solved by �cr to simplify some terms.
For νD < 0, taking δ small enough ensures that the coefficient of the zeroth order term is positive, while for νD = 0, 

this coefficient vanishes as δ ↘ 0. We may therefore apply the maximum principle to the above equation if δ is 
sufficiently small. But then, because v̇δ = 0 on the top and bottom, it follows that v̇δ ≡ 0 and hence ẇ ≡ 0. Thus 
�D ⊂ (0, ∞) as desired.

Next, we differentiate (3.10) with respect to ν to find

−
(
Mνp

H 3
p

)
p

+μcrρpMν = M

Hp

+ ν
Mν

Hp

, Mν(−1;ν)=Mνp(−1;ν)= 0. (3.14)

Using this and the original equation (3.10), we obtain the Green’s identity(
MpMν

H 3
p

− MMνp

H 3
p

)∣∣∣∣∣
0

p=−1

=
0∫

−1

M2

Hp
dp.

From this it follows that

B ′(ν)= MMνp −MpMν

M2

∣∣∣∣
p=0

= −H 3
p(0)

M2(0)

0∫
−1

M2

Hp

dp < 0 (3.15)

whenever M(0; μ) �= 0. Thus B is a strictly decreasing function of ν.
The presence of the poles at the Dirichlet eigenvalues then implies B(ν) → ±∞ as ν → ν

(j)
D ± for all j . Thus, for 

each j ≥ 1, there is a unique νj ∈ (ν
(j)
D , ν(j+1)

D ) with B(νj ) = μcrρ(0)Hp(0)3; see Fig. 4(b). Moreover, since B is 
strictly decreasing and smooth on (−∞, ν(1)D ), there exists at most one ν0 ∈ (−∞, ν(1)D ) for which the same holds true. 
In fact, taking ν = 0, (3.1) becomes (3.2), and hence has the nontrivial solution �cr by Lemma 3.1. We infer that ν0
exists and is simply 0. Recalling the definition of B , we see that {νj }∞j=0 are precisely the eigenvalues of (3.1). This 
proves parts (a) and (b).

Finally, the simplicity of these eigenvalues is derived from the fact that the Sturm–Liouville problem (3.1) is 
formally self-adjoint. �
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Remark 3.4. The critical Froude numbers FD, FN, Fcr can also be defined as follows. Set

Lẇ := −
(
ẇp

H 3
p

)
p

+ 1

F 2
ρpẇ

and let LD, LN, LR denote L with domain

D(LD) :=
{
ẇ ∈C2([−1,0]) : ẇ(−1)= ẇ(0)= 0

}
,

D(LN) :=
{
ẇ ∈C2([−1,0]) : ẇ(−1)= ẇp(0)= 0

}
,

D(LR) :=
{
ẇ ∈C2([−1,0]) : ẇ(−1)= − ẇp(0)

H 3
p(0)

+ 1

F 2
ρ(0)ẇ(0)= 0

}
.

It is easy to see that the eigenvalues of LD, LN, LR are strictly positive when F is sufficiently large. We can therefore 
define

FD := inf {F > 0 : eigenvalues of LD all positive},
and likewise for FN and Fcr. Note that if ρ is a constant, then FD = FN = 0.

As a simple concrete example, consider the situation when Hp and ρp are both constants, in which case our 
normalization (2.2) together with (2.27) forces Hp ≡ 1. Using this, we easily calculate

FN = 2

π

√|ρp|, FD = 1

2
FN = 1

π

√|ρp|,
while Fcr = 1/

√
μcr where μcr > 0 is the smallest positive solution of√|ρp|√

μcr
= tan

(√
μcr|ρp|

)
.

In the limit as ρp → 0, these formulas simplify to FD = FN = 0 and Fcr = 1. Likewise, the eigenvalues ν ≥ 0 of the 
related Sturm–Liouville problem (3.1) are solutions of the algebraic equation√

ν +μcr|ρp| = μcr tan
(√

ν +μcr|ρp|
)
.

3.2. Fredholm and invertibility properties

We now move on to the linearized operators Fw(w, F) for (w, F) ∈ U . Not surprisingly, the operators Fw(0, F)
obtained by linearizing about the trivial solution w = 0 play a special role; here it is crucial that F > Fcr so that we 
can use Lemma 3.1.

Consider the problem Fw(0, F)ẇ = (f1, f2), i.e.,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( ẇp

H 3
p

)
p

+
( ẇq

Hp

)
q

− 1

F 2
ρpẇ = f1 in R,

− ẇp

H 3
p

+ 1

F 2
ρẇ = f2 on T ,

ẇ = 0 on B.

(3.16)

We will view Fw(0, F) as a map X → Y but also as a map Xb → Yb, where the spaces

Xb :=
{
u ∈ C3+α

b (R) : u|B = 0
}
, Yb := C1+α

b (R)×C2+α
b (T )

are like X and Y but without evenness or decay at infinity.
Both of the coefficients in front of ẇ in (3.16) have the “bad” sign in the sense that they do not satisfy the hypotheses 

of the maximum principle (cf. Theorem 6.11). We can get around this, however, by using a slight variation of the 
function � from Lemma 3.1, namely the function �̃ defined by
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( �̃p

H 3
p

)
p

− 1

F 2
ρp�̃= 0 in −1 <p < 0, �̃(−1)= ε, �̃p(−1)= 1, (3.17)

where 0 < ε � 1 is a constant (depending on F ) to be determined.

Lemma 3.5. If F > Fcr, then, for ε > 0 sufficiently small,

�̃ > 0 for −1 <p ≤ 0, �̃p > 0 for −1 ≤ p ≤ 0, (3.18)

− �̃p

H 3
p

+ 1

F 2
ρ�̃ < 0 on p = 0. (3.19)

Proof. Comparing (3.17) to (3.3), we see that �̃ = � when ε = 0. Thus, from Lemma 3.1 we know that (3.19) and 
the second inequality in (3.18) hold for ε sufficiently small. Indeed, since �p > 0 for −1 ≤ p ≤ 0, we in fact have 
�p ≥ δ > 0 for some constant δ, and therefore �̃p ≥ δ/2, say, for sufficiently small ε. Because �̃(−1) = 0, the first 
inequality in (3.18) follows by integrating the second. �

Fix F > Fcr and let �̃ be the function whose existence is guaranteed by Lemma 3.5. Making the change of depen-
dent variable ẇ =: �̃v, a calculation shows that Fw(0, F)ẇ = (f1, f2) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
vp

H 3
p

)
p

+
(
vq

Hp

)
q

+ 2�̃pvp

�̃H 3
p

= f1

�̃
in R,

− vp

H 3
p

+ 1

�̃

(
− �̃p

H 3
p

+ 1

F 2
ρ�̃

)
v = f2

�̃
on T ,

v = 0 on B.

(3.20)

The elliptic operator in (3.20) has no zeroth order term, and from (3.19) the coefficient in front of v in the boundary 
condition on T has the “good” sign.

Lemma 3.6 (Fredholm index 0). For (w, F) ∈U , Fw(w, F) is Fredholm with index 0 and Fw(0, F) is invertible.

Proof. First consider Fw(0, F) for F > Fcr. Because of the “good” signs in (3.20), [96, Lemma A.5] and [98, 
Corollary A.11] imply that Fw(0, F) is invertible Xb → Yb and X → Y . For a general (w, F) ∈ U , Fw(w, F) is 
then Fredholm with index 0 by [98, Lemma A.12], which is proved using a translation argument together with the 
continuity of the index; see [92]. �
4. Qualitative properties

4.1. Bounds on the velocity and pressure

Very little is known about the distribution of pressure in traveling waves with vorticity, even less so for those with 
density stratification. Our first result gives an a priori lower bound on the pressure in a stratified steady wave. This 
generalizes the best currently available lower bound for constant density rotational waves, due to Varvaruca [91]. 
Bernoulli’s law then furnishes an upper estimate on the magnitude of the relative velocity.

Proposition 4.1 (Bounds on velocity and pressure). The pressure and velocity fields for any solitary wave satisfy the 
bounds

P +Mψ ≥ 0 and (u− c)2 + v2 ≤ C in �, (4.1)

where the constants C and M depend only on u∗, �̊, g, d , and a lower bound for F .

Converting to dimensional variables we obtain Proposition 1.3.
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Proof of Proposition 4.1. Recall from Remark 2.1 that β and hence E are completely determined by u∗, ρ, g, and d .
Let f := P +Mψ , where M is a constant to be determined, and assume that F > F0 for some fixed lower bound F0. 

A tedious calculation using Yih’s equation (2.16) shows that f satisfies the elliptic equation


f − b1fx − b2fy = 2F−2ρ(2M +
ψ)ψy − 2F−4ρ2

|∇ψ |2 −
[
(2M +
ψ)M − 1

F 2
ρpψy

]
, (4.2)

where the coefficients b1 and b2 are given by

b1 := 2
ψx(2M +
ψ)

|∇ψ |2 , b2 := 2
ψy (2M +
ψ)− 2F−2ρ

|∇ψ |2 . (4.3)

From Bernoulli’s law (2.17) and (2.18), we see that

1

F 2
η <

(ů(0)− c)2

2
= u∗(0)2

2gd
. (4.4)

Yih’s equation (2.16) then gives the estimate


ψ = −β + 1

F 2
yρp ≥ −‖β+‖L∞ − u∗(0)2

2gd
‖ρp‖L∞ . (4.5)

Thus, for

M >M1 := ‖β+‖L∞ + u∗(0)2

2gd
‖ρp‖L∞, (4.6)

we have 
ψ +M ≥ 0. Using this fact in (4.2) and estimating quite crudely yields the inequality


f − b1fx − b2fy ≤ −
[
M2 − 1

F 2
ρpψy

]
. (4.7)

Putting

M2 := 1

F0
‖ψy‖1/2

L∞‖ρp‖1/2
L∞, (4.8)

and taking M := max{M1, M2} therefore guarantees that


f − b1fx − b2fy ≤ 0 in �. (4.9)

We claim that, with this choice of M , f ≥ 0. At x = ±∞, the pressure is hydrostatic and hence positive, so 
lim inf|x|→∞ f (x, ·) ≥ 0. On the surface, f = 0, and on the bed {y = −1},

fy = Py +Mψy = − 1

F 2
ρ +Mψy < 0 on y = −1,

so that f cannot be minimized there. As f is a supersolution of the elliptic problem (4.9), the claim follows from the 
maximum principle.

Using Bernoulli’s law again, the inequality f ≥ 0 means

−1

2
|∇ψ |2 − 1

F 2
ρy +E = P ≥ −Mψ ≥ −M,

and hence, after rearranging,

|∇ψ |2 ≤ 2M − 2

F 2
ρy + 2E ≤ 2M + 2

F 2
0

+ 2E, (4.10)

where we have used the inequalities y >−1 and 0 < ρ ≤ 1 satisfied by the dimensionless variables ρ and y.
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First suppose that M2 ≥ M1 so that M = M2. Then taking the supremum of the left-hand side of (4.10) and 
dropping the ψx term, we find

‖ψy‖2
L∞ ≤

(
1

2
‖ψy‖2

L∞ + 3

2F 4/3
0

‖ρp‖2/3
L∞

)
+ 2

F 2
0

+ 2‖E‖L∞

and hence

‖ψy‖2
L∞ <

3

F
4/3
0

‖ρp‖2/3
L∞ + 4

F 2
0

+ 4‖E‖L∞ . (4.11)

In particular, M2 is controlled by

M2 ≤ 1

F0
‖ρp‖1/2

L∞

(
3

F
4/3
0

‖ρp‖2/3
L∞ + 4

F 2
0

+ 4‖E‖L∞

)1/4

.

Plugging M =M2 back into (4.10) then yields a bound on the full gradient:

‖∇ψ‖2
L∞ ≤ 2

F0
‖ρp‖1/2

L∞

(
3

F
4/3
0

‖ρp‖2/3
L∞ + 4

F 2
0

+ 4‖E‖L∞

)1/4

+ 2

F 2
0

+ ‖E‖L∞ . (4.12)

On the other hand, if M1 ≥M2 so that M =M1, (4.10) gives immediately that

‖∇ψ‖2
L∞ ≤ 2M1 + 2

F 2
0

+ 2‖E‖L∞ . �
The estimates (4.1) can be translated into bounds on the semi-Lagrangian quantities.

Corollary 4.2 (Bounds on w and ∇w). There exist positive constants C∗ and δ∗ so that any solitary wave with F ≥ Fcr
satisfies

inf
R

(
wp +Hp

)
> δ∗ and ‖w‖C1(R) < C∗(1 + ‖wp‖C0(R)). (4.13)

Proof. Letting F0 = Fcr in Proposition 4.1 and using (2.26), we have

1

h2
p

+ h2
q

h2
p

= ρ
[
(u− c)2 + v2

]
<C,

for some constant C. Dropping the second term on the left-hand side yields

inf
R
(Hp +wp)= inf

R
hp ≥ 1√

C
=: δ∗,

while dropping the first yields

|wq | = |hq |<
√
Chp = √

C(Hp +wp)≤ C2(1 + |wp|). (4.14)

Taking the supremum over R of (4.14), we conclude that ‖wq‖C0(R) ≤ C2(1 + ‖wp‖C0(R)). The full bound on 
‖w‖C1(R) then follows from writing w(q, p) = ∫ p−1 wp(q, p′) dp′. �
4.2. Bounds on the Froude number

The objective of this subsection is to derive a priori estimates from above and below for the Froude number. These 
are of general interest to studies of solitary waves, but are of special importance to our arguments in Section 6. The 
earliest work on this topic we are aware of was carried out by Starr [78], who formally derived sharp lower and upper 
bounds for homogeneous irrotational solitary waves. We refer to [97, Section 1.2] for a detailed historical discussion, 
but emphasize that our upper bound is new even for constant density waves with vorticity. In particular, while our 
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estimate involves a measure of stagnation that does not appear in [97], it does not require any additional assumptions 
on u∗.

4.2.1. Lower bound
First we will prove that there are no nontrivial solutions (w, F) of (2.31) with critical Froude number F = Fcr. We 

call this a lower bound because it will imply that the continuous curve of solutions that we construct in Section 6 can 
only reach a subcritical wave with F < Fcr by first passing through the critical laminar flow (0, Fcr). In the special 
case of constant density, our argument reduces to that in [97], and further implies the inequality F > Fcr for waves 
of elevation. To get a similar result with non-constant density, we need to assume F > FN where FN < Fcr; see 
Corollary 4.5. This extra assumption is related to the additional complexity of the Sturm–Liouville problem studied 
in Section 3.1. We note that the proof that F �= Fcr in [97] was extended in [56] to constant density waves which are 
not necessarily solitary or even periodic.

The main ingredient in our argument is the following integral identity involving the functions � and A defined 
at the start of Section 3.1, as well as the free surface profile η( · ) = w( · , 0). For two homogeneous and irrotational 
layers, this identity yields (B.8) in [30], at least formally.

Lemma 4.3. For any solution (w, F) ∈X ×R of the height equation (2.31) we have

M∫
−M

0∫
−1

H 3
pw

2
q + (Hp + 2hp)w2

p

2h2
pH

3
p

�p

(
p; 1

F 2

)
dp dq +A

( 1

F 2

) M∫
−M

ηdx −→ 0 (4.15)

as M → ∞.

Proof. Multiplying (2.28) by �, integrating by parts, and using the equation (3.3) satisfied by �, we obtain

0 =
M∫

−M

0∫
−1

[(
− 1 + h2

q

2h2
p

+ 1

2H 2
p

)
p
�+

(hq
hp

)
q
�− 1

F 2
ρp(h−H)�

]
dp dq

=
M∫

−M

0∫
−1

[(1 + h2
q

2h2
p

− 1

2H 2
p

)
�p −

(�p

H 3
p

)
p
(h−H)

]
dp dq

+
M∫

−M

(
− 1 + h2

q

2h2
p

+ 1

2H 2
p

)
�

∣∣∣∣
p=0

dq +
0∫

−1

hq

hp
�dp

∣∣∣∣q=M

q=−M

,

so that integrating by parts once more yields

0 =
M∫

−M

0∫
−1

[(1 + h2
q

2h2
p

− 1

2H 2
p

)
�p + �p

H 3
p

(hp −Hp)

]
dp dq

+
M∫

−M

[(
− 1 + h2

q

2h2
p

+ 1

2H 2
p

)
�− �p

H 3
p

(h−H)

]
p=0

dq +
0∫

−1

hq

hp
�dp

∣∣∣∣q=M

q=−M

.

(4.16)

Rewriting the first integrand in (4.16) as[(1 + h2
q

2h2
p

− 1

2H 2
p

)
+ 1

H 3
p

(hp −Hp)

]
�p = H 3

pw
2
q + (Hp + 2hp)w2

p

2h2
pH

3
p

�p,

and applying the boundary conditions in (2.28) and (3.3), we are left with
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M∫
−M

0∫
−1

H 3
ph

2
q + (Hp + 2hp)w2

p

2h2
pH

3
p

�p dp dq +A
( 1

F 2

) M∫
−M

ηdx

= −
0∫

−1

hq

hp
�dp

∣∣∣∣q=M

q=−M

−→ 0

as M → ∞ as desired. �
Theorem 4.4. Let (w, F) ∈X ×R be a solution of the height equation (2.31).

(i) If w > 0 on T , and if F is such that �p ≥ 0, then A(1/F 2) < 0.
(ii) If F = Fcr, then w ≡ 0. That is, there exist no nontrivial solitary waves with critical Froude number.

Proof. To prove (i), suppose that w > 0 on T (i.e., η > 0) and that �p > 0. Then both of the integrals in (4.15) are 
strictly positive for all M > 0. Thus, in order for the limit in (4.15) to hold, the coefficient A(1/F 2) must be negative.

To prove (ii), observe that A(1/F 2
cr) = 0 by Lemma 3.1(a) so that, for F = Fcr, (4.15) reduces to

M∫
−M

0∫
−1

H 3
pw

2
q + (Hp + 2hp)w2

p

2h2
pH

3
p

(�cr)p dp dq −→ 0 (4.17)

as M → ∞. Since (�cr)p > 0 by Lemma 3.1(b), the left-hand side of (4.17) is a nonnegative, nondecreasing function 
of M > 0. Thus the limit in (4.17) forces the left-hand side to vanish for all M , which in turn forces wq, wp ≡ 0 and 
hence w ≡ 0. �
Corollary 4.5. Let (w, F) ∈X ×R be a solution of the height equation (2.31). If w > 0 on T , and if F ≥ FN then in 
fact F > Fcr >FN. Here F 2

N = 1/μN is defined in Corollary 3.2. Thus waves of elevation are either supercritical with 
F > Fcr or quite subcritical in that F < FN <Fcr.

Proof. This follows immediately from Theorem 4.4(i) and Corollary 3.2. �
4.2.2. Upper bound

Next we will prove an upper bound on the Froude number. Unlike [97] in the case of constant density, our estimate 
does not require any additional assumptions on the asymptotic height function H . Our argument is more closely 
related to those given by Starr [78] and Keady and Pritchard [51]. While they are able to obtain an upper bound 
F <

√
2, the presence of vorticity seems to unavoidably introduce a term like ‖hp(0, · )‖L∞ which measures how 

close the wave is to stagnation on the line beneath the crest. This additional term also means that our bound is not 
a strict generalization of [97]. For constant density waves, Kozlov, Kuznetsov, and Lokharu [56] have obtained yet 
another distinct upper bound on F — really on the Bernoulli constant Q defined in (2.18) — in terms of the amplitude 
maxη. Their method involves a detailed characterization of one-parameter families of laminar flows with the same 
vorticity function, and hence seems particularly difficult to generalize to the stratified case.

Our upper bound is a consequence of the following integral identity.

Lemma 4.6. For any solution (w, F) ∈X ×R of the height equation (2.31),

1

F 2

⎡⎣ 0∫
−1

|ρp|w(0,p)2 dp + ρ(0)η(0)2

⎤⎦=
0∫

−1

w2
p

H 2
php

(0,p) dp. (4.18)

Proof. Comparing the flow force S (2.30) at q = 0 and q = ±∞, we find
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S (h)=
0∫

−1

⎛⎝ 1

2h2
p

+ 1

2H 2
p

− 1

F 2
ρ(h−H)−

p∫
0

1

F 2
ρHp dp

′
⎞⎠ hp dp

=
0∫

−1

⎛⎝ 1

2H 2
p

+ 1

2H 2
p

−
p∫

0

1

F 2
ρHp dp

′
⎞⎠ Hp dp = S (H),

where, here and in what follows, all integrals are taken at q = 0. Grouping terms and integrating by parts, we get

0 =
0∫

−1

[(
1

2h2
p

− 1

2H 2
p

)
Hp +

(
1

2h2
p

+ 1

2H 2
p

)
w

]
dp

−
0∫

−1

⎡⎣ 1

F 2
ρwwp + 1

F 2
ρwHp +

⎛⎝ p∫
0

1

F 2
ρHp dp

′
⎞⎠wp

⎤⎦ dp

=
0∫

−1

[(
1

2h2
p

− 1

2H 2
p

)
Hp +

(
1

2h2
p

+ 1

2H 2
p

)
wp

]
dp − 1

F 2

0∫
−1

ρwwp dp. (4.19)

Integrating by parts again, the second integral in (4.19) becomes

1

F 2

0∫
−1

ρwwp dp = 1

2F 2

0∫
−1

|ρp|w2 dp + 1

2F 2
ρw2

∣∣∣∣
p=0

,

while some algebra shows that the first integral collapses to

0∫
−1

[(
1

2h2
p

− 1

2H 2
p

)
Hp +

(
1

2h2
p

+ 1

2H 2
p

)
wp

]
dp = −

0∫
−1

w2
p

2H 2
php

dp,

leaving us with (4.18) as desired. �
Theorem 4.7 (Upper bound on F ). Let (w, F) ∈X×R be a solution of the height equation (2.31) and set h =w+H . 
Then the Froude number F satisfies the bound

F 2 ≤ 2

π
‖Hp‖2

L∞‖ρ‖L∞‖hp(0, · )‖L∞ . (4.20)

Proof. Rewriting (4.18) slightly as

1

2F 2

0∫
−1

ρwwp dp =
0∫

−1

w2
p

H 2
php

dp,

we crudely estimate the left-hand side by

1

2F 2

0∫
−1

ρwwp dp ≤ 1

F 2
‖ρ‖L∞‖w(0, · )‖L2‖wp(0, · )‖L2 ≤ 2

πF 2
‖ρ‖L∞‖wp(0, · )‖2

L2

and the right-hand side by

0∫
−1

w2
p

H 2
php

dp ≥
(

min
p

1

H 2
p

)(
min{q=0}

1

hp

)
‖wp(0, · )‖2

L2 .
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Together, these estimates imply

2

πF 2
‖ρ‖L∞‖wp(0, · )‖2

L2 ≥
(

min
p

1

H 2
p

)(
min{q=0}

1

hp

)
‖wp(0, · )‖2

L2 ,

and hence

F 2 ≤ 2

π
‖Hp‖2

L∞‖ρ‖L∞‖hp(0, · )‖L∞,

which completes the proof. �
The identity (4.18) can also be used in the case of homogeneous and irrotational flow to recover Starr’s and Keady–

Pritchard’s upper bound of 
√

2 for the Froude number. This is possible simply because the right-hand side of (4.18)
can be simplified for such waves. The presence of non-constant stratification forces us to do more crude estimates 
when proving Theorem 4.7.

4.3. Nonexistence of monotone bores

By a bore we mean a solution h of the height equation (2.28) satisfying

h(q,p)→H±(p) as q → ±∞, (4.21)

pointwise in p, where H− and H+ represent distinct laminar flows. Outside of hydrodynamics, traveling waves of this 
type are often called fronts. If one adopts the spatial dynamics viewpoint, thinking of q as the time variable, this is 
equivalent to having a heteroclinic orbit connecting the rest points H− and H+.

Bores are of particular importance to this work because they represent a barrier to proving that F has certain 
compactness properties. Observe that, a priori, there may be a sequence of even solitary waves of elevation where 
the crest flattens and expands into an infinite shelf; see Fig. 3. Naturally, this scenario precludes the existence of 
a subsequential limit in C2

0(R), and hence would mean that F−1(0) is not locally compact. Using a translation 
argument, it is shown in Section 6 that this would also imply the existence of a bore which is monotone in that 
H ≤H+ ≤H− (cf. Lemmas 6.3 and 6.7); see Fig. 2.

As mentioned in the introduction, while there are no constant density rotational bores (see [96, Lemma 2.10] or 
[98, Lemma 3.8]), it is well-known that bores can be found in many stratified regimes. However, as we prove in this 
subsection, one can completely rule out the existence of monotone bores for free surface stratified waves.

Theorem 4.8 (Nonexistence of monotone bores). Suppose that h ∈ C2
b(R) is a bore solution of the height equation 

(2.28) with infR hp > 0, and let H± be as in (4.21). If

H+ ≥H− =H on [−1,0] or H+ ≤H− =H on [−1,0],
then H+ =H− =H . The same result holds with the roles of H− and H+ reversed.

The proof of Theorem 4.8 relies on the following integral identity.

Lemma 4.9. Suppose that h =K(p) is a solution of the height equation (2.28) with K ∈ C2([−1, 0]) and Kp > 0. If 
H and K are conjugate in that S (K) = S (H), then

0∫
−1

(Kp −Hp)
3

H 2
pK

2
p

dp = 0. (4.22)

Proof. Let K be given as above. Since K is a q-independent solution of the height equation, it satisfies the ODE

−
(

1

2K2
p

)
+
(

1

2H 2
p

)
− 1

F 2
ρp(K −H)= 0 in (−1,0) (4.23)
p p
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and vanishes on the bed, and on the top

− 1

2Kp(0)2
+ 1

2Hp(0)2
= 1

F 2
ρ(0)(K(0)−H(0)). (4.24)

Multiplying (4.23) by J :=K −H and integrating by parts, we find

0 =
0∫

−1

⎡⎣(− 1

2K2
p

+ 1

2H 2
p

)
p

J − 1

F 2
ρpJ

2

⎤⎦ dp

=
0∫

−1

(
1

2K2
p

− 1

2H 2
p

)
Jp dp −

0∫
−1

1

F 2
ρpJ

2 dp +
(

− 1

2K2
p

+ 1

2H 2
p

)
J

∣∣∣∣
p=0

.

Using the boundary conditions (4.24), this simplifies to
0∫

−1

1

F 2
ρpJ

2 dp =
0∫

−1

(
1

2K2
p

− 1

2H 2
p

)
Jp dp + 1

F 2
ρJ 2

∣∣∣
p=0

. (4.25)

Since K and H have the same flow force, we can argue as in the proof of Lemma 4.6 but with h(q, · ) replaced by 
K to obtain an analogue of (4.19):

0 =
0∫

−1

[(
1

2K2
p

− 1

2K2
p

)
Kp +

(
1

2K2
p

+ 1

2K2
p

)
Jp

]
dp − 1

F 2

0∫
−1

ρJJp dp.

Integrating by parts in the last integral we get

0 =
0∫

−1

[(
1

2K2
p

− 1

2H 2
p

)
Hp +

(
1

2K2
p

+ 1

2H 2
p

)
Jp

]
dp + 1

2F 2

0∫
−1

ρpJ
2 dp − 1

2F 2
ρJ 2

∣∣∣∣
p=0

.

Substituting (4.25), the boundary terms cancel, leaving us with

0 =
0∫

−1

[(
1

2K2
p

− 1

2H 2
p

)
Hp +

(
1

2K2
p

+ 1

2H 2
p

)
Jp + 1

2

(
1

2K2
p

− 1

2H 2
p

)
Jp

]
dp

= 1

4

0∫
−1

J 3
p

H 2
pK

2
p

dp (4.26)

as desired. �
In order to apply Lemma 4.9 to prove Theorem 4.8, we need to know that the asymptotic states H± in the statement 

of the theorem are themselves solutions to the height equation with the expected regularity and flow force, based solely 
on the pointwise limit in (4.21). This is the content of the following technical lemma.

Lemma 4.10. Let h ∈C2
b(R) be a solution of the height equation (2.28) with infR hp > 0 which is a bore in that (4.21)

holds for some functions H±. Then H± ∈ C2([−1, 0]) are q-independent solutions to the height equation (2.28) and 
S (H+) = S (H−).

Proof. Consider the left-translated sequence {hn} defined by hn := h( · + n, · ). Via a standard argument, we can 
extract a subsequence so that hn → h+ in C1+1/2

loc (R). Letting infR hp =: δ > 0, we easily check that infR(h+)p ≥ δ

and S (h+) = S (H). Moreover, h+ ∈ C
1+1/2
loc (R) solves the (divergence form) height equation (2.28) in the weak 

sense. By elliptic regularity, h+ ∈ C2 (R). Finally, comparing hn → h+ in C1+1/2
(R) with (4.21), we see that 
loc loc
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h+(q, p) = H+(p), which completes the proof for H+. Arguing similarly with right translations we obtain the same 
results for H−. �
Proof of Theorem 4.8. Set K =H+, and assume first that K ≥H . By Lemma 4.10, we know that K ∈ C2([−1, 0])
solves the height equation (2.28) with Kp > 0 and that S (K) = S (H). In particular, as in the proof of Lemma 4.9, 
K satisfies (4.23) and (4.24). A simple consequence of (4.23) is that(

− 1

2K2
p

+ 1

2H 2
p

)
p

= 1

F 2
ρp(K −H)≤ 0, (4.27)

hence the quantity in parentheses on the left-hand side above is nonincreasing in p. From the boundary condition 
(4.24) on T , we then have

− 1

2K2
p

+ 1

2H 2
p

≥ 1

F 2
ρ(0)(K(0)−H(0))≥ 0 (4.28)

for all p and hence Kp ≥Hp on [−1, 0]. But now Lemma 4.9 implies that Kp −Hp ≡ 0. Since H(−1) =K(−1) = 0, 
it follows that H ≡K . A similar argument shows that the same holds true if K ≤H . �

The above proof is built on two facts. First, since Kp, Hp > 0, the equation J = K −H satisfies is elliptic. Thus 
if J is nonnegative (or nonpositive) it is a supersolution (or subsolution). For the free surface problem, the boundary 
condition on {p = 0} then allows us to infer that Jp cannot change signs. By contrast, for a channel flow, the boundary 
condition at the top will be inhomogeneous Dirichlet, which does not permit us to draw the same conclusion. Indeed, 
by Rolle’s theorem, Jp must change signs in the interior. The second building block is the integral identity (4.22). An 
analogous identity was discovered by Lamb and Wan [59, Appendix A] for solitary stratified flows in a channel with 
uniform velocity at infinity, and for general stratified solitary waves in a channel by Lamb [58, Appendix A]. Again, 
this does not lead to a contradiction because Jp is not single-signed in the regimes studied by these authors.

A look at the proof of Theorem 4.8 shows that we do not need to assume H− = H , but only that S (H) =
S (H−) = S (H+) and that either H+ ≥ H or H+ ≤ H , and similarly for H−. This leads to the following corollary, 
which we will need in Section 6.

Corollary 4.11. Suppose that h ∈C2
b(R) is a bore solution of the height equation (2.28) with infR hp > 0, and let H±

be as in (4.21). If S (H+) = S (H−) = S (H), and if

H+ ≥H on [−1,0] or H+ ≤H on [−1,0],
then H+ ≡H . The same result holds with H+ replaced by H−.

Theorem 4.8 can also be generalized to the case of a free surface flow with multiple layers. These are not the main 
subject of this paper, but given that many authors have performed conjugate flow analysis for multi-fluid flows, we 
wish to emphasize that the nonexistence result above is not a consequence of the smoothness of ρ.

Let us briefly recall the governing equations for the layer-wise continuous stratification; a more thorough discussion 
is given, for example, in [21]. The fluid domain is assumed to be partitioned into finitely many immiscible strata

�=
N⋃
i=1

�i, �i := {(x, y) ∈� : ηi−1(x) < y < ηi(x)}

with the density � smooth in each layer:

� ∈ C1+α(�1)∩ · · · ∩C1+α(�N). (4.29)

The indexing convention is that η0 := −1, ηN := η and �i lies beneath �i+1 for i = 1, . . . , N − 1. Euler’s equation 
will hold in the strong sense in each interior layer and the pressure is assumed to be continuous in �.

It is possible even in this setting to perform the Dubreil-Jacotin transform. Letting Ri := {(q, p) ∈ R × (pi−1, pi)}
be the image of �i , one finds that the height function h will have the regularity
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h ∈ C0+α(R)∩C1+α(R1)∩ · · · ∩C1+α(RN) (4.30)

and solve the height equation (2.28) in the sense of distributions. Notice that ρp will include Dirac δ masses on the 
internal interfaces; the continuity of the pressure precisely guarantees that the quantity on the left-hand side of the 
height equation is equal to 0 in the distributional sense.

In particular, a laminar flow K will satisfy (4.23) in the strong sense on each [pi, pi+1], along with top boundary 
condition (4.24). The continuity of the pressure translates to the requirement that�

1

2K2
p

− 1

2H 2
p

�
i

+ 1

F 2
�ρ�i (K −H)= 0 on {p = pi}, (4.31)

for i = 1, . . . , N −1. Here, �f �i := f (pi+) −f (pi−) denotes the jump across the i-th layer. One can see quite easily 
that (4.31) is equivalent to viewing (4.23) as being satisfied in the sense of distributions.

A bore in this context means that (4.21) holds for distinct laminar flows H± with regularity (4.30).

Corollary 4.12. Suppose that h has the regularity (4.30) and is a distributional solution of the height equation (2.31)
for an Eulerian density as in (4.29). If h is a bore with H± as in (4.21), infRi

hp > 0 for i = 1, . . . , N , and

H+ ≥H− =H on [−1,0] or H+ ≤H− =H on [−1,0], (4.32)

then H+ =H− =H .

Proof. This follows from a straightforward adaptation of the proof of Theorem 4.8 and Lemma 4.9. Let K = H+, 
and assume that K ≥H . The inequality Kp ≥Hp holds by the same reasoning, as K ≥H implies that ρp(K −H) is 
nonpositive as a distribution. The computations of S can be carried out as before, only there will now be boundary 
terms on the interior interfaces when integrating by parts. However, the jump conditions (4.31) cause them to cancel 
out completely, and so we arrive again at (4.22). �
4.4. Symmetry

Next, we turn our attention to the question of even symmetry for solitary stratified water waves. The tool we use 
for this is the classical moving planes method introduced by Alexandroff [2] and then further developed by Serrin 
[75], Gidas, Nirenberg, and Ni [37], Berestycki and Nirenberg [15], and many others (see also [16] for a survey). 
Specifically, we use a version due to C. Li [63] that treats fully nonlinear problems on cylindrical domains, and base 
our approach on the work of Maia [66], who applied Li’s ideas to study the case of multiple-layered channel flows 
with uniform velocity at infinity.

Theorem 4.13 (Symmetry). Let (w, F) ∈C2
b(R) ×R be a solution of equation (2.31) that is a wave of elevation

w > 0 in R ∪ T , (4.33)

supercritical, and satisfies the upstream (or downstream) condition

w,Dw → 0 uniformly as q → −∞ (or + ∞). (4.34)

Then, after a translation, w is a symmetric and monotone solitary; i.e., there exists q∗ ∈ R such that q �→ w(q, ·) is 
even about {q = q∗} and

±wq > 0 for ±(q∗ − q) > 0, −1 <p ≤ 0. (4.35)

Remark 4.14. It is worth emphasizing that Theorem 4.13 only assumes that w → 0 as q → −∞ instead of the much 
stronger condition w ∈ C2

0(R) which we impose elsewhere, and which is the standard hypothesis for moving planes 
arguments. This is in line with the hypotheses of Maia’s symmetry result [66] for channel flows, which states that 
either there is an axis of symmetry or the solution is monotone in the entire strip. We are able to rule out the second 
possibility in our setting using Theorem 4.8 on the nonexistence of monotone bores.
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Remark 4.15. One advantage of Li’s approach is that it exploits the structure of the operator at infinity. In particular, 
this allows us to avoid constructing an explicit Green’s function for the linearized problem in order to obtain precise 
decay estimates.

Remark 4.16. While Theorem 4.13 is of independent interest, we note that it is used in the proof of Theorem 1.1
only in so far as it permits us to infer that the small-amplitude waves of elevation constructed in Section 5 are in fact 
monotone.

To apply the moving plane method, we consider the usual reflected functions

hλ(q,p) := h(2λ− q,p),

where {q = λ} is the axis of reflection. We let vλ denote the difference

vλ := hλ − h.

Thus {q = q∗} is an axis of even symmetry if and only if vq∗ vanishes identically. We will work with the λ-dependent 
sets

Rλ := {(q,p) ∈R : q < λ}, T λ := {(q,0) : q < λ}, Bλ := {(q,−1) : q < λ}. (4.36)

If h is a solution of the height equation (2.28), then for each λ, vλ solves the PDE

L vλ = 0 in Rλ, Bvλ = 0 on T λ, vλ = 0 on Bλ, (4.37)

where L is defined as

L := 1

hλp
∂2
q − 2hλq

(hλp)
2
∂q∂p + 1 + (hλq)

2

(hλp)
3

∂2
p + hpp(h

λ
q + hq)− 2hλphpq

(hλp)
3

∂q

+
hqq(h

λ
p + hp)− 2hλqhpq + (β(−p)− F−2ρph

) [
(hλp)

2 + hλphp + h2
p

]
(hλp)

3
∂p − 1

F 2
ρp,

(4.38)

and B is given by

B := hλq + hq

2h2
p

∂q − (hλp + hp)(1 + (hλq)
2)

2h2
p(h

λ
p)

2
∂p + 1

F 2
ρ. (4.39)

See [93] for the details of the calculation. Indeed, from [93, Lemma 1] we know that L is uniformly elliptic.
As in Section 3.2, the coefficients in L and B may have “bad” signs which do not satisfy the hypotheses of the 

maximum principle (cf. Theorem 6.11). Since the maximum principle is the main tool in classical moving planes 
arguments, this is a major obstacle. For supercritical waves, we can overcome this obstacle by using a slight modifi-
cation of the function � defined in (3.3). Fix 0 < ε � 1 and let � = �(p; F, ε) be the solution of the initial value 
problem(

�p

H 3
p

)
p

− 1

F 2
(ρp − ε)� = 0 in −1 <p < 0, �(−1)= ε, �p(−1)= 1. (4.40)

Lemma 4.17. If F > Fcr, then, for ε > 0 sufficiently small,

� > 0 for −1 ≤ p ≤ 0, �p > 0 for −1 ≤ p ≤ 0,

−�p

H 3
p

+ 1

F 2
ρ� < 0 on p = 0.

(4.41)

Proof. The proof is identical to the proof of Lemma 3.5. �
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As in the discussion before Lemma 3.6, the change of variables v =: �u transforms the linear elliptic equation 
Fw(0, F)v = (f1, f2) into an equation for u whose zeroth order coefficients have the correct sign for the applications 
of the maximum principle and Hopf maximum principle (Theorem 6.11). The change of variables v =: �̃u used in 
Section 3.2 makes the zeroth order coefficient in the elliptic operator vanish; here we define � in a slightly more 
complicated way in order for this coefficient to be strictly negative.

Lemma 4.18. Under the hypotheses of Theorem 4.13, there exists K > 0 such that

vλ ≥ 0 in Rλ for all λ <−K, (4.42)

and

hq ≥ 0 in Rλ for all λ <−K. (4.43)

Proof. Let � be defined as in (4.40). Recall that this means in particular that(
− 1

H 3
p

�p + 1

F 2
ρ�

)∣∣∣∣
p=0

< 0 for 0 ≤ 1

F 2
<

1

(Fcr)2
. (4.44)

Also, by taking ε > 0 sufficiently small, we may assume that � > ε on (−1, 0).
We are therefore justified in defining uλ by vλ = uλ� . A calculation shows that uλ satisfies

L̃ uλ = 0 in Rλ, B̃uλ = 0 on T λ, uλ = 0 on Bλ, (4.45)

where

L̃ uλ :=�(L uλ + 1

F 2
ρpu

λ)+
[

2(1 + (hλq)
2)

(hλp)
3

�p

]
uλp −

[
2hλq
(hλp)

2
�p

]
uλq +Zuλ,

B̃uλ :=�Buλ + (BP�)uλ,

with the zeroth order coefficient Z given by

Z := 1 + (hλq)
2

(hλp)
3

�pp − 1

F 2
ρp� +

(
β(−p)− 1

F 2
ρph

)(
(hλp)

2 + hλphp + h2
p

) �p

(hλp)
3
,

and BP is the principal parts of B:

BP := hλq + hq

2h2
p

∂q − (hλp + hp)(1 + (hλq)
2)

2h2
p(h

λ
p)

2
∂p.

We claim that there exists some K > 0 large enough so that uλ ≥ 0 in Rλ for all λ ≤ −K , which then implies 
(4.42). Assume on the contrary that no matter how large K is, there exists some λ0 ≤ −K such that uλ0 takes on a 
negative value in Rλ0 . By hypothesis, h is a wave of elevation, and so clearly the same is true of hλ for any λ. Now 
uλ vanishes on the vertical line segment {q = λ}, and

uλ = hλ − h

�
>

H − h

�
, (4.46)

with the right-hand side of the above inequality limiting to 0 as q → −∞. Thus if uλ0 is negative somewhere in Rλ0

then there must exist some (q0, p0) ∈Rλ0 ∪ T λ0 such that

uλ0(q0,p0)= inf
Rλ0

uλ0 < 0. (4.47)

We consider separately two cases.

Case 1: (q0, p0) ∈Rλ0 . Then uλ0 attains its (global) minimum at an interior point, so

∇uλ0(q0,p0)= 0,
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and hence

0 = ∇uλ0(q0,p0)=
[∇vλ0

�
− vλ0

�2
(0,�p)

]
(q0,p0). (4.48)

In light of (4.34), for each δ > 0, we may take K sufficiently large so that

‖w‖C2(R−K) = ‖h−H‖C2(R−K) < δ, (4.49)

from which we have the chain of inequalities

H(p0) < hλ0(q0,p0) < h(q0,p0) < H(p0)+ δ. (4.50)

Moreover (4.49) and (4.48) lead to the bounds on vλ0 and ∇vλ0 at (q0, p0):

|vλ0(q0,p0)|< δ, |∇vλ0(q0,p0)| =
∣∣∣∣�p(p0)

�(p0)
vλ0(q0,p0)

∣∣∣∣<Cδ,

where C depends only on ε. Therefore in terms of hλ0 we have that at (q0, p0),∣∣hλ0 −H
∣∣< δ,

∣∣∇hλ0 − ∇H
∣∣<Cδ. (4.51)

From (4.49) and (4.51) we conclude that

Z(p0)=
(

1

H 3
p

�pp − 3Hpp

H 4
p

�p − 1

F 2
ρp�

)
(p0)+O(δ).

But, recalling the ODE satisfied by � (4.40), we know that

1

H 3
p

�pp − 3Hpp

H 4
p

�p − 1

F 2
ρp� = −ε

1

F 2
� < 0.

Therefore, by taking K sufficiently large, and hence δ sufficiently small, we can guarantee that Z < 0 at p0. Applying 
the maximum principle to (4.45) at (q0, p0) then leads to a contradiction.

Case 2: (q0, p0) ∈ T λ0 , that is p0 = 0. Applying the Hopf lemma, we see that

uλ0
q (q0,0)= 0, uλ0

p (q0,0) < 0. (4.52)

From the first of these equalities it follows that

hλ0
q (q0,0)= hq(q0,0). (4.53)

Moreover, arguing as in the previous case, (4.50) and (4.49) show that for K large enough,∣∣h(q0,0)−H(0)
∣∣< δ,

∣∣hp(q0,0)−Hp(0)
∣∣< δ,

∣∣hλ0(q0,0)−H(0)
∣∣< δ. (4.54)

Since both h and hλ0 solve the height equation (2.28), we can evaluate the boundary condition at (q0, 0) to obtain

1 + h2
q

2h2
p

+ 1

F 2
ρh= 1 + (hλq)

2

2(hλp)
2

+ 1

F 2
ρhλ.

Together, (4.53) and (4.54) furnish the estimate∣∣hλ0
p (q0,0)− hp(q0,0)

∣∣<Cδ. (4.55)

Combining (4.54) and (4.55), the boundary condition in (4.45) can then be written as

B̃uλ0 =
(

− (hλp + hp)(1 + (hλq)
2)

2h2
p(h

λ
p)

2
uλ0
p

)
� +

[
− 1

H 3
p

�p + 1

F 2
ρ� +O(δ)

]
uλ0 = 0 (4.56)

on T λ. In view of (4.41), this means that for K sufficiently large, the coefficient of uλ0 above is negative, and therefore 
from (4.47) we know that uλ0

p (q0, 0) > 0, which is a contradiction to (4.52).
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Thus we have confirmed that there exists a K sufficiently large so that (4.42) is satisfied. The monotonicity property 
(4.43) then follows immediately: for any λ ≤ −K , we have vλ(λ, p) = 0 and therefore vλq (λ, p) ≤ 0, which implies 
that hq(λ, p) ≥ 0. �

Following the moving plane method, we complete the proof of Theorem 4.13 by employing a continuation argu-
ment. The general procedure is quite standard, having been worked out in similar contexts by Hur [45], in the case 
of constant density water, and Maia [66], for stratified channel flow. Our situation is different in that, unlike Hur, we 
allow a priori for there to be no decay in one direction, and, unlike Maia, we have at our disposal Theorem 4.8.

Proof of Theorem 4.13. Let λ∗ be defined by

λ∗ := sup
{
λ0 : vλ > 0 in Rλ for all λ < λ0

}
,

where the above set is nonempty in light of the previous lemma.

Case 1. λ∗ < +∞. By continuity we know that vλ∗ ≥ 0 on Rλ∗ . Looking at the elliptic system (4.37) that vλ∗

satisfies in Rλ∗ , we can therefore apply the strong maximum principle (see Theorem 6.11(i)) to conclude that either 
vλ∗ > 0 or vλ∗ ≡ 0 in Rλ∗ .

We claim that vλ∗ ≡ 0 in Rλ∗ . Seeking a contradiction, assume instead that vλ∗ > 0 in Rλ∗ . The maximality of λ∗
implies that there exist sequences {λk} and {(qk, pk)} with λk ↘ λ∗ and (qk, pk) ∈Rλk such that

vλk (qk,pk)= inf
Rλk

vλk < 0.

Since vλk = 0 on Bλk and {q = λk}, the strong maximum principle forces (qk, pk) ∈ T λk . This trivially implies

vλkp (qk,0)≤ 0, and vλkq (qk,0)= 0. (4.57)

Next, we prove that {qk} is bounded from below. Were this not true, then we have qk < −K for all k sufficiently 
large, where K is chosen as in (4.42). Consider once more the function uλk := vλk/� introduced in Lemma 4.18. 
Clearly uλk satisfies (4.45) in Rλk , but from (4.56) we see that B̃uλk (qk, 0) > 0, a contradiction.

Thus {qk} is indeed bounded from below by −K . It is also obviously bounded from above by λ1. Up to a subse-
quence, therefore,

(qk,0)→ (q∗,0) ∈ T λ∗ as k → ∞ (4.58)

for some q∗ ∈ [−K, λ∗]. The fact that vλ∗ > 0 in Rλ∗ forces

lim
k→∞vλk (qk,0)= vλ∗(q∗,0)= 0.

If q∗ < λ∗, then we have by continuity that

vλ∗(q∗,0)= vλ∗
q (q∗,0)= 0, (4.59)

and, furthermore, from the Hopf lemma, vλ∗
p (q∗, 0) < 0. Recalling the definition of the boundary operator B in (4.39), 

these inequalities show that Bvλ∗(q∗, 0) > 0, which is impossible because vλ∗ solves (4.37).
Therefore (q∗, 0) must be a corner point of Rλ∗ , i.e., q∗ = λ∗. From (4.59), we then see hλ∗

q (λ∗, 0) = 0. We can 
rewrite the top boundary condition in (4.37) as

(hλp)
2(hλq + hq)v

λ
q − (hλp + hp)(1 + (hλq)

2)vλp + 2
1

F 2
ρh2

p(h
λ
p)

2v = 0. (4.60)

Letting λ = λ∗, differentiating the above equality with respect to q , and then evaluating it at (λ∗, 0) we obtain

2hp(λ∗,0)vλ∗
qp(λ∗,0)= 0,

where we have used the identities

hλ∗
q (λ∗,0)= −hq(λ∗,0), hλ∗

p (λ∗,0)= hp(λ∗,0), hλ∗
qp(λ∗,0)= −hqp(λ∗,0).
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From the no stagnation assumption (2.24), we can therefore conclude

vλ∗
qp(λ∗,0)= 0.

Moreover, because vλ∗(λ∗, ·) vanishes identically, it follows that

vλ∗
p (λ∗,0)= vλ∗

pp(λ∗,0)= 0.

Finally, by using the PDE to express vλ∗
qq in terms of vλ∗, vλ∗

q , vλ∗
p , vλ∗

qp and vλ∗
pp , we see that

vλ∗
qq(λ∗,0)= 0.

The previous paragraph demonstrates that vλ∗ , together with all its derivatives up to second order, vanishes at the 
corner point (λ∗, 0). Since vλ∗ solves the PDE in the domain Rλ∗ , this violates the Serrin edge point lemma (see 
Theorem 6.11). Therefore we must have vλ∗ ≡ 0 in Rλ∗ , and hence h (and w) are symmetric about the axis q∗ := λ∗. 
This proves the first part of the theorem.

Next, consider the strict monotonicity of h. For λ < λ∗ we have from the definition of λ∗ that vλ > 0 in Rλ. As vλ

vanishes on the right boundary of Rλ, it attains its minimum on Rλ there. The Hopf maximum principle then implies

hq(λ,p)= −1

2
vλq (λ,p) > 0 for λ < λ∗, −1 <p < 0. (4.61)

Naturally, on the top boundary T λ∗ , hq ≥ 0 by continuity. Seeking a contradiction, suppose that hq vanishes at 
some point (λ, 0) ∈ T λ∗ . Then, from differentiating the boundary condition (4.60) with respect to q , evaluating the 
result at (λ, 0), and using the identities

hq(λ,0)= −hλq(λ,0)= 0, vλ(λ,0)= vλq (λ,0)= 0,

hp(λ,0)= hλp(λ,0), hqp(λ,0)= −hλqp(λ,0),

we conclude

2hp(λ,0)vλqp(λ,0)= 0,

and hence

vλqp(λ,0)= 0.

Note that, as before, we have

vλp(λ,0)= vλpp(λ,0)= 0.

Thus, using the PDE to solve for vλqq , we get vλqq(λ, 0) = 0. But vλ satisfies (4.37) and so the Serrin edge point lemma 
is violated. We infer, therefore, that hq > 0 on T λ∗ . Combining this with (4.61) confirms that hq > 0 in Rλ∗ ∪ T λ∗ as 
desired. The same holds for wq . As {q = λ∗} is an axis of even symmetry, the proof (4.35) is complete.

Case 2. If λ∗ = +∞, then vλ ≥ 0 in Rλ for all λ. Since vλ solves (4.37) in Rλ, an application of the strong max-
imum principle ensures that vλ > 0 in Rλ for all λ. Then, arguing as in the preceding paragraph, we see that hq > 0
in Rλ ∪ T λ for any λ, and hence hq > 0 in R, indicating that h is a strictly monotone bore solution. In particular, 
the pointwise limits h(q, p) → H±(p) as q → ±∞ in (4.21) hold, with H− = H and H+ > H for p > −1, vio-
lating Theorem 4.8. Therefore we must have λ∗ < +∞, and thus the previous argument completes the proof of the 
theorem. �
4.5. Asymptotic monotonicity and nodal properties

In Section 5, we will establish the existence of a curve of small-amplitude supercritical waves of elevation bifurcat-
ing from the critical laminar flow. By the results in Section 4.4, these waves are symmetric and monotone. The global 
bifurcation theory will require us to show that these properties persist away from the point of initial bifurcation. In 
particular, this is a critical component of the proof that the solution set F−1(0) is locally compact (cf. Lemma 6.7).
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Notice, however, that monotonicity is neither an open nor closed property in the natural topology of our function 
spaces. It will therefore be necessary to exploit some structure of the equation itself, which will mostly come in the 
form of maximum principle arguments. We will actually consider a collection of sign conditions (4.65) that together 
imply monotonicity but also define a subset of F−1(0) that is both open and closed in an appropriate sense.

An analysis of this kind is a standard part of many global bifurcation arguments, where conditions of the type 
(4.65) are referred to as “nodal properties.” Typically, they are used to rule out undesirable topological alternatives 
such as the existence of closed loops of solutions. In our theory, however, they play a much different role as we will 
see in Section 6.

Before discussing the nodal properties, we first divide R into two regions: a finite rectangle and two semi-infinite 
tails where w is small. The finite rectangle can be dealt with in the same way as periodic solutions were in [94, 
Section 5]. For the tail, we will follow the strategy of [98, Section 2.2] by considering small solutions of (2.31) in the 
half strip

R+ := {(q,p) ∈R : q > 0}
with boundary components

L+ := {(0,p) : p ∈ [−1,0]}, T + := R+ × {0}, B+ := R+ × {−1}.

Proposition 4.19 (Asymptotic monotonicity). There exists δ > 0 such that, if w ∈ C3
b(R

+) ∩ C1
0(R

+) is a solution of 
equation (2.31) in R+, F > Fcr, and

‖w‖C2(R+) < δ,

then wq exhibits the following monotonicity property:

If ±wq ≤ 0 on L+, then ±wq < 0 in R+ ∪ T +. (4.62)

Proof of Proposition 4.19. We will use a maximum principle argument applied to hq = wq . Due to the translation 
invariance, we can “quasilinearize” the height equation by differentiating it with respect to q . This leads to a linear 
elliptic PDE for v := hq with coefficients depending on h:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
−hqvq

h2
p

+ (1 + h2
q)vp

h3
p

)
p

+
(
vq

hp
− hqvp

h2
p

)
q

− 1

F 2
ρpv = 0 in R+

hqvq

h2
p

− (1 + h2
q)vp

h3
p

+ 1

F 2
ρv = 0 on T +

v = 0 on B+.

(4.63)

Let v =: �u, where � is chosen according Lemma 4.17. We can then rewrite (4.63) in terms of u. For instance, the 
equation in the interior becomes

0 =
((

�

h3
p

+ �h2
q

h3
p

)
up − �hq

h2
p

uq

)
p

+
(
�

Hp

uq − �hq

h2
p

up

)
q

+ (1 + h2
q)�

h3
p

up − hq�p

h2
p

uq +
⎛⎝( (1 + h2

q)�p

h3
p

)
p

−
(
hq�p

h2
p

)
q

− 1

F 2
ρp�

⎞⎠u.

(4.64)

Taking ‖h −H‖C2(R+) = ‖w‖C2(R+) sufficiently small ensures that this represents a uniformly elliptic operator acting 
on u on the set R+. The key point is the zeroth order coefficient, which can be rewritten as

−
(
hq�p

h2
p

)
q

+
((

1

h3
p

− 1

H 3
p

)
�p + h2

q

h3
p

�p

)
p

− 1

F 2
ε�,

has the correct sign to apply the maximum principle since the first two terms on the right-hand side can be controlled 
by the final term by taking ‖h −H‖C2 small. Thus (4.64) has the form
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∑
i,j

∂i(aij ∂ju)+
∑
i

bi∂iu+ cu= 0,

where aij is a symmetric positive definite matrix and c < 0, both with uniform bounds for ‖h − H‖C2 sufficiently 
small.

Likewise, the boundary conditions on T + in (4.63) can be written

−1 + h2
q

h3
p

�up + hq

h2
p

�uq +
(

−�p

H 3
p

+ 1

F 2
ρ� −

(
1

h3
p

− 1

H 3
p

)
�p

)
u= 0.

By (4.41), the coefficient of u is negative for ‖h − H‖C1 small enough. Thus this represents a uniformly oblique 
boundary condition with the correct sign, and we can apply the maximum principle to conclude that (4.62) holds. �

With Proposition 4.19 in hand, we now consider the “nodal properties”

wq < 0 in R+ ∪ T +, (4.65a)

wqq < 0 on L+, (4.65b)

wqp < 0 on B+, (4.65c)

wqqp < 0 at (0,−1), (4.65d)

wqq < 0 at (0,0). (4.65e)

Lemma 4.20. Let (w, F) be a solution of equation (2.31) where w ∈ C3
b,e(R) ∩C1

0(R) is monotone in the sense that 
wq < 0 in R+ ∪ T +. Then w exhibits the nodal properties (4.65).

Proof. As in the proof of Proposition 4.19, v := wq = hq satisfies the uniformly elliptic PDE (4.63). The strategy 
is now to use various maximum principle arguments to derive (4.65). Again, the zeroth order term in (4.63) comes 
with an adverse sign. Unlike in Proposition 4.19, we are not assuming that w is small. Instead, we are saved by the 
following observation. First, w is even in q and vanishes identically on the bed, hence

v = 0 on L+ ∪B+.

Second, by assumption we have that

v < 0 in R+ ∪ T +.

Together, these two statements mean that we can apply the Hopf lemma, and the Serrin edge point lemma (Theo-
rem 6.11(iii)) at the points on L+ ∪B+ where v achieves its maximum value.

With that in mind, let us consider in order the nodal properties (4.65). First, (4.65a) is satisfied by hypothesis. The 
Hopf lemma applied to L+ and B+ shows that (4.65b) and (4.65c) hold, respectively.

Now consider the corners. Since v vanishes identically on L+ ∪B+, we have that

v = vp = vq = vpp = vqq = 0 at (0,−1).

Thus, by the Serrin edge point lemma, (4.65d) holds.
Likewise, at the upper left corner point (0, 0) we have

v(0,0)= vp(0,0)= 0.

Using these facts, differentiating the top boundary condition in (2.28) twice in q , and evaluating at (0, 0), one arrives 
at

1

2h2
p

v2
q + 1

h3
p

vqp + 1

F 2
ρvq = 0 at (0,0).

Seeking a contradiction, suppose that vq(0, 0) = wqq(0, 0) = 0. Then from the evenness of w and the line above we 
have

v, vp, vq, vpp, vqp = 0 at (0,0).
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Finally, we can use (4.63) to write vqq in terms of the quantities above, which reveals that vqq(0, 0) = 0 as well. 
This is a clear contradiction of the Serrin edge point lemma. We infer, therefore, that (4.65e) holds and the proof is 
complete. �

Notice that the hypotheses of Lemma 4.20 do not require that the solution be supercritical.

Lemma 4.21 (Open property). Let (w, F), (w̃, F̃ ) be two supercritical solutions of (2.31) with w, w̃ ∈ C3
b,e(R) ∩

C1
0(R). If w satisfies the nodal properties (4.65), then there exists ε = ε(w) > 0 such that

‖w − w̃‖C3(R) + |F − F̃ |< ε

implies that w̃ also satisfies (4.65).

Proof. According to Lemma 4.20, to prove that w̃ satisfies (4.65) we need only confirm that w̃q < 0 in R+ ∪ T +. 
With that in mind, we begin by dividing R+ into two overlapping regions, a finite extent rectangle and a “tail”:

R+
1 := {(q,p) ∈R+ : q < 2K}, R+

2 := {(q,p) ∈R+ : q >K},
where K > 0 is to be determined. The top, bottom, and left boundary components we likewise write as T+

1,2, B+
1,2, and 

L+
1,2.

First consider the finite rectangle R+
1 . Arguing as in [94, Section 5], it is possible to show that for each K > 0, 

there exists εK > 0 such that, if ‖w − w̃‖C3(R+) + |F − F̃ | < εK , then w̃q < 0 in R+
1 ∪ T +

1 . This is simply because 
the finite rectangle behaves exactly the same as in the periodic case.

On the other hand, because w ∈ C2
0(R), we can choose K to be large enough so that

‖w‖C2(R+
2 ) <

δ

2
,

where δ is given as in the hypotheses of Proposition 4.19. By letting ε := min{δ/2, εK}, we have w̃q < 0 in R+
1 ∪ T +

1 , 
which in particular means that w̃q ≤ 0 on L+

2 . Applying Proposition 4.19 allows us to conclude that w̃q < 0 in 
R+

2 ∪ T +
2 . Since R+

1 ∪R+
2 =R+, the proof is complete. �

Lemma 4.22 (Closed property). Let {(wn, Fn)} ⊂U be a sequence of solutions to (2.31) and suppose that there exists 
a solution (w, F) ∈U of (2.31) with

(wn,Fn)→ (w,F ) in C3
b(R)×R. (4.66)

If each wn satisfies the nodal properties (4.65), then w also satisfies (4.65) unless w ≡ 0.

Proof. Let {(wn, Fn)} and (w, F) be given as above. Again, Lemma 4.20 shows that it is enough to confirm that 
wq < 0 on R+ ∪ T +. Let v := wq . Simply by continuity, we know that v ≤ 0 on R+, and we have already seen that 
v satisfies the uniformly elliptic PDE (4.63) in R+. As v vanishes identically on L+ ∪ B+, the maximum principle 
implies that either (i) v < 0 in R+ ∪ T +, or else (ii) there exists some point (q0, 0) ∈ T + such that v(q0, 0) = 0. Here 
we are once more using the facts that supR+ v = 0 and v → 0 as q → ∞.

Thanks to Lemma 4.20, possibility (i) implies that w satisfies the nodal properties, so consider possibility (ii). The 
boundary condition on the top in (4.63) written in terms of v is

vvq

2h2
p

− (1 + v2)vp

h3
p

+ 1

F 2
ρv = 0 on T +.

Were (ii) to hold, then evaluating the above line at (q0, 0) would give that vp(q0, 0) = 0. This contradicts the Hopf 
lemma unless v vanishes identically in R+, but this is equivalent to saying w ≡ 0. �
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5. Small-amplitude existence theory

In this section we construct small-amplitude waves with nearly critical Froude numbers F ≈ Fcr. It will be conve-
nient to introduce a small parameter ε defined by

ε := 1

F 2
cr

− 1

F 2
= μcr − 1

F 2
. (5.1)

Note that with this convention, ε > 0 corresponds to a supercritical Froude number. Solving (5.1) for F , we also 
introduce the notation

F = Fε :=
(

1

F 2
cr

− ε

)−1/2

. (5.2)

The main results of this section are summarized in the following theorem. In addition, we prove the existence of a 
family of subcritical periodic (cnoidal) waves, see Remark 5.8.

Theorem 5.1 (Small-amplitude solitary waves). There exists ε∗ > 0 and a curve

Cloc = {(wε,F ε) : ε ∈ (0, ε∗)} ⊂U

of solutions to F (w, F) = 0 with the following properties:

(i) (Continuity) The map ε �→wε is continuous from (0, ε∗) to X, with ‖wε‖X → 0 as ε → 0.
(ii) (Invertibility) The linearized operator Fw(w

ε, Fε) is invertible for each ε ∈ (0, ε∗).
(iii) (Uniqueness) If w ∈ X satisfies w > 0 on T and if ‖w‖X is sufficiently small, then, for any ε ∈ (0, ε∗), 

F (w, Fε) = 0 implies w =wε .
(iv) (Elevation) The waves (wε, Fε) are waves of elevation in that wε > 0 on R ∪ T .
(v) (Analyticity) The curve Cloc is real analytic in the sense that ε �→wε is real analytic.

We will prove Theorem 5.1 incrementally. First, in Lemma 5.9, we use the center manifold reduction method 
to construct the family (wε, Fε) (cf. Theorem 6.12). Doing this requires proving a number of preparatory lemmas 
that show the linearized problem has the requisite spectral behavior and the nonlinearity is quadratic near the origin. 
Continuity and invertibility then follow from a straightforward adaptation of the arguments in [96, Theorem 4.1]. 
Elevation and uniqueness are proved in Lemma 5.9 and Lemma 5.10, respectively. These results are stitched together, 
along with an argument for the existence of an analytic reparametrization, in Section 5.5.

5.1. Hamiltonian formulation

Following [40], we will relate our nonlinear operator equation to a Hamiltonian system (M, ω, Hε) in which 
the horizontal variable q plays the role of time. The Hamiltonian function Hε will turn out to be the flow force S
defined in Section 2.4 (cf. [11,13]). For the position and momentum variables, we will use w and r :=wq/(wp +Hp), 
respectively.

With that in mind, in this section we think of w =w(q, p) as a C1 mapping q �→w(q, ·) taking values in a Hilbert 
space of p-dependent functions, and similarly for r . In particular, we will work with

X := {(w, r) ∈H 1(−1,0)×L2(−1,0) :w(−1)= 0},
Y := {(w, r) ∈H 2(−1,0)×H 1(−1,0) :w(−1)= 0}.

Here we are abusing notation somewhat by suppressing the dependence of (w, r) on q; this will be a common practice 
throughout the section. We also define

M := {(w, r) ∈ Y :wp +Hp > 0 for −1 ≤ p ≤ 0}.
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Clearly M is an open subset of Y containing the origin. Since Y is dense in X and the inclusion Y ↪→ X is smooth, 
M is therefore a so-called manifold domain of X . The symplectic form ω : X ×X → R is defined by

ω
(
(w1, r1), (w2, r2)

) := 0∫
−1

(r2w1 − r1w2) dp,

and finally the Hamiltonian Hε ∈C∞(M, R) is given by

Hε(w, r) :=
0∫

−1

⎡⎣ p∫
0

1

(F ε)2
ρHp dp

′ − 1

2H 2
p

+ 1

2
r2 − 1

2(wp +Hp)2
+ 1

(F ε)2
ρw

⎤⎦ (wp +Hp)dp

+
0∫

−1

⎡⎣Hp

p∫
0

1

(F ε)2
ρHp dp

′ − 1

Hp

⎤⎦ dp. (5.3)

The second integral in (5.3) does not depend on w or r , and has been added to ensure Hε(0, 0) = 0. Comparing with 
(2.30), we see that Hε is essentially S viewed as a functional acting on w and r =wq/(wp +Hp).

A calculation shows that the domain D(VHε ) of the Hamiltonian vector field VHε corresponding to (M, ω, Hε)

is

D(VHε )=
{
(w, r) ∈M : r(−1)= 0,

(
r2

2
+ 1

2(wp +Hp)2
− 1

2H 2
p

+ 1

(F ε)2
ρw

)∣∣∣∣
p=0

= 0

}
, (5.4)

while Hamilton’s equations are⎧⎪⎪⎨⎪⎪⎩
wq = (wp +Hp)r,

rq =
(
r2

2
+ 1

2(wp +Hp)2
− 1

2H 2
p

)
p

+ 1

(F ε)2
ρpw.

(5.5)

It is easy to see that (5.5) together with (w, r) ∈ D(VHε ) and r =wq/(wp +Hp) is formally equivalent to the height 
equation (2.31). We note that these equations are reversible in that, if (w, r)(q) is a solution, then so is S(w, r)(−q), 
where

S(w, r) := (w,−r)

is called the reverser.
Linearizing the Hamiltonian system (M, ω, H0) with ε = 0 about the equilibrium (w, r) = (0, 0) yields the linear 

problem

(ẇ, ṙ)q = L(ẇ, ṙ)

where L : D(L) ⊂ X → X is the closed operator

L(ẇ, ṙ) :=
⎛⎝Hpṙ, −

(
ẇp

H 3
p

)
p

+ 1

F 2
cr
ρpẇ

⎞⎠
with domain

D(L) :=
{
(ẇ, ṙ) ∈ Y : ṙ(−1)= 0,

(
− ẇp

H 3
p

+ 1

F 2
cr
ρẇ

)∣∣∣∣
p=0

= 0

}
.

The operator L is related to the Sturm–Liouville problem studied in Section 3.1. Using the results from that section 
we obtain the following.
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Lemma 5.2 (Spectral properties of L).

(i) The spectrum of L consists of an eigenvalue at 0 with algebraic multiplicity 2, together with simple eigenvalues 
±√

νj , where νj are the nonzero eigenvalues of the corresponding Sturm–Liouville problem (3.1). The eigenvector 
and generalized eigenvector associated with the 0 eigenvalue are (�cr, 0) and (0, �cr/Hp).

(ii) There exists � > 0 and C > 0 such that

‖u‖Y ≤C‖(L− iξI )u‖X , ‖u‖X ≤ C

|ξ | ‖(L− iξI )u‖X ,

for all u ∈D(L) and ξ ∈ R with |ξ | >�.

Proof. We begin with part (i). Notice that λ is an eigenvalue of L provided that there exists a (w, r) ∈ D(L) \ {0}
satisfying

Hpr = λw, −
(
wp

H 3
p

)
p

+ 1

F 2
cr
ρpw = λr.

The boundary conditions encoded in the definition of D(L) along with the above equation imply that w is a weak 
solution of the Sturm–Liouville problem (3.1) with ν = λ2. By Lemma 3.3, then, the eigenvalues of L are precisely 
of the form ±√

ν, for ν ∈ �. In particular, 0 is an eigenvalue for L with multiplicity 2 while the rest of the spectrum 
consists of simple nonzero real eigenvalues.

We defer the proof of (ii) to Appendix A.1. �
5.2. Further change of variables

As in [40], before applying a center manifold reduction to (M, ω, Hε), we will perform a change of dependent 
variables (in a neighborhood of the origin in Y) which flattens D(VHε ). Set

f (w, r) :=
(
r2

2
+ 1

2(wp +Hp)2
− 1

2H 2
p

+ 1

(F ε)2
ρw

)
−
(

−wp

H 3
p

+ 1

(F ε)2
ρw

)

= r2

2
+ 1

2(wp +Hp)2
− 1

2H 2
p

+ wp

H 3
p

,

so that the nonlinear boundary condition in the definition (5.4) of D(VHε ) can be written as(
−wp

H 3
p

+ 1

(F ε)2
ρw

)∣∣∣∣
p=0

= f (w, r)

∣∣∣
p=0

.

We replace w with the new unknown ξ defined by

ξ := ζ + ερ(0)H 3
p(0)(1 + p)

0∫
p

ζ(s) ds,

where

ζ :=w +H 3
p(0)(1 + p)

0∫
p

f (w, r)(s) ds.

A calculation then shows that, at p = 0,

− ξp

H 3
p

+ 1

F 2
cr
ρξ = − ζp

H 3
p

+ 1

(F ε)2
ρζ = −wp

H 3
p

+ 1

(F ε)2
ρw − f (w, r),

and hence that ξ satisfies the linearized boundary condition
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− ξp(0)

H 3
p(0)

+ 1

F 2
cr
ρ(0)ξ(0)= 0

if and only if (w, r) ∈D(VHε ).
Denoting the change of variables mapping by Gε(w, r) := (ξ, r), we have the following lemma.

Lemma 5.3. Restricted to a sufficiently small neighborhood of the origin in R ×Y ,

(i) Gε is a diffeomorphism onto its image, with Gε and (Gε)−1 depending smoothly on ε;
(ii) the derivative DGε(w, r) : Y → Y extends to an isomorphism D̂G

ε
(w, r) : X → X . This isomorphism and its 

inverse depend smoothly on (w, r, ε); and
(iii) Gε is a near-identity transformation in that Gε(0) = 0 for all ε and DG0(0) = id.

This follows from a standard argument that we omit; see, for example, [38, Lemma 4.1]. Applying the change 
of variables u = Gε(w, r) transforms our Hamiltonian system (M, ω, Hε) into (M, ω∗, Hε∗), where now ω∗ is the 
(position-dependent) symplectic form

ω∗|u(v1, v2) := ω
(
D̂G

ε(
(Gε)−1(u)

)
v1, D̂G

ε(
(Gε)−1(u)

)
v2

)
while

Hε∗(u) := H
(
(Gε)−1(u)

)
.

Hamilton’s equations can be written abstractly as

uq = Lu+Nε(u). (5.6)

Note that the reverser S is unchanged in these coordinates,

Gε ◦ S ◦ (Gε)−1 = S.

The following technical lemma details how the spatial dynamics formulation of the problem in (5.6) relates to the 
original operator equation F (w, F) = 0.

Lemma 5.4.

(i) Let (w, Fε) be a solution of F (w, Fε) = 0 with ‖w‖X and |ε| sufficiently small, and set

u=Gε

(
w,

wq

Hp +wp

)
. (5.7)

Then u ∈C2
0(R, X ) ∩C1

0(R, U) solves Hamilton’s equations uq = Lu +Nε(u) and is reversible in that u(−q) =
Su(q).

(ii) Conversely, suppose that u ∈ C4
0(R, X ) ∩ C3

0(R, U) satisfies uq = Lu +Nε(u) and u(−q) = Su(q). Then u is 
related by (5.7) to some w ∈X solving F (w, Fε) = 0. Moreover, the correspondence (ε, u) �→w is continuous 
R ×C4

0(R, X ) ∩C3
0(R, U) →X.

(iii) With u and w as above, suppose that ẇ ∈X is a nontrivial solution of the linearized problem Fw(w, Fε)ẇ = 0. 
Then there is an associated nontrivial solution u̇ ∈ C2

b(R, X ) ∩ C1
b(R, D(L)) of the linearized problem u̇q =

Lu̇+DNε(u)u̇ which is reversible in that u̇(−q) = Su̇(q).

Proof. Given Lemma 5.3, the proof of (i) is straightforward and hence omitted. Likewise the proofs of (iii) and (ii) 
proceed as in [96, Lemmas 4.3 and 4.4]. �
5.3. Center manifold reduction

Up to this point, we have succeeded in transforming the original Hamiltonian system into one that is suitable for 
analysis via the center manifold reduction method. In particular, by transitioning to (M, ω∗, Hε∗), we have obtained 
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a reversible Hamiltonian system with linear boundary conditions. Moreover, because Gε is a near-identity mapping, 
the spectral properties of the linearized operator established in Lemma 5.2 translate to the new system as well.

Let X c ⊂ X be the two-dimensional center subspace associated with the eigenvalue 0 of L. We denote by P c

the associated spectral projection, and write P su := I − P c, X su := P suX . We will write uc ∈ P cD(L) as uc =
z1e1 + z2e2, where

e1 := c
−1/2
0 (�cr,0), e2 := c

−1/2
0 (0,�cr/Hp), (5.8)

are the eigenvector and generalized eigenvector from Lemma 5.2, and the normalization constant c0 > 0 is given by

c0 := ω
(
(�cr,0), (0,�cr/Hp)

)= 0∫
−1

�2
cr

Hp

dp > 0. (5.9)

Lemma 5.5 (Center manifold reduction). For any integer k ≥ 2, there exists a neighborhood � × U of the origin in 
R × D(L) such that, for each ε ∈ �, there exists a two-dimensional manifold Wε ⊂ U together with an invertible 
coordinate map

χε := P c|Wε : Wε → Uc := P cU
with the following properties:

(i) Defining �ε : Uc → U su := P suU by

uc +�ε(uc) := (χε)−1(uc),

the map (ε, u) �→�ε(u) is Ck(� × Uc, U su). Moreover �ε(0) = 0 for all ε ∈� and D�0(0) = 0.
(ii) Every initial condition u0 ∈ Wε determines a unique solution u of uq = Lu + Nε(u) which remains in Wε as 

long as it remains in U .
(iii) If u solves uq = Lu +Nε(u) and lies in U for all q , then u lies entirely in Wε .
(iv) If uc ∈ C1((a, b), Uc) solves the reduced system

uc
q = f ε(uc) := Luc + P cNε(uc +�ε(uc)), (5.10)

then u = (χε)−1(uc) solves the full system uq = Lu +Nε(u).
(v) With uc and u as above, if u̇c ∈ C1(R, Uc) solves the linearized reduced equation u̇c

q = Df ε(uc)u̇c, then u̇ =
u̇c +Du�

ε(uc)u̇c solves the full linearized system u̇q = Lu̇+DuN
ε(u)u̇.

(vi) The reduced system (5.10) can be transformed via a Ck−1 change of variables into a Hamiltonian system 
(U c, γ, Kε), where U c is a neighborhood of the origin in R2, γ is the canonical symplectic form

γ ((z1, z2), (z
′
1, z

′
2)) := z1z

′
2 − z′

1z2, (z1, z2), (z
′
1, z

′
2) ∈R

2,

and the reduced Hamiltonian is

Kε(z1, z2) := Hε(z1e1 + z2e2 +�ε(z1e1 + z2e2)). (5.11)

Here (ε, uc) �→ �ε(uc) is of class Ck−1(� × Uc, U) and satisfies �ε(0) = 0 for all ε ∈ �, and Duc�0(0) = 0. 
The system is reversible with reverser S(z1, z2) = (z1, −z2).

Remark 5.6. For a solution (z1, z2) to the reduced Hamiltonian system from part (vi), the corresponding solution 
(w, r) of the original Hamiltonian system is given by (w, r) = z1e1 + z2e2 +�ε(z1e1 + z2e2).

Proof. Observe that L satisfies (H1) and (H2) of Theorem 6.12 in light of Lemma 5.2, and the only part of its spectrum 
lying on the imaginary axis is the eigenvalue 0, which has algebraic multiplicity 2. The nonlinearity Nε is, in fact, 
C∞ in its dependence on ε and u in any small neighborhood of the origin. Inspecting (5.5), and keeping in mind 
that Gε is a near-identity transformation, it is easy to confirm that N0(0) = 0 and DuN

0(0) = 0. We may therefore 
apply Theorem 6.12 to the system (M, ωε∗, Hε∗), obtaining a two-dimensional center manifold Wε satisfying (i)–(iv). 
Part (v) requires a small additional argument that is discussed, for example, in [96, Lemma 4.4].
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Now consider statement (vi). We begin by undoing the transformation Gε , since it is considerably simpler to work 
in the original variables. Define ϒε ∈ Ck(� × Uc, U) by the relation

uc +ϒε(uc) := (Gε)−1 (uc +�ε(uc)
)
.

Then ϒε(0) = 0 for all ε ∈�, and Ducϒ0(0) = 0. Here we are simply relying on the fact that Gε is near-identity.
From Theorem 6.12(v), we know that the center manifold (Wε, ωε∗|Wε , Hε∗|Wε ) is a symplectic submani-

fold of (M, ωε∗, Hε∗). Changing variables using Gε we obtain a new manifold Vε that we equip with the chart 
(id +ϒε)−1 : Vε → Uc. Working in these coordinates, the symplectic form ωε∗|Wε becomes �ε , which, for uc ∈ Uc

and vc
1, v

c
2 ∈ X c, is given by

�ε |uc(vc
1, v

c
2)= ωε∗|uc+�ε(uc)(v

c
1 +Duc�ε(uc)vc

1, v
c
2 +Duc�ε(uc)vc

2)

= ω(vc
1, v

c
2)+O(|ε|‖uc‖X ‖vc

1‖X ‖vc
2‖X ).

(5.12)

Since χε and S are linear maps which commute, it is easy to check that, in these coordinates, the reverser is simply 
S|Uc .

Thanks to (5.12), we can now employ a parameter-dependent Darboux transformation

uc �→ uc +�ε(uc) (5.13)

which is Ck−1 and transforms �ε into ω in a neighborhood of the origin (see [18, Theorem 4]). This map is near-
identity in that �ε(0) = 0 and Duc�0(0) = 0. We now equip Vε with the new chart (id +�ε)−1 : Vε → Uc where �ε

is defined by

id +�ε := (id +ϒε) ◦ (id +�ε)−1, (5.14)

and id + �ε is also near-identity. In these coordinates, our Hamiltonian system becomes (Uc, ω, Kε), where the 
Hamiltonian Kε is

Kε(uc)=Hε(uc +�ε(uc)).

The Darboux transformation id +�ε can be chosen so that the action of the reverser in these coordinates is still given 
by S|Uc ; see the arguments leading to [71, Theorem 5.17].

We identify U c with a neighborhood of the origin U c ⊂ R
2 via the mapping U c � (z1, z2) �→ z1e1 + z2e2 ∈ Uc. 

Notice that

ω(z1e1 + z2e2, z
′
1e1 + z′

2e2)= z1z
′
2ω(e1, e2)+ z′

1z2ω(e2, e1)

= γ ((z1, z2), (z
′
1, z

′
2)),

for all (z1, z2), (z′
1, z

′
2) ∈ R

2, and that

S(z1e1 + z2e2)= z1e2 − z2e2.

Thus, we obtain the reversible and canonical Hamiltonian system (U c, γ, Kε), proving (vi). �
Thanks to the clever choice of coordinates outlined in [40] and leading to the system described in Lemma 5.5(vi), 

we can Taylor expand the reduced system (5.10) by using (5.11) directly, and avoid dealing with the implicitly defined 
intermediate Hamiltonian Hε∗ entirely. The result of this calculation, which is presented in Appendix A.2, is that the 
reduced system (5.10) is equivalent to the following ODE set in R2:⎧⎨⎩

z1q = z2 +R1(z1, z2, ε)

z2q = εc−1
0 c1z1 − 3

2
c
−3/2
0 c2z

2
1 +R2(z1, z2, ε),

where c0 was defined in (5.9),

c1 := ρ(0)�cr(0)
2 −

0∫
−1

ρp�
2
cr dp, c2 :=

0∫
−1

(∂p�cr)
3

H 4
p

dp, (5.15)
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Fig. 5. Phase portrait for the reduced system (5.17) when ε = 0.

and

R1(z1, z2, ε)=O(|(z1, z2)|2 + |z2||(ε, z1, z2)|2 + |ε||(z1, z2)|),
R2(z1, z2, ε)=O(|z1||(ε, z2)|2 + |z2||(ε, z1)|),

are higher order remainder terms. The reversal symmetry implies that R1 is odd in z2 and R2 is even in z2. We can 
simplify things even further by introducing the scaled variables (Z1, Z2) and Q defined as

z1 =: |ε|c1/2
0 c1c

−1
2 Z1, z2 =: |ε|3/2c

3/2
1 c−1

2 Z2, q =: |ε|−1/2c
1/2
0 c

−1/2
1 Q. (5.16)

This transforms the system into⎧⎨⎩
Z1Q =Z2 +R3(Z1,Z2, ε)

Z2Q =Z1 − 3

2
(sgn ε)Z2

1 +R4(Z1,Z2, ε),
(5.17)

where R3 and R4 are new remainder terms. From the estimates of R1, R2 and the change of variable formulas above, 
it is clear that

R3, R4, D(Z1,Z2)R3, D(Z1,Z2)R4 =O(|ε|1/2).

These calculations lead directly to the following result.

Lemma 5.7 (Existence of wε). There exists ε∗ > 0 such that, for each ε ∈ (0, ε∗), there is a solution (wε, Fε) ∈X×R

to the height equation (2.31). Moreover, the map ε �→wε is continuous (0, ε∗) →X, and ‖wε‖X → 0 as ε → 0.

Proof. Observe that, when ε = 0, the reduced and rescaled system (5.17) becomes

−Z1 + 3

2
Z2

1 +Z1QQ = 0, (5.18)

whose phase portrait is shown in Fig. 5. This is exactly the equation satisfied by the Korteweg–de Vries soliton Z1 =
sech2(Q/2) (with unit wave speed). We conclude, therefore, that at ε = 0, (5.17) has an orbit (Z0

1, Z
0
2) homoclinic 

to 0. The reversibility of the system guarantees that there is a nearby reversible homoclinic orbit (Zε
1, Z

ε
2) for ε > 0

sufficiently small (see, e.g., [53, Proposition 5.1] and the surrounding comments). By choosing the k in Lemma 5.5
appropriately, we can ensure that the map ε �→ (Zε

1, Z
ε
2) is continuous with values in C4

0(R, R
2).

By Lemma 5.5, for each ε > 0 sufficiently small, there is a corresponding solitary wave solution

(wε, rε,F ε) ∈
(
C4

0(R,X )∩C3
0(R,U)

)
×R

of the full system (5.5). By Lemma 5.4(ii), there exists a corresponding solution (wε, Fε) ∈ X × R of the original 
height equation (2.31). Thus, there is an ε∗ > 0 and a local curve of solutions Cloc = {(wε, Fε) : ε ∈ (0, ε∗)}. Fi-
nally, undoing the scaling and the various changes of variable, we see that ε �→ wε is continuous (0, ε∗) → X with 
‖wε‖X → 0 as ε → 0. �
Remark 5.8. The waves constructed in Lemma 5.7 are solitary waves. As in [40], for ε < 0 with |ε| sufficiently small, 
a similar argument guarantees the existence of a family of symmetric periodic waves of cnoidal type with period 
O(|ε|1/2).
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5.4. Uniqueness and elevation

In this subsection we show that the waves (wε, Fε) constructed in Lemma 5.7 are waves of elevation. Moreover, 
they are the unique waves of elevation with w and ε sufficiently small.

Lemma 5.9 (Elevation). After possibly shrinking the range of ε, all of the waves wε constructed above are waves of 
elevation in that wε > 0 on R ∪ T .

Proof. For each ε ≥ 0, consider the rescaled solution (Zε
1, Z

ε
2) of (5.17). Since Z0

1(Q) > 0 for all Q, the continuous 
dependence of Zε

1 as well as the stable and unstable manifolds of (5.17) at the origin on ε imply that Zε
1(Q) > 0 for 

all Q when ε is sufficiently small. Since

lim
Q→±∞

Zε
2(Q)

Zε
1(Q)

= ±1 +O(ε1/2), (5.19)

(see Fig. 5) this continuous dependence also means that, shrinking ε further,

|Zε
2(Q)| ≤ C|Zε

1(Q)| for all Q,

where C is independent of ε. Undoing the scaling in (5.16), we find that zε1(q) > 0 and

|zε2(q)| ≤ Cε1/2|zε1(q)|. (5.20)

Going back through the many changes of variables (see Remark 5.6), we see that we can write

wε(q,p)= c
−1/2
0 zε1(q)�cr(p)+R(q,p), (5.21)

where the remainder term satisfies

‖R(q, · )‖H 2 ≤ C
(
ε + |zε1(q)| + |zε2(q)|

)(|zε1(q)| + |zε2(q)|
)
.

In particular, taking ε small enough, (5.20) ensures that

‖Rp(q, · )‖L∞ ≤ c
−1/2
0

2
min[(�cr)p]zε1(q), (5.22)

where we recall from Lemma 3.1(b) that (�cr)p > 0. Differentiating (5.21) with respect to p then yields

wε
p(q,p)≥ c

−1/2
0 zε1(q)(�cr)p(p)− c

−1/2
0

2
min[(�cr)p]zε1(q) > 0

for all (q, p) ∈R. Integrating with respect to p using the fact that w = 0 on B = {p = −1}, we conclude that wε > 0
on R ∪ T as desired. �
Lemma 5.10 (Uniqueness). Suppose that (w, Fε) ∈X×R is a solution of (2.31) with Fε defined as in (5.2). If ε > 0
and ‖w‖C2(R) are sufficiently small and w > 0 on T , then w =wε .

Proof. Suppose that we have a solution (w, Fε) of (2.31) with ε + ‖w‖C2(R) < δ, where δ > 0 is to be determined, 
and assume that w �≡wε . We will show that w is not a wave of elevation.

By the properties of the center manifold, w is determined by a homoclinic orbit (z1, z2) of (5.10). Since this 
equation already has a homoclinic orbit, namely (zε1, z

ε
2), and w cannot be a translate of wε , (z1, z2) is not a translate 

of (zε1, z
ε
2). Looking at the phase portrait at the origin (see Fig. 5), we conclude that z1 < 0 for |q| sufficiently large, 

and also that (compare with the signs in (5.19))

lim
q→±∞

z2(q)

z1(q)
= ∓ε1/2 +O(ε).

Thus, as in the proof of Lemma 5.9 above, we can shrink δ so that

w(q,p)= c
−1/2
0 z1(q)�cr(p)+R(q,p), (5.23)



562 R.M. Chen et al. / Ann. I. H. Poincaré – AN 35 (2018) 517–576
where the remainder term has the bound

‖Rp(q, · )‖L∞ ≤ c
−1/2
0

2
min[(�cr)p]|z1(q)|. (5.24)

Differentiating (5.23) with respect to p and plugging in (5.24), we conclude

wp(q,p)≤ c
−1/2
0 z1(q)(�cr)p(p)+ c

−1/2
0

2
min[(�cr)p]|z1(q)|< 0

as soon as q is large enough that z1(q) < 0. Integrating with respect to p, we find, for instance, that w(q, 0) < 0 for 
such q , and hence in particular that w cannot be a wave of elevation. �
5.5. Proof of small-amplitude existence

We now have all of the major components necessary to prove our main theorem.

Proof of Theorem 5.1. We already established the existence of the one-parameter family (wε, Fε) as well as (i) in 
Lemma 5.7. Likewise, parts (iii) and (iv) of the theorem statement were already proved in Lemmas 5.9 and 5.10.

Next we prove (ii). Since ε > 0 implies Fε > Fcr, Lemma 3.6 guarantees that Fw(w
ε, Fε) is Fredholm with 

index 0, and so it suffices to show that it has trivial kernel. If ẇ ∈ X is an element of the kernel, then Lemma 5.4(iii) 
gives us a corresponding reversible solution u̇ of the linearized Hamiltonian system

u̇q = Lu̇+DNε(uε)u̇, (5.25)

where uε is related to wε via (5.7). As in [96, Lemmas 4.14 and 4.15], a two-dimensional space of solutions to 
(5.25) can be lifted from solutions to the two-dimensional reduced equation u̇c

q = Df ε(P cuε)u̇c via Lemma 5.5(v). 
Solutions to (5.25) off this set grow exponentially as q → ∞ or as q → −∞. But one of these solutions coming from 
the reduced equation is just uεq , which is not reversible, and the other has mild exponential growth as |q| → ∞. Thus 
the only possibility is u̇≡ 0, which forces ẇ ≡ 0 as desired.

All that remains, therefore, is part (v). But, for any ε ∈ (0, ε∗), Fw(w
ε, Fε) is an isomorphism by the above 

reasoning, and moreover F is real analytic. Applying the real analytic implicit function theorem, we find that wε

depends analytically on ε ∈ (0, ε∗), which completes the theorem. �
6. Large-amplitude existence theory

The final step in the proof of Theorem 1.1 is to show that the local solution curve Cloc can be continued to obtain a 
curve C of large-amplitude solutions. This will be accomplished using an argument based on analytic global bifurca-
tion theory. Unfortunately, the existing literature does not immediately apply to our problem for two reasons: (i) the 
point of bifurcation (0, Fcr) is singular in the sense that Fw(0, Fcr) fails to be a Fredholm operator with index 0; and 
(ii) it is far from obvious that F−1(0) is locally compact.

With that in mind, in the next subsection we provide an abstract global-bifurcation-theoretic result that does hold 
in this more general context. The price we pay for this is the appearance of a new (and undesirable) possibility for 
the behavior of the global solution curve (see Fig. 6(a) for an illustration). For a large class of elliptic systems set on 
infinite cylinders, we show that this undesirable alternative occurs precisely when there exists a sequence of translated 
solutions along the curve that converges to a front. At last, in Section 6.2, these results are applied to our problem and 
combined with the qualitative theory developed in Section 4 to complete the proof of Theorem 1.1.

6.1. Global continuation

Let X , Y be Banach spaces, I an open interval (possibly unbounded) with 0 ∈ I , and U ⊂ X an open set with 
0 ∈ ∂U . Consider the abstract operator equation

F(x,λ)= 0,

where F : U × I → Y is an analytic mapping. Assume that for any (x, λ) ∈ U × I with F(x, λ) = 0, the Fréchet 
derivative Fx(x, λ) : X → Y is Fredholm with index 0.
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Fig. 6. (a) Several ways for the alternatives (i) and (ii) in Theorem 6.1 to hold. In (i)1, the first term on the right-hand side of 6.2 tends to infinity as 
s → ∞. In (i)2, it is the second term on the right-hand side of 6.2, and so on. Alternative (ii) holds if the curve loses compactness even while N(s)

remains bounded. (b) The distinguished arcs in the proof of Theorem 6.1.

Theorem 6.1 (Global continuation). Suppose that there exists a continuous curve Cloc of solutions to F(x, λ) = 0, 
parametrized as

Cloc := {(x̃(λ), λ) : 0 < λ< λ∗} ⊂F−1(0)

for some λ∗ > 0 and continuous x̃ : (0, λ∗) → U . If

lim
λ↘0

x̃(λ)= 0 ∈ ∂U , Fx(x̃(λ), λ) : X → Y is invertible for all λ, (6.1)

then Cloc is contained in a curve of solutions C , parametrized as

C := {(x(s), λ(s)) : 0 < s <∞} ⊂ F−1(0)

for some continuous (0, ∞) � s �→ (x(s), λ(s)) ∈ U × I , with the following properties.

(a) One of the following alternatives holds:
(i) (Blowup) As s → ∞,

N(s) := ‖x(s)‖X + 1

dist(x(s), ∂U) + λ(s)+ 1

dist(λ(s), ∂I) → ∞. (6.2)

(ii) (Loss of compactness) There exists a sequence sn → ∞ such that supn N(sn) <∞ but {x(sn)} has no subse-
quences converging in X .

(b) Near each point (x(s0), λ(s0)) ∈ C , we can reparametrize C so that s �→ (x(s), λ(s)) is real analytic.
(c) (x(s), λ(s)) /∈ Cloc for s sufficiently large.

Proof. Set (x0, λ0) := (0, 0) ∈ ∂(U × I). Since we are not guaranteed that F(x0, λ0) exists or that Fx(x0, λ0) is 
Fredholm, we cannot start our continuation argument there. Instead, we will start our argument at (x1/2, λ1/2) :=
(x̃(λ∗/2), λ∗/2).

Since F is real analytic and Fx(x1/2, λ1/2) is invertible by (6.1), (x1/2, λ1/2) lies in some connected component 
A0 of

A :=
{
(x,λ) ∈ U × I : F(x,λ)= 0, Fx(x,λ) is invertible

}
.

Following [20], we will call such connected components distinguished arcs. The analytic implicit function theorem 
guarantees that, like all distinguished arcs, A0 is a graph:

A0 = {(̃x0(λ), λ) : λ ∈ I0},
where I0 ⊂ I is a (possibly unbounded) open interval and x̃0 : I0 → X is analytic. For notational convenience, we 
will also reparametrize A0 as

A0 = {(x(s), λ(s)) : 0 < s < 1}
where λ(s) is increasing.
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An easy argument using the implicit function theorem shows that Cloc lies entirely in A0. Thus I0 = (0, λ1) for 
some λ1 ≥ λ∗, and A0 has “starting endpoint”

lim
s↘0

(x(s), λ(s))= (x0, λ0)= (0,0)

by (6.1). Next we turn our attention to the limit s ↗ 1. We will show that either C := A0 satisfies (i) or (ii) (after 
reparametrization) or that A0 connects to another distinguished arc A1. If N(s) → ∞ as s ↗ 1, then, after a trivial 
reparametrization mapping (0, 1) to (0, ∞), (i) occurs and we are done. So assume that (6.2) does not hold as s ↗ 1, 
in which case we can find a sequence {sn} ⊂ (1/2, 1) with sn ↗ 1 so that N(sn) ≤ M < ∞ for all n. Without loss 
of generality we can assume that λ(sn) → λ1 ∈ I . If {x(sn)} has no convergent subsequences in X , then (ii) occurs, 
and again we are done after a trivial reparametrization. Assume instead, passing to a subsequence, that we have 
x(sn) → x1 ∈ U .

By continuity, F(x1, λ1) = 0, and hence Fx(x1, λ1) is Fredholm with index 0. Let 1 ≤ k < ∞ be the dimension 
of its null space. Using the real-analytic Lyapunov–Schmidt procedure as in [20, Theorem 8.2.1 and Remark 8.2.2], 
the problem of solving F(x, λ) = 0 near (x1, λ1) can be reduced to a finite-dimensional system. That is, there exists 
a real-analytic bifurcation function B : Rk × R → R

k , and a real-analytic bijection mapping the zero-set of B in 
neighborhood of the origin to the zero-set of F near (x1, λ1). Complexifying B in the natural way, we see that its 
zero-set represents a complex-analytic variety, which implies a great deal about its structure; see [20, Theorem 7.4.7]. 
Arguing as in Steps 1 and 2 of the proof of [20, Theorem 9.1.1], we find that (x(s), λ(s)) → (x1, λ1) as s ↗ 1, and 
that, at (x1, λ1), the distinguished arc A0 is uniquely paired to another (different) distinguished arc A1, parametrized 
as

A1 = {(x(s), λ(s)) : 1 < s < 2}
and with (x(s), λ(s)) → (x1, λ1) as s ↘ 1. Moreover, we can choose s �→ (x(s), λ(s)) to be analytic in a neighborhood 
of s = 1, perhaps at the cost of giving up analyticity for other values of s. Note that, by the implicit function theorem, 
the closures A0 and A1 can only meet at (x1, λ1) and perhaps also at the other endpoint (x0, λ0). In particular, 
A1 ∩ Cloc =∅.

We can now argue for A1 as we did for A0. We find that either (after a trivial reparametrization) C := A0 ∪ A1
satisfies (i) or (ii), or that A1 terminates in a second endpoint (x2, λ2) as s ↗ 2, and that at this point A1 is uniquely 
paired with another distinguished arc A2; see Fig. 6(b). The parametrization can be chosen to be analytic near (x2, λ2), 
and A1 ∪A2 ∩ Cloc = ∅. Continuing in this way, we can assume that we have an infinite sequence of distinguished 
arcs

An = {(x(s), λ(s)) : n < s < n+ 1}
with (two-sided) limits (x(s), λ(s)) → (xn, λn) as s → n. The unique way consecutive arcs are paired at the endpoints 
(xn, λn), together with the fact that the only “unpaired” endpoint (x0, λ0) lies in ∂(U ×I) and not in U ×I , guarantees 
that all of the An are distinct. Setting C := ∪nAn, the implicit function theorem guarantees as before that ∪n≥1An ∩
Cloc =∅, which implies (c).

It remains to show, in this case, that either (i) or (ii) holds. Seeking a contradiction, suppose that neither holds, 
so that we can find a sequence sn → ∞ with N(sn) ≤ M < ∞ and where (x(sn), λ(sn)) → (x∞, λ∞) ∈ U × I and 
F(x∞, λ∞) = 0. Therefore any neighborhood of the point (x∞, λ∞) intersects infinitely many distinguished arcs. But, 
applying the analytic Lyapunov–Schmidt reduction near (x∞, λ∞) along with the structure theorem for real-analytic 
varieties as in Step 4 of the proof of [20, Theorem 9.1.1], we see that sufficiently small neighborhoods of (x∞, λ∞)

only meet a finite number of distinguished arcs, a contradiction.
Finally, we point out that this construction also yields (b): in the interior of a distinguished arc, one can apply the an-

alytic implicit function theorem to reparametrize, and at the end points, we get it from the analytic Lyapunov–Schmidt 
reduction instead (cf. [20, Theorem 9.1.1(d)]). �
Remark 6.2. This theorem represents a somewhat atypical global bifurcation result. More commonly, one begins 
with a local curve that bifurcates from a trivial solution and perhaps lies inside some open set O. Provided that the 
necessary compactness hypotheses are met, then one expects to obtain a statement of the form: there exists a global 
continuation of the local curve that either is unbounded, contains a sequence limiting to ∂O, or is a closed loop.
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The situation here is quite different as the trivial solution is not the initial point of bifurcation, and in fact it lies in 
∂(U × I). It is therefore impossible to have a closed loop in this case, since C =⋃n An, where each distinguished 
arc An is distinct.

Next let us look more closely at alternative (ii) of Theorem 6.1. In doing so, we will restrict our attention to the 
case of an elliptic PDE that generalizes the height equation (2.31). Fix an integer k ≥ 0, and let � := R × B be an 
infinite cylinder whose base B ⊂ R

n−1 is a bounded Ck+2+α domain. We will denote points in � as (x, y) where 
x ∈ R and y ∈ B. Partition the components of ∂B as ∂B = ∂1B ∪ ∂2B (either may be empty). Consider a nonlinear 
elliptic problem⎧⎪⎨⎪⎩

F(y,u,Du,D2u,λ)= 0 in �,

G(y,u,Du,λ)= 0 on R× ∂1B,
u= 0 on R× ∂2B,

(6.3)

where the parameter λ ∈R
m and where F and G have the regularity

F ∈ Ck+1+α
b (B ×R×R

n × S
n×n ×R

m), G ∈Ck+2+α
b (R× ∂1B ×R×R

n ×R
m).

Moreover, assume that F is uniformly elliptic in that

Frij (y, z, ξ, r, λ)ηiηj ≥ c|η|2 (6.4)

for all y, z, ξ, r, η, λ while G is uniformly oblique in that

Gξ i (y, z, ξ, λ)νi > c (6.5)

for all z, ξ, λ and y ∈ ∂1B, where here ν is the outward pointing normal to ∂�.

Lemma 6.3 (Compactness or front). If {(un, λn)} is a sequence of solutions to (6.3) that is uniformly bounded in 
Ck+2+α

b (�) ×R
m, with the additional monotonicity property

un(x, y) is even in x and has ∂xun ≤ 0 for x ≥ 0 (6.6)

for each n as well as the asymptotic condition

lim|x|→∞un(x, y)=U(y) uniformly in y (6.7)

for some fixed function U ∈ Ck+2+α
b (B), then either

(i) we can extract a subsequence so that un → u in Ck+2+α
b (�); or

(ii) we can extract a subsequence and find xn → +∞ so that the translated sequence {̃un} defined by ũn =
un( · + xn, · ) converges in Ck+2

loc (�) to some ̃u ∈Ck+2+α
b (�) which solves (6.3) and has ̃u �≡U and ∂xũ≤ 0.

Proof. Without loss of generality we can assume that λn → λ ∈ R
m. Suppose first that

lim|x|→∞ sup
n

sup
y

|un(x, y)−U(y)| = 0. (6.8)

We will show that alternative (i) occurs. Using Arzelà–Ascoli, (6.8), a diagonalization argument, and Remark 2.2, 
we can extract a subsequence so that un → u in Ck+2

loc (�) and C0
b(�) for some u ∈ Ck+2+α

b (�) satisfying (6.7). It 
remains to show that un → u in Ck+2+α

b (�). For this we observe that vn := un − u satisfies a linear elliptic equation⎧⎪⎪⎨⎪⎪⎩
a
ij
n Dij vn + binDivn + cnvn = 0 in �,

βiDivn +μnvn = 0 on R× ∂1B,
vn = 0 on R× ∂2B,

(6.9)

where the coefficients aijn , bin, cn, β
i
n, μn are defined in terms of the convex combinations u(s)n := sun + (1 − s)u and 

λ(s) := sλn + (1 − s)λ by
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a
ij
n :=

1∫
0

Frij (y, u
(s)
n ,Du(s)n ,D2u(s)n , λ(s)) ds, bin :=

1∫
0

Fξ i (y, u
(s)
n ,Du(s)n ,D2u(s)n , λ(s)) ds,

cn :=
1∫

0

Fz(y,u
(s)
n ,Du(s)n ,D2u(s)n , λ(s)) ds, βin :=

1∫
0

Gξ i (y, u(s)n ,Du(s)n , λ(s)) ds,

μn :=
1∫

0

Gz(y,u(s)n ,Du(s)n , λ(s)) ds.

From the assumptions on F, G and the uniform bounds on un and u in Ck+α
b (�), the Ck+α norms of aijn , bin, cn as 

well as the Ck+1+α norms of βin, μn are bounded uniformly in n. From (6.4) and (6.5) we also see that aijn ηiηj ≥ c|η|2
and βiνi > c so that (6.9) is uniformly elliptic with uniformly oblique boundary condition. Thus we have a Schauder 
estimate

‖vn‖Ck+2+α(�) ≤ C‖vn‖C0(�)

where the constant C is independent of n. Since un → u and hence vn → 0 in C0
b(�), this proves that un → u in 

Ck+2+α
b (�) as desired.

Now assume that (6.8) does not hold; we will show that (ii) occurs. We can find a sequence {(xn, yn)} ⊂ � with 
xn → +∞ and ε > 0 so that

|un(xn, yn)−U(yn)| ≥ ε

for all n. Extracting a subsequence we can assume that yn → y∞ ∈ B. Consider the translated sequence {̃un} defined 
by

ũn(x, y) := un(x + xn, y).

Thanks to the uniform bounds on un and hence ̃un, we can extract a further subsequence so that ̃un → ũ in Ck+2
loc (�)

for some ũ ∈ Ck+2+α
b (�). Since F and G have no explicit dependence on x, the ũn are also solutions to (6.3), and 

therefore the Ck+2
loc limit implies that ̃u also solves (6.3).

By (6.6), we have ∂xũn ≤ 0 for x ≥ −xn, and hence ∂xũ≤ 0 on �. Finally, to see that ̃u �≡U , we simply note that

|̃u(0, y∞)−U(y∞)| = lim
n→∞|un(xn, yn)−U(yn)| ≥ ε > 0. �

Remark 6.4. The above proof can easily be generalized to the case where the un are not necessarily even and where 
(6.6) is replaced by the monotonicity of the un for |x| >M for some fixed M > 0.

6.2. Proof of the main result

Recall from Section 2.5 that we can formulate the height equation (2.31) as a nonlinear operator equation 
F (w, F) = 0 with F : U → Y given in (2.33) and (2.34). Obviously F is real analytic on U , and from Lemma 3.6
it follows that Fw(w, F) is Fredholm with index 0 whenever (w, F) ∈ U . By Theorem 5.1, we know that there is a 
local curve

Cloc = {(wε,F ε) : 0 < ε < ε∗} ⊂U

of nontrivial symmetric and monotone waves of elevation with F slightly larger than Fcr. (Recall from (5.2) that 
Fε = (1/F 2

cr − ε)−1/2.) Moreover, Fw is invertible along Cloc.
Applying Theorem 6.1 to our nonlinear operator F : U → Y with U × I =U , we obtain the following.

Theorem 6.5 (Global continuation). The local curve Cloc is contained in a continuous curve of solutions, 
parametrized as
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C = {(w(s),F (s)) : 0 < s <∞} ⊂U

with the following properties.

(a) One of two alternatives must hold: either
(i) (Blowup) as s → ∞,

N(s) := ‖w(s)‖X + 1

infR(wp(s)+Hp)
+ F(s)+ 1

F(s)− Fcr
→ ∞; or (6.10)

(ii) (Loss of compactness) there exists a sequence sn → ∞ such that supn N(sn) <∞ but {w(sn)} has no subse-
quences converging in X.

(b) Near each point (w(s0), F(s0)) ∈ C , we can reparametrize C so that the mapping s �→ (w(s), F(s)) is real 
analytic.

(c) (w(s), F(s)) /∈ Cloc for s sufficiently large.

We will now use the qualitative results from Section 4 to pare down the alternatives in Theorem 6.5 until we are 
left with only supR(wp(s) +Hp) → ∞, proving Theorem 1.1.

First we consider alternative (ii). Here we would like to apply Lemma 6.3, but first we need to know that these 
solutions have the required monotonicity properties (6.7).

Lemma 6.6. The nodal properties (4.65) hold along the global bifurcation curve C .

Proof. First we claim that (4.65) holds along the local bifurcation curve Cloc. By Theorem 5.1(iv), any (w, F) ∈ Cloc
is a wave of elevation in that w > 0 on R ∪ T . Thus we can apply Theorem 4.13 to get wq < 0 on R ∪ T , and hence 
by Lemma 4.20 that (4.65) holds.

Let V ⊂ C denote the set of all (w, F) ∈ C satisfying (4.65). Since C is a continuous curve, it is connected 
in X × R. By Lemmas 4.21 and 4.22, V ⊂ C is both relatively open and relatively closed. Since Cloc ⊂ V , V is 
nonempty, and we conclude that V = C as desired. �

Now we are ready to eliminate alternative (ii) in Theorem 6.5. We state the lemma in a slightly more general form 
for later convenience.

Lemma 6.7. Given a sequence of solutions {(wn, Fn)} ⊂ C to F (w, F) = 0 with ‖wn‖X uniformly bounded, we 
can extract a subsequence so that (wn, Fn) converges in X × R to a solution (w, F) of F (w, F) = 0. In particular, 
alternative (ii) in Theorem 6.5 cannot occur.

Proof. We will apply a slight variant of Lemma 6.3 to (2.28) in non-divergence form, setting k := 1, λ := F , u := h, 
U :=H ,

B := [−1,0], ∂1B := {0}, ∂2B := {−1},
and

F(p, z, ξ, r,F ) := (1 + ξ2
1 )r22 − 2ξ1ξ2r12 + ξ2

2 r11 +
( 1

2H 2
p

)
p
ξ3

2 + 1

F 2
ρp(H − z)ξ3

2 ,

G(z, ξ,F ) := 1 + ξ2
1

2ξ2
2

− 1

2Hp(0)2
+ 1

F 2
ρ(0)(z− 1).

(6.11)

Given a sequence {(wn, Fn)} as in the statement of the lemma, Lemma 6.8 at once furnishes a uniform bound

‖hn‖X + 1

infR ∂phn
+ Fn ≤M <∞.

Thus, for all n and at any (q, p) ∈R, (p, hn, Dhn, D2hn, Fn) ∈ DM , where

DM := {(p, z, ξ, r,F ) ∈ [−1,0] ×R×R
2 × S

2×2 ×R : ξ2 ≥ 1
M
, Fcr ≤ F ≤M

}
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Here S2×2 is the set of symmetric 2 ×2 real matrices. We easily check that F, G satisfy the requirements of Lemma 6.3
when restricted to DM . Since DM is convex, the proof of Lemma 6.3 is easily extended to this setting. We conclude 
that, after extracting a subsequence, we can arrange for Fn → F ≥ Fcr and find qn → +∞ so that h̃n(qn + · , · )
converges in C3

loc(R) to a solution h̃ ∈C3+α
b (R) of (2.28) with h̃q ≤ 0,

h̃ �≡H, (6.12)

and h̃p ≥ 1/M . Here we have used Remark 2.2 to conclude that h̃ ∈C3+α
b (R). Moreover, since each hn ≥H , we have 

h̃≥H , and since S (hn) = S (H), S (h̃) = S (H).
Because h̃q ≤ 0 and h̃ is bounded, for all p we must have pointwise limits

H±(p) := lim
q→±∞ h̃(q,p).

As h̃≥H , we have

H ≤H− ≤ h̃≤H+. (6.13)

Moreover, since S (h̃) = S (H), S (H−) = S (H+) = S (H). Combining these facts with Corollary 4.11, we con-
clude that H+ ≡H− ≡H . But then (6.13) forces h̃≡H , contradicting (6.12). �

Now we turn to alternative (i) in Theorem 6.5, and clarify the way in which the first and last terms on the left-hand 
side of (6.10) may be unbounded. First we apply Corollary 4.2 and Theorem 4.7 to bound the middle two terms in 
(6.10) by the first term.

Lemma 6.8 (Finite Froude number and velocity). Let (w, F) ∈ U solve F (w, F) = 0. If ‖w‖C1(R) ≤ K , there is a 
constant C depending only on K so that

1

infR(wp +Hp)
+ F <C.

Proof. Corollary 4.2 immediately gives infR(wp +Hp) > δ∗, while Theorem 4.7 gives

F 2 ≤ C‖hp‖L∞ ≤ C‖Hp +wp‖L∞ ≤C(1 + ‖w‖C1(R))≤ C. �
Next we deal with the fourth term in (6.10) by showing that uniform bounds on ‖w(s)‖X imply that F(s) is 

bounded away from Fcr.

Lemma 6.9 (Asymptotic supercriticality). If ‖w(s)‖X is uniformly bounded along C , then

lim inf
s→∞ F(s) > Fcr. (6.14)

Proof. Arguing by contradiction, suppose that there exists a sequence sn → ∞ with

lim sup
n→∞

‖w(sn)‖X <∞ and F(sn)→ Fcr. (6.15)

Applying Lemma 6.7, we can extract a subsequence so that {(w(sn), F(sn))} converges in X × R to a solution 
(w∗, F ∗) of F (w, F) = 0 with critical Froude number F ∗ = Fcr. By Theorem 4.4(ii), we know that this can only 
happen if w∗ = 0. Consequently, ‖w(sn)‖X → 0. Since, by Lemma 6.6, each w(sn) is a wave of elevation, we have 
(w(sn), F(sn)) ∈ Cloc for n sufficiently large by Lemma 5.10. But by Theorem 6.5(c), (w(s), F(s)) /∈ Cloc for s suffi-
ciently large, so this is a contradiction. �

Together, Lemmas 6.7, 6.8, 6.9, and Theorem 6.5 show that ‖w‖X is necessarily unbounded along C . The next 
result explains more precisely which derivatives of w are growing in the limit.

Theorem 6.10 (Uniform regularity). For each K > 0 there exists a constant C = C(K) > 0 such that, if (w, F) ∈ C
with ‖wp‖C0(R) < C, then ‖w‖C3+α(R) < K .
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In other words, if ‖w(s)‖X → ∞, then ‖wp(s)‖C0(R) → ∞ as well. This is a consequence of the structure of the 
height equation and elliptic regularity theory. Statements of this type are well known in the context of steady water 
waves (see, e.g., [24, Section 6], [94, Section 6], [96, Section 5], and [95, Section 5]), so we only provide a sketch of 
the argument and relegate it to Appendix A.3. The crucial first step will be to apply Corollary 4.2.

At last, we are prepared to prove the main result. Most of the work has already been done, and so all that remains 
is to assemble the various pieces laid out above.

Proof of Theorem 1.1. Let C be given as in Theorem 6.5. Applying Lemma 6.7, we conclude that alternative (i) in 
Theorem 6.5 holds, i.e.,

‖w(s)‖X + 1

infR(wp(s)+Hp)
+ F(s)+ 1

F(s)− Fcr
→ ∞

as s → ∞. Using Lemma 6.8, we can simplify this to

‖w(s)‖X + 1

F(s)− Fcr
→ ∞

and using Lemma 6.9 we conclude ‖w(s)‖X → ∞. Theorem 6.10 now yields

‖wp(s)‖C0(R) → ∞.

Using (2.26), we can re-express wp in Eulerian variables. At the same time, we also reintroduce the tildes distinguish-
ing dimensional and dimensionless Eulerian quantities. We will not put tildes on the Dubreil-Jacotin variables h, ρ, 
and p even though they are dimensionless. For s sufficiently large, this gives

inf
�̃(s)

(c̃− ũ(s))= 1

supR|√ρhp| ≤ 1

min
√
ρ

1

supR|wp| − maxHp

→ 0, (6.16)

where �̃(s) is the dimensionless fluid domain corresponding to (w(s), F(s)). To prove a similar statement for the 
dimensional horizontal velocity

u− c = m√
ρ0d

(ũ− c̃)= F
√
gd(ũ− c̃),

we combine (6.16) with the bound (4.20) from Theorem 4.7,

F 2(s)≤ C

inf�(s)(c̃− ũ(s))
,

to get

inf
�(s)

(c− u(s))= F
√
gd inf

�̃(s)

(c̃− ũ)≤ C
√

inf
�̃(s)

(c̃− ũ)→ 0.

The regularity statements about the parametrization are inherited from those of Theorem 6.5. �
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Appendix A. Proofs and calculations

This appendix collects some of the more technical proofs and straightforward calculations, organized by section.

A.1. Proofs and calculations from Section 5

Proof of Lemma 5.2(ii). Let u = (w, r) ∈ D(L), ξ ∈ R be given, and denote (f, g) := (L − iξ)u, that is,

f =Hpr − iξw, g = −
(
wp

H 3
p

)
p

+ 1

F 2
cr
ρpw − iξr. (A.1)

Recall also that the definition of D(L) implies that

w(−1)= r(−1)= 0,

(
−wp

H 3
p

+ 1

F 2
cr
ρw

)∣∣∣∣∣
p=0

= 0. (A.2)

Following [39, Lemma 3.4] and [96, Lemma 4.9], we integrate by parts in (A.1) using (A.2),

C(‖f ‖2
H 1 + ‖g‖2

L2)≥
0∫

−1

(
|fp|2
H 3
p

+Hp|g|2
)

dp

≥ ‖wpp‖2
L2 + ‖rp‖2

L2 + |ξ |2(‖wp‖2
L2 + ‖r‖2

L2)

− (|ξ | +C)
(
‖w‖2

H 1 + ‖r‖2
L2

)
−C|ξ ||r(0)w̄(0)|.

Here we have used that H ∈ C3+α and Hp > 0. From the bottom boundary conditions, Sobolev embedding theorem, 
Poincaré inequality, and an interpolation argument, we have

‖w‖L∞ � ‖w‖H 1 � ‖wp‖L2, ‖r‖L∞ � ‖r‖H 1 � ‖rp‖L2 , ‖w‖H 2 � ‖wpp‖L2 .

So we can bound w(0) by |w(0)| ≤ C‖wp‖L2 . To control |r(0)|, we note from (A.2) that

∣∣Hp(0)r(0)
∣∣2 = 2

0∫
−1

Re
(
Hpr̄(Hpr)p

)
dp.

Then using the first equation in (A.1) it follows that

∣∣Hp(0)r(0)
∣∣2 = 2 Re

0∫
−1

Hpr̄(fp + iξwp)dp ≤ δ2
(
‖fp‖2

L2 + |ξ |2‖wp‖2
L2

)
+ 1

δ2
‖r‖2

L2 ,

for some δ > 0. Thus choosing |ξ | sufficiently large and δ sufficiently small, we finally have

C(‖f ‖2
H 1 + ‖g‖2

L2)≥ ‖wpp‖2
L2 + ‖rp‖2

L2 + |ξ |2(‖wp‖2
L2 + ‖r‖2

L2)

� ‖w‖2
H 2 + ‖r‖2

H 1 + |ξ |2(‖w‖2
H 1 + ‖r‖2

L2),

which completes the proof. �
A.2. Calculation of the reduced system

In this subsection, we present the computation of the leading order part of the reduced system in Lemma 5.5(vi).
Recall that in Lemma 5.2(i) we found that the center space is spanned by the e1, e2 defined in (5.8). We record 

below the first through third variations of H evaluated at u = 0 and in taken in the direction uc := z1e1 + z2e2,

Hε
u(0)[uc] =Hε

uε(0)[uc] = 0, Hε
uu(0)[uc, uc] = z2

2,

Hε (0)[uc, uc] = −c−1c z2, Hε (0)[uc, uc, uc] = 3c−3/2
c z3 + 3c−1/2

z z2,
(A.3)
uuε 0 1 1 uuu 0 2 1 0 1 2
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where c0 is defined in (5.9) and c1, c2 are defined in (5.15). Also, an elementary computation reveals that 
H0

uu(0)[e1, · ] ≡ 0, given the equation satisfied by �cr.
Consider the quantity

Kε(uc) := Hε(uc +�ε(uc)),

where �ε is the reduction function of Lemma 5.5(vi). The reduced Hamiltonian Kε given in (5.11) corresponds 
to viewing Kε as a function of (z1, z2). The derivatives of Kε can be computed readily using (A.3). It is clear, for 
instance, that Kε

u(0) vanishes identically, while

K0
εucuc(0)[u̇c, u̇c] = −c−1

0 c1z
2
1 + 2H0

uu(0)
[
e2,�

0
εuc(0)e1

]
z1z2 + 2H0

uu(0)
[
e2,�

0
εuc(0)e2

]
z2

2,

and thus

Kε
ucuc(0)[uc, uc] = z2

2 − εc−1
0 c1z

2
1 +O(|ε||(z1, z2)||z2|)+O(ε2|(z1, z2)|2). (A.4)

Likewise,

Kε
ucucuc(0)[uc, uc, uc] =Hε

uuu(0)[uc, uc, uc] + 2Hε
uu(0)[uc, �ε

ucuc(0)[uc, uc]]
= 3c−3/2

0 c2z
3
1 +O(|z2||(z1, z2)|2), (A.5)

in light of (A.3) and the fact that �ε
uc(0) = 0.

Combining (A.4), and (A.5), and expressing the result in terms of (z1, z2) ∈ R
2, we arrive at the following expan-

sion for the reduced Hamiltonian Kε :

Kε(z1, z2)= 1

2
z2

2 − 1

2
εc−1

0 c1z
2
1 + 1

2
c
−3/2
0 c2z

3
1

+O(|z2||(z1, z2)|2)+O(|ε||z2||(z1, z2)|)+O(|(ε, z1, z2)|2|(z1, z2)|2).
(A.6)

A.3. Proofs from Section 6

Proof of Theorem 6.10. Let K > 0 be given. Throughout the proof, we let C > 0 denote a generic constant that 
depends only on ‖wp‖C0(R). In light of Corollary 4.2, we already know that ‖w‖C1(R) can be controlled by ‖wp‖C0(R). 
It remains now to bound the higher order derivatives.

First, we establish uniform Hölder norm estimates for the gradient. Note that the height equation (2.28) can be 
written abstractly as

F(p,h,Dh,D2h,F )= 0 in R, G(h,Dh,F )= 0 on T , h= 0 on B,

where

F : [−1,0] ×R×R
2 × S

2×2 ×R+ → R, G : R×R
2 ×R+ →R

are defined by (6.11). We are interested in deriving bounds that are uniform for

sup
R

hp > δ∗ > 0, ‖h‖C1(R) + F + 1

F
<C.

Translating this to the notation above, this means that one should consider the restriction of F and G to sets of the 
form

V :=
{
(z, ξ,F ) ∈R×R

2 ×R+ : ξ2 > δ∗, z > 0, z+ |ξ1| + |ξ2| + F + 1

F
<C

}
.

This can be achieved in the usual way by using cutoff functions. For (z, ξ, F) ∈ V , p ∈ [−1, 0], and r ∈ S
2×2, it is 

easy to confirm that

c1I ≤ Fr (p, z, ξ, r,F )≤ c1c2I, |Gξ (z, ξ,F )|> c3,

|F(p, z, ξ,0,F )|< c1c4|p|α−1,

(1 + |r|)|Fξ (p, z, ξ, r,F )| + |Fz(p, z, ξ, r,F )| + |Fp(p, z, ξ, r,F )| ≤ c1c5(|r|2 + |p|α−2),
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where I is the 2 × 2 identity matrix and c1, c2, c3, c4, and c5 are positive constants depending only on C and δ∗. 
Moreover, for any (z, ξ, F), (z′, ξ ′, F) ∈ V there exists a positive constant c6 > 0, depending only on C and δ∗, such 
that

|G(z, ξ,F )− G(z′, ξ ′,F )| ≤ c3c6
(|z− z′|α + |ξ − ξ ′|α) .

These structural properties permit us to apply quasilinear elliptic estimates up to the boundary as in [64, Theorem 1]
to conclude that ‖h‖

C1+α′
(R)

< C, for some α′ ∈ (0, α]. Here we have also used that the fact that h ∈ X ⊂ W
3,2
loc (R)

and h is uniformly bounded in the local Lipschitz norm by C.
Next, we consider the higher-order derivatives. For this we yet again exploit the height equation’s translation invari-

ance in q to quasi-linearize it by applying ∂q . That is, hq is the solution of a uniformly elliptic second-order divergence 
form PDE with a uniformly oblique boundary condition (4.63). Our efforts thus far show that the coefficients of this 
PDE are uniformly bounded in Cα′

(R), thus linear Schauder estimates are enough to get control of hq in C1+α′
(R)

(see, e.g., [25, Theorem 3]). Lastly, to bound hpp in Cα′
(R), we use the full height equation (2.28) to express it in 

terms of h, hq , hp , hqq , and hqp .
Thus, h is uniformly controlled in C2+α′

(R). But then it is in particular bounded uniformly in C1+α(R). Repeating 
the same argument above, we see that the coefficients of the linear PDE for hq are in Cα(R), hence hq is controlled 
uniformly in C3+α(R). As before, this is enough to conclude that ‖h‖C2+α(R) < C. It is straightforward to continue in 
this fashion and obtain uniform bounds of h in C3+α(R), which finishes the proof. �
Appendix B. Quoted results

First, let us recall the maximum principle, Hopf boundary lemma, and Serrin edge point lemma [75]. In particular, 
note that we are using the version that allows for an adverse sign of the zeroth order term provided that the sign of the 
solution is known; see, for example, [33], [75, Lemma 1], and [37, Lemma S].

Theorem 6.11. Let � ⊂ R
n be a connected, open set (possibly unbounded), and consider the second-order operator 

L given by

L :=
n∑

i,j=1

aij (x)∂i∂j +
n∑

i=1

bi(x)∂i + c(x) (B.1)

where ∂i := ∂xi and the coefficients aij , bi, c are of class C0(�). We assume that L is uniformly elliptic in the sense 
that there exists λ > 0 with∑

ij

aij (x)ξiξj ≥ λ|ξ |2, for all ξ ∈R
n, x ∈�, (B.2)

and that aij is symmetric. Let u ∈C2(�) ∩C0(�) be a classical solution of Lu = 0 in �.

(i) (Strong maximum principle) Suppose u attains its maximum value on � at a point in the interior of �. If c ≤ 0
in �, or if sup� u = 0, then u is a constant function.

(ii) (Hopf boundary lemma) Suppose that u attains its maximum value on � at a point x0 ∈ ∂� for which there exists 
an open ball B ⊂� with B ∩ ∂� = {x0}. Assume that either c ≤ 0 in �, or else supB u = 0. Then u is a constant 
function or

ν · ∇u(x0) > 0,

where ν is the outward unit normal to � at x0.
(iii) (Serrin edge point lemma) Let x0 ∈ ∂� be an “edge point” in the sense that near x0 the boundary ∂� consists 

of two transversally intersecting C2 hypersurfaces {γ (x) = 0} and {σ(x) = 0}. Suppose that γ, σ < 0 in �. If 
u ∈ C2(�), u > 0 in � and u(x0) = 0. Assume further that aij ∈C2 in a neighborhood of x0,

B(x0)= 0, and ∂τB(x0)= 0 (B.3)
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for every differential operator ∂τ tangential to {γ = 0} ∩ {σ = 0} at x0. Then for any unit vector s outward from 
� at x0, either

∂su(x0) < 0 or ∂2
s u(x0) < 0.

We quote below the center manifold reduction theorem that forms the basis of the small-amplitude existence theory 
in Section 5 (cf. [70] and [42] for a general discussion). The version that we use is specifically designed to take 
advantage of the Hamiltonian structure of the system.

Theorem 6.12 (Buffoni, Groves, and Toland [19]). Suppose that (X , ωε, Hε) is a one-parameter family of reversible 
Hamiltonian systems, where X is a Hilbert space, ωε a symplectic form on X , and Hε the Hamiltonian. Write the 
corresponding Hamilton equation in the form

uq = Lu+Nε(u), (B.4)

where u(q) is assumed to lie in X for each q . We assume that L : D(L) ⊂ X → X is a densely defined, closed linear 
operator. Suppose that 0 is an equilibrium for (B.4) at ε = 0 and that the following conditions hold.

(H1) The spectrum σ(L) of L contains at most finitely many eigenvalues on the imaginary axis, each of which has 
finite multiplicity. Moreover, σ(L) ∩ iR is separated from σ(L) \ iR in the sense of Kato. Let P c denote the 
spectral projection corresponding to σ(L) ∩ iR and put X c := P cX , X su := (1 −P c)X . We let n be the (finite) 
dimension of X c.

(H2) There exists C > 0 such that the operator L satisfies the resolvent estimate

‖u‖X ≤ C

1 + |ξ | ‖(L− iξI )u‖X , (B.5)

for all ξ ∈R and u ∈X su.
(H3) There exists a natural number k, an interval � ⊂R containing 0, and a neighborhood U of 0 in D(L) such that 

N is Ck+1 in its dependence on (ε, u) on � × U . Moreover, N0(0) = 0 and DuN
0(0) = 0.

Then, after possibly shrinking the interval � and neighborhood U , we have that, for each ε ∈ �, there exists an 
n-dimensional local center manifold Wε ⊂ U together with an invertible coordinate map

χε := P c|Wε : Wε → Uc := P cU
with the following properties:

(i) Defining �ε : Uc → U su := P suU by uc +�ε(uc) = (χε)−1(uc), the map (ε, u) �→ �ε(u) is Ck(� × Uc, U su). 
Moreover �ε = 0 for all ε ∈� and Du�

0(0) = 0.
(ii) Every initial condition u0 ∈ Wε determines a unique solution u of (B.4) which remains in Wε as long as it 

remains in U .
(iii) If u solves (B.4) and lies in U for all q , then u lies entirely in Wε .
(iv) If uc ∈ C1((a, b), Uc) solves the reduced system

uc
q = f ε(uc) := Luc + P cNε(uc +�ε(uc)), (B.6)

then u = (χε)−1(uc) solves the full system (B.4).
(v) Mε is a symplectic submanifold of X when equipped with the symplectic form ωε|Mε and Hamiltonian Kε(uc) =

Hε(uc +�ε(uc)). The reduced system (B.6) corresponds to the Hamiltonian flow for (Mε, ωε |Mε , Kε). In fact, 
it is reversible and coincides with the restriction of the full Hamiltonian to the center manifold.
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