
Available online at www.sciencedirect.com
ScienceDirect

Ann. I. H. Poincaré – AN 33 (2016) 1153–1197
www.elsevier.com/locate/anihpc

Annealed estimates on the Green functions and uncertainty 

quantification

Antoine Gloria a,b,∗, Daniel Marahrens c

a Université Libre de Bruxelles (ULB), Brussels, Belgium
b Team MEPHYSTO, Inria Lille - Nord Europe, Villeneuve d’Ascq, France

c Max-Planck-Institute for Mathematics in the Sciences, Inselstrasse 22, 04103 Leipzig, Germany

Received 11 September 2014; received in revised form 24 March 2015; accepted 7 April 2015

Available online 16 April 2015

Abstract

We prove Lipschitz bounds for linear elliptic equations in divergence form whose measurable coefficients are random stationary 
and satisfy a logarithmic Sobolev inequality, extending to the continuum setting results by Otto and the second author for discrete 
elliptic equations. This improves the celebrated De Giorgi–Nash–Moser theory in the large (that is, away from the singularity) for 
this class of coefficients. This regularity result is obtained as a corollary of optimal decay estimates on the derivative and mixed 
second derivative of the elliptic Green functions on Rd . As another application of these decay estimates we derive optimal estimates 
on the fluctuations of solutions of linear elliptic PDEs with “noisy” diffusion coefficients.
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1. Introduction

For scalar linear elliptic equations in divergence form it is well known that the best regularity theory one can hope 
for is that of De Giorgi, Nash, and Moser. In particular, solutions are Hölder continuous for some exponent 1 � α > 0
that depends only on the ellipticity contrast of the coefficient field (α = 1 for constant coefficients), see [16]. In view 
of explicit examples from quasiconformal mappings, see [9, Theorem 12.3], α < 1 for non-constant coefficients in 
general.

In the case when the coefficient field is periodic (and Hölder-continuous), Avellaneda and Lin proved in [2,3] that 
α = 1 as well. (Indeed, the known counterexamples to optimal regularity cannot be periodic.) Their proof is based on 
a Campanato iteration (and the availability of periodic correctors) to lift the regularity of the associated homogenized 
equation to the non-constant coefficients equation at large scales (whereas the small-scale behavior is controlled by 
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the Hölder-regularity assumption on the coefficients via the Schauder theory). This also allows them to prove that the 
associated Green function has essentially the same behavior as for the Laplace equation.

To extend the results by Avellaneda and Lin to the random setting, we face a “lack of compactness” (it is no 
longer possible to rely on correctors, which are not necessarily well-behaved a priori). In their first contribution [14]
to quantitative stochastic homogenization, Otto and the first author proved that the corrector gradient has bounded 
finite moments — a Lipschitz-type regularity — under a quantitative ergodicity assumption on the coefficients. These 
are the first “improved regularity” results for an elliptic equation with random coefficients. The interpretation of these 
results in terms of “improved regularity” and their extension to more general equations than the corrector equation 
first appeared in the work [17] by Otto and the second author for discrete elliptic equations. In this work, the authors 
proceed in a different way than Avellaneda and Lin, and start with the optimal control of the finite moments of the 
Green functions at large scales. In turn this allows them to improve the Hölder regularity exponent α for this class of 
coefficients. Besides the structure of their proof, the Green functions bounds they obtain are particularly relevant to 
stochastic homogenization. Indeed, a key ingredient to [14,13,12] is a so-called sensitivity estimate, which naturally 
involves Green’s functions (see for instance Lemma 3.9 below). Their optimal control leads to the optimal control of 
several quantities of interest, like the error in the two-scale expansion (see [11]) or the fluctuations in elliptic equations 
with noisy coefficients (see [10,17]).

The aim of the present article is to extend the results by Otto and the second author in [17] to the continuum 
setting of linear (non-necessarily self-adjoint) elliptic PDEs. First, we develop a Lipschitz regularity theory for linear 
elliptic equations whose coefficients satisfy a quantitative ergodicity assumption in the form of a logarithmic-Sobolev 
inequality, see Definition 2.1 and Theorem 2.3. Second, we obtain optimal bounds on the gradient and second-mixed 
gradient of the associated Green function, see Theorem 2.5. Last we improve the fluctuation estimates of both [10]
and [17], and we unravel the central limit theorem scaling of a weak measure of the fluctuations, see Theorems 2.8
and 2.9.

We conclude this introduction by mentioning the independent and inspiring work by Armstrong and Smart. In [1], 
the authors obtain a similar Lipschitz regularity theory, with however better moment bounds and for nonlinear equa-
tions, under the assumption that the coefficients have finite range of dependence. Their approach is much closer to 
the approach by Avellaneda and Lin, and rely on a Campanato iteration using a quantitative homogenization result (to 
replace the compactness argument).

2. Statement of the main results

2.1. Notation and assumptions on the coefficient field

We let λ ∈ (0, 1] denote an ellipticity constant which is fixed throughout the paper, and set

�0 :=
{

A0 ∈ R
d×d : A0 is bounded, i.e. |A0ξ | ≤ |ξ | for all ξ ∈ R

d,

A0 is elliptic, i.e. λ|ξ |2 ≤ ξ · A0ξ for all ξ ∈R
d
}
. (2.1)

We equip �0 with the usual topology of Rd×d . A coefficient field, denoted by A, is a Lebesgue-measurable function 
on Rd taking values in �0. We then define

� := {measurable maps A :Rd → �0},
which we equip with the σ -algebra F that makes the evaluations A �→ ´

Rd Aij (x)χ(x)dx measurable for all i, j ∈
{1, . . . , d} and all smooth functions χ with compact support. This makes F countably generated.

Following the convention in statistical mechanics, we describe a random coefficient field by equipping (�, F) with 
an ensemble 〈·〉 (the expected value). Following [20], we shall assume that 〈·〉 is stochastically continuous: For all 
δ > 0 and x ∈R

d ,

lim|h|↓0

〈
1{A : |A(x+h)−A(x)|>δ}

〉 = 0

We shall always assume that 〈·〉 is stationary, i.e. for all translations z ∈ R
d the coefficient fields {Rd 
 x �→ A(x)}

and {Rd 
 x �→ A(x + z)} have the same joint distribution under 〈·〉. Let τz : � → �, A(·) �→ A(· + z) denote 



A. Gloria, D. Marahrens / Ann. I. H. Poincaré – AN 33 (2016) 1153–1197 1155
the shift by z, then 〈·〉 is stationary if and only if τz is 〈·〉-preserving for all shifts z ∈ R
d . The stochastic continuity 

assumption ensures that the map Rd ×� → �, (x, ω) �→ τxω is measurable (where Rd is equipped with the σ -algebra 
of Lebesgue measurable sets).

A random variable is a measurable function on (�, F). A random field ζ̃ is a measurable function on Rd × �. In 
this article the random field under study is the Green function. We are interested in the behaviour of the (massive) 
Green function Gμ : Rd ×R

d × � → R, which is defined for all μ > 0 and for all y ∈R
d as the unique distributional 

solution in W 1,1(Rd) which is continuous away from the diagonal x = y of the elliptic equation

μGμ(x, y;A) − ∇x · (A(x)∇xGμ(x, y;A)) = δ(x − y). (2.2)

For the existence, uniqueness and properties of Gμ, see Definition 3.1. Note that by definition of the σ -algebra, Gμ is 
measurable.

We make a quantitative ergodicity assumption in the form of the following logarithmic Sobolev inequality.

Definition 2.1 (Logarithmic Sobolev inequality (LSI)). We say that the ensemble 〈·〉 satisfies a logarithmic Sobolev 
inequality if there exist constants ρ,  > 0, which we shall respectively call amplitude and correlation-length, such 
that 〈

ζ 2 log
ζ 2

〈ζ 2〉
〉
� 2

ρ

〈ˆ
Rd

(
osc

A|B(z)

ζ
)2

dz

〉
(2.3)

for all measurable functions ζ : � → R, where the expectation in the RHS is an outer expectation (the oscillation is 
not necessarily measurable). Here the expression osc

A|B(z)

ζ denotes the oscillation of ζ with respect to all coefficient 

fields that coincide with A outside of B(z), where B(z) is the ball of radius  centered at z ∈R
d , that is,(

osc
A|B(z)

ζ

)
(A) =

⎛
⎝ sup

A|B(z)

ζ

⎞
⎠ (A) −

(
inf

A|B(z)

ζ

)
(A)

= sup
{
ζ(Ã)|Ã ∈ �, Ã|Rd\B(z)

= A|Rd\B(z)

}
− inf

{
ζ(Ã)|Ã ∈ �, Ã|Rd\B(z)

= A|Rd\B(z)

}
. � (2.4)

An example of coefficient field which satisfies (LSI) is the Poisson inclusions process (and variants of it), see in 
particular [5]. Without loss of generality, we assume in this article that  � 1.

Remark 2.2. The fact that outer expectations appear in the RHS of (2.3) is not a difficulty since in the rest of the article 
we shall always estimate the RHS of (2.3) by the expectation of measurable quantities (for which outer expectation 
and expectation coincide). �
2.2. Lipschitz-regularity theory

One way to formulate the De Giorgi–Nash–Moser theory is as follows: There exists 0 < α � 1 depending only on 
the ellipticity ratio λ such that for all p > d

2 , κ > 0, R > 0, and μ � 0 with R2μ � κ , if u satisfies

μu − ∇ · A∇u = f in B2R,

for some f ∈ Lp(B2R), then

Rα sup
x, y ∈ BR

|u(x) − u(y)|
|x − y|α �

( 
B2R

u2
) 1

2 +
( 
B2R

|R2f |p
) 1

p
, (2.5)

see for instance [9, Theorem 8.24]. (Note that this follows from the statement for R = 1 since by (2.8), f is replaced 
by R2f when performing a change of variables x � R−1x.) In the supremum above, we have set by convention 
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0
0 := 0. This result has two aspects: a regularity in the small and a regularity in the large. In particular we may split the 
statement into two parts: in the small, that is for |x| � 1, (2.5) quantifies the high frequencies of u (local regularity),

sup
B1

|u(x) − u(0)|
|x|α �

( 
B2

u2
) 1

2 +
( 
B2

|f |p
) 1

p
, (2.6)

and in the large, (2.5) quantifies the low frequencies of u (growth at large scales),

sup
BR \ B1

|u(x) − u(0)|
|x|α � R−α

( 
B2R

u2
) 1

2 + R−α
( 
B2R

|R2f |p
) 1

p
. (2.7)

If we assume that the coefficients A are uniformly Hölder-continuous, then we have an optimal regularity theory in 
the small, that is, (2.6) holds for the improved exponent α = 1 provided p > d (see for instance [16, Theorem 3.13]). 
However, the De Giorgi–Nash–Moser exponent cannot be improved in the large by increasing the regularity of the 
coefficients, as classical examples from quasiconformal mappings show. The improvement of the De Giorgi–Nash–
Moser exponent in the large is the aim of the following result for stationary coefficients that satisfy (LSI) and for 
periodic coefficients.

Theorem 2.3. Let the ensemble be stationary and satisfy (LSI) with constants ρ and , and let μ � 0 and d < p < ∞. 
Then for all R � 2 and all x ∈ BR \ B2, there exists a random variable YR(x) with bounded finite moments such 
that for all u and f ∈ Lp(B2R) related via

μu − ∇ · A∇u = f in B2R, (2.8)

we have
 

B

|u(x + x′) − u(x′)|
|x| dx′ ≤ YR(x)

(
R−1

( 
B2R

u2
) 1

2 + R−1
( 
B2R

|R2f |p
) 1

p
)
. (2.9)

In addition the random variables YR have the following boundedness property: For all 1 � q < ∞, there exists 
Cq < ∞ depending only on d , λ, p, q , ρ,  such that

sup
R�2

sup
x∈BR\B2

〈
YR(x)q

〉 1
q ≤ Cq. � (2.10)

Remark 2.4. In the case of uniformly Hölder continuous coefficients in the sense that there exists a constant Cγ < ∞
such that 〈·〉-almost surely [A]Cγ � Cγ , the regularity theory of Theorem 2.3 also holds in the small, as it should. In 
particular, (2.9) holds true for all x ∈ BR and (2.10) is replaced by

sup
R�2

sup
x∈BR

〈
YR(x)q

〉 1
q ≤ Cq.

2.3. Bounds on the Green functions

In general, the only optimal decay result which holds without further smoothness assumption is the following 
consequence of the celebrated De Giorgi–Nash–Moser theory (in dimensions d > 2) on the Green function itself: For 
all A ∈ �, and all μ � 0,

0 � Gμ(x, y;A) � C
e−c

√
μ|x−y|

|x − y|d−2

for some constants c, C > 0 depending only on λ and d , see Definition 3.1 below. For the constant-coefficient operator, 
i.e. the massive Laplacian, we also have the following optimal gradient estimate: For all μ � 0,
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|∇Gμ(x, y; Id)| � C
e−c

√
μ|x−y|

|x − y|d−1
. (2.11)

For variable-coefficients, the only generic bound which holds for the gradient of the elliptic Green function is another 
consequence of the De Giorgi–Nash–Moser theory: There exists 0 < α � 1 depending only on λ and d (with α ↑ 1 as 
λ ↑ 1) such that for all x, y ∈R

d

if |x − y|� 1, then
ˆ

B1(x)

|∇xGμ(x, y;A)|dx � C
e−c

√
μ|x−y|

|x − y|d−2+α
, (2.12)

see Lemma 3.6 below. As can be seen, there is a mismatch between the generic behavior and the fundamental solution 
of the Laplacian at the level of the gradient. The behavior at the singularity x = y can only be described for smooth 
coefficients (say, uniformly Hölder-continuous). In that case, the optimal scaling of (2.11) holds for |x − y| � 1, 
cf. [15, Theorem 3.3] for μ = 0. However, even for analytic coefficients, the estimate (2.11) cannot hold generically
in the large, that is in the regime |x − y| ↑ +∞, for this would contradict the counterexamples from quasiconformal 
mappings already mentioned.

In order to deal with measurable coefficients we need to consider local square averages, and shall make use of the 
following notation: For all L > 0 and all |x − y| � 3L we set

(∇Gμ)L(x, y) :=
(  

BL(x)

|∇x′Gμ(x′, y)|2 dx′
) 1

2

(2.13)

(∇∇Gμ)L(x, y) :=
(  

BL(x)

 

BL(y)

|∇∇Gμ(x′, y′)|2 dy′dx′
) 1

2

, (2.14)

where (here and in the whole article) ∇∇ stands for the second mixed derivative ∇x′∇y′ .

Theorem 2.5. Let the ensemble be stationary and satisfy (LSI) with constants ρ and . Then there exists a random 
field Y with bounded finite moments such that for all x ∈R

d with |x| � 3 and all μ � 0 we have

(∇Gμ)(x,0) � Y(x)
e−c

√
μ|x|

|x|d−1
, (2.15)

(∇∇Gμ)(x,0) � Y(x)
e−c

√
μ|x|

|x|d . (2.16)

In addition, the random field Y has the following boundedness property: For all 1 � q < ∞ there exists Cq < ∞
depending only on λ, p, ρ,  such that

sup
|x|�3

〈
Y(x)q

〉 1
q ≤ Cq. � (2.17)

Remark 2.6. If in addition the coefficients are Hölder-continuous, then the estimates of Theorem 2.5 hold at the 
singularity as well, that is, (2.15) & (2.16) hold true for all x ∈ R

d and (2.17) is replaced by

sup
x

〈
Y(x)q

〉 1
q ≤ Cq.

Note that by stationarity the above result implies a similar decay for (∇Gμ)(x, y) for arbitrary x, y ∈ R
d .

This result is based on and extends the annealed estimates by Delmotte and Deuschel [7], see Proposition 3.3
below. It is the extended continuum version of the result by Otto and the second author in [17] for discrete elliptic 
equations. At the cost of a slightly smaller decay rate, one may take the random field Y independent of x in (2.15)
& (2.16):
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Corollary 2.7. Under the assumptions of Theorem 2.5, for all β > 0 there exists a random variable Yβ with bounded 
finite moments such that for all |x| � 3 we have

(∇Gμ)(x,0) � Yβ

e−c
√

μ|x|

|x|d−1−β
, (∇∇Gμ)(x,0) � Yβ

e−c
√

μ|x|

|x|d−β
. �

2.4. Estimates of fluctuations

Combined with a sensitivity estimate, the optimal gradient bounds on the Green functions allow us to quantify 
the fluctuations of solutions of linear elliptic equations with “noisy” diffusion coefficients (a quantification of the 
propagation of uncertainty in elliptic PDEs). More precisely we consider diffusion coefficients Aε on Rd of the 
form

Aε(x) := Id + B(
x

ε
)

where B is a random perturbation which has order 1, correlation-length unity (which we shall replace in the theorem 
by the (LSI) assumption), and vanishing expectation. Hence, Aε is a perturbation of the identity by some noise of 
correlation-length ε. Let f be some RHS, and consider the random solution uε of

uε − ∇ · Aε∇uε = f in R
d .

The question we are interested in is the characterization of the fluctuations of uε in function of ε and of the statis-
tics of B , first in terms of scaling and second in terms of law. In this contribution we address the question of the 
scaling w.r.t. ε, and give optimal estimates of both weak and strong measures of the fluctuation, which general-
ize the bounds obtained for B small (that is, in the regime of small ellipticity ratio) by the first author in [10].1

The natural norms which control these fluctuations are mixed norms Lp
λ,ε(R

d) which measure local fluctuations 
at scale ε in Lλ but large scale fluctuations in Lp. In particular, for all q, λ � 1, ε > 0 and f ∈ L1

loc(R
d) we 

set

‖f ‖L
q
λ,ε(R

d ) :=
(ˆ
Rd

(  

Bε(x)

|f (y)|λdy
) q

λ
dx

) 1
q

. (2.18)

In particular it is bounded by the Lq(Rd)-norm for q � λ by Jensen’s inequality. We start with the estimate of the 
fluctuations in a strong norm.

Theorem 2.8. Let Aε = A( ·
ε
) be the ε-rescaling of the coefficient field A ∈ � distributed according to a stationary 

ensemble 〈·〉 that satisfies (LSI). Let μ � 0. For all ε > 0, let uε ∈ H 1(Rd) be a distributional solution of

μuε − ∇ · Aε∇uε = f in R
d . (2.19)

Then for all λ > d
2 , 1 � θ < ∞, 2 � p < ∞, 1 � r � d

d−1 , and q such that

1 + 1

p
= 1

r
+ 1

q
, (2.20)

the fluctuations of uε satisfy

〈(ˆ
Rd

|uε − 〈uε〉 |p dx

)θ 〉 1
pθ �

{
d = 2 : | ln(με2)| 1

2 + 1
d > 2 : 1

}
ε(μ− 1−d

2 − d
2r + 1)‖f ‖L

q
λ,ε(R

d )

where ‖f ‖L
q
λ,ε(R

d ) is given by (2.18). In the border-line case r = d
d−1 , we require in addition q > 1. �

1 Note that the proof of [10, Lemma 2.1] is wrong under the general assumption of finite correlation-length. The assumption of [10, Theorem 3]
should be replaced by “Assume that the stationary random field B satisfies spectral gap”, as it is the case for Poisson inclusions for instance. The 
optimal form of [10, Theorem 3] is given by Theorems 2.8 and 2.9 below — the norms in [10, Theorem 3] have to be adapted accordingly.
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We then turn to the estimate of weak norm of the fluctuations.

Theorem 2.9. Let Aε = A( ·
ε
) be the ε-rescaling of the coefficient field A ∈ � distributed according to a stationary 

ensemble 〈·〉 that satisfies (LSI). Let μ � 0. For all ε > 0, let uε ∈ H 1(Rd) be a distributional solution of (2.19). Then 
for all 1 � θ < ∞, 2 � p < ∞, 1 � r, ̃r � d

d−1 , 1 � q � r
r−1 , and 1 � q̃ � r̃

r̃−1 such that

2 + 1

2
= 1

r
+ 1

r̃
+ 1

q
+ 1

q̃
(2.21)

and for all λ1, λ2 � 1 such that

1

λ1
+ 1

λ2
<

d + 2

d
, (2.22)

the fluctuations of uε satisfy for all g ∈ L1
loc(R

d),

〈∣∣∣ˆ
Rd

(uε − 〈uε〉)g dx

∣∣∣θ
〉 1

θ

� ε
d
2 (μ−(1−d)− d

2 ( 1
r
+ 1

r̃
) + 1)‖f ‖L

q
λ2,ε(R

d )‖g‖
L

q̃
λ1,ε(R

d )
.

In the border-line case r = r̃ = d
d−1 , we require in addition q, q̃ > 1. �

Remark 2.10. When the coefficients A in Theorems 2.8 and 2.9 are uniformly Hölder continuous, then we can 
replace the mixed norms Lq

λ,ε(R
d) by the usual norms Lq(Rd) in the estimates. This shows that one can trade local 

integrability of f and g for regularity of A. This is proved by replacing averaged bounds on the Green function by 
pointwise bounds, as in [17]. We leave the details to the reader. �
Remark 2.11. Theorem 2.9 reveals the central limit scaling of the weak measure of the fluctuations. While the most 
natural norms for the RHS on Rd are those which make the estimate independent of μ, the other estimates are valuable 
for μ > 0 since the massive term essentially localizes the equation to a bounded domain of size μ− 1

2 (without boundary 
layers). �

These results generalize both [10, Theorem 3] and [17, Corollaries 2 & 3] (cf. also [6] by Conlon and Naddaf in the 
case of discrete elliptic equations). Note that when the noise is in the zero-order term (that is, for μ replaced by 1 + bε

and Aε by Id in (2.19)), the CLT scaling (and in addition the characterization of the limiting law) was established by 
Figari, Orlandi and Papanicolaou in [8] for d � 4 and by Bal in [4] for d � 3. The arguments involved in the proof of 
Theorems 2.8 and 2.9 have a different flavor since the randomness is in the derivative of highest order.

3. Structure of the proofs and auxiliary results

We start with the definition and main properties of the elliptic Green function.

Definition 3.1 (Green’s function). For all A ∈ � and every μ > 0, there exists a unique function Gμ(x, y; A) � 0 with 
the following properties

• Qualitative continuity off the diagonal, that is,

{(x, y) ∈R
d ×R

d |x �= y} 
 (x, y) �→ Gμ(x, y;A) is continuous. (3.1)

• Upper pointwise bounds on Gμ:

Gμ(x, y;A) � e−c
√

μ|x−y|
{

ln(2 + 1√
μ|x−y| ) for d = 2

1
|x−y|d−2 for d > 2

}
, (3.2)

where here and in the sequel the rate constant c > 0 in the exponential is generic and may change from term to 
term, but only depends on d and λ.
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• Averaged bounds on ∇xGμ and ∇yGμ:⎛
⎜⎝R−d

ˆ

R<|x−y|�2R

|∇xGμ(x, y;A)|2dx

⎞
⎟⎠

1
2

� e−c
√

μRR1−d , (3.3)

⎛
⎜⎝R−d

ˆ

R<|y−x|�2R

|∇yGμ(x, y;A)|2dy

⎞
⎟⎠

1
2

� e−c
√

μRR1−d . (3.4)

• Differential equation: We note that (3.2) and (3.3) & (3.4) imply that the maps Rd 
 x �→ (Gμ(x, y; A),

∇xGμ(x, y; A)) and Rd 
 y �→ (Gμ(x, y; A), ∇yGμ(x, y; A)) are (locally) integrable. Hence even for discon-
tinuous A, we may formulate the requirement

μGμ − ∇x · A(x)∇xGμ = δ(x − y) distributionally in R
d
x, (3.5)

μGμ − ∇y · A∗(y)∇yGμ = δ(y − x) distributionally in R
d
y, (3.6)

where A∗ denotes the transpose of A.

We note that the uniqueness statement implies Gμ(x, y; A∗) = Gμ(y, x; A) so that Gμ is symmetric when A is 
symmetric. �

These standard properties of the massive Green functions are proved in [13] (essentially following arguments 
of [15]).

Remark 3.2. All the main results of this article are stated for μ � 0, whereas we shall only consider the case μ > 0
in the proofs. Indeed, one can pass to the limit as μ ↓ 0 in all our estimates, and local averages of ∇Gμ and ∇∇Gμ

converge to local averages of ∇G and ∇∇G, where G is the Green function for μ = 0 (the existence of which is 
subtle for d = 2). �

The improvement of the De Giorgi–Nash–Moser theory in the large is a consequence of the bounds on the Green 
function of Theorem 2.5. As in the discrete case dealt with in [17] the strategy is to upgrade to any moment in 
probability the optimal bounds by Delmotte and Deuschel [7] on the first and second moments of ∇∇Gμ and ∇Gμ, 
respectively. Yet, the bounds by Delmotte and Deuschel in [7, Theorem 1.2] are not enough at the level of the mixed 
second gradient, and we shall use the following result of [18] in its version with the massive term proved in [13, 
Lemma 2.11]:

Proposition 3.3. If the ensemble is stationary, then the Green function satisfies for all μ > 0, all L � 1, and all x ∈R
d

with |x| � 2L,〈
(∇xGμ)L(x,0)2

〉 1
2 � C

e−c
√

μ|x|

|x|d−1
, (3.7)

〈
(∇∇Gμ)L(x,0)

〉
� C

e−c
√

μ|x|

|x|d , (3.8)

for some constants C and c depending only on λ and d � 2. �
Estimate (2.16) of Theorem 2.5 is a consequence of (3.8) and of the following reverse Hölder estimate valid for all 

p � 1 large enough:

sup
x,y:|x−y|�6

{
|x − y|dec

√
μ|x−y|〈|(∇∇Gμ)(x, y)|2p〉 1

2p

}

� C(d,λ,p,ρ, ) sup
{
|x − y|dec

√
μ|x−y|〈|(∇∇Gμ)(x, y)|〉

}
, (3.9)
x,y:|x−y|�6
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and likewise for the first derivative. This gain of integrability is achieved by the following lemma in the spirit of [17, 
Lemma 4], where the assumption that 〈·〉 satisfies (LSI) is crucial.

Lemma 3.4. Let 〈·〉 satisfy (LSI) with constants ρ,  > 0. Then for arbitrary δ > 0 and 1 � p < ∞ and for any random 
variable ζ we have

〈
|ζ |2p

〉 1
2p � C(d,ρ,p, δ) 〈|ζ |〉 + δ

〈(ˆ
Rd

(
osc

A|B(z)

ζ
)2

dz

)p
〉 1

2p

(3.10)

for some finite constant C(d, ρ, p, δ), where we recall that the expectation in the RHS is an outer expectation. �
Since Gμ is measurable on �, one may apply this lemma to ζ = (∇∇Gμ)(x, 0) and ζ = (∇xGμ)(x, 0). In order 

to prove the reverse Hölder inequality (3.9), it suffices to absorb the second RHS term of (3.10) in the RHS. This is 
the content of the following lemma, which is essentially based on deterministic arguments.

Lemma 3.5 (Absorption lemma). Let d � 2. There exists p0 � 1 depending only on λ and d such that for all L ∼ 1
and p � p0, we have for the second derivative:

sup
|x−y|�6L

{
|x − y|2pde2pc

√
μ|x−y|

〈(ˆ
Rd

(
osc

A|BL(z)

(∇∇Gμ)L(x, y)
)2

dz

)p
〉}

� sup
|x−y|�6L

{
|x − y|2pde2pc

√
μ|x−y| 〈((∇∇Gμ)L(x, y)

)2p
〉 }

+ 1, (3.11)

and for the first derivative:

sup
|x−y|�6L

{
|x − y|2p(d−1)e2pc

√
μ|x−y|

〈(ˆ
Rd

(
osc

A|BL(z)

(∇xGμ)L(x, y)
)2

dz

)p
〉}

� sup
|x−y|�6L

{
|x − y|2p(d−1)e2pc

√
μ|x−y| 〈((∇xGμ)L(x, y)

)2p
〉 }

+ sup
|x−y|�6L

{
|x − y|2pde2pc

√
μ|x−y| 〈((∇∇Gμ)L(x, y)

)2p
〉 }

+ 1, (3.12)

where � stands for � up to a multiplicative constant which depends on d , λ, and p. �
A key ingredient to the proof of Lemma 3.5 are the following deterministic estimates.

Lemma 3.6. Let d � 2. There exist q0 > 1 and α0 > 0 depending only on d and λ > 0 such that for all μ > 0, 
1 � q � q0, and all R � 4L ∼ 1,

ˆ

R�|x−y|<2R

|∇xGμ(x, y)|2q dx � Rd+(1−d)2qe−c
√

μR, (3.13)

ˆ

R�|x−y|<2R

ˆ

|y|<L

|∇∇Gμ(x, y)|2q dydx � R−2qα0e−c
√

μR, (3.14)

where the multiplicative constants depend only on d and λ. In addition we have the following local boundedness 
estimate for all L ∼ 1

sup
x,y∈Rd :3L�|x−y|<6L

{
(∇∇Gμ)L(x, y)

}
� 1. � (3.15)
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Remark 3.7. (i) Our results beg the question if we can upgrade (2.15) and (2.16) to a stronger version without space 
integrals as in (3.7) and (3.8). The answer is negative if p > 1. Let us consider (3.7) (in the parabolic setting, (3.8)
directly follows from (3.7)). Using the De Giorgi–Nash–Moser theory, we may upgrade (2.15) to pointwise-estimates 
away from the singularity if p = 1, but not otherwise. Indeed, the De Giorgi–Nash–Moser theory yields away from 
the singularity that〈 ˆ

BL(x)

ˆ

BL(y)

|∇1G(x′, y′)|2 dy′dx′〉� 〈 ˆ

BL(x)

|∇1G(x′, y)|2 dx′〉.
Now by stationarity, the left hand side equals〈 ˆ

BL(0)

|∇1G(x + x′, y)|2 dx′〉 =
〈 ˆ

BL(0)

|∇1G(x − y,−x′)|2 dx′〉

�
〈
|∇xG(0, y − x)|2

〉
,

where the last inequality again follows from de Giorgi–Nash–Moser theory. On the other hand, if p > 1, pointwise 
bounds on 〈|∇G|2p〉 cannot be expected since there is no local regularity to control 〈´

BL
|∇G|2pdx〉. On the other 

hand, clearly energy methods allow to control locally the L2-norms of the gradient, which shows why 〈|∇G|2〉 may 
indeed be bounded. In other words, the spatial integrals in (2.15) and (2.16) are necessary to smooth out local effects 
when the coefficients lack regularity if and only if p > 1.

(ii) In a similar spirit, we observe that the restriction |x| � L is not necessary in [7], but cannot be avoided here. 
Indeed, assuming Proposition 3.3 only for |x| � 1, we may remove this restriction by a simple scaling argument. 
The same is true if we (could) replace (∇∇G)L by ∇∇G as discussed in (i). On the other hand, the presence of the 
averaging operation (·)L breaks the scaling invariance by introducing a length scale L. Therefore we cannot expect to 
obtain information on the blow-up of (∇∇G)L(x, y) as the singularity enters the integral, i.e. as |x − y| ↓ 2L. �

We turn now to the fluctuation estimates. By a scaling argument, it is enough to prove Theorems 2.8 and 2.9 for 
ε = 1 and  = 1

2 . We thus consider the solution u ∈ H 1(Rd) of

μu − ∇ · A∇u = f, μ � 0. (3.16)

We shall only consider the case μ > 0 in the proofs. The results for μ = 0 are then obtained by letting μ ↓ 0 in the 
estimates. The starting point is the following spectral gap estimate

Lemma 3.8 (q-(SG)). If 〈·〉 satisfies (LSI) with amplitude ρ > 0 and correlation-length  < ∞, then we have for all 
q � 1 and all random variables ζ

〈
(ζ − 〈ζ 〉)2q

〉 1
q �

〈(ˆ
Rd

(
osc

A|B
̃
(z)

ζ
)2

dz
)q

〉 1
q

, (3.17)

with ̃ = 2, where the multiplicative constant depends on q and ρ. �
This is a standard result. It is indeed enough to assume that 〈ζ 〉 = 0 and 

〈
ζ 2

〉 = 1. To prove estimate (3.17) for 
q = 1 it suffices to apply (LSI) to the random variable χ = √

1 − α2 + αζ and make a Taylor expansion as α ↓ 0, this 
yields the result for the correlation-length . The estimate for q > 1 is a consequence of the estimate for q = 1 (up to 
increasing  to ̃ = 2), see for instance [13, Corollary 2.3]. Since we have assumed that  = 1

2 , (3.8) holds for ̃ = 1.
The following lemma is a sensitivity estimate which quantifies how much the solution u of (3.16) depends on the 

coefficients A.

Lemma 3.9. Let λ1, λ2 ∈ [1, +∞] satisfy

1

λ
+ 1

λ
<

d + 2

d
⇔ 1

λ′ + 1

λ′ >
d − 2

d
. (3.18)
1 2 1 2
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In particular, at most one of λ′
1, λ′

2 may be infinite. Denote by u(·; A) ∈ H 1(Rd) the solution of (3.16). We use the 
short-hand notation ũ for u(·; Ã), Ã ∈ �. We then have that

sup
Ã:Ã|

Rd \B(z)
=A|

Rd \B(z)

‖u − ũ‖
L

λ′
1 (B(x))

� KGμ,u(x, z), (3.19)

where

KGμ,u(x, z) :=
{

(∇Gμ)2(x, z)(∇u)(z) if |x − z| > 6,

‖f ‖Lλ2 (B2(x)) + (∇u)9(z) if |x − z| � 6.
(3.20)

If λ′
1 = +∞, we reformulate this result in the pointwise form

osc
A|B(z)

u(x) � KGμ,u(x, z). �

In the proof of Lemma 3.9 we shall make use of the following standard result.

Lemma 3.10. Let p, q ∈ [1, +∞] satisfy

1

q ′ + 1

p
>

d − 2

d
⇔ 1

q
<

1

p
+ 2

d
.

If u is a solution of (3.16) in B2 = B2(0), we have that

‖u‖Lp(B1) � ‖u‖L2(B2)
+ ‖f ‖Lq(B2),

where the multiplicative constant depends on λ, d and q , but not on μ � 0. �
This result is usually stated for p = ∞ only, cf. [9, Theorem 8.17]. Although we think it should follow from the 

Nash–Aronson bounds (if d > 2), Young’s inequality and the well-known estimate with p = +∞, we display a direct 
proof for p < ∞ using a (simplified) Moser-type iteration that works for d = 2 and uses less machinery.

4. Proofs of the estimates on the Green functions

4.1. Proof of Theorem 2.5

The proof is a simple combination of Proposition 3.3, Lemma 3.4 and Lemma 3.5.

Step 1. Proof of (2.16).
We apply (3.10) of Lemma 3.4 to ζ(A) = (∇∇Gμ)(A; x, y) for some x, y ∈ R

d such that |x − y| � 6 to the effect 
of 〈

(∇∇Gμ)(x, y)2p
〉 1

2p

� C(d,ρ, ,p, δ)
〈
(∇∇Gμ)(x, y)

〉+ δ

〈(ˆ
Rd

(
osc

A|BL(z)

(∇∇Gμ)L(x, y)
)2

dz

)p
〉 1

2p

.

Combined with (3.8) in Proposition 3.3 this yields

|x − y|dec
√

μ|x−y| 〈(∇∇Gμ)(x, y)2p
〉 1

2p

� C(d,λ,ρ, ,p, δ) + δ|x − y|dec
√

μ|x−y|
〈(ˆ

d

(
osc

A|B(z)

(∇∇Gμ)(x, y)
)2

dz

)p
〉 1

2p

.

R
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We take the supremum over all x and y such that |x − y| � 6 and insert (3.11) in Lemma 3.5 to obtain that

sup
|x−y|�6

{
|x − y|dec

√
μ|x−y| 〈(∇∇Gμ)(x, y)2p

〉 1
2p

}

� C(d,λ,ρ, ,p, δ) + C(d,λ,p, )δ sup
|x−y|�6

{
|x − y|dec

√
μ|x−y| 〈(∇∇Gμ)(x, y)2p

〉 1
2p + 1

}
.

Choosing δ small enough, we may absorb the last RHS term in the LHS. This yields (2.16).

Step 2. Proof of (2.15).
We proceed as in Step 1: Take ζ(A) = (∇Gμ)(A; x, y) in Lemma 3.4 to deduce

〈
(∇Gμ)(x, y)2p

〉 1
2p � C(d,ρ, ,p, δ)

〈
(∇Gμ)(x, y)

〉+ δ

〈(ˆ
Rd

(
osc

A|B(z)

(∇Gμ)(x, y)
)2

dz

)p
〉 1

2p

.

Combined with (3.7) in Proposition 3.3, this turns into

|x − y|d−1ec
√

μ|x−y| 〈(∇Gμ)(x, y)2p
〉 1

2p

� C(d,λ,ρ, ,p, δ) + δ|x − y|d−1ec
√

μ|x−y|
〈(ˆ

Rd

(
osc

A|B(z)

(∇Gμ)(x, y)
)2

dz

)p
〉 1

2p

.

After taking the supremum over all x, y such that |x − y| � 6, the estimate (3.12) from Lemma 3.5 yields

sup
|x−y|�6

{
|x − y|d−1ec

√
μ|x−y|

〈(ˆ
Rd

(
osc

A|B(z)

(∇Gμ)(x, y)
)2

dz

)p
〉 1

2p }

� C(d,λ,p, )

(
1 + δ sup

|x−y|�6

{
|x − y|2p(d−1)e2pc

√
μ|x−y| 〈∣∣(∇xGμ)(x, y)

∣∣2p
〉})

+ C(d,λ,p, )δ sup
|x−y|�6

{
|x − y|2pde2pc

√
μ|x−y| 〈∣∣(∇∇Gμ)(x, y)

∣∣2p
〉}

.

By (2.16) (proved in Step 1), the last term is bounded by a constant C(d, λ, ρ, , p)δ. We then conclude by taking 
δ small enough so that we can absorb the remaining supremum on the LHS. The desired estimates (2.15) and (2.16)
then follow from the definition

Y(x) := max{(∇Gμ)(x,0)|x|d−1ec
√

μ|x|, (∇∇Gμ)(x,0)|x|dec
√

μ|x|}.

4.2. Proof of Corollary 2.7

For every x ∈ R
d , there exists some x′ ∈ √

d
Z

d such that the difference x − x′ has max-norm |x − x′|∞ � 

2
√

d
. 

Hence its Euclidean norm satisfies |x − x′| � 
2 . Consequently, we have that |(∇∇Gμ)(x

′, 0)| � |(∇∇Gμ) 
4
(x, 0)|

and it holds that〈
sup

x∈Rd\B4

{|x|d−β |(∇∇Gμ) 
4
(x,0)|}p

〉
�

〈
sup

x′∈( √
d
Z)d ,|x′|�4

{|x′|d−β |(∇∇Gμ) 
4
(x′,0)|}p

〉

�
∑

x′∈( √
d
Z)d ,|x′|�4

|x′|−βp〈|x′|dp|(∇∇Gμ)(x
′,0)|p〉

� C(d,λ,ρ, , γ,β)
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as long as βp > d , which we may assume without loss of generality since by Jensen’s inequality we may always 
increase p. The same remark applies to (∇Gμ). The choice

Yβ := max
{

sup
x∈Rd\B4

{|x|d−β |(∇∇Gμ) 
4
(x,0)|}, sup

x∈Rd\B4

{|x|d−1−β |(∇Gμ) 
4
(x,0)|}}

concludes the proof.

4.3. Proof of Remark 2.6

We split the proof into two steps.

Step 1. Near-field estimates.
The results of [15, Theorem 3.3] yield

|∇Gμ(x,0)| � |x|1−d and |∇∇Gμ(x,0)| � |x|−d

for all |x| � 3. (The fact that Gμ does not vanish on ∂B3 can be dealt with by subtracting the corresponding boundary 
value problem, which is clearly bounded by the classical Schauder estimates and the Nash–Aronson L∞-estimate on 
Gμ away from the origin. The arguments are uniform w.r.t. μ � 0. The estimate for d = 2 can be deduced from the 
corresponding estimate for d = 3 by using the elegant argument by Avellaneda and Lin [2], see for instance Step 2 of 
the proof of Lemma 3.6 below.)

Step 2. Far-field estimates.
It remains to treat the |x| � 3. Let u be a (μ − ∇ · A∇)-harmonic function in Rd \ B. Our goal is to prove the 
following reverse Hölder inequality

|∇u(x)|2 �
ˆ

B(x)

|∇u(x′)|2 dx′ + μ

 

B(x)

|u(x)|dx, (4.1)

with a constant depending on , d , λ, and γ only. Without the derivative, this is a consequence of the De Giorgi–
Nash–Moser theory. Since we are interested in ∇u, we require the Hölder-continuity of the coefficient field. In the 
following, we will nonetheless pursue a strategy similar to Moser iteration to achieve the desired bound in (4.1). Since 
A is Hölder-continuous, the function u satisfies u ∈ C2,γ (Rd \ B) by interior Schauder theory. Now consider some 
length 0 < L � 

2 , and denote by uL the average of u on BL(x). Let η ∈ C∞
0 (BL(x)). By assumption, we have that 

η(μu − ∇ · A∇u) = 0 in Rd . Fix some y′ ∈ BL(x). The product rule yields

μ(η(u − uL))(y) − ∇ · A(y′)∇(η(u − uL))(y)

= −μuLη(y) + ∇ · ((A(y) − A(y′))η(y)∇(u − uL)(y)
)

− ∇ · ((u − uL)(y)A(y′)∇η(y)) − ∇η(y) · A(y)∇(u − uL)(y) (4.2)

for all y ∈ R
d . This is a constant-coefficient elliptic equation in y with a right hand side in H−1(Rd) and associated 

Green function G0(·) ≡ Gμ(·, 0; A(y′)). The Green function representation yields for all x ′ ∈ BL
2
(x)

(η(u − uL))(x′) =
ˆ

Rd

(
∇G0(x

′ − y) · (A(y′) − A(y))∇(η(u − uL))(y)

+ (u − uL)(y)∇G0(x
′ − y) · A(y)∇η(y)

+ G0(x
′ − y)

(∇η(y) · A(y)∇(u − uL)(y) − μuLη(y)
))

dy. (4.3)

This can be made rigorous by mollification of the RHS of (4.2). Indeed, since u ∈ C2,γ (BL(x)), the limit exists and 
is given by (4.3). Assume now that η is a cutoff function for B 2L

3
(x) in BL(x) such that |∇η| � 1

L
. We may also take 

the gradient in (4.3) w.r.t. x′ at the point y′ ∈ B 2L (x) to obtain

3
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∇u(y′) =
ˆ

Rd

(
∇∇G0(x

′ − y) · (A(y′) − A(y))∇(η(u − uL))(y)

+ (u − uL)(y)∇∇G0(x
′ − y) · A(y)∇η(y)

+ ∇G0(x
′ − y)

(∇η(y) · A(y)∇(u − uL)(y) − μuLη(y)
)

dy.

As above, this can be justified by mollification of the RHS of (4.2). Indeed, the limit is well-defined since the constant-
coefficient Green function G0 classically satisfies

|∇G0(y)| = |∇Gμ(y,0;A(y′))(y)| � C(d,λ)|y|1−d

|∇∇G0(y)| = |∇∇Gμ(y,0;A(y′))| � C(d,λ)|y|−d

uniformly in y, y′ ∈ R
d , while by assumption, the coefficient field satisfies |A(y ′) − A(y)| � Cγ |y′ − y|γ . It then 

follows

|∇u(y′)| � μ|uL| +
ˆ

BL(x)

|∇∇G0(y
′ − y)||A(y′) − A(y)||∇u(y)| dy

+ L−1
ˆ

A 2L
3 ,L

(x)

(
|u(y) − uL||∇∇G0(y

′ − y)| + |∇G0(y
′ − y)||∇u(y)|)) dy (4.4)

for all y′ ∈ BL
2
(x), where AL′,L′′(x) := {y : L′ � |y − x| � L′′} denotes the annulus centered at x and of radii L′

and L′′. Since L ∼ 1, we allow the constant in � to depend on L. The constant-coefficient bounds yield
ˆ

A 2L
3 ,L

(x)

|u(y) − uL||∇∇G0(y
′ − y)| dy �

ˆ

BL(x)

|u(y) − uL| dy.

Combined with Jensen’s and Poincaré’s inequalities, this turns into

ˆ

A 2L
3 ,L

(x)

|u(y) − uL||∇∇G0(y
′ − y)| dy �

( ˆ

BL(x)

|∇u(y)|2 dy

) 1
2

. (4.5)

Likewise we obtain

ˆ

A 2L
3 ,L

(x)

|∇G0(y
′ − y)||∇u(y)| dy �

( ˆ

BL(x)

|∇u(y)|2 dy

) 1
2

. (4.6)

We are left with the second RHS term of (4.4), which we bound, by the decay of ∇∇G0 and the Hölder continuity 
of A, by

ˆ

BL(x)

|∇∇G0(y
′ − y)||A(y′) − A(y)||∇u(y)| dy �

ˆ

BL(x)

|x′ − y|γ−d |∇u(y)| dy. (4.7)

Let p � 2. We then take the p-th power of (4.4), use (4.5)–(4.7), and integrate over y ′ in BL
2
(x). This yields

ˆ

B L (x)

|∇u(y′)|p dy′ � (μ|uL|)p +
ˆ

B L (x)

( ˆ

BL(x)

|y′ − y|γ−d |∇u(y)| dy

)p

dy′ +
( ˆ

BL(x)

|∇u(y)|2 dy

) p
2

. (4.8)
2 2
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We are almost in position to apply Young’s convolution inequality. Mimicking its proof, we let r and p′ be such that

p � p′ � 1,p > r � 1, 1 + 1

p
= 1

r
+ 1

p′ , (4.9)

and use Hölder’s inequality with exponents (p, pp′
p−p′ , 

rp
p−r

) on the integrand

|y′ − y|γ−d |∇u(y)| =
(
|y′ − y|(γ−d) r

p |∇u(y)| p′
p

)(
|∇u(y)| p−p′

p

)(
|y′ − y|(γ−d)

p−r
p

)
.

This yields

( ˆ

BL(x)

|y′ − y|γ−d |∇u(y)| dy

)p

�
ˆ

BL(x)

|y′ − y|(γ−d)r |∇u(y)|p′
dy

( ˆ

BL(x)

|∇u(y)|p′
dy

) p

p′ −1( ˆ

BL(x)

|y′ − y|(γ−d)r dy

) p
r
−1

. (4.10)

As long as we choose 1 � r < d
d−γ

< 2 (since γ < 1 and d � 2), the last RHS term is bounded (depending on L). Let 
us fix such an 1 < r < 2 � p, in which case the exponents (p, r, p′ = pr

r+(r−1)p
) satisfy (4.9). Integrating (4.10) over 

y′ ∈ BL
2
(x) then yields

ˆ

B L
2

(x)

( ˆ

BL(x)

|y′ − y|γ−d |∇u(y)| dy

)p

dy′ �
( ˆ

BL(x)

|∇u(y)|p′
dy

) p

p′

Combined with (4.8), this gives for all p � 2, 1 < r < 2, and p′ = pr
r+(r−1)p

,

‖∇u‖Lp(B L
2

(x)) � μ‖u‖L∞(BL(x)) + ‖∇u‖
Lp′

(BL(x))
+ ‖∇u‖L2(BL(x)). (4.11)

We start from p′
0 = 2 (that is, with p0 = 2r

r−(r−1)2 > 2) and L0 = , and iterate using the following exponents and ball 
size:

p′
n+1 := pn, pn+1 := pnr

r − (r − 1)pn

,Ln+1 = Ln

2
.

So defined, pn is a monotonically increasing sequence, so that (pn, r, p′
n) satisfies (4.9) for all n ∈ N0 such that 

pn < r
r−1 . In particular, (4.11) then yields

‖∇u‖Lpn(B 
2n

(x)) � μ‖u‖L∞(B(x)) + ‖∇u‖L2(B(x)).

In addition, pn satisfies pn � ( r
r−2(r−1)

)n2, so that after finitely many steps, pn is such that pnr
r−(r−1)pn

> r
r−1 , at which 

point we may choose pn+1 = ∞. This proves (4.1), and Corollary 2.6 now follows directly from Theorem 2.5 with 
L = , noting that the deterministic estimate on the Green function itself yields

0 � μGμ(x, y) � μ ln(2 + 1√
μ|x − y| )

e−c
√

μ|x−y|

|x − y|d−2
� e−c

√
μ|x−y|

|x − y|d−1
,

for any 0 < c′ < c, as desired.
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5. Proofs of the fluctuation estimates

5.1. Proof of Theorem 2.8

We first assume that the coefficient field A and the right-hand side f are smooth. Since the estimates do not depend 
on the smoothness of the parameters, we may at the end lift this restriction by approximation. The triangle inequality 
yields〈(ˆ

Rd

|u(x) − 〈u(x)〉|p dx

)θ
〉 1

pθ

�
(ˆ
Rd

〈|u(x) − 〈u(x)〉|pθ
〉 1
θ dx

) 1
p

.

Appealing to the spectral gap estimate of Lemma 3.8 with exponent pθ
2 � 1 yields

(ˆ
Rd

〈|u(x) − 〈u(x)〉|pθ
〉 1
θ dx

) 1
p

�
(ˆ
Rd

〈(ˆ
Rd

(
osc

A|B(z)

u(x)
)2

dz

) pθ
2
〉 1

θ

dx

) 1
p

,

and by the triangle inequality

(ˆ
Rd

〈|u(x) − 〈u(x)〉|pθ
〉 1
θ dx

) 1
p

�
( ˆ

Rd

(ˆ
Rd

〈(
osc

A|B(z)

u(x)
)pθ

〉 2
pθ

dz

) p
2

dx

) 1
p

.

By the oscillation estimate of Lemma 3.9, this turns into〈(ˆ
Rd

|u(x) − 〈u(x)〉|p dx

)θ
〉 1

pθ

�
( ˆ

Rd

(ˆ
Rd

〈
KGμ,u(x, z)pθ

〉 2
pθ

dz

) p
2

dx

) 1
p

. (5.1)

We now estimate the RHS. By the Cauchy–Schwarz inequality and Theorem 2.5, we have

〈
KGμ,u(x, z)pθ

〉 2
pθ � K(x − z)2

〈
(∇u)9(z)

2pθ
〉 1

pθ + χB6
(x − z)‖f ‖2

Lλ(B2(x))
, (5.2)

where again χD denotes the characteristic function of the set D ⊆R
d and K is the kernel

K(x − z) = e−c
√

μ|x−z|

1 + |x − z|d−1
.

In the following, the constant c > 0 in K may change from line to line (and only depends on λ and d). In order to 
correctly capture the decay of (∇u)9(z), we write u in terms of its Green function representation and split the sum 
into two contributions:

u(z) =
ˆ

Rd

Gμ(z, y)f (y) dy =
ˆ

Rd\B11(z)

Gμ(z, y)f (y) dy +
ˆ

B11(z)

Gμ(z, y)f (y) dy.

Thus

〈
|(∇u)9(z)|2pθ

〉 1
2pθ =

〈∣∣∣∣
ˆ

B9(z)

(ˆ
Rd

∇z′Gμ(z′, y)f (y) dy

)2

dz′
∣∣∣∣
pθ

〉 1
2pθ

�
〈∣∣∣∣

ˆ

B9(z)

( ˆ

Rd\B11(z)

∇z′Gμ(z′, y)f (y) dy

)2

dz′
∣∣∣∣
pθ

〉 1
2pθ

+
〈∣∣∣∣

ˆ ( ˆ
∇z′Gμ(z′, y)f (y) dy

)2

dz′
∣∣∣∣
pθ

〉 1
2pθ

. (5.3)
B9(z) B11(z)
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We start by estimating the second RHS term, and consider the function

v : z′ �→
ˆ

B11(z)

Gμ(z′, y)f (y) dy,

which solves on Rd

μv − ∇ · A∇v = f χB11(z).

Set v̄ := ffl
B11(z)

vdy. An energy estimate combined with the Sobolev embedding on B11(z) yields for λ > d
2 � 2d

d+2 ,

‖∇v‖2
L2(Rd )

�
ˆ

B11(z)

f vdy ≤
ˆ

B11(z)

f (v − v̄)dy + v̄

ˆ

B11(z)

f dy

� ‖f ‖Lλ(B11(z))
‖∇v‖L2(Rd ) + |v̄|‖f ‖L1(B11(z))

. (5.4)

It remains to estimate v̄. By the triangle inequality and Hölder’s inequality with exponents (λ′, λ), we have using the 
pointwise bounds (3.2) on Gμ in Definition 3.1

|v̄| ≤
ˆ

B11(z)

ˆ

B11(z)

|Gμ(z′, y)||f (y)| dydz′

�
ˆ

B11(z)

( ˆ

B11(z)

Gμ(z′, y)λ
′
dy

) 1
λ′ ( ˆ

B11(z)

|f |λdy
) 1

λ
dz′

� κd(μ)‖f ‖Lλ(B11(z))
, (5.5)

where κd(μ) = 1 if d > 2 and κd(μ) = | lnμ| +1 if d = 2, since 1 � λ′ < d
d−2 . By (5.4), (5.5), and Young’s inequality, 

we may thus bound the second RHS of (5.3) by

ˆ

B9(z)

( ˆ

B11(z)

∇z′Gμ(z′, y)f (y) dy

)2

dz′ = ‖∇v‖2
L2(B9(z))

� κd(μ)‖f ‖2
Lλ(B11(z))

. (5.6)

We then turn to the first RHS term of (5.3), and take local averages using Hölder’s inequality with exponents (λ′, λ)

(with respect to dy):

〈( ˆ

B9(z)

( ˆ

Rd\B11(z)

∇z′G(z′, y)f (y) dy

)2

dz′
)pθ〉 1

2pθ

�
〈( ˆ

B9(z)

( ˆ

Rd\B11(z)

‖∇z′G(z′, y′)‖
Lλ′

y′ (B(y))
‖f ‖Lλ(B(y)) dy

)2

dz′
)pθ〉 1

2pθ

.

Combined with the triangle inequality in L2
z′(B9(z)), this yields

〈( ˆ

B9(z)

( ˆ

Rd\B11(z)

∇z′G(z′, y)f (y) dy

)2

dz′
)pθ〉 1

2pθ

�
〈( ˆ

d

‖∇z′G(z′, y′)‖
Lλ′

y′ (B(y),L2
z′ (B9(z)))

‖f ‖Lλ(B(y)) dy

)2pθ
〉 1

2pθ

.

R \B11(z)
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From the De Giorgi–Nash–Moser theory in the form of Lemma 3.10 (with RHS zero), we then have

‖∇z′G(z′, y′)‖
Lλ′

y′ (B(y),L2
z′ (B9(z)))

� (∇G)9(z, y).

We then finally appeal to Theorem 2.5 and the triangle inequality with respect to L2pθ
〈·〉 to obtain the following estimate 

of the first RHS term of (5.3):

〈( ˆ

B9(z)

( ˆ

Rd\B11(z)

∇z′G(z′, y)f (y) dy

)2

dz′
)pθ〉 1

2pθ

�
ˆ

Rd\B11(z)

K(z − y)‖f ‖Lλ(B(y)) dy. (5.7)

Since K(z − y) ∼ 1 for y ∈ B11(z), the combination of (5.3), (5.6), and (5.7) yields

〈
|(∇u)9(z)|2pθ

〉 1
2pθ �

ˆ

Rd

K(z − y)‖f ‖Lλ(B11(y)) dy. (5.8)

In total, collecting (5.1), (5.2) and (5.8), we then have

〈(ˆ
Rd

|u(x) − 〈u(x)〉|p dx

)θ
〉 1

pθ

� κd(μ)
1
2

(ˆ
Rd

‖f ‖p

Lλ(B2(z))
dz

) 1
p

+
( ˆ

Rd

(ˆ
Rd

K(x − z)2
(ˆ
Rd

K(z − y)‖f ‖Lλ(B11(y)) dy
)2

dz

) p
2

dx

) 1
p

.

Since q � p and the integral of the RHS term is equivalent to a discrete sum over an appropriate lattice of size , we 
have that(ˆ

Rd

‖f ‖p

Lλ(B2(z))
dz

) 1
p

�
(ˆ
Rd

‖f ‖q

Lλ(B2(z))
dz

) 1
q

�
(ˆ
Rd

‖f ‖q

Lλ(B(z))
dz

) 1
q

.

The most important term is the last one. By the triangle inequality in L2
y(R

d),

( ˆ

Rd

(ˆ
Rd

K(x − z)2
(ˆ
Rd

K(z − y)‖f ‖Lλ(B6(y)) dy
)2

dz

) p
2

dx

) 1
p

�
( ˆ

Rd

(ˆ
Rd

(ˆ
Rd

K(x − z)2K(z − y)2‖f ‖2
Lλ(B11(y))

dz
) 1

2
dy

)p

dx

) 1
p

.

We bound the integral over z as follows:

ˆ

Rd

e−c
√

μ|x−z|

1 + |x − z|2(d−1)

e−c
√

μ|z−y|

1 + |z − y|2(d−1)
dz �

⎧⎪⎪⎨
⎪⎪⎩

e−c
√

μ|x−y|

1 + |x − y|2(d−1)
if d > 2,

(| lnμ| + 1)
e−c

√
μ|x−z|

2
if d = 2.
1 + |x − z|
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In other words,ˆ

Rd

K(x − z)2K(z − y)2 dz � K(x − y)2κd(μ),

where we recall that κd(μ) = 1 for d > 2 and μd(μ) = | lnμ| + 1 for d = 2. We thus have( ˆ

Rd

(ˆ
Rd

(ˆ
Rd

K(x − z)2K(z − y)2‖f ‖2
Lλ(B6(y))

dz
) 1

2
dy

) p
2

dx

) 1
p

� κd(μ)
1
2

( ˆ

Rd

(ˆ
Rd

K(x − y)‖f ‖Lλ(B6(y)) dy

)p

dx

) 1
p

.

Let us pick 1 � r � d
d−1 and 1 � q < +∞ such that (2.20) holds. If r < d

d−1 , Young’s inequality yields

( ˆ

Rd

(ˆ
Rd

K(x − y)‖f ‖Lλ(B6(y)) dy

)p

dx

) 1
p

� ‖K‖Lr(Rd )

(ˆ
Rd

‖f ‖q

Lλ(B6(y))
dx

) 1
q

. (5.9)

We easily check that

‖K‖Lr(Rd ) =
(ˆ
Rd

K(x)r dx

) 1
r

� 1 + μ− (1−d)r+d
2r . (5.10)

In the border-line case r = d
d−1 , the Hardy–Littlewood–Sobolev inequality immediately yields provided q > 1

( ˆ

Rd

(ˆ
Rd

|x − y|1−d‖f ‖Lλ(B11(y)) dy

)p

dx

) 1
p

�
(ˆ
Rd

‖f ‖q

Lλ(B11(y))
dx

) 1
q

, (5.11)

where we have also used the elementary fact that 1
1+|x−y|d−1 � 1

|x−y|d−1 . Collecting (5.9), (5.10) and (5.11) yields

( ˆ

Rd

(ˆ
Rd

K(x − y)‖f ‖Lλ(B11(y)) dy

)p

dx

) 1
p

� (1 + μ− (1−d)r+d
2r )κd(μ)

1
2

(ˆ
Rd

‖f ‖q

Lλ(B6(x))
dx

) 1
q

� (1 + μ− (1−d)r+d
2r )κd(μ)

1
2

(ˆ
Rd

‖f ‖q

Lλ(B(x))
dx

) 1
q

,

where p, q and r are related by (2.20). This concludes the proof of the theorem.

5.2. Proof of Theorem 2.9

Since transposition is a linear local operator, if A satisfies the assumptions of Theorem 2.9, then A∗ does as well, so 
that the statement of Theorem 2.9 is symmetric with respect to interchanging f and g provided A is replaced by A∗. 
Hence we may without loss of generality assume that λ1 � λ2. By (3.18), this implies that

λ2 �
2d

d + 2
. (5.12)

By Jensen’s inequality in probability we may assume w.l.o.g. that θ � 2. The spectral gap estimate of Lemma 3.8 for 
q = θ

2 � 1 yields〈∣∣∣ˆ
d

(u(x) − 〈u(x)〉)g(x) dx

∣∣∣θ
〉 1

θ

�
〈(ˆ

d

(
osc

A|B(z)

ˆ

d

u(x)g(x) dx
)2

dz

) θ
2
〉 1

θ

.

R R R
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By the triangle inequality, we may insert the unperturbed solution u and estimate〈(ˆ
Rd

(
osc

A|B(z)

ˆ

Rd

u(x)g(x) dx
)2

dz

) θ
2
〉 1

θ

≤ 2

〈(ˆ
Rd

(
sup

Ã|B(z)

ˆ

Rd

∣∣u(x) − ũ(x)
∣∣|g(x)| dx

)2
dz

) θ
2
〉 1

θ

.

Taking local averages combined with Hölder’s inequality with exponents (λ′
1, λ1) yields〈∣∣∣∣∣

ˆ

Rd

(u(x) − 〈u(x)〉)g(x) dx

∣∣∣θ
〉 1

θ

�
〈(ˆ

Rd

(
sup

Ã|B(z)

ˆ

Rd

‖u − ũ‖
L

λ′
1 (B(x))

‖g‖Lλ1 (B(x)) dx
)2

dz

) θ
2
〉 1

θ

.

We then put the supremum inside the inner integral and appeal to the sensitivity estimate of Lemma 3.9 to obtain〈(ˆ
Rd

(
sup

A|B(z)

ˆ

Rd

‖u − ũ‖
L

λ′
1 (B(x))

‖g‖Lλ1 (B(x)) dx
)2

dz

) θ
2
〉 1

θ

�
〈(ˆ

Rd

(ˆ
Rd

KG,u(x, z)‖g‖Lλ1 (B(x)) dx
)2

dz

) θ
2
〉 1

θ

.

It remains to estimate the RHS. By the triangle inequality in Ls〈·〉, first with s = θ
2 � 1 and then s = 2, we have

〈(ˆ
Rd

(ˆ
Rd

KG,u(x, z)‖g‖Lλ1 (B(x)) dx
)2

dz

) θ
2
〉 1

θ

�
(ˆ
Rd

(ˆ
Rd

〈
KG,u(x, z)θ

〉 1
θ ‖g‖Lλ1 (B(x)) dx

)2
dz

) 1
2

.

We then make use of (5.2) in the proof of Theorem 2.8 with λ = λ2:(ˆ
Rd

(ˆ
Rd

〈
KG,u(x, z)θ

〉 1
θ ‖g‖Lλ1 (B(x)) dx

)2
dz

) 1
2

�
( ˆ

Rd

(ˆ
Rd

K(x − z)
〈
(∇u)9(z)

2θ
〉 1

2θ ‖g‖Lλ1 (B(x)) dx

)2

dz

) 1
2

+
(ˆ
Rd

‖f ‖2
Lλ2 (B2(z))

‖g‖2
Lλ1 (B7(z))

dz

) 1
2

.

By Hölder’s inequality with 1
2 = 1

q1
+ 1

q̃1
, we bound the second RHS term by

(ˆ
d

‖f ‖2
Lλ2 (B2(z))

‖g‖2
Lλ1 (B7(z))

dz

) 1
2

� ‖f ‖
L

q1
λ2,1(R

d )
‖g‖

L
q̃1
λ1,1(R

d )
.

R
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By (2.21), since r, ̃r � 1, we may choose q1 � q and q̃1 � q̃ so that

‖f ‖
L

q1
λ2,1(R

d )
‖g‖

L
q̃1
λ1,1(R

d )
� ‖f ‖L

q
λ2,1(R

d )‖g‖
L

q̃
λ1,1(R

d )
.

From (5.8) (with p = 1) in the proof of Theorem 2.8, we learn that

(ˆ
Rd

(ˆ
Rd

K(x − z)
〈
(∇u)2(z)

2θ
〉 1

2θ ‖g‖Lλ1 (B(x)) dx
)2

dz

) 1
2

�
(ˆ
Rd

(ˆ
Rd

ˆ

Rd

K(x − z)K(z − y)‖f ‖Lλ2 (B11(y))‖g‖Lλ1 (B(x)) dxdy
)2

dz

) 1
2

,

which holds by our choice λ2 � λ1 which implies λ2 > 2d
d+2 by (2.22). Let p, p̃ � 1 be two exponents to be specified 

later such that 1
2 = 1

p
+ 1

p̃
. We then have that

(ˆ
Rd

(ˆ
Rd

ˆ

Rd

K(x − z)K(z − y)‖f ‖Lλ2 (B11(y))‖g‖Lλ1 (B(x)) dxdy
)2

dz

) 1
2

�
(ˆ
Rd

(ˆ
Rd

K(z − y)‖f ‖Lλ2 (B11(y)) dy
)p

dz

) 1
p
(ˆ
Rd

(ˆ
Rd

K(x − z)‖g‖Lλ1 (B(x)) dx
)p̃

dz

) 1
p̃

.

We treat the two factors of the RHS the same way. First we consider the non-borderline case r < d
d−1 , in which case 

Young’s convolution inequality with 1 + 1
p

= 1
r

+ 1
q

yields

(ˆ
Rd

(ˆ
Rd

K(z − y)‖f ‖Lλ
2(B11(y)) dy

)p

dz

) 1
p

� ‖K‖Lr(Rd )‖f ‖L
q
λ2,1(R

d ) � μ− 1−d
2 − d

2r ‖f ‖L
q
λ2,1(R

d ).

In the borderline case r = d
d−1 , the result follows from the Hardy–Littlewood–Sobolev inequality provided q > 1. An 

identical estimate holds for the second factor with exponents 1 + 1
p̃

= 1
r̃

+ 1
q̃

(provided q̃ > 1 in the borderline case). 
Gathering these two estimates yields

(ˆ
Rd

(ˆ
Rd

ˆ

Rd

K(x − z)K(z − y)‖f ‖Lλ2 (B11(y))‖g‖Lλ1 (B(x)) dxdy
)2

dz

) 1
2

� μ−(1−d)− d
2 ( 1

r
+ 1

r̃
)‖f ‖L

q
λ2,1(R

d )‖g‖
L

q̃
λ1,1(R

d )
,

with

2 + 1

2
= 1 + 1

p
+ 1 + 1

p̃
= 1

r
+ 1

r̃
+ 1

q
+ 1

q̃
.

This completes the proof.

6. Proof of the Lipschitz regularity theory

6.1. Proof of Theorem 2.3

As opposed to the corresponding proof in the discrete case, cf. [17, Corollary 4], we have to take care of the 
singularity of the Green function. This prevents us to make use of Morrey’s inequality when the coefficients are only 
measurable, and we propose a more direct approach which partly mimics the proof of Morrey’s inequality. We assume 
w.l.o.g. that R > 9L. In the first five steps we assume that d > 2, and indicate the changes for d = 2 in Step 6.
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Step 1. Representation formula for u(x + x′) − u(x′), x ∈ BR \ B2L, x′ ∈ BL.
In order to make use of the annealed estimates of Theorem 2.5, we rewrite equation (2.8) on Rd as follows. Let η :
R

d → [0, 1] be a cutoff-function for B 4R
3

in B 5R
3

such that |∇η| �R−1. A direct calculation shows that ηu ∈ H 1(Rd)

satisfies

μηu − ∇ · A∇(uη) = μηu − η∇ · A∇u − ∇η · A∇u − ∇ · (uA∇η). (6.1)

The sum of the first two RHS terms equals ηf while the other two terms belong to H−1(Rd) and have compact 
support. The Green representation formula yields

(ηu)(x) =
ˆ

B2R

(
Gμ(x, y)

(
η(y)f (y) − ∇η(y) · A(y)∇u(y)

)+ u(y)∇yGμ(x, y) · A(y)∇η(y)
)
dy.

Assume first that f and A are smooth (so that u is smooth and the formula holds classically). We argue by density. 
Since 0 �Gμ(x, y) � |y − x|2−d , ηf ∈ Lp(Rd) with p > d

2 , ∇η = 0 on B3R/2 (and in particular at the singularity of 
Gμ(x, ·)), and ∇u ∈ L2(B2R), the first term of the integral is well-defined at the limit. Recalling that y �→ ∇yGμ(x, y)

is locally square-integrable away from y = x, the second term of the integral is well-defined as well since ∇η vanishes 
in a neighborhood of the singularity of y �→ ∇yGμ(x, y) and u ∈ L2(B2R). Since u is uniformly Hölder continuous, 
one can also take the limit of the LHS, so that the Green representation formula holds by a density and regularization 
argument.

We thus have for all x ∈ BR \ B2L and x′ ∈ BL, using in addition that ∇η vanishes on B 3R
2

,

u(x + x′) − u(x′) =
ˆ

B2R

(Gμ(x + x′, y) − Gμ(x′, y))η(y)f (y)dy

−
ˆ

B2R\B 4R
3

(
(Gμ(x + x′, y) − Gμ(x′, y))∇η(y) · A(y)∇u(y)

− u(y)∇y(Gμ(x + x′, y) − Gμ(x′, y)) · A(y)∇η(y)
)
dy. (6.2)

Step 2. Estimate of the integral on B3L(x) ∪ B3L ⊂ B2L.
Since R > 9L, x ∈ BR and x′ ∈ BL, B3L(x) ∪ B3L ⊂ B 4R

3
, only the first integral term of the RHS of (6.2) has a 

contribution. We shall argue that

∣∣∣ ˆ

B3L(x)∪B3L

(Gμ(x + x′, y) − Gμ(x′, y))η(y)f (y)dy

∣∣∣ � (ˆ

B2R

|f |qdy

) 1
q

. (6.3)

Indeed, the deterministic pointwise estimates on Gμ for d > 2 combined with Hölder’s inequality with exponents 
(

q
q−1 , q) yield

∣∣∣ ˆ

B3L(x)∪B3L

(Gμ(x + x′, y) − Gμ(x′, y))η(y)f (y)dy

∣∣∣

�
( ˆ

B3L(x)∪B3L

(|x + x′ − y| q(2−d)
q−1 + |x′ − y| q(2−d)

q−1 )dy

) q−1
q ×

(ˆ

B2R

|f |qdy

) 1
q

.

Since q > d
2 implies q(d−2)

q−1 < d , the first factor is of order 1, and (6.3) follows.

Step 3. Representation formulas for Gμ(x + x′, y) − Gμ(x′, y) and ∇yGμ(x + x′, y) − ∇yGμ(x′, y), x ∈ BR \ B2L, 
x′ ∈ BL, y /∈ B3L(x) ∪ B3L.
When y is not at the singularity of the Green function, we may write the difference of Green functions as the directional 
integral of its gradient: for all y /∈ [x′, x′ + x],
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Gμ(x + x′, y) − Gμ(x′, y) =
1ˆ

0

∇xGμ(tx + x′, y) · xdt, (6.4)

and for all i ∈ {1, . . . , d},

∇yi
Gμ(x + x′, y) − ∇yi

Gμ(x′, y) =
1ˆ

0

∇x∇yi
Gμ(tx + x′, y) · xdt. (6.5)

When y is close to [x′, x′ + x], we have to refine this decomposition. To this end, we define two points x+ and x−
and two sets B+ and B− as follows:

x+ := x

2
+ (

|x|
2

+ L)e1, x− := x

2
− (

|x|
2

+ L)e1,

where e1 is the first unit vector of the canonical basis of Rd , and

B+ := {y ∈ B2R \ (B3L(x) ∪ B3L), (y − x) · e1 � 0},
B− := {y ∈ B2R \ (B3L(x) ∪ B3L), (y − x) · e1 > 0}.

Note that B+ ∪ B− = B2R \ (B3L(x) ∪ B3L). For x ∈ B+ we write Gμ(x + x′, y) − Gμ(x′, y) = Gμ(x + x′, y) −
Gμ(x+ + x′, y) + Gμ(x+ + x′, y) − Gμ(x′, y), so that

Gμ(x + x′, y) − Gμ(x′, y)

=
1ˆ

0

∇xGμ(x+ + t (x − x+) + x′, y) · (x − x+)dt +
1ˆ

0

∇xGμ(tx+ + x′, y) · x+dt. (6.6)

We proceed correspondingly for y ∈ B−.
In the following step we estimate the RHS of (6.2). In view of Step 2, it only remains to estimate the integrals on 

B̃ := B2R \ (B3L(x) ∪ B3L).

Step 4. Estimates of the integrals on B̃.
We shall prove three estimates. First,∣∣∣ ˆ

B±
(Gμ(x + x′, y) − Gμ(x′, y))η(y)f (y)dy

∣∣∣

� |x|
(ˆ

B2R

|f |qdy

) 1
q

1ˆ

0

(ˆ
B±

(
|∇xGμ(x± + t (x − x±) + x′, y)| q

q−1

+ |∇xGμ(tx± + x′, y)| q
q−1

)
dy

) q−1
q

dt, (6.7)

where B± is a shorthand notation we use when the inequality holds both on B+ and B−. We only prove the claim 
for B+. Since |x| > L, by construction |x − x+| � |x| and |x+| � |x|, so that (6.7) follows from (6.6) and Hölder’s 
inequality with exponents ( q

q−1 , q).
The second estimate is:∣∣∣ ˆ

B̃\B 4R
3

(Gμ(x + x′, y) − Gμ(x′, y))∇η(y) · A(y)∇u(y)dy

∣∣∣

� |x|
(

R−1
(ˆ

u2dy
) 1

2 +
(ˆ

f 2dy
) 1

2
)

B2R B2R
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×
1ˆ

0

( ˆ

B̃\B 4R
3

|∇xGμ(tx + x′, y)|2dy

) 1
2

dt. (6.8)

We proceed as for the proof of (6.7) and use in addition the following consequence of the definition of η and Cacciop-
poli’s inequality:(ˆ

B2R

|∇η|2|∇u|2dy

) 1
2

� R−1
(ˆ

B2R

u2dy

) 1
2 +

(ˆ

B2R

f 2dy

) 1
2

.

Indeed, since ∇η has support in B 5R
3

\ B 4R
3

,
ˆ

B2R

|∇η|2|∇u|2dy � R−2
ˆ

B 5R
3

\B 4R
3

|∇u|2dy.

Testing Eq. (2.8) with test-function η̃2u ∈ H 1
0 (B2R), where η̃ has support in B2R and is such that η̃|B 5R

3
≡ 1 and 

|∇η̃| � 1
R

, yields the Caccioppoli estimateˆ

B2R

∇(η̃u) · A∇(η̃u)dy �
ˆ

B2R

u2∇η̃ · A∇η̃dy +
ˆ

B2R

η̃2f udy,

which, by definition of η̃ and Young’s inequality on the last term, we may use in the formˆ

B 5R
3

|∇u|2dy � R−2
ˆ

B2R

u2dy + R2
ˆ

B2R

f 2dy. (6.9)

Finally, we prove∣∣∣ ˆ

B̃\B 4R
3

u(y)∇y(Gμ(x + x′, y) − Gμ(x′, y)) · A(y)∇η(y)dy

∣∣∣

� |x|R−1
(ˆ

B2R

u2dy

) 1
2

1ˆ

0

( ˆ

B̃\B 4R
3

|∇∇Gμ(tx + x′, y)|2dy

) 1
2

dt. (6.10)

This estimate follows from (6.5), the bound |∇η| �R−1, and Cauchy–Schwarz’ inequality.

Step 5. Conclusion for d > 2.
The combination of (6.2), (6.3), (6.7), (6.8), and (6.10) yields, using that |x| > L ∼ 1 and that B̃ \ B 4R

3
= B2R \ B 4R

3
,

|u(x + x′) − u(x′)|
|x|

� R−1
(( 

B2R

|R2f |qdy
) 1

q +
( 
B2R

(R2f )2dy
) 1

2 +
( 
B2R

u2dy
) 1

2
)

×
{
R

−1+ d
q

1ˆ

0

(ˆ
B+

(
|∇xGμ(x+ + t (x − x+) + x′, y)| q

q−1 + |∇xGμ(tx+ + x′, y)| q
q−1

)
dy

) q−1
q

dt

+ R
−1+ d

q

1ˆ (ˆ
−

(
|∇xGμ(x− + t (x − x−) + x′, y)| q

q−1 + |∇xGμ(tx− + x′, y)| q
q−1

)
dy

) q−1
q

dt
0 B
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+ R
−1+ d

q + R−1+ d
2

1ˆ

0

( ˆ

B2R\B 4R
3

|∇xGμ(tx + x′, y)|2dy

) 1
2

dt

+ R
d
2

1ˆ

0

( ˆ

B2R\B 4R
3

|∇∇Gμ(tx + x′, y)|2dy

) 1
2

dt

}
.

Dividing both sides of the inequality by the first RHS term and averaging over x ′ ∈ BL yield using Jensen’s inequality 

and that q > d (so that R−1+ d
q � 1):

R
ffl
BL

|u(x+x′)−u(x′)|
|x| dx′

(ffl
B2R

u2dy
) 1

2 +
(ffl

B2R
|R2f |qdy

) 1
q

�
1ˆ

0

( 
BL

ˆ

B+

(
|∇xGμ(x+ + t (x − x+) + x′, y)| q

q−1 + |∇xGμ(tx+ + x′, y)| q
q−1

)
dydx′

) q−1
q

dt

+
1ˆ

0

( 
BL

ˆ

B−

(
|∇xGμ(x− + t (x − x−) + x′, y)| q

q−1 + |∇xGμ(tx− + x′, y)| q
q−1

)
dydx′

) q−1
q

dt

+ R−1+ d
2

1ˆ

0

( 
BL

ˆ

B2R\B 4R
3

|∇xGμ(tx + x′, y)|2dydx′
) 1

2

dt

+ R
d
2

1ˆ

0

( 
BL

ˆ

B2R\B 4R
3

|∇∇Gμ(tx + x′, y)|2dydx′
) 1

2

dt + 1 =: YR(x).

This proves estimate (2.9). It remains to prove the moment bounds (2.10) on YR(x), which formally follow from 
taking the expectation of the p-th power of the RHS of this inequality and bounding |∇Gμ(x, y)| by |x − y|1−d and 
|∇∇Gμ(x, y)| by |x − y|−d . It remains to show that it is enough to use bounds on large moments of local square 
averages of |∇Gμ(x, y)| and |∇∇Gμ(x, y)| instead, which we control optimally by Theorem 2.5. We only treat the 
first term in detail (the other terms are treated similarly). By bounding the integral on B+ by the sum of integrals on 
balls of radius L and by Hölder’s inequality, we have 

BL

ˆ

B+

(
|∇xGμ(x+ + t (x − x+) + x′, y)| q

q−1 + |∇xGμ(tx+ + x′, y)| q
q−1

)
dydx′

�
∑

i∈B+∩ L√
d
Zd

((∇xGμ)L(x+ + t (x − x+), i))
q

q−1 + ((∇xGμ)L(tx+, i))
q

q−1 .

We only treat the first RHS term. By Jensen’s inequality in probability it is enough to prove the claim for p large 
enough, which we take such that p � q

q−1 . By Jensen’s inequality on 
´ 1

0 dt and by the triangle inequality for 〈´ 1
0 (·) p(q−1)

q

〉 q
p(q−1)

,

〈( 1ˆ

0

( ∑
i∈B+∩ L√ Zd

((∇xGμ)L(x+ + t (x − x+), i))
q

q−1

) q−1
q

dt

)p
〉

d
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�
〈 1ˆ

0

( ∑
i∈B+∩ L√

d
Zd

((∇xGμ)L(x+ + t (x − x+), i))
q

q−1

) p(q−1)
q

dt

〉

�
( ∑

i∈B+∩ L√
d
Zd

〈 1ˆ

0

((∇xGμ)L(x+ + t (x − x+), i))pdt

〉 q
p(q−1)) p(q−1)

q

.

Recall that by construction of x+ and B+, |x+ + t (x − x+) − i| ∼ |x − i| for all t ∈ [0, 1], so that by Theorem 2.5,

〈 1ˆ

0

((∇xGμ)L(x+ + t (x − x+), i))pdt

〉 1
p

� e−c
√

μ|x−i|

|x − i|d−1
.

Giving up the exponential cut-off, this yields

〈( 1ˆ

0

( ∑
i∈B+∩ L√

d
Zd

((∇xGμ)L(x+ + t (x − x+), i))
q

q−1

) q−1
q

dt

)p
〉

�
( ∑

i∈B+∩ L√
d
Zd

|x − i|(1−d)
q

q−1

) p(q−1)
q

�
( ˆ

B2R\BL(x)

|x − y|(1−d)
q

q−1 dy

) p(q−1)
q

� 1

since q > d . This completes the proof of (2.9).

Step 6. Proof for d = 2.
The proof for d = 2 is identical as for d > 2 except for Step 2. Indeed, if we proceed there as for d > 2, the estimate 
fails optimality by a logarithm of μ due to the bound on the Green function Gμ in dimension 2 close to the singularity. 
Recall that p > d

2 = 1. To avoid this logarithmic correction, we follow the elegant argument by Avellaneda and 

Lin [2] and add a third dimension. We denote by G(2)
μ and A(2) the fields in dimension 2 and consider the following 

extensions to dimension 3: A(3)(x1, x2, x3) := diag
[
A(2)(x1, x2),1

]
and G(3)

μ the Green function associated with A(3). 
It is elementary to check using Definition 3.1 that for all x �= y ∈R

2,

G(2)
μ (x, y) =

ˆ

R

G(3)
μ ((x,0), (y, t))dt,

and we rewrite the LHS of (6.3) asˆ

B3L(x)∪B3L

(G(2)
μ (x + x′, y) − G(2)

μ (x′, y))η(y)f (y)dy

=
ˆ

B3L(x)∪B3L

ˆ

R

(G(3)
μ ((x + x′,0), (y, t)) − G(3)

μ ((x′,0), (y, t)))η(y)f (y)dtdy. (6.11)

We then split the integral over t into two parts: |t | � 1 and |t | > 1. We start by estimating the first part, and appeal to 
the deterministic pointwise estimate on G(3)

μ . By the triangle inequality,∣∣∣ ˆ

B3L(x)∪B3L

ˆ

|t |�1

(G(3)
μ ((x + x′,0), (y, t)) − G(3)

μ ((x′,0), (y, t)))η(y)f (y)dtdy

∣∣∣
�

ˆ ˆ (
(|x + x′ − y|2 + t2)−

1
2 + (|x′ − y|2 + t2)−

1
2

)
|f (y)|dtdy
B3L(x)∪B3L |t |�1
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We first integrate in y and use Hölder’s inequality with exponents ( q
q−1 , q) for some 1 < q � p small enough so that 

q
q−1 > 2. This yields

∣∣∣ ˆ

B3L(x)∪B3L

ˆ

|t |�1

(G(3)
μ ((x + x′,0), (y, t)) − G(3)

μ ((x′,0), (y, t)))η(y)f (y)dtdy

∣∣∣

�
ˆ

|t |�1

|t |2 q−1
q

−1
dt

⎛
⎜⎝ ˆ

B3L(x)∪B3

|f (y)|qdy

⎞
⎟⎠

1
q

�

⎛
⎜⎝ ˆ

B3L(x)∪B3L

|f (y)|pdy

⎞
⎟⎠

1
p

, (6.12)

by Jensen’s inequality since L ∼ 1.
We turn to the second part of the integral. We bound the difference of the Green functions by the oscillation, and 

appeal to the De Giorgi–Nash–Moser theory in the form of the deterministic estimate: For all |t | > 1, and all z, y ∈R
d ,

osc
z ∈ B2R

G(3)
μ ((z,0), (y, t)) � |t |−1+α0 ,

for some α0 > 0 depending only on λ (see (7.10) in Step 2 of the proof of Lemma 3.6 for details). Since x, x + x′ ∈
B2R , this yields∣∣∣ ˆ

B3L(x)∪B3L

ˆ

|t |>1

(G(3)
μ ((x + x′,0), (y, t)) − G(3)

μ ((x′,0), (y, t)))η(y)f (y)dtdy

∣∣∣
�

ˆ

B3L(x)∪B3L

ˆ

|t |>1

(
osc

z ∈ B2R

G(3)
μ ((z,0), (y, t))

)
|f (y)|dtdy

�
ˆ

B3L(x)∪B3L

ˆ

|t |>1

|t |−1+α0 |f (y)|dtdy �
ˆ

B3L(x)∪B3L

|f (y)|dy. (6.13)

The desired estimate (6.3) for d = 2 and p > 1 follows from (6.11), (6.12), and (6.13).

6.2. Proof of Remark 2.4

Estimate (2.9) for all x ∈ BR is a straightforward combination of (2.9) for all x ∈ BR \B2 and of Schauder interior 
estimates. We closely follow the corresponding proof in the discrete setting, cf. [17, Corollary 4].

Step 1. Representation formula for solutions u ∈ H 1(BR) of

μu − ∇ · A∇u = f ∈ Lp(B2R)

in B2R for some p > d . Let η be a smooth cutoff function for B 4R
3

in B 5R
3

such that |∇η| � R−1. We claim that for 
all x ∈ BR

2
,

∇u(x) =
ˆ

B2R

(
∇xG(x, y)

(
η(y)f (y) − ∇η(y) · A(y)∇u(y)

)+ u(y)∇∇G(x,y) · A(y)∇η(y)
)
dy (6.14)

Indeed the Leibniz rule yields

μηu − ∇ · A∇(uη) = μηu − η∇ · A∇u − ∇η · A∇u − ∇ · (uA∇η). (6.15)

The sum of the first two RHS terms equals ηf while the other two terms are in H−1(Rd) and have compact support. 
Hence testing (6.15) with Gμ yields

(ηu)(x) =
ˆ (

Gμ(x, y)
(
η(y)f (y) − ∇η(y) · A(y)∇u(y)

)+ u(y)∇yGμ(x, y) · A(y)∇η(y)
)
dy (6.16)
B2R
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and (6.14) follows by taking the derivative w.r.t. x. Note that the RHS of (6.16) and (6.14) are well-defined for all 

x ∈ BR
2

(so that Green representation formula follows from mollifying the RHS). On the one hand, Gμ ∈ L
d

d−2+ε (B2R)

and ∇Gμ ∈ L
d

d−1+ε (B2R) for all ε > 0 and f ∈ Lp(BR) for some p > d , so that the terms involving f are well-defined. 
On the other hand, ∇Gμ, Gμ, and ∇∇Gμ are locally square-integrable away from the singularity, and ∇η vanishes in 
B 4R

3
so that the terms involving ∇Gμ or ∇∇Gμ and u or ∇u in (6.16) and (6.14) are not singular and are integrable.

Step 2. Proof that for α = 1 − d
p

,

(
Rα[u]Cα(BR)

)p

� Rαp

ˆ

BR

( ˆ

B 5R
3

|∇xGμ(x, y)||f (y)| dy

)p

dx

+ Rp(α−1)

ˆ

BR

( ˆ

A 4R
3 , 5R

3

(|∇∇Gμ(x, y)||u(y)| + |∇xGμ(x, y)||∇u(y)|) dy

)p

dx. (6.17)

Indeed, in view of the definition of η, (6.14) in Step 1 yields for all x ∈ BR
2

|∇u(x)| �
ˆ

B 5R
3

|∇xGμ(x, y)||f (y)|dy

+ R−1
ˆ

A 4R
3 , 5R

3

(
|∇xGμ(x, y)||∇u(y)| + |u(y)||∇∇Gμ(x, y)|

)
dy,

where A 4R
3 , 5R

3
= { 4R

3 < |y| � 5R
3 }. The desired estimate (6.17) then follows from Morrey’s inequality

[u]Cα(BR) = sup
x,y∈BR

x �=y

|u(x) − u(y)|
|x − y|α �

(ˆ
BR

|∇u|p dy

) 1
p

and the triangle inequality.

Step 3. Proof of〈(
sup
(u,f )

Rα supx,y∈BR

|u(x)−u(y)|
|x−y|α

supB2R
|u| + (

ffl
B2R

|R2f |p)
1
p

)p〉

�
〈
Rd(p−2)−p

ˆ

BR

ˆ

A 4R
3 , 5R

3

|∇xGμ(x, y)|p dydx + Rd(p−2)

ˆ

BR

ˆ

A 4R
3 , 5R

3

|∇∇Gμ(x, y)|p dydx

+ R−2p

ˆ

BR

(ˆ

B2R

|∇xGμ(x, y)| p
p−1 dy

)p−1

dx

〉
. (6.18)

The starting point is (6.17) in Step 2, and we treat each of the three RHS terms separately. For the first term, we use 
Hölder’s inequality with exponents ( p

p−1 , p):

ˆ

BR

( ˆ

B 5R
3

|∇xGμ(x, y)||f (y)| dy

)p

dx

� R−2p

ˆ (ˆ
|∇xGμ(x, y)| p

p−1 dy

)p−1

dx

ˆ
|R2f |p dy.
BR B2R B2R
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For the second term, we also use Hölder’s inequality with exponents (p, p
p−1 ):

ˆ

BR

( ˆ

A 4R
3 , 5R

3

|∇∇Gμ(x, y)||u(y)| dy

)p

dx

�
ˆ

BR

ˆ

A 4R
3 , 5R

3

|∇∇Gμ(x, y)|p dydx

( ˆ

A 4R
3 , 5R

3

|u| p
p−1 dy

)p−1

�Rd(p−2)

ˆ

BR

ˆ

A 4R
3 , 5R

3

|∇∇Gμ(x, y)|p dydx Rd
(

sup
B2R

|u|
)p

.

Likewise, for the third term we have

ˆ

BR

( ˆ

A 4R
3 , 5R

3

|∇xGμ(x, y)||∇u(y)| dy

)p

dx �
ˆ

BR

ˆ

A 4R
3 , 5R

3

|∇xGμ(x, y)|p dydx

( ˆ

BR

|∇u| p
p−1 dy

)p−1

.

Since p > d � 2, we have p
p−1 < 2, so that Jensen’s inequality yields

( ˆ

BR

|∇u| p
p−1 dy

)p−1

�Rd(
p
2 −1)

( ˆ

BR

|∇u|2 dy

) p
2

.

By Caccioppoli’s inequality (cf. (6.9)),ˆ

BR

|∇u|2 dy � R−2
ˆ

B2R

|u|2 dy + R2
ˆ

B2R

f 2 dy

� Rd−2 sup
B2R

|u|2 + R2
ˆ

B2R

f 2 dy;

and consequently, by Jensen’s inequality on f (using that p > d � 2),( ˆ

BR

|∇u| p
p−1 dy

)p−1

�Rd(p−2)−p

(
Rd sup

B2R

|u|p +
ˆ

B2R

|R2f |p dy

)
.

Hence we have proved the following bound for the third RHS term of (6.17):
ˆ

BR

( ˆ

A 4R
3 , 5R

3

|∇xGμ(x, y)||∇u(y)| dy

)p

dx

� Rd(p−2)−p

(
Rd sup

B2R

|u|p +
ˆ

B2R

|R2f |p dy

)ˆ

BR

ˆ

A 4R
3 , 5R

3

|∇xGμ(x, y)|p dydx.

This concludes the proof of (6.18) recalling that Rαp = Rd .

Step 4. Conclusion.
We bound each term of the r.h.s. of (6.18) separately. The first term is bounded by

Rd(p−2)−p

ˆ

BR

ˆ

A 4R , 5R

〈|∇xG(x, y)|p〉 dydx � Rd(p−2)−p

ˆ

BR

ˆ

A 4R , 5R

|x − y|(1−d)p dydx.
3 3 3 3
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For x ∈ BR and y ∈A 4R
3 , 5R

3
, we have that |x − y| � |y| − |x| � R

3 , so that

Rd(p−2)−p

ˆ

BR

ˆ

A 4R
3 , 5R

3

|x − y|(1−d)p dydx � Rd(p−2)−p+2d+(1−d)p = 1.

Likewise, the second term is bounded by

Rd(p−2)

ˆ

BR

ˆ

A 4R
3 , 5R

3

〈|∇∇Gμ(x, y)|p〉 dydx � Rd(p−2)

ˆ

BR

ˆ

A 4R
3 , 5R

3

|x − y|−dp dydx

� Rd(p−2)+2d−dp = 1.

For the third term, we use the triangle inequality in form of〈(ˆ

B2R

|∇xGμ(x, y)| p
p−1 dy

)p−1
〉
�

(ˆ

B2R

〈|∇xGμ(x, y)|p〉 1
p−1 dy

)p−1

�
(ˆ

B2R

|x − y|(1−d)
p

p−1 dy

)p−1

� Rd(p−1)+(1−d)p = Rp−d .

Hence,〈
R−2p

ˆ

BR

(ˆ

B2R

|∇xG(x, y)| p
p−1 dy

)p−1

dx

〉
� R−2p+d+p−d = R−p � 1.

As before the bound on YR(x) is a simple reformulation. The proof of the remark is complete.

7. Proofs of the auxiliary results

7.1. Proof of Lemma 3.4

The proof is essentially identical to the proof in the discrete case. The only difference lies in the different form of 
the (LSI). We reproduce the proof for completeness.

Step 1. Result for p = 1.
We claim that for any δ > 0 and all ζ(a):

〈ζ 2〉 1
2 �

(
exp

( 2

ρδ2

)
+ ρδ2

2e

)
〈|ζ |〉 + δ

〈ˆ
Rd

(
osc

A|B(z)

ζ
)2

dz
〉 1

2
, (7.1)

where ρ denotes the constant in the (LSI), see Definition 2.1. By homogeneity, we may assume 〈ζ 2〉 = 1. For all 
real-valued ζ we have that

ζ 2 �

⎧⎨
⎩

exp( 2
ρδ2 )|ζ | if |ζ | � exp 2

ρδ2

ρδ2

4 ζ 2 log ζ 2 if |ζ | � exp 2
ρδ2

}
.

Since x logx is bounded from below by 1
e
, we have that 2

e
|ζ | + ζ 2 log ζ 2 � 0 for all ζ . It follows that

ζ 2 �
(

exp
( 2

ρδ2

)
+ ρδ2

2e

)
|ζ | + ρδ2

4
ζ 2 log ζ 2.
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Hence taking the expectation 〈·〉 yields

〈ζ 2〉 �
(

exp
( 2

ρδ2

)
+ ρδ2

2e

)
〈|ζ |〉 + ρδ2

4

〈
ζ 2 log ζ 2

〉
.

Since 〈ζ 2〉 = 1, Young’s inequality yields

〈|ζ |〉 � 1

2

(
exp

( 2

ρδ2

)
+ ρδ2

2e

)
〈|ζ |〉2 + 1

2

(
exp

( 2

ρδ2

)
+ ρδ2

2e

)−1

= 1

2

(
exp

( 2

ρδ2

)
+ ρδ2

2e

)
〈|ζ |〉2 + 1

2

(
exp

( 2

ρδ2

)
+ ρδ2

2e

)−1

〈ζ 2〉.

Combining the last two estimates, we deduce

〈ζ 2〉 �
(

exp
( 2

ρδ2

)
+ ρδ2

2e

)2

〈|ζ |〉2 + ρδ2

2

〈
ζ 2 log

ζ 2

〈ζ 2〉
〉
.

Hence (LSI) yields

〈ζ 2〉 �
(

exp
( 2

ρδ2

)
+ ρδ2

2e

)2

〈|ζ |〉2 + δ2
〈ˆ
Rd

(
osc

A|B(z)

ζ
)2

dz
〉

and estimate (7.1) follows from taking the square root and applying the inequality 
√

ζ + ξ �
√

ζ +√
ξ for all numbers 

ζ, ξ � 0.

Step 2. We finish the proof of (3.10), i.e. we show that

〈ζ 2p〉 1
2p � C(ρ, ,p, δ)〈|ζ |〉 + δ

(〈(ˆ
Rd

(
osc

A|B(z)

ζ
)2

dz

)p〉) 1
2p

for general p � 1. To that end, we apply (7.1) to ζ replaced by |ζ |p:

〈|ζ |2p〉 � C(ρ,p, δ)〈|ζ |p〉2 + δ
〈ˆ
Rd

(
osc

A|B(z)

|ζ |p
)2

dz
〉
,

where C(ρ, p, δ) denotes a generic constant only depending on ρ, p, and δ. Since p < 2p, an application of Hölder’s 
inequality in 〈·〉 and Young’s inequality on the first RHS term yields

〈|ζ |2p〉 � C(ρ,p, δ)〈|ζ |〉2p + 2δ
〈ˆ
Rd

(
osc

A|B(z)

|ζ |p
)2

dz
〉
. (7.2)

Now we use that

osc
A|B(z)

|ζ |p � C(p)

(
|ζ |p−1 osc

A|B(z)

ζ +
(

osc
A|B(z)

ζ
)p

)

which follows from the elementary inequality |ζp − ξp| � C(p)(ζp−1|ζ − ξ | + |ζ − ξ |p) for all numbers ζ, ξ > 0
and the triangle inequality in form of osca(e) |ζ | � osca(e) ζ . Hence (7.2) yields

〈|ζ |2p〉 � C(ρ,p, δ)〈|ζ |〉2p + 2C(p)δ
〈
|ζ |2p−2

ˆ

Rd

(
osc

A|B(z)

ζ dz
)2〉+ 2C(p)δ

〈ˆ
Rd

(
osc

A|B(z)

ζ
)2p

dz
〉
. (7.3)

The last term on the right-hand side may be estimated by discreteness, using the argument developed in [13, Proof of 
Lemma 2.3]. Since every ball B(z), z ∈ R

d is contained in the collection (B2(z
′))

z′∈ 2√ Zd , we have that

d
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〈ˆ
Rd

(
osc

A|B(z)

ζ
)2p

dz
〉
� C

〈 ∑
z∈ 2√

d
Zd

(
osc

A|B2(z)

ζ
)2p〉

.

Hence, by discreteness, we find have

〈ˆ
Rd

(
osc

A|B(z)

ζ
)2p

dz
〉
� C

〈( ∑
z∈ 2√

d
Zd

(
osc

A|B2(z)

ζ
)2

)p〉
. (7.4)

Furthermore, Hölder’s inequality followed by Young’s inequality yields

〈
|ζ |2p−2

ˆ

Rd

(
osc

A|B(z)

ζ
)2p

dz
〉
� 〈|ζ |2p〉1− 1

p

〈(ˆ
Rd

(
osc

A|B(z)

ζ
)2p

dz

)p〉

� 1

4C(p)δ
〈|ζ |2p〉 + (4C(p)δ)p−1

〈(ˆ
Rd

(
osc

A|B(z)

ζ
)2p

dz

)p〉
. (7.5)

Hence collecting (7.3), (7.4) and (7.5) yields

〈|ζ |2p〉 � C(ρ,p, δ)〈|ζ |〉2p + 2
(
2C(p)δ + (4C(p)δ)p

)〈( ∑
z∈ 2√

d

(
osc

A|B2(z)

ζ
)2

dz

)p〉
,

where we have absorbed the second term of (7.5) in the LHS. Since every ball B2(z
′), z′ ∈ 2√

d
Z

d is contained in the 
collection (B3(z))|z−z′|�2ell , we also deduce

∑
z∈ 2√

d
Zd

(
osc

A|B2(z)

ζ
)2

� 1



ˆ

Rd

(
osc

A|B3(z)

ζ
)2

dz

By redefining δ, we obtain (3.10).

7.2. Proof of Lemma 3.6

Estimate (3.13) is a Meyers’ type estimate, for which we refer the reader to [13, Lemma 2.9]. We split the rest of 
the proof into four steps. For d > 2, (3.14) is a consequence of (3.13) and of Meyers’ estimate, see Step 1. For d = 2, 
however, we need sharper deterministic estimates on the decay of local averages of the gradient of the Green function. 
These are obtained using the De Giorgi–Nash–Moser theory and pointwise bounds on the Green function in Step 2. 
We then prove (3.14) for all d � 2 in Step 3. We prove (3.15) in the fourth and last step.

Step 1. Proof ofˆ

R�|x−y|<2R

ˆ

|y|<L

|∇∇Gμ(x, y)|2q1 dydx � R−2q1α1e−c
√

μR, (7.6)

for some q1 > 1 and α1 > 0 and all R � 4L ∼ 1.
This follows from Meyers’ estimate in the form of: There exists some q0 > 1 depending only on λ and d such 

that for all 1 � q � q0 and all functions u ∈ H 1(Rd), g ∈ L2(Rd , Rd), f ∈ L2(Rd) supported in B2L with L ∼ 1 and 
related through

−∇ · A∇u = ∇ · g + f,

we have(ˆ
d

|∇u|2q0dy
) 1

2q �
(ˆ

d

|g|2qdy
) 1

2q +
(ˆ

d

f 2dy
) 1

2
.

R R R
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For this estimate we refer the reader to the original article by Meyers [19] or to [14, (4.31) in Proof of Lemma 2.9]
(the proof of which is first presented in the continuum setting dealt with here).

Let η : Rd → R be such that η ≡ 1 on BL, η ≡ 0 on Rd \B2L and |∇η| � 1. Assume momentarily that A is smooth, 
so that (x, y) �→ Gμ(x, y) is smooth away from the diagonal x = y. Let i ∈ {1, . . . , d}, we apply Meyers’ estimate to 
the smooth function u(y) = η(y)∇xi

Gμ(y, x) for |x| � 4L. Indeed, the defining equation for Gμ yields

−∇ · A(y)∇u(y) = −μη(y)∇xi
Gμ(y, x) − ∇yη(y) · A(y)∇y∇xi

Gμ(y, x) − ∇ · (A(y)∇η(y)∇xi
Gμ(y, x)),

so that Meyers’ estimate with exponent q0 > 1 takes the form

(ˆ
BL

|∇y∇xi
Gμ(y, x)|2q0dy

) 1
2q0

�
(ˆ
B2L

|∇xi
Gμ(y, x)|2q0dy

) 1
2q0 +

(ˆ
B2L

μ2(∇xi
Gμ(y, x))2 + |∇y∇xi

Gμ(y, x)|2dy
) 1

2
.

By Caccioppoli’s inequality (cf. (6.9) in the proof of Theorem 2.3), since L ∼ 1,ˆ

B2L

|∇y∇xi
Gμ(y, x)|2dy �

ˆ

B3L

(∇xi
Gμ(y, x))2dy,

so that by Hölder’s inequality,

(ˆ
BL

|∇y∇xi
Gμ(y, x)|2q0dy

) 1
2q0 � (1 + μ)

(ˆ
B3L

|∇xi
Gμ(y, x)|2q0dy

) 1
2q0 .

Taking the (2q0)
th power of this inequality, summing over i = 1, . . . , d , and integrating over {R � |x| < 2R} yield 

combined with (3.13) and L ∼ 1
ˆ

R�|x|<2R

ˆ

|y|<L

|∇∇Gμ(y, x)|2q0dydx � (1 + μ)2q0RdR2q0(1−d) exp
(− c

√
μR

)
. (7.7)

Since q0 > 1 and d � 2,

d + 2q0(1 − d) = d(1 − q0) − q0(d − 2) ≤ −2q0
q0 − 1

q0
,

(7.7) implies (7.6) for q1 = q0 > 1 and α1 = q0−1
q0

> 0. This result carries over to general measurable coefficients A by 

density. (Note that for d > 2, this already yields the desired result (3.14) for all 1 � q � q0 and α0 = 1
2 . The following 

two steps are forced upon us to deal with d = 2.)

Step 2. Deterministic estimates on the gradient of the Green function.
In this step we show that there exists a Hölder exponent α2 > 0 such that for all L ∼ 1 and |x| �R � 4L ∼ 1,

(ˆ
BL

|∇yGμ(x, y)|2dy
) 1

2 � e−c
√

μ|x|

|x|d−2+α2
. (7.8)

Since Gμ(x, y; A) = Gμ(y, x; A∗) (where A∗ is the transpose of A) and the bounds are uniform w.r.t. A ∈ �, it is 
enough to prove (7.8) with ∇yGμ(x, y) replaced by ∇yGμ(y, x). We shall first prove (7.8) for d > 2 and then deduce 
it for d = 2 from the result for d = 3 following the argument by Avellaneda and Lin already used in Step 6 of the 
proof of Theorem 2.3. By Caccioppoli’s inequality, for all K ∈R, since L ∼ 1,ˆ

|∇yGμ(y, x)|2dy �
ˆ

(Gμ(y, x) − K)2dy + μK2,
BL B2L



1186 A. Gloria, D. Marahrens / Ann. I. H. Poincaré – AN 33 (2016) 1153–1197
so that
ˆ

BL

|∇yGμ(y, x)|2dy �
(

osc
y ∈ B2L

Gμ(y, x)
)2 +

(√
μ

 

B2L

Gμ(y, x)dy
)2

. (7.9)

From [9, Theorem 8.22], since {y : |y| � 2L} ⊂ {y : |y| � | x
2 |} and

μGμ(y, x) − ∇y · A(y)∇yGμ(y, x) = 0 in {y : |y| � |x
2
|},

we learn that there exists α2 > 0 such that

osc
y ∈ B2L

Gμ(x, y) � Lα2 |x
2
|−α2(1 + |x

2
|2μ) sup

|y|�| x
2 |

Gμ(x, y).

Appealing to the pointwise estimate (3.2) for d > 2 to bound the supremum and using that |x − y| � | x
2 |, this turns 

into

osc
y ∈ B2L

Gμ(x, y) � |x
2
|2−d−α2e−c

√
μ| x

2 |. (7.10)

Likewise the pointwise estimate (3.2) for d > 2 allows one to bound the average in the RHS of (7.8) by

√
μ

 

B2L

Gμ(y, x)dy � √
μ|x

2
|2−de−c

√
μ| x

2 | � |x
2
|1−de−c

√
μ| x

2 |

for some slightly smaller c > 0 in the RHS. Hence, (7.8) follows from (7.9) for d > 2.
We now turn to d = 2, which is the aim of this step, and prove the result by integrating the three-dimensional 

Green function. Denote by A(2) the coefficients in R2×2, and let A(3) be the block diagonal matrix of R3×3 given by 
diag

[
A(2),1

]
. We denote by G(3)

μ the Green function associated with A(3) and define a function G(2)
μ :R2 ×R

2 \ {x =
y} →R

+, (x, y) �→ G
(2)
μ (x, y) as follows:

G(2)
μ (x, y) =

ˆ

R

G(3)
μ (x, z, y,0)dz.

Then, G(2)
μ = Gμ(·, ·; A(2)). By the triangle inequality,

ˆ

BL

|∇yG
(2)
μ (y, x)|2dy =

ˆ

BL

∣∣∣ˆ
R

∇yG
(3)
μ (y, z, x,0)dz

∣∣∣2dy

�
(ˆ
R

(ˆ
BL

|∇yG
(3)
μ (y, z, x,0)|2dy

) 1
2
dz

)2

.

Using Cauchy–Schwarz’ inequality locally, this yields

ˆ

BL

|∇G(2)
μ (y, x)|2dy �

(ˆ
R

( ˆ

|(y,z′)−(x,z)|� 5L
4

|∇yG
(3)
T (y, z′, x,0)|2dydz′) 1

2
dz

)2

. (7.11)

We then appeal to (7.8) for d = 3, which yields

( ˆ

|(y,z′)−(x,z)|� 5L

|∇yG
(3)
T (y, z′, x,0)|2dydz′)1/2

� e−c
√

μ(|x|2+|z|2) 1
2

(|x|2 + |z|2) 1+α2
2

.

4
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Estimating the z-integral as follows,

ˆ

R

e−c
√

μ(|x|2+|z|2) 1
2

(|x|2 + |z|2) 1+α2
2

dz � e−c
√

μ|x|
ˆ

R

1

(|x|2 + |z|2) 1+α2
2

dz � e−c
√

μ|x|

|x|α2
,

completes the proof of (7.8) for d = 2.

Step 3. Proof of (3.14) for all 1 � q � q0.
We first prove that (3.14) holds for q = 1 using Caccioppoli’s inequality combined with (7.8), and then conclude 
by interpolation using Step 1. Assume that A is smooth, so that ∇yi

Gμ(y, x) is smooth for x �= y. Since for all 
i ∈ {1, . . . , d}

μ∇yi
Gμ(y, x) − ∇x · A(x)∇x∇yi

Gμ(y, x) = 0 in {R
2
� |x| < 4R},

Caccioppoli’s inequality yieldsˆ

|y|�L

ˆ

R�|x|<2R

|∇x∇yi
Gμ(y, x)|2dxdy � R−2

ˆ

|y|�L

ˆ

R
2 �|x|<4R

(∇yi
Gμ(y, x))2dxdy.

Combined with (7.8) this turns intoˆ

|y|�L

ˆ

R�|x|<2R

|∇∇Gμ(y, x)|2dxdy � R−2RdR2(2−d)−2α2 = R2−dR−2α2e−c
√

μR, (7.12)

that is (3.14) for q = 1 and exponent α2. The case of measurable coefficients A follows by density.
Set α0 = min{α1, α2}. An elementary interpolation argument between (7.12) and (7.6) then shows that for all 

1 � q � q0,ˆ

|y|�L

ˆ

R�|x|<2R

|∇∇Gμ(y, x)|2qdxdy � R−2qα0e−c
√

μR,

as desired.

Step 4. Proof of (3.15).
This is a consequence of Caccioppoli’s inequality and (3.13). Indeed, for all 3L � |x − y| < 6L with L ∼ 1,

(∇∇Gμ)L(x, y) =
ˆ

BL(y)

ˆ

BL(x)

|∇x′∇y′Gμ(x′, y′)|2dx′dy′

L∼1,Caccioppoli
�

ˆ

BL(y)

ˆ

B 3
2 L

(x)

|∇y′Gμ(x′, y′)|2dx′dy′

�
ˆ

B 3
2 L

(x)

ˆ

L
2 �|x′−y′|< 17L

2

|∇y′Gμ(x′, y′)|2dy′dx′ (3.13)
� 1.

7.3. Proof of Lemma 3.5

We only prove (3.11), the proof of (3.12) is similar and left to the reader. We split the proof of (3.11) into three 
steps. In the first step we estimate the oscillation of the mixed second derivative of the Green function. In the second 
step we control the RHS of this estimate using Lemma 3.6, and we conclude in the third step.

We let Ã be a coefficient field which coincides with A outside of BL(z), for z ∈R
d , and denote by Gμ and G̃μ the 

Green functions associated with A and Ã, respectively, for some μ > 0. Set δGμ := G̃μ − Gμ.
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Step 1. Proof of

(∇∇δGμ)L(x, y) � (∇∇Gμ)L(z, y)

{
1 if |z − x| � 6L,

(∇∇Gμ)L(x, z) if |z − x| > 6L.
(7.13)

for all x, y with |z − y| > 3L and |x − y| > 3L.
By density it is enough to take A and Ã smooth. Estimate (7.13) follows from the combination of a Green rep-

resentation formula and an a priori estimate. We start with the former and proceed by regularization. Let (ρr)r>0 be 
a family of smooth non-negative approximations of the Dirac mass with total mass unity and support in Br . For all 
r > 0 and y′ ∈R

d , let Gμ,r(·, y′) be the unique weak solution in H 1(Rd) of

μGμ,r(x
′, y′) − ∇x′ · A(x′)∇x′Gμ,r(x

′, y′) = ρr(y
′ − x′).

By standard elliptic regularity theory, Gμ,r is smooth on Rd ×R
d . In addition, from the existence/uniqueness theory 

for the Green function, we learn that for all y′ ∈R
d ,

Gμ,r(·, y′) r↓0−→ Gμ(·, y′) in W 1,1(Rd) (7.14)

Hence, for all y′ ∈ R
d ,

δGμ,r (·, y′) := G̃μ,r (·, y′) − Gμ,r (·, y′) r↓0−→ δGμ(·, y′) in W 1,1(Rd). (7.15)

For all y′ ∈ R
d , δGμ,r (·, y′) is a classical solution of

μδGμ,r (x
′, y′) − ∇x′Ã(x′)∇x′δGμ,r (x

′, y′) = ∇x′ · (Ã − A)(x′)∇x′Gμ,r(x
′, y′).

Since the RHS has compact support, δGμ,r(·, y′) satisfies the Green representation formula for all x ′, y′ ∈R
d

δGμ,r (x
′, y′) =

ˆ

Rd

∇z′G̃μ(x′, z′) · (Ã − A)(z′)∇z′Gμ,r(z
′, y′)dz′. (7.16)

Provided |z−x′| > 2L and |z−y′| > 2L, standard deterministic estimates on the gradient of the Green function yield:

sup
z′∈BL(z)

|∇z′G̃μ(x′, z′)| � sup
z′∈BL(z)

|x′ − z′|2−d � L2−d ∼ 1.

Hence, using (7.14) and (7.15), as r ↓ 0, the Green representation formula (7.16) turns into

δGμ(x′, y′) =
ˆ

Rd

∇z′G̃μ(x′, z′) · (Ã − A)(z′)∇z′Gμ(z′, y′)dz′ (7.17)

for all |z − x′| > 2L and |z − y ′| > 2L. Since Gμ and G̃μ are smooth away from the diagonal, we may differentiate 
twice (7.17), which yields for all |z − x′| > 2L and |z − y′| > 2L,

∇∇δGμ(x′, y′) =
ˆ

Rd

∇∇G̃μ(x′, z′) · (Ã − A)(z′)∇∇Gμ(z′, y′)dz′. (7.18)

Recall that |z − x| > 3L and |z − y| > 3L. Integrating (7.18) over x ′ ∈ BL(x) and y′ ∈ BL(y), we obtain by Cauchy–
Schwarz’ inequality

(∇∇δGμ)L(x, y) � (∇∇G̃μ)L(x, z)(∇∇Gμ)L(z, y). (7.19)

We turn now to the a priori estimate. Let |y′ − z| > 2L. Then, δGμ(·, y′) is the unique distributional solution in 
W 1,1(Rd) of

μδGμ(x′, y′) − ∇x′Ã(x′)∇x′δGμ(x′, y′) = ∇x′ · (Ã − A)(x′)∇x′Gμ(x′, y′).

Since Gμ is smooth away from the diagonal, the RHS is smooth with compact support, so that δGμ(·, y′) is a classical 
solution. We then differentiate the equation with respect to y′

i for i ∈ {1, . . . , d}:
μ∇y′δGμ(x′, y′) − ∇x′Ã(x′)∇x′∇y′δGμ(x′, y′) = ∇x′ · (Ã − A)(x′)∇x′∇y′Gμ(x′, y′).
i i i
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Since the RHS is smooth and has compact support, ∇y′
i
δGμ(·, y′) ∈ H 1(Rd), and we may test the weak formulation 

of the equation with the solution itself. This yields
ˆ

Rd

|∇∇δGμ(x′, y′)|2 dx′ �
ˆ

BL(z)

|∇∇δGμ(x′, y′)||∇∇Gμ(x′, y′)| dx′,

which, by Young’s inequality, turns into

ˆ

Rd

|∇∇δGμ(x′, y′)|2 dx′ �
ˆ

BL(z)

|∇∇Gμ(x′, y′)|2 dx′. (7.20)

We are in position to conclude. On the one hand, integrating (7.20) over y ′ ∈ BL(y) yields

(∇∇δGμ)L(x, y) � (∇∇Gμ)L(z, y). (7.21)

On the other hand, assume that |z−x| > 3L. Denote by G∗
μ, G̃∗

μ and δG∗
μ the Green functions associated with A∗, Ã∗, 

and their difference. Estimate (7.20) takes the formˆ

Rd

|∇∇δG∗
μ(y′, x)|2 dx′ �

ˆ

BL(z)

|∇∇G∗
μ(y′, x)|2 dx′,

so that by integration over y′ ∈ BL(x) and by the symmetry properties of the Green function,

(∇∇δGμ)L(x, z) = (∇∇δG∗
μ)L(z, x) � (∇∇G∗

μ)L(z, x) = (∇∇Gμ)L(x, z).

Hence by the triangle inequality, the estimate (7.19) for |z − x| > 3L turns into

(∇∇δGμ)L(x, y) � (∇∇Gμ)L(x, z)(∇∇Gμ)L(z, y). (7.22)

The claim (7.13) follows from the combination of (7.21) and (7.22).

Step 2. Proof of

sup
x′∈Rd

ˆ

Rd

(|z − x′| + 1)2qα

{
1 if |z − x′| � 6L

(∇∇Gμ)
2q
L (x′, z) if |z − x′| > 6L

}
dz � 1 (7.23)

for all 1 � q � q0 and α = α0
2 , where q0 and α0 are as in Lemma 3.6. For |z − x′| small, we have

ˆ

|z−x′|�6L

(|z − x′| + 1)2qα

{
1 if |z − x′|� 6L

(∇∇Gμ)
2q
L (x′, z) if |z − x′| > 6L

}
dz

�
ˆ

|z−x′|�6L

(|z − x′| + 1)qα0 dz � 1. (7.24)

For larger |z − x′|, we decompose {z : |z − x′| > 6L} into dyadic annuli:

ˆ

|z−x′|>6L

(|z − x′| + 1)2qα

{
1 if |z − x′| � 6L

(∇∇Gμ)
2q
L (x′, z) if |z − x′| > 6L

}
dz

�
∞∑

n=0

ˆ

2n6L<|z−x′|�2n+16L

(|z − x′| + 1)2qα(∇∇Gμ)
2q
L (x′, z) dz. (7.25)
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On each dyadic annulus,

ˆ

2n6L<|z−x′|�2n+16L

(|z − x′| + 1)2qα(∇∇Gμ)
2q
L (x′, z) dz

� 22qαn

ˆ

2n6L<|z−x′|�2n+16L

(ˆ
BL

ˆ

BL

|∇∇Gμ(x′ + x′′, z + z′)|2 dx′′dz′
)q

dz,

which we bound using Jensen’s inequality and (3.14) as

22qαn

ˆ

2n6L<|z−x′|�2n+16L

(ˆ
BL

ˆ

BL

|∇∇Gμ(x′ + x′′, z + z′)|2 dx′′dz′
)q

dz

� 22qαn

ˆ

BL

ˆ

BL

ˆ

2n6L<|z−x′|�2n+16L

|∇∇Gμ(x′ + x′′, z + z′)|2q dzdx′′dz′

� 22qαn

ˆ

BL

ˆ

BL

ˆ

2n4L<|z−x′−x′′|�2n+18L

|∇∇Gμ(x′ + x′′, z)|2q dzdx′′dz′

(3.14)
� 22q(α−α0)n = 2−qα0n, (7.26)

uniformly w.r.t. x′ ∈ R
d . The combination of (7.24), (7.25), and (7.26) yields the claim (7.23) since 

∑
n∈N 2−qα0n � 1.

Step 3. Conclusion.
We first show that for all |x − y| > 6L and all p large enough, we have〈(ˆ

Rd

(
osc

BL(z)
(∇∇Gμ)L(x, y)

)2|x − y|2de2c
√

μ|x−y|dz

)p
〉

� sup
z,y:|z−y|>3L

{
|z − y|2pde2c

√
μ|z−y| 〈(∇∇Gμ)

2p
L (z, y)

〉 }
. (7.27)

We claim that it is enough to prove that〈( ˆ

|z−y|�|z−x|

(
osc

BL(z)
(∇∇Gμ)L(x, y)

)2 |x − y|2ddz

)p
〉

� sup
z,y:|z−y|>3L

{
|z − y|2pd

〈
(∇∇Gμ)

2p
L (z, y)

〉 }
. (7.28)

To this aim we have to prove that the corresponding integral on the LHS of (7.28), this time over {|z− y| ≤ |z− x|}, is 
bounded by the RHS of (7.28). Indeed, (7.28) for G∗

μ with x and y switched takes the form after using the symmetry 
properties of the Green function〈( ˆ

|z−x|�|z−y|

(
osc

BL(z)
(∇∇Gμ)L(x, y)

)2 |y − x|2ddz

)p
〉

� sup
z,x:|z−x|>3L

{
|z − x|2pd

〈
(∇∇Gμ)

2p
L (x, z)

〉 }
.
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The conclusion follows by stationarity since

sup
z,x:|z−x|>3L

{
|z − x|2pd

〈
(∇∇Gμ)

2p
L (x, z)

〉 }
= sup

z:|z|>3L

{
|z|2pd

〈
(∇∇Gμ)

2p
L (z,0)

〉 }

= sup
z,y:|z−y|>3L

{
|z − y|2pd

〈
(∇∇Gμ)

2p
L (z, y)

〉 }
.

It is therefore enough to prove (7.28).
For |z − y| � |z − x|, we have |z − y| � |x−y|

2 � 3L, so that taking the supremum over Ã (by a density argument 
the supremum can be taken on smooth fields Ã) in the estimate (7.13) of Step 1 yields

ˆ

|z−y|�|z−x|

(
osc

BL(z)
(∇∇Gμ)L(x, y)

)2
dz

�
ˆ

|z−y|�|z−x|
(∇∇Gμ)2

L(z, y)

{
1 if |z − x| � 6L

(∇∇Gμ)2
L(x, z) if |z − x| > 6L

}
dz. (7.29)

We smuggle in the weight (|z − x| + 1)α and apply Hölder’s inequality with exponents (p, q) for some p > 1 to be 
fixed below:〈( ˆ

|z−y|�|z−x|
(∇∇Gμ)2

L(z, y)

{
1 if |z − x| � 6L

(∇∇Gμ)2
L(x, z) if |z − x| > 6L

}
dz

)p
〉

�
〈( ˆ

|z−y|>3L

(|z − x| + 1)2qα

{
1 if |z − x′| � 6L

(∇∇Gμ)
2q
L (x′, z) if |z − x′| > 6L

}
dz

) p
q

〉

×
〈 ˆ

|z−y|�|x−z|
(|z − x| + 1)−2pα(∇∇Gμ)

2p
L (z, y)dz

〉
.

By (7.23) in Step 2, the first term on the r.h.s. is bounded uniformly w.r.t. A as long as 1 � q � q0, i.e. p = q
q−1 �

q0
q0−1 =: p0. Hence, using that |z − y| � |x − y|/2, this yields

〈(
|x − y|2de2c

√
μ|x−y|

ˆ

|z−y|�|z−x|
(∇∇Gμ)2

L(z, y)

{
1 if |z − x| � 6L

(∇∇Gμ)2
L(x, z) if |z − x| > 6L

}
dz

)p
〉 1

p

�
〈 ˆ

|z−y|�|z−x|
(|z − x| + 1)−2pα|z − y|2pde2pc

√
μ|z−y|(∇∇Gμ)

2p
L (z, y)dz

〉 1
p

.

We then take the supremum of the last two factors of the integrand using that |z− y| > 3L and choose p large enough 
so that 

´
Rd (|x − z| + 1)−2pα dz � 1 (up to redefining p0 accordingly) so that

〈(
|x − y|2de2c

√
μ|x−y|

ˆ

|z−y|�|z−x|
(∇∇Gμ)2

L(z, y)

{
1 if |z − x| � 6L

(∇∇Gμ)2
L(x, z) if |z − x| > 6L

}
dz

)p
〉 1

p

� sup
z:|z−y|>3L

{
|z − y|2pde2pc

√
μ|z−y| 〈(∇∇Gμ)

2p
L (z, y)

〉} 1
p
. (7.30)

Estimate (7.28), which implies (7.27), is now a consequence of (7.29) and (7.30).
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Lemma 3.5 then follows from (7.27) combined with the local boundedness estimate (3.15) in the form of

sup
z:|z−y|>3L

{
|z − y|2pde2pc

√
μ|z−y| 〈(∇∇Gμ)

2p
L (z, y)

〉 }

� 1 + sup
z:|z−y|>6L

{
|z − y|2pde2c

√
μ|z−y| 〈(∇∇Gμ)

2p
L (z, y)

〉 }
.

7.4. Proof of Lemma 3.10 for p < ∞

The proof consists in a minor modification of the usual Moser iteration. We follow the proof of [9, Theorem 8.17]
and mainly focus on the differences. Without loss of generality we may assume that q < d

2 . Up to multiplying the 
equation by −1 it is enough to prove the claim for the positive part u+ = max{0, u} of u. Set ū = u+ + k, where 
k := ‖f ‖Lq(B2) with q given in the statement. We test Eq. (3.16) with the test function v = η2(ūβ − kβ) � 0, where 
β > 0 and η is a smooth cut-off function for B1 in B2 with 0 � η � 1. In the following, we require that

0 < β <
(q − 1)d

d − 2q
. (7.31)

The derivative of v is given by

∇v = 2η(ūβ − kβ)∇η + η2βūβ−1∇ū.

Since by construction μu(ūβ − kβ) � 0 and either ∇ū and ūβ − kβ vanish or ∇ū equals ∇u, Eq. (3.16) with test-
function v yields

0 =
ˆ

Rd

(
μvu + ∇v · A∇u − vf

)
dx

=
ˆ

Rd

(
μη2(ūβ − kβ)u + βη2ūβ−1∇ū · A∇ū + (

2η(ūβ − kβ)∇η
) · A∇ū − vf

)
dx

�
ˆ

Rd

(
λβη2ūβ−1|∇ū|2 − 2|∇η|(ūβ − kβ)η|∇ū| − η2(ūβ − kβ)|f |

)
dx

�
ˆ

Rd

(
λβη2ūβ−1|∇ū|2 − 2|∇η|ūβη|∇ū| − η2ūβ |f |

)
dx.

By Young’s inequality,ˆ

Rd

2|∇η|ūβη|∇ū| dx � λβ

2

ˆ

Rd

η2ūβ−1|∇ū|2 dx + 2

λβ

ˆ

Rd

|∇η|2ūβ+1 dx,

so that

λβ

2

ˆ

Rd

η2ūβ−1|∇ū|2 dx ≤ 2

λβ

ˆ

Rd

|∇η|2ūβ+1 dx +
ˆ

Rd

η2ūβ |f | dx. (7.32)

So far, the computations are identical to the usual Moser iteration. Here comes the difference: Let χ = d
d−2 if d > 2

(or fix any 1 < χ < +∞ if d = 2) and let s � 1 be such that 1 = 1
s

+ β
(β+1)χ

. Then, the choice (7.31) implies that 
1 � s < q . Indeed,

1

s
− 1

q
= 1 − β

(β + 1)χ
− 1

q
>

q − 1

q
− β

β + 1

d − 2

d
= −β(d − 2q) + d(q − 1)

q(β + 1)d

(7.31)
> 0.

We now treat the second RHS term of (7.32). Hölder’s inequality on η2ūβ |f | = (η
2 β

β+1 ūβ)(η
2 1

β+1 |f |) with exponents 
(χ

β+1
, s) yields
β
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ˆ

Rd

η2ūβ |f | dx �
(ˆ
Rd

η2χ ū(β+1)χ dx

) β
(β+1)χ

(ˆ
Rd

η
2s

β+1 |f |s dx

) 1
s

.

Let C denote a generic constant depending only on d , λ and q (but which can change from line to line) — note that 
since 1 � β <

(q−1)d
d−2q

, constants depending on β are also bounded by C. Since 0 � η � 1 and s < q < d
2 , it follows by 

Jensen’s inequality that

ˆ

Rd

η2ūβ |f | dx � C k

(ˆ
Rd

η2χ ū(β+1)χ dx

) β
(β+1)χ

,

where we recall that k = ‖f ‖Lq(B2). By Young’s inequality we thus have for all ε > 0:

ˆ

Rd

η2ūβ |f | dx � ε

(ˆ
Rd

η2χ ū(β+1)χ dx

) 1
χ + Ckβ+1,

where C depends now in addition on ε. Combined with (7.32) this yields

λβ

2

ˆ

Rd

η2ūβ−1|∇ū|2 dx � 2

λβ

ˆ

Rd

|∇η|2ūβ+1 dx + Ckβ+1 + ε

(ˆ
Rd

η2χ ū(β+1)χ dx

) 1
χ

.

Next we introduce another function w := ū
β+1

2 and rewrite this inequality as

λ

ˆ

Rd

η2|∇w|2 dx � 2

λβ

ˆ

Rd

|∇η|2w2 dx + Ckβ+1 + ε

(ˆ
Rd

|ηw|2χ dx

) 1
χ

. (7.33)

This yields

ˆ

Rd

|∇(ηw)|2 dx � 2

λ2β

ˆ

Rd

|∇η|2w2 dx + Ckβ+1 + ε

λ

(ˆ
Rd

|ηw|2χ dx

) 1
χ

.

By the Sobolev embedding, this turns into

CSob

(ˆ
Rd

|ηw|2χ dx

) 1
χ

� 2

λ2β

ˆ

Rd

|∇η|2w2 dx + Ckβ+1 + ε

λ

(ˆ
Rd

|ηw|2χ dx

) 1
χ

,

so that for ε small enough (and only depending on d , λ and q), we have

(ˆ
Rd

|ηw|2χ dx

) 1
χ

� C

ˆ

Rd

|∇η|2w2 dx + Ckβ+1.

This corresponds to the usual Moser iteration (albeit the dependence of the constants on β is worse), and yields the 
desired result for p = χ(β + 1). We can then iterate by increasing β to yield bounds as long as β <

(q−1)d
d−2q

. In this 
case any exponent of the form p = (β + 1)χ can be attained, which yields

1

p
>

d − 2q

((q − 1)d + d − 2q)χ
= d − 2q

dq
= 1

q
− 2

d
,

as claimed. Note that (unlike the usual Moser iteration) the dependence of the constants on β does not matter since 
we only need to iterate finitely many times in order to reach p < +∞.
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7.5. Proof of Lemma 3.9

Let u and ũ be solutions of (3.16) with coefficient fields A and Ã, respectively, where the coefficients coincide 
outside the ball B(z). Their difference δu solves

μδu − ∇ · Ã∇δu = −∇ · (Ã − A)∇u, (7.34)

μδu − ∇ · A∇δu = −∇ · (Ã − A)∇ũ. (7.35)

Step 1. Preliminary result and proof of

sup
x,x′∈Rd

sup
Ã∈�

∥∥∥∥
 

B 3
2

(x)

∇y′G̃μ(y, y′) dy

∥∥∥∥
L2

y′ (B 3
2

(x′))
� 1.

To see this, we note that

v : y′ �→
 

B 3
2

(x)

G̃μ(y, y′) dy solves μv − ∇ · Ã∇v = 1

|B 3
2
(x)|χB 3

2
(x),

where χD denotes the characteristic function of the set D ⊆R
d , that is, a regularized version of the defining equation 

for the Green function without singularity. The proof that ́
B 3

2
(x′) |∇v|2dy′ is bounded and only depends on  and λ is 

similar to the corresponding proof of [14, Corollary 2.3] in the discrete case (since there is no singularity to be taken 
care of).

Step 2. Proof of (3.19) for |x − z| > 6.
The Green function representation formula associated with (7.35) yields

u(x) − ũ(x) =
ˆ

B(z)

∇zGμ(x, z′) · (Ã(z′) − A(z′))∇ũ(z′) dz′.

Hence, by the triangle inequality and Hölder’s inequality,

‖u − ũ‖
L

λ′
1 (B(x))

� ‖∇2Gμ‖
L

λ′
1

x (B(x),L2
z(B(z)))

(∇ũ)(z),

where we recall that (∇ũ)(z) = ‖∇ũ‖L2(B(z))
. Since |x−z| > 6, for all i ∈ {1, . . . , d} the function x �→ ∇zi

Gμ(x, z)
is in the kernel of (μ − ∇ · A∇) in B2(x) for all z ∈ B(z) and Lemma 3.10 implies that

‖∇2Gμ‖
L

λ′
1

x (B(x),L2
z(B(z)))

� ‖∇2Gμ‖L2
x(B2(x)×B(z))

� (∇zGμ)2(x, z).

On the other hand, an energy estimate based on (7.34) yields

(∇ũ)(z) � (∇u)(z).

Estimate (3.19) for |x − z| > 6 is proved.

Step 3. Proof of (3.19) for |x − z| � 6.
Let x be fixed such that |x − z| � 6. We shall consider a third coefficient field A0 ∈ � such that A0|Rd\B9(z)

=
A|Rd\B9(z)

, A0|B8(z) = Id, and denote by u0 the associated solution of (3.16) with coefficient fields A0. We denote 
the local averages of u, ũ, and u0 around x by

ū =
 

B 3
2

(x)

u dy, ¯̃u =
 

B 3
2

(x)

ũ dy, and ū0 =
 

B 3
2

(x)

u0 dy.

The triangle inequality yields

‖u − ũ‖ λ′ � ‖u − ū0‖ λ′ + ‖ũ − ū0‖ λ′ . (7.36)

L 1 (B(x)) L 1 (B(x)) L 1 (B(x))
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By the De Giorgi–Nash–Moser estimate of Lemma 3.10 with p = λ′
1 and q = λ2 (note 1

λ2
< 2

d
+ 1

λ′
1

and u − ū0 solves 

the same equation as u with the addition of −μū0 on the RHS), the triangle inequality, and Poincaré’s inequality on 
B 3

2
(x), the first term yields

‖u − ū0‖
L

λ′
1 (B(x))

�
( ˆ

B 3
2

(x)

|u(y) − ū0|2 dy
) 1

2 + ‖μū0 + f ‖Lλ2 (B 3
2

(x))

�
( ˆ

B 3
2

(x)

|u(y) − ū|2 dy
) 1

2 + |ū0 − ū| + μ|ū0| + ‖f ‖Lλ2 (B 3
2

(x))

�
( ˆ

B 3
2

(x)

|∇u|2 dy
) 1

2 + |ū0 − ū| + μ|ū0| + ‖f ‖Lλ2 (B 3
2

(x)). (7.37)

Likewise,

‖ũ − ū0‖
L

λ′
1 (B(x))

�
( ˆ

B 3
2

(x)

|∇ũ|2 dy
) 1

2 + |ū0 − ¯̃u| + μ|ū0| + ‖f ‖Lλ2 (B 3
2

(x)). (7.38)

On the one hand, an energy estimate based on (7.34) yields
ˆ

B9(z)

|∇ũ|2 dy �
ˆ

B9(z)

|∇u|2 dy,

ˆ

B9(z)

|∇u0|2 dy �
ˆ

B9(z)

|∇u|2 dy. (7.39)

It remains to bound μ|ū0| and |ū0 − ū| and |ū0 − ¯̃u|. We start with the two differences. The Green representation 
formula yields

ū − ū0 =
 

B 3
2

(x)

(u − u0) dy =
 

B 3
2

(x)

ˆ

B9(z)

∇y′Gμ,0(y, y′) · (A0 − A)(y′)∇u(y′) dy′dy,

so that

|ū − ū0| �
ˆ

B9(z)

∣∣∣  

B 3
2

(x)

∇y′Gμ,0(y, y′) dy

∣∣∣|∇u(y′)| dy′.

Proceeding also the same way for |ū0 − ¯̃u|, we conclude by Cauchy–Schwarz’ inequality and Step 1 that

|ū − ū0| + | ¯̃u − ū0| � ‖∇u‖L2(B9(z))
= (∇u)9(z). (7.40)

We turn to the estimate of μū0 and recall that by the choice of A0, u0 solves in B8(z)

μu0 − �u0 = f.

Hence the function u : y �→ ffl
B 3

2
(y)

u0dy′ solves in B
2
(x) the equation

μu − �u = f,

where f(y) := ffl
B 3

2
(y)

f dy′. Testing this equation with test-function η2u with η supported in B
2
(x) yields

μ

ˆ

B  (x)

η2u2
dy +

ˆ

B  (x)

η2|∇u|2dy =
ˆ

B  (x)

fη
2udy − 2

ˆ

B  (x)

uη∇η · ∇udy,
2 2 2 2
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which turns, by Young’s inequality, into

μ2
ˆ

B 
2
(x)

η2u2
dy �

ˆ

B 
2
(x)

f 2
 dy +

ˆ

B 
2
(x)

|∇u|2dy.

With η a cut-off for B
4
(x) in B

2
(x), Lemma 3.10 with p = ∞ yields for q = d

μ2 sup
B 

4
(x)

u2
 �

( ˆ

B 
2
(x)

|f|ddy
) 2

d +
ˆ

B 
2
(x)

|∇u|2dy,

and therefore by definition of u and f and Cauchy–Schwarz’ inequality,

μ2ū2
0 = μ2

(  

B 3
2

(x)

u0dy
)2

�
( ˆ

B2(x)

|f |dy
)2 +

ˆ

B2(x)

|∇u0|2dy. (7.41)

The combination of (7.36), (7.37), (7.38), (7.39), (7.40), and (7.41) then yields

‖u − ũ‖
L

λ′
1 (B(x))

� (∇u)9(z) + ‖f ‖Lλ2 (B2(x)),

which proves (3.19) for |x − z| � 6.
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